

Automobile Travel Simulator

									Nathaniel Snyder

									logon: nrsnyder

									CS113-C1

									Prof. A. Campbell

									3-25-98

Introduction

	This program was designed to simulate the consumption of resources during an automobile trip. The user is allowed to pick from a menu of actions and then the program will compute the usage of gas, money, odometer reading, and trip odometer reading. If there is not enough resources to carryout the chosen action the user will receive an error message stating the problem with the choice that they selected. When the user is finished running the simulation he can choose the stop the simulation choice which will end the current simulation. Then user can keep track of the resources via a status chart that appears above the menu. With every action performed this box changes the appropriate resource and value so that the user is constantly aware of the state of the car.

	In designing this program I decided to make a separate function for each action, adding gas, taking a trip, resetting the trip odometer, earning money, and stopping the simulation. The main function can call each of these other functions via a switch statement that is based on the user input. Values for the state of the car is also housed in the main function and these values are automatically changed based on the results of the user chosen action.

U
ser Manual

Operating Instructions

	The travel simulation program can be run by typing autosim at the prompt. For example >autosim. From there the user is outputted a chart that shows the current status of the car. It contains the distance traveled on the odometer and trip odometer, the amount of gas in the tank, and the amount of money left for spending. This chart appears as such:

 The current state of the car is:

Odometer=0

Trip Odometer=0

Current amount of gas=0

Current amount of money left=100

	This chart is outputted when the program launches as well as each time the user inputs a choice. After the above chart is displayed a menu listing the program’s options is displayed for the user. It is from here that the user can execute an option for the simulation. These options include adding gas to the tank, taking a trip, resetting the trip odometer, earning some more money, and stopping the simulation. Each choice is represented by a numerical value from one to 4. When the user chooses a corresponding number that action is performed. The menu looks like this:

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

	Choices zero, one, and three also have their own output. If the user chooses choice 0-Add gas then they will receive a message, How much gas(in gallons)would you like to put in the car? If there is not enough money to purchase that quantity of gas at a price of $1.29 per gallon then the user will receive an error message stating, You do not have enough money to purchase that amount of gas. Then if the amount of gas purchased causes the amount of gas in the tank to exceed the 20 gallon maximum capacity then the user will receive another error message stating, The tank can not hold that much gas. Now if the amount of gas purchased does not fall within these constraints the amount of gas in the status chart will be changed to reflect the appropriate amount of gas purchased. This action will also cause the amount of money in the status chart to decrease based on the amount of gas in gallons purchased multiplied by the gas price of $1.29. If the user receives the lack of money error message he/she can always choose choice 3 and earn some more money before purchasing the gas.

	Choice one allows the user to take a trip of a desired length. Once the user selects this option by pressing the number 1 key followed by the enter or return key then they will receive a message stating, How long of a trip(in miles) would you like to take? Here the user will input the distance in miles of the trip. If the trip length is greater than the amount of gas in the tank multiplied by 30(miles per gallon) then they will receive an error message stating, You do not have enough gas to take a trip that long. Now if there is enough gas in the tank then the odometer and trip odometer will increase to reflect the amount of miles that the car traveled. The tank will decrease to reflect the amount of gas that was used on the trip. If the user would like to reset the trip odometer they can do so by choosing option 2.

	Option two will allow the user to reset the trip odometer so that they can measure the distance of a new trip. Once the number two key is pressed followed by the enter or return key the trip odometer will be set to zero. This value will be represented in the status chart at the beginning of the program.

	If the amount of money that the user has is not sufficient to carry out the desired operation they can choose to earn more money. This can be done by pressing the number three key followed by enter or return. After the user chooses this option they will be asked, How much money would you like to earn? Here the user can input how much more money they would like to have in order to carry out a desired option. This new value of money will be reflected in the status chart at the beginning of the program.

	The final option that the user has is to stop the simulation. This is accomplished by typing the number four key followed by the return or enter key. Once this is done the simulation will stop and the user will be returned to a prompt. Choosing this option also clears all of the changed data in the car’s status chart.

Acceptable Input

	The acceptable input values vary based upon the action that is being performed. When the user chooses to perform operation zero, add gas the input is made in gallons and corresponds to the gas price of $1.29. Therefore acceptable input values are positive integer values which are multiples of one. For operation one, taking a trip input values are based on miles and can be floating point values with a precision of on place past the decimal point which would be one-tenth of a mile. Operation three, earning more money has dollar values which are positive and multiples of one hundred. The third operation, choice two reset the trip odometer has no input values because it is not dependent on the user choosing a value.

