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Abstract 

In recent years, there has been an abundance of research that has used Poisson 

models and its variants (negative binomial and zero-inflated models) to improve our 

understanding of the factors that affect accident frequencies on roadway segments.  This 

study explores the application of an alternate method, tobit regression, by viewing vehicle 

accident rates directly (instead of frequencies) as a continuous variable that is left-

censored at zero. Using data from vehicle accidents on Indiana interstates, the estimation 

results show that many factors relating to pavement condition, roadway geometrics and 

traffic characteristics significantly affect vehicle accident rates. 
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Introduction 

In recent years there have been numerous studies that have sought to understand 

the factors that determine the frequency of accidents on roadway segments over some 

period of time. Because such accident-frequency data are non-negative count data, 

Poisson and negative binomial models have been widely used (Shankar et al., 1995; Hadi 

et al., 1995; Poch and Mannering, 1996; Abdel-Aty and Radwan, 2000; Savolainen and 

Tarko, 2005). In addition, some variations of these modeling approaches have also been 

applied, such as zero-inflated Poisson and zero-inflated negative binomial (Shankar et al., 

1997; Carson and Mannering, 2001; Lee and Mannering, 2002) and negative binomial 

with random effects (Shankar et al., 1998).  To be sure, this body of literature has 

provided numerous insights into the factors affecting accident frequencies on roadway 

segments. However, using exposure-based accident rates instead of traditional accident 

counts as the dependent variable has considerable appeal because accident rates are 

widely used in accident reporting.  For example, the number of accidents per 100 million 

miles driven is a commonly reported standard in the literature. The use of accidents per 

vehicle-miles traveled has an intuitive appeal in highway safety – providing a 

standardized measure of the relative safety of roadway segments that is more easily 

interpreted than the number of accidents per some time period.  

From the perspective of statistical modeling, accidents per vehicle-miles traveled 

is a continuous variable instead of the non-negative integer used when studying the 

number of accidents on a roadway segment over some time period.  However, because 

accident rates on specific highway segments are assessed over some finite time period, 

there is the likelihood that many highway segments will have no accidents reported 
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during the analysis period.  Thus, modeling accident rates by standard ordinary least 

squares would result in biased and inconsistent parameter estimates (Washington et al., 

2003). The solution to this is to consider accident rates as a censored dependent variable 

(censored at zero) and apply a tobit model. 

While having not been previously applied to the study of highway accident rates 

(to the authors’ knowledge), tobit models have been widely used in economics (Tobin, 

1958; Nelson, 1977; Keeley et al., 1978), social sciences (Fair, 1978; Roncek, 1992; 

Smith and Brame, 2003), and medicine (Baser et al., 2003; Ekstrand and Carpenter, 

1998). In the transportation arena in general, tobit models are not commonly used and 

only a hand full of applications can be found. As examples, Talley (1995) estimated a 

tobit model to predict the determinants of accident passenger-vessel damage cost; Nolan 

(2002) used a tobit regression to model household petrol, bus and taxi fare expenditure 

household decisions in Ireland; and Weiss (1992) used the approach to asses helmet use 

on motorcycle head-injury accidents.  

The intent of the current paper is to demonstrate the potential of tobit regression 

as a tool to study accident rates on roadway segments.  This will be done by applying the 

model to vehicle accident rates on interstate roadway segments in Indiana. 

 

Methodology 

The tobit model was first proposed by James Tobin (1958), and refers to 

regression models in which the range of the dependent variable is censored in some way. 

Censoring refers to a data limitation that can result in a data clustering at a lower 

threshold (left censored), an upper threshold (right censored), or both.  Censored data 
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differ from truncated data in that in truncated data only non-limited values are available 

(censored data provide information on limited data as well).  For the accident-rate data 

that we will consider, the data will be left-censored with a clustering at zero (zero 

accidents per 100-million vehicle miles traveled) because accidents may not be observed 

on all roadway segments during the period of observation. 

The tobit model is expressed (for roadway segment i) using a limit of zero (which 

will be the case for our analysis) as: 
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where N is the number of observations, Yi is the dependent variable (accidents per 100-

million vehicle miles traveled), Xi is a vector of independent variables (traffic and 

roadway segment characteristics), β is a vector of estimable parameters, and εi is a 

normally and independently distributed error term with zero mean and constant variance 

σ2. It is assumed that there is an implicit, stochastic index (latent variable) equal to *

iY  

which is observed only when positive.  The corresponding likelihood function for the 

tobit model is 

      1

0 1

1  iL Y         βX βX      (2) 

where Φ is the standard normal distribution function and   is the standard normal 

density function. 

With this model, the expected value of the dependent variable for all cases, E[Y], 

is (removing the subscript i to simplify the exposition):  

      [ ] = E Y F z f zβX     (3) 
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where =z βX   is the z-score for an area under the normal curve, F(z) is the cumulative 

normal distribution function, associated with the proportion of cases above the zero, 

)(zf  the unit normal density (value of the derivative of the normal curve at a particular 

point), and σ the standard deviation of the error term.  And, the relationship among the 

expected value of all observations, E[Y]; the expected value for cases above zero, E[Y']; 

and the probability of being above zero, F(z) is: 

              YEzFYE       (4) 

where Y' denotes observations above zero in our accident-rate case. 

To determine the effect of an independent variable on the expected value, the 

first-order partial derivative of equation 3 is used and, as shown by Amemiya (1973, 

1985), the expected value of Y for observations above zero, is βX plus the expected value 

of the truncated normal error term: 
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McDonald and Moffitt (1980) find for the first-order partial derivative for a specific 

independent variable Xk of equation 3 to be: 
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where   kE Y X   is the change in the overall expected value,   kE Y X   is the 

change in the expected value for cases above zero (weighted by the probability of being 

above zero), and   kF z X   is the change in the cumulative probability of being above 

zero (weighted by the expected value of Y if above the limit), associated with an 
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independent variable (see Roncek, 1992). Assuming that either   kE Y X   or 

  kF z X   has estimates of βk and σ, each of the terms in equation 6 can be evaluated at 

some value of βkXk, usually at the mean of Xk.  The value of E[Y'] can be calculated from 

equation 5, and the value of F(z) can be obtained directly (from statistical tables, etc.).  

Roncek's decomposition method (Roncek, 1992) provides the change in the cumulative 

probability of being zero as, 
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where βk is the estimated tobit parameter for a particular independent variable k, and from 

equation 5, the change in the expected value for cases above zero is, 

  
   

 
 
 














2

2

zF

zf

zF

zf
z1

X

YE
k

k

 ,    (8) 

where z is the z-score associated with the area under the normal curve.  A common error 

in literature is to assume that the estimated tobit estimated parameters measure the correct 

regression parameters for observation above the limit.  As indicated McDonald and 

Moffitt (1980) presented, this is only true when X , which would mean that F(z) = 1 

and 0)( zf . 

 

Empirical Setting 

Vehicle accident data from interstate highways in Indiana (I-64, I-65, I-70, I-74, 

and I-164) were collected for a 5-year period (1 January 1995, to 31 December 1999) to 

investigate the effect of pavement characteristics, highway geometries, and traffic 

characteristics on accident rates per 100-million vehicle miles traveled (VMT).  To study 
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this relationship, the roadway data were collected from the Indiana Department of 

Transportation and the data were divided into homogeneous roadway segments (defined 

by roadway geometrics and pavement type).  The segment-defining information included 

shoulder characteristics (inside and outside shoulder presence and width and rumble 

strips), pavement characteristics (pavement type), median characteristics (median width, 

type, condition, barrier presence and location), number of lanes, and speed limit.  A total 

of 337 roadway segments were defined and the number of police-reported vehicle 

accidents occurring on each segment over the five-year period was obtained from the 

Indiana State Patrol accident-data files. 

For model estimation, our data included the aggregated number of accidents on 

each roadway segment over a five year period: from 1 January 1995, to 31 December 

1999. The accident rate (number of accidents per 100-million VMT) was calculated as: 

0100,000,00365
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where Accident Ratei is the number of accidents per 100-million VMT on roadway 

segment i, Year denotes the year (from 1 to 5 representing 1995 to 1999), AccidentsYear,i 

is the number of accidents, AADTYear,i the average annual daily traffic, Li the length of 

roadway segment i.  

 



 7 

Estimation results 

Tables 1 and 2 present summary statistics and tobit estimation results.1 To assess 

the influence of specific variables, Table 3 presents the computed values for the change 

in the expected value of accident rates for roadway segments (vehicle accidents per 100-

million VMT) and the change in the probability of having a 100-million VMT accident 

rate above zero for the accident-observation period.2 The estimation results provided in 

Table 2 show that the estimated parameters are significant and of plausible sign based on 

the sample of 325 roadway segments that had complete information on all variables used. 