Acceptable Output

	Once again output values are dependent upon the operation being performed. The output for operation zero, adding gas which effects the amount of gas in the car’s tank outputs positive floating point values with a precision of six places past the decimal point based upon the number of gallons in the tank. This line of output looks like such is the status chart, Current amount of gas=12.001234. Output for the odometer readings are floating point values with a precision of once place past the decimal point which is the equivalent to one-tenth of a mile. Total output for this operation is based on miles and looks as such, Odometer=23.5. Trip Odometer=12.5. Finally the output for the amount of money left is floating point values with a precision of two places past the decimal points. They are equivalents of dollars and cents. This value starts out at $100.00 and changes with respect to the operations being performed. In the status chart this value looks as such, Current amount of money left=84.52.

Sample Interactions

	The following is an example of how the program flows and operates. All of the respective actions are shown. Bold type indicates user inputted values.

>autosim

The current state of the car is:

Odometer=0.0

Trip Odometer=0.0

Current amount of gas=0.000000

Current amount of money left=100.00

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

0

How much gas(in gallons) would you like to put in the car?

15

The current state of the car is:

Odometer=0.0

Trip Odometer=0.0

Current amount of gas=15.000000

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

0

How much gas(in gallons) would you like to put in the car?

986

You do not have enough money to purchase that amount of gas.

The current state of the car is:

Odometer=0.0

Trip Odometer=0.0

Current amount of gas=15.000000

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

0

How much gas(in gallons) would you like to put in the car?

23

The tank can not hold that much gas.

The current state of the car is:

Odometer=0.0

Trip Odometer=0.0

Current amount of gas=15.000000

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

1

How long of a trip(in miles) would you like to take?

2

The current state of the car is:

Odometer=2.0

Trip Odometer=2.0

Current amount of gas=14.933333

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

3.5

The current state of the car is:

Odometer=5.5

Trip Odometer=5.5

Current amount of gas=14.816667

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

1

How long of a trip(in miles would you like to take?

527.6

You do not have enough gas to take a trip that long.

The current state of the car is:

Odometer=5.5

Trip Odometer=5.5

Current amount of gas=14.816667

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

2

The current state of the car is:

Odometer=5.5

Trip Odometer=0.0

Current amount of gas=14.816667

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

3

How much money would you like to earn?

100

The current state of the car is:

Odometer=5.5

Trip Odometer=0.0

Current amount of gas=14.816667

Current amount of money left=180.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

4

>

Technical Manual

Program Description

	In designing this program I decided that the easiest way to do it would be to split the program into six parts. The six parts are the main function, add gas function, take a trip function, reset the trip odometer function, earn some more money function, and stopping the program. After
assessing
 what would be the solution to each function I decided to begin with the main function because this was the hardest to design and test. Then once I had the main function designed and teste
d
 the rest of the program would be fairly simple to design and test.

	The first thing that I did in coding the main function after including the iostream.h header file was to define the variables that would be included in the main function. These variable were defined as floating point values and were given a name that was appropriate to their purpose in the program. The variables are mpg, tank, gasprice, odometer, trip_odometer, money, gas, tank_max, trip_length, and money_added. All of these variables would be used in the program and were set up in order of use with the variables used in main appearing on the first line after void main (void) was declared. This portion of code looks as such:

#include <iostream.h>

void main (void)

{

	float mpg, tank, gasprice, odometer, trip_odometer; //Variables mainly pertaining to the main function

	float money, gas, tank_max;		//Variables used elsewhere

	float trip_length, money_added;	//in the program

	

	After this was accomplished I defined the other variables that were of non float values such as the
Boolean
 value for the main while loop and character value for the user
inputted
 choice value
, n
ew
 ch
oice
. Now that all of the variables with the exception of functions are defined I assigned the appropriate initial values to mpg, tank, gasprice, odometer, trip_odometer, money, loop, and tank_max. That portion of the code looks as such:

bool loop; //boolean value for the loop

char newchoice; //user input for choice

mpg=30.0; //car’s gas mileage

tank=0.0; //beginning amount of gas in the tank

gasprice=1.29; //gas price

odometer=0.0; //beginning odometer reading

trip_odometer=0.0; //beginning trip odometer reading

money=100.00; //beginning amount of money

loop=true; //initial condition of while loop

tank_max=20; //max size of gas tank

Once this was done I could begin writing the main while loop of the main function. This portion of the program would have to include the car’s status chart and menu for choosing an operation. Since there would have to be constraints place on the output values the first thing I did was setup the floating point output format. This would allow me to set up precision constraints for output later on in the program. That was done as such
 with the iomanip.h header file
:

cout.setf(ios::fixed, ios::floatfield); //Set up
floating
 point output

cout.setf(ios::showpoint);		 //format

	The next step was to set up the main loop of the function. For this I decided that the simplest way to do this was to use a while loop that contained a switch statement. This was done by first using the while loop when the loop was true to output the initial values for the car. This was done by using a series of cout statements that contained setprecision statements to constrain the output values to the desired number of
decimal
 places that was listed in the assignment.

Once this was done I
proceeded
 to design the user menu. This was done in mainly the same was as the car’s status chart. All of the choices use cout statements and are assigned a number for 0 to 4 that corresponds to the desired operation. This was done to simplify the designing of the switch statement later on in the function. With the menu now done a cin statement was used to allow the user to input the number that corresponds to the desired operation that they wish to
perform
. This was done as such:

	while (loop==true)

{

 //States the beginning values for the status chart

	

	cout << “ The current state of the car is:” <<endl;

	cout << “Odometer=” <<setprecision(1) <<
odometer
 <<endl;

	cout << “Trip Odometer=” <<setprecision(1) <<trip_odometer <<endl;

	cout << “Current amount of gas=” <<setprecision(6) <<tank <<endl;

	cout << “Current amount of money left=” <<setprecision(2) <<money <<endl;

 //Menu for user choice of operation

	cout << “Choose an operation:” <<endl;

	cout << “0-Add gas” <<endl;

	cout << “1-Take a trip” <<endl;

	cout << “2-Reset the trip odometer” <<endl;

	cout << “3-Earn some more money” <<endl;

	cout << “4-Stop the simulation” <<endl;

	cin >>newchoice; //user inputted choice

	Now it is on to the design of the switch statement. The switch statement is performed with respect to the user input value of new choice. Each case of the switch statement has a value that corresponds to a value in the menu. From there the statement calls the appropriate function to carry out the operation that the user desires. Then the function call is followed by a break which prevents confusion as to
the order of the
 statement
s
. The cases in the switch statement are placed in numerical order from 0 to 4 just as the menu is. Each statement also has the variables that are needed by the
respective
function. The switch statement looks like this:

switch (newchoice)

	{

	case ‘0’: put_gas_in_tank(tank, money, gas);

		break;

	case ‘1’: take_trip(odometer, trip_odometer, trip_length, tank);

		break;

	case ‘2’: reset_odometer(trip_odometer);

		break;

	case ‘3’: earn_money(money, money_added);

		break;

	case ‘4’:

		loop=false; //returns the user to a prompt(>)

		break;

	}

	Now that the main function is complete I began to design the other functions. All of these functions are of type void so I declared them at the beginning of the program and included their type followed by a & to pass the value by reference. This part of the code appears at the beginning of the main program and looks like such:

void put_gas_in_tank(float&, float&, float&); //function for add gas

void take_trip(float&, float&, float&, float&); //function for take trip

void reset_odometer(float&); //function for reset odometer

void earn_money(float&, float&); //function for earn money

	Now with the formalities out of the way I began to write the actual functions. I decided to do the functions in the order that they appear in the menu and switch statement. The first function was for adding gas to the tank. This function is called put_gas_in_tank and involves the floating point values tank, money, and gas. Since these values are passed by reference they must have the & symbol after their type. First an output message stating, How much gas(in gallons) would you like to put in the car?

I
s
displayed.
The user then inputs the amount of gas that they want to put in the tank. Once the gas amount is inputted it goes through a set of checks in the form of an if-else statement. If the gas multiplied by the gas price($1.29) is greater than the amount of money that the user has they will receive an error message stating, You do not have enough money to purchase that amount of gas. If the value passes this test it the flows to an else statement that checks to see if the gas purchased plus the amount currently in the tank is greater than the tank capacity of 20
,
 then the user will receive another error message stating, The tank can not hold that amount of gas. Then if the input passes this test it goes to another else statement which places the new value of tank and money into the car’s status chart. The tank value is changed by setting tank=tank+gas and money is changed by setting money=money-(gas*1.29) . This function looks as such:

void put_gas_in_tank(float& tank, float& money, float& gas) //function for adding gas to the tank