Also, the overall statistical fit of the model was quite good as indicated by the Maddala 

psuedo-R2 of 0.948.3 

Turning to specific estimation results, Table 3 shows that Interstates I-70 and  

I-164 tend to have a lower accident rate 26.38 and a 22.48% lower probability of having a 

100-million VMT accident rate above zero. While it is impossible to know for sure, there 

are a number of speculative explanations for this finding.  One possibility is that, because 

both of these interstates are located to the southern part of Indiana, this finding could be 

reflecting more favorable weather conditions.  There is also the possibility that different 

driving behavior and/or temporal distributions of traffic on these interstates may be 

contributing to the heterogeneity that this indicator variable seems to be capturing. 

                                                 
1 There are a number of econometric software packages available to estimate tobit models.  The estimations 

presented in this paper were estimated using Limdep (Greene, 2007). 
2 We also used the data as cross-sectional time-series, considering annual accident rates instead of the 5-

year accident rate.  In doing so, each roadway segment generates five observations.  To account for the 

correlation that will be set up with such repeat observations, we estimated a tobit model with random 

effects.  Our finding with this approach was that the random effects were not significant.  Also, the 5-year 

data provided better estimation results with regard to overall model fit and the significance of individual 

variables. 
3 With regard to overall goodness of fit, Veall and Zimmermann (1996) extensively discuss this topic in the 

context of the tobit model.  They conclude that the Maddala pseudo R2 is a valid measurement (Maddala, 

1983).  The Maddala R2 is computed as 1-EXP[2(LL(β)-LL(0))/N] were LL(β) is the log-likelihood at 

convergence, LL(0) is the log-likelihood at zero and N is the number of observations. 
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With regard to pavement characteristics, roadway friction is typically measured 

on 0 to 100 friction scale, with friction considered to be good if its value is 40 or above.  

Given this, we constructed an indicator variable that is equal to one if the roadway 

segment had a minimum friction number of more than 40 for the entire 5-year analysis 

period.  Table 3 shows that the estimation findings for this high-friction indicator variable 

(1 if all 5-year friction readings are 40 or above, 0 otherwise) suggests a 29.82 decrease 

of the number of accidents per 100-million VMT and a 25.52% lower probability of 

having a 100-million VMT accident rate above zero. This result supports the earlier 

finding of Noyce et al. (2005) that showed that higher pavement friction lowered the risk 

of accident.  

Another important measure of pavement condition is the International Roughness 

Index (IRI) which measures irregularities that can result from rutting, potholes, patching, 

and other factors.  The IRI is used to define a characteristic of the longitudinal profile of a 

traveled wheel track and its units are inches per mile or meters per kilometer. The IRI is 

based on a filtered ratio (refereed to as the average rectified slope) of a standard vehicle's 

accumulated suspension motion (usually in meters or inches) divided by the distance 

traveled by the vehicle during the measurement (usually km or mi).  In Indiana, the IRI is 

measured in inches/mile, with lower values indicating a smoother pavement (see Noyce 

et al., 2005 and Shafizadeh and Mannering, 2003, 2006). A pavement is considered as 

smooth (good) when the IRI is less than 95; hence, a maximum IRI (over a 5 year period) 

of less than 75 (the median of the average IRI is 75 in our sample) would indicate a very 

smooth pavement – presumably resulting in lower driver fatigue and thus lower accident 

rates. Table 3 shows the smooth-pavement indicator variable (1 if 5-year IRI readings are 
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below 75, 0 otherwise) resulted in a 27.06 decrease in the number of accidents per 100-

million VMT and a 23.80% lower probability of having a 100-million VMT accident rate 

above zero. 

Because excessive rutting could contribute to vehicle tracking and loss of control 

during maneuvering, one would expect pavements with minimal rutting to have lower 

accident rates.  Our model results support this – we  found that pavements that had rutting 

below 0.12 inches over the entire 5-year observation period had a 23.55 decrease in the 

number of accidents per 100-million VMT and a 20.19% lower probability of having a 

100-million VMT accident rate above zero.   We also found that Good overall rutting 

conditions (1 if all 5-year average rutting readings are below 0.2 inches, 0 otherwise) 

gave an 11.77 decrease in the number of accidents per 100-million VMT and an 11.91% 

lower probability of having a 100-million VMT accident rate above zero. 