{

	cout <<”How much gas(in gallons would you like to put in the car? <<endl;

	cin >>gas; //user inputted amount of gas

if((gas*1.29)>money)

	cout <<”You do not have enough money to purchase that amount of gas.” <<endl; //error if there is not enough money

else

 {

	if((gas+tank)>20)

	 cout <<”The tank can not hold that much gas.” <<endl; //error if there is not enough room in the tank

 else

 {

	tank=tank+gas; //new value of gas in tank

 	money+money-(gas*1.29); //new money value

	}

 }

}

	Now the
next

function
 is the one for taking a trip named, take_trip. First after the function is declared as well as the reference float variables odometer, trip_odometer, trip_length, and tank the user will receive a message stating, How long of a trip(in miles) would you like to take? Here the user inputs a value named trip_length. From here it goes through a set of if-else tests similar to those of the last function. First the value is set to se that if the trip length is greater than tank multiplied by miles per gallon(30). If this condition is not met
properly

an error message will be outputted stating, You do not have enough gas to take a trip that long. If the value is acceptable it will continue through the else statement to change the values of the odometer reading, trip odometer reading, and tank value. The new value of the odometer reading is computed by setting odometer=odometer+trip_length. A new trip odometer reading is found by: trip_odometer = trip_odometer + trip_length. Finally the new tank value is calculated by tank = tank-(trip_length/30). The (trip_length/30) function is used to compute the trip
’
s gas consumption in gallons. This function look
s
 like this:

void take_trip(float& odometer, float& trip_odometer, float& trip_length, float& tank) //function for taking a trip

{

	cout <<”How long of a trip would you like to take?” <<endl;

	cin >>trip_length; //user inputted trip length

 if(trip_length>(tank*30))

	cout <<”You do not have enough gas to take a trip that long.” <<endl; //error message if there is not enough gas

 else

 {

	odometer=odometer+trip_length; //new odometer reading

	trip_odometer=trip_odometer+trip_length; //new trip odometer value

	tank=tank-(trip_length/30); //new value of gas in tank

 }

}

	The next function to design is the one that resets the odometer. This is fairly simple compared to the previous two functions. The sole purpose of this function is to
 return a value of 0.0 into the trip_odometer section of the car’s status chart. I decided to accomplish this by passing a floating point reference value of
0.0 to the
trip_odometer. This
function’s
 code looks as such:

void reset_odometer(float& trip_odometer) //function for resetting the trip odometer

{

	trip_odometer=0.0; //set trip odometer to zero

}

	The final
function
 is the one for earning money named earn_money. This is also a void function with floating point variables that are passed by reference. First the user is given an output statement saying, How much money would you like to earn? Now the user
receives
 a prompt called money_added in which they can choose the amount of money that they would like to add. Once this is done a new value for money is returned to the car’s status chart. This new money value is found by adding money_added to the original money value. The code for this function looks as such:

void earn_money(float& money, float& money_added) //function for earning money

{

	cout <<”How much money would you like to earn?” <<endl;

	cin >> money_added; //amount of additional money

	money=money+money_added; //new money value

}

	That is all of the code for each of the functions. With the code completed the next step was to test the program. This was done by inputting various types of input into each of the functions.

Testing

	The following are the
interactions
 that were used to test the program. A ^ indicates a blank prompt awaiting user input. User inputs are represented by bold types.

>autosim

The current state of the car is:

Odometer=0.0

Trip Odometer=0.0

Current amount of gas=0.000000

Current amount of money left=100.00

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

0

How much gas(in gallons) would you like to put in the car?

15

The current state of the car is:

Odometer=0.0

Trip Odometer=0.0

Current amount of gas=15.000000

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

0

How much gas(in gallons) would you like to put in the car?

3.464544

^ //error-too many decimal places

0

The current state of the car is:

Odometer=0.0

Trip Odometer=0.0

Current amount of gas=15.000000

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

0

How much gas(in gallons) would you like to put in the car?

986

You do not have enough money to purchase that amount of gas.

The current state of the car is:

Odometer=0.0

Trip Odometer=0.0

Current amount of gas=15.000000

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

0

How much gas(in gallons) would you like to put in the car?

23

The tank can not hold that much gas.

The current state of the car is:

Odometer=0.0

Trip Odometer=0.0

Current amount of gas=15.000000

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

1

How long of a trip(in miles) would you like to take?

2

The current state of the car is:

Odometer=2.0

Trip Odometer=2.0

Current amount of gas=14.933333

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

1

How long of a trip(in miles) would you like to take?

17.66342

^

//error-too many decimal places

3.5

The current state of the car is:

Odometer=5.5

Trip Odometer=5.5

Current amount of gas=14.816667

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

1

How long of a trip(in miles would you like to take?

527.6

You do not have enough gas to take a trip that long.