Pavement Condition Ratings (PCRs) range from 0 (completely deteriorated) to 

100 (excellent pavement condition).  Values above 95 are considered to be very good.  In 

our model, roadway segments that had average PCR values above 95 over the 5-year 

period had a 19.92 increase in the number of accidents per 100-million VMT and a 

13.21% higher probability of having a 100-million VMT accident rate above zero.  This 

finding is somewhat surprising and could be picking up a variety of unobserved factors.  

For example, one possible explanation could relate to driver behavior.  Mannering (2007) 

found that drivers, who believe pavement quality in Indiana interstates is good, tend to  
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drive at higher speeds. The potential reactions of drivers to excellent pavement conditions 

could be one explanation for this finding.4 

Turning to roadway geometrics, Table 3 shows that wide medians (greater than 74 

feet) result in a 13.70 decrease in the number of accidents per 100-million VMT and an 

11.78% lower probability of having a 100-million VMT accident rate above zero. This is 

expected because wide medians have been shown to reduce median-related accidents and 

thus reduce accident rates (see for example Shankar et al. 1998). 

The presence of a median barrier resulted in a 61.20 decrease in the number of 

accidents per 100-million VMT and a 60.88% lower probability of having a 100-million 

VMT accident rate above zero. One possible explanation for this finding is that the 

presence of median barriers may result in accidents of lower severity.  And, because our 

data consist only of police-reported accidents, this finding could reflect, among other 

factors, under-reporting of minor accidents. 

With regard to other median variables, it is noteworthy that inside (median) 

shoulders that were 5 feet or greater resulted in a 26.73 decrease in the number of 

accidents per 100-million VMT and a 25.34% lower probability of having a 100-million 

VMT accident rate above zero. It is speculated that inside shoulders of 5 feet or more are 

may be providing adequate recovery space for some driver errors. 

                                                 
4 As a final point relating to pavement attributes, we did try an indicator variable to test concrete versus 

asphalt because simple correlation suggested that concrete pavements had lower accident rates. Of the 

325 roadway segments in our sample, 259 were asphalt and 78 were concrete.  The concrete segments 

had higher 5-year average friction (43.71 vs. 36.07) and lower 5-year average rut depth (0.10 vs. 0.14 

inches) and asphalt segments had a better average 5-year average International Roughness Index (74.87 

vs. 106.20 in/mi) and a slightly better 5-year average Pavement Condition Rating (95.04 vs. 92.33).  

When these detailed pavement condition variables are included in the model, the simple concrete/asphalt 

indicator variable became statistically insignificant. This suggests that the safety characteristics of the 

pavement are readily defined by measurable attributes and not fundamental differences in pavement types 

that are difficult to measure. 
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Table 3 also shows that outside shoulders play an important role in vehicle 

accident rates.  We found that a one foot increase in the outside shoulder width decreased 

the number of accidents per 100-million VMT by 6.93 and lowered the probability of 

having a 100-million VMT accident rate above zero by 4.72%. This finding is consistent 

with the earlier work of Shankar et al. (1997) that found that shoulder widths less than 5 

feet significantly increased accident frequency.  

With regard to the effects of a number of roadway geometric characteristics, at 

least two factors must be considered.  First, there is an entire body of literature that 

suggests some variation in roadway geometrics may improve drivers' alertness.  For 

example, Wertheim (1978), Cerezuela et. al., (2004) and others have explored what has 

been termed "highway hypnosis" which may result from constant roadway geometrics 

and other factors. Given this possibility, some visual and/or physical variation in roadway 

characteristics may increase driver alertness and thus decrease the likelihood of an 

accident.  Second, there is a body of literature that has indicated that improvements in 

roadway design do not always reduce accidents – the idea being that drivers may 

compensate by driving more carefully in conditions which they perceive as dangerous 

and less carefully in conditions they do not (see the risk compensation literature including 

Assum et. al., 1999; Dulisse, B., 1997; Winston et. al., 2006).  These two factors play into 

a number of the estimation findings.  For example, Table 3 shows that each additional 

bridge in a roadway segment was found to decrease the number of vehicle accidents per 

100-million VMT by 6.57 and lowered the probability of having a 100-million VMT 

accident rate above zero by 5.41%.  Although the effect is not large, it is possible that 

bridges may be playing a role in keeping drivers alert. Similarly, shoulder rumble strips, 
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which are designed to alert drivers by producing noise and vibration to warn of leaving 

the roadway, were found to be effective in reducing accident rates with the presence of 

rumble strips on both inside and outside shoulders resulting in a 16.16 decrease in the 

number of accidents per 100-million VMT and a 17.32% lower probability of having a 

100-million VMT accident rate above zero. 

With regard to vertical curves, a unit increase in the number of vertical curves per 

mile resulted in a 4.43 decrease in the number of accidents per 100-million VMT and a 

3.88% lower probability of having a 100-million VMT accident rate above zero. This 

finding is consistent with previous research on accident frequencies and severities.  For 

example, Shankar et al. (1997) found that flat roadway segments had lower accident 

frequencies and Milton et al. (2007) found that the number of changes in vertical profile 

per mile had a significant negative effect on the likelihood of injury accidents. A possible 

explanation for this is that drivers may adjust their driving behavior in response to the 

geometric changes of the roadway (vertical curves) – reducing their speed, and becoming 

more cautious (risk compensation as discussed above).  However, Table 3 also shows that 

a unit (10%) increase in the ratio of the vertical curve length over the total roadway 

segment length was found to increase the number of accidents per 100-million VMT by 

3.13 and increase the probability of having a 100-million VMT accident rate above zero 

by 2.24%.  This, combined with the number of vertical curves per mile finding, suggest 

that the vertical curve effect on accident rates is complex – with the presence of some 

vertical curves reducing vehicle accident rates but the presence of many elevation 

changes (measured as a proportion of the total segment length) countering this effect. 
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Consistent with the findings of Shankar et al. (1997) we find that a higher degree 

of curvature of horizontal curves has a negative effect on accident rates (the higher the 

degree and thus the sharper the curve, the fewer the accidents). Table 3 shows that if the 

average degree-of-curve value of the horizon curves in the roadway segment is greater 

than 2.1 degrees (which is the average of all horizontal curves in our sample plus one 

standard deviation), the number of accidents per 100-million VMT decreased by 17.98 

and the probability of having a 100-million VMT accident rate above zero decreased by 

14.79%.  One must keep in mind that even these "sharper" curves are still designed to 

interstate standards with 70-mph design speeds.  As was the finding with the number of 

vertical curves, it is possible that these sharper curves are making drivers more alert 

and/or they are compensating for the increase in danger by driving more cautiously – thus 

reducing accident rates. 

A unit increase in the number of ramps in the roadway segment (per lane mile) 

was found to increase the number of accidents per 100-million VMT by 22.36 and 

increase the probability of having a 100-million VMT accident rate above zero by 

16.87%.  This is consistent with other findings that have shown that vehicle maneuvers 

(turning, overtaking, merging, changing lanes, etc.) have a significant effect on accident 

frequency (Li and Kim, 2000; Islam and Mannering, 2006). 

Turning to traffic-related variables, we find that as the annual average daily travel 

(AADT) increased (in thousands of vehicles per day), the number of accidents per 100-

million VMT decreased by 0.54 and the probability of having a 100-million VMT 

accident rate above zero by decreased by 0.61%.  This finding is consistent with a 

number of previous studies (Qi et al., 2007; Dickerson et al., 2000; Zhou and Sisiopiku, 
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1997) that have shown that accident rates are higher on low-traffic volume roads, and 

significantly decrease with increasing volumes.  

Finally, a one percent increase in the average daily percentage of combination 

trucks was found to decrease the number of accidents per 100-million VMT by 0.69 and 

decrease the probability of having a 100-million VMT accident rate above zero by 

0.79%.  This finding is consistent with previous work (for example, Shankar et al., 1997) 

and suggest that higher combination-truck percentages may be reflecting greater driver 

experience (truck drivers) and may also be having a calming effect on traffic.  

As a final comment on model estimation, it should be mentioned that, because 

some of our roadway segments were adjacent to one another, we considered tobit models 

with both fixed and random effects to account for possible error term correlation among 

the adjacent segments.  All tests indicated that fixed and random effects were not 

statistically significant.5 

 

Summary and Conclusions 

This paper provides a demonstration of tobit regression as a methodological 

approach to gain new insights into the factors that significantly influence accident rates.  

The ability of the tobit model to consider roadway segments with and without observed 

                                                 
5 We also estimated a traditional negative binomial model of the number of accidents over the five-year 

observation period occurring on specific roadway segments (the significance of the negative binomial 

dispersion parameter allowed us to reject the Poisson model, see Washington et. al., 2003).  The results 

were broadly similar with four variables differing: 1) road section length was included in the negative 

binomial model to account for the fact that the number of accidents will increase with longer sections 

(this variable was not statistically significant in the tobit model because section length would not affect 

accident rates); 2) the interstate indicator variable for I-70 and I-164 was modified and now found to be 

significant for I-64 and I-164; 3) number of bridges per mile was used instead of number of bridges per 

roadway segment; and 4) the square of AADT of passenger cars was used instead of just the AADT of 

passenger cars.  The overall fit of the negative binomial using McFadden's ρ2 was 0.869 (see Washington 

et. al., 2003). 
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accidents provides for complete use of available data. Using five years of vehicle 

accident data from Indiana, our estimation results provide some interesting findings.  For 

example, a variety of factors relating to pavement condition and quality were found to 

significantly influence vehicle accidents rates including the effects of friction, the 

International Roughness Index, pavement rutting and the pavement's condition rating.  In 

terms of geometric factors and their effect on vehicle accident rates, median types and 

width, shoulder widths, number of ramps and bridges, horizontal and vertical curves and 

rumble strips were all found to be statistically significant.  And, the traffic variables of 

annual average daily travel and the percent of combination truck in the traffic stream 

were both found to have a significant impact on accident rates. 

While this study is exploratory in nature, it does suggest the considerable 

potential that tobit regression has in analyzing accidents rates.  Applying the approach to 

other geographic areas and to non-interstate road sections would potentially provide more 

information on the effect that pavement, geometric, and traffic characteristics have on 

accident rates. 
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Table 1. Summary statistics of key pavement, geometric and traffic variables. 

Variable Mean St. Dev. Min. Max. 

Dependent Variable: Accidents per 100-million VMT 41.29 47.50 0 350.40 

Interstate indicator variable (1 if I-70 or I-164, 0 otherwise) 0.15 0.36 0 1 

High Friction indicator variable (1 if all 5-year friction 

readings are 40 or higher, 0 otherwise) 
0.14 0.35 0 1 

Smooth pavement indicator variable (1 if 5-year International 

Roughness Index (IRI) readings are below 75, 0 otherwise) 
0.20 0.40 0 1 

Excellent rutting indicator variable (1 if all 5-year rut readings 

are below 0.12 inches, 0 otherwise) 
0.18 0.39 0 1 

Good rutting indicator variable (1 if all 5-year average rutting 

readings are below 0.2 inches, 0 otherwise) 
0.87 0.33 0 1 

Average Pavement Condition Rating (PCR) indicator variable 

(1 if PCR greater than 95, 0 otherwise) 
0.55 0.50 0 1 

Median width indicator variable 

(1 if greater than 74 feet, 0 otherwise) 
0.32 0.47 0 1 

Median barrier presence indicator variable 

(1 if present, 0 otherwise) 
0.16 0.37 0 1 

Inside shoulder width indicator variable 

(1 if 5 feet or greater, 0 otherwise) 
0.31 0.46 0 1 

Outside shoulder width (in feet) 11.28 1.74 6.2 21.8 

Number of bridges (per road section) 0.34 0.85 0 5 

Number of ramps in the driving direction per lane-mile 0.14 0.41 0 3.27 

Number of vertical curves per mile 1.18 2.50 0 14.49 

Ratio of the vertical curve length over the road section length 2.23 3.56 0 10 

Horizontal curve's degree curvature indicator variable 

(1 if average degrees per road section is greater than 2.1, 0 

otherwise) 

0.12 0.33 0 1 

Rumble strips indicator variable (1 if both inside and outside 

rumble strips are present, 0 otherwise) 
0.72 0.45 0 1 

AADT of passenger cars (in 1,000 vehicles per day) 23.16 26.83 5.99 128.03 

Average daily percent of combination trucks 0.23 0.14 0.03 0.44 
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Table 2. Tobit regression estimation of accidents per 100-million VMT. 

Variable Parameter 
estimate t-ratio 

Constant 173.414   5.91 

Interstate indicator variable (1 if I-70 or I-164, 0 otherwise) -29.518 -3.45 

Pavement Characteristics   
High-friction indicator variable  

(1 if all 5-year friction readings are 40 or higher, 0 otherwise) 
-33.521 -3.52 

Smooth pavement indicator variable  

(1 if 5-year IRI readings are below 75, 0 otherwise) 
-31.262 -3.71 

Excellent rutting indicator variable  

(1 if all 5-year rutting readings are below 0.12 inches, 0 otherwise) 
-26.516 -2.92 

Good rutting indicator variable (1 if all 5-year average rutting 

readings are below 0.2 inches, 0 otherwise) 
-15.639 -1.88 

Average PCR indicator variable (1 if greater than 95, 0 otherwise) 17.349 2.64 

Geometric Characteristics   
Median width indicator variable  

(1 if greater than 74 feet, 0 otherwise) 
-15.466 -2.41 

Median barrier presence indicator variable  

(1 if present, 0 otherwise) 
-79.955 -4.80 

Inside shoulder width indicator variable  

(1 if 5 feet or greater, 0 otherwise) 
-33.281 -4.26 

Outside shoulder width (in feet) -6.204 -2.91 

Number of bridges (per road section) -7.101 -1.80 

Rumble strips indicator variable  

(1 if both inside and outside rumble strips are present, 0 otherwise) 
-22.746 -2.47 

Number of vertical curves per mile -5.093 -2.73 

Ratio of the vertical curve length over 

the road section length (in tenths) 
  2.945   2.28 

Horizontal curve's degree curvature indicator variable (1 if average 

degrees per road section is greater than 2.1, 0 otherwise) 
-19.422 -2.02 

Number of ramps in the driving direction per lane-mile  22.156  3.36 

Traffic Characteristics   
AADT of passenger cars (in 1,000 vehicles per day) -0.800 -2.82 

Average daily percent of combination trucks  -1.041 -3.41 

Number of observations                                                                                               325 

Log-likelihood at zero                                                                                               -1724.20 

Log-likelihood at convergence                                                                                  -1242.99 

Madalla Psuedo R2                                                                                                        0.948  
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Table 3. Sensitivity of estimated tobit regression parameters. 

Variable Overall 
sensitivitya 

Zero 
sensitivityb 

Interstate indicator variable (1 if I-70 or I-164, 0 otherwise) -26.38 -22.48% 

Pavement Characteristics   
High-friction indicator variable (1 if all 5-year friction 

readings are 40 or higher, 0 otherwise) 
-29.82 -25.52% 

Smooth pavement indicator variable  

(1 if 5-year IRI readings are below 75, 0 otherwise) 
-27.06 -23.80% 

Excellent rutting indicator variable (1 if all 5-year rutting 

readings are below 0.12 inches, 0 otherwise) 
-23.55 -20.19% 

Good rutting indicator variable (1 if all 5-year average rutting 

readings are below 0.2 inches, 0 otherwise) 
-11.77 -11.91% 

Average PCR indicator variable  

(1 if greater than 95, 0 otherwise) 
19.22 13.21% 

Geometric Characteristics   
Median width indicator variable  

(1 if greater than 74 feet, 0 otherwise) 
-13.70 -11.78% 

Median barrier presence indicator variable  

(1 if present, 0 otherwise) 
-61.20 -60.88% 

Inside shoulder width indicator variable  

(1 if 5 feet or greater, 0 otherwise) 
-26.73 -25.34% 

Outside shoulder width (in feet) -6.93 -4.72% 

Number of bridges (per road section) -6.57 -5.41% 

Rumble strips indicator variable (1 if both inside and outside 

rumble strips are present, 0 otherwise) 
-16.16 -17.32% 

Number of vertical curves per mile -4.43 -3.88% 

Ratio of the vertical curve length over the roadway segment 

length (in tenths of miles) 
3.13 2.24% 

Horizontal curve's degree curvature indicator variable  

(1 if average degrees per road section is greater than 2.1, 0 

otherwise) 

-17.98 -14.79% 

Number of ramps in the driving direction per lane-mile 22.36 16.87% 

Traffic Characteristics   
AADT of passenger cars (in 1,000 vehicles per day) -0.54 -0.61% 

Average daily percent of combination trucks  -0.69 -0.79% 

a Change in the overall expected value   kE Y X  (see equation 6). 

b Percent change in the cumulative probability of being above zero (using   kF z X   in 

equation 7 and converting to percent). 