The current state of the car is:

Odometer=5.5

Trip Odometer=5.5

Current amount of gas=14.816667

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

2

The current state of the car is:

Odometer=5.5

Trip Odometer=0.0

Current amount of gas=14.816667

Current amount of money left=80.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

3

How much money would you like to earn?

23.767

^

//error-too many decimal places

100

The current state of the car is:

Odometer=5.5

Trip Odometer=0.0

Current amount of gas=14.816667

Current amount of money left=180.65

Choose an operation:

0-Add gas

1-Take a trip

2-Reset the trip odometer

3-Earn some more money

4-Stop the simulation

4

>

	As you can see the program only hangs up on values that go beyond the
required
 number of places past the decimal points. These are the values that should be avoided. The program also automatically rounds the output numbers to the
required
 that values that are stated by the setprecision values in the main function.

Evaluation

	There could be some additions to the
program
 that would make it more worthwhile to users.
 Functio
n
s that calculate tire and engine
 wear could prove beneficial to frequent travelers. This could be done by finding a const
ant wear value per mile and then associate that with the miles that are traveled. Another
 possible improvement is in the pre
cision of the input. To make a more precise program the user should be able to have
 the same input precision as output precision.
This would provide the user with
more
 tec
hnically correct va
lues and allow them to find the e
x
act readings for the desired action ins
tead of
rounding less precise input values.

Appendix A

Program Code

Program Code

//**
//
Nathaniel Snyder

//CS-113c1

//Project 2

//This program computes the

//amount of gas in the tank, distance on an odometer, distance on a trip

//odometer, and the amount of money remaining after certain actions are //preformed.

//**#
include <iostream.h>

#include <iomanip.h> //For setprecision()

void put_gas_in_tank(float&, float&, float&); //function for add gas

void take_
t
r
ip(float&, float&, float&);
 //f
u
nction for take trip

void reset_odometer(float&);
//
function
 for reset

odometer

void earn_money(float&, float&); //function for earn money

void main (void)

{

float mpg, tank,
 gasprice, odometer, trip_odometer; //float values for

v
a
riables

 float money, gas, tank_max; //float values for variables

 float trip
_
length, money
_added; //float values for variables

 bool loop; //boolean value for loop

 char
newchoice
; //user input for choice

 mpg=30.0; //car
’
s gas mileage

 tank=0.0; //
beginning

amount of gas in tank

 gasprice=1.29; //gas pr
ice

 odometer=0.0; //
beginning

trip odometer reading

 trip-odometer=0.0; //
beginning

odometer reading

money=100.0; //
beginning
 amount of money

 loop=true; //initial condition of while loop

 tank_max=20; //max size of gas tank

 cout.setf(ios::fixed, ios::floatfield); //Set up floating point

 cout.setf
(ios::showpoint);
			 //output format

 while (loop=true)

{

 //Sta
tes the
beginning

values of all variables

	
cout << “ The current state of the car is:” <<endl;

	cout << “Odometer=” <<setprecision(1) <<
odometer
 <<endl;

	cout << “Trip Odometer=” <<setprecision(1) <<trip_odometer <<endl;

	cout << “Current amount of gas=” <<setprecision(6) <<tank <<endl;

	cout << “Current amount of money left=” <<setprecision(2) <<money <<endl;

 //Menu for user choice of operation

	cout << “Choose an operation:” <<endl;

	cout << “0-Add gas” <<endl;

	cout << “1-Take a trip” <<endl;

	cout << “2-Reset the trip odometer” <<endl;

	cout << “3-Earn some more money” <<endl;

	cout << “4-Stop the simulation” <<endl;

	cin >>newchoice; //user inputted choice

switch (newchoice)

	{

	case ‘0’: put_gas_in_tank(tank, money, gas);

		break;

	case ‘1’: take_trip(odometer, trip_odometer, trip_length, tank);

		break;

	case ‘2’: reset_odometer(trip_odometer);

		break;

	case ‘3’: earn_money(money, money_added);

		break;

	case ‘4’:

		loop=false; //returns the user to a prompt(>)

		break;

	}

 }

}

//***************************************

void put_gas_in_tank(float& tank, float& money, float& gas) //function for adding gas to the tank

{

	cout <<”How much gas(in gallons would you like to put in the car? <<endl;

	cin >>gas; //user inputted amount of gas

if((gas*1.29)>money)

	cout <<”You do not have enough money to purchase that amount of gas.” <<endl; //error if there is not enough money

else

 {

	if((gas+tank)>20)

	 cout <<”The tank can not hold that much gas.” <<endl; //error if there is not enough room in the tank

 else

 {

	tank=tank+gas; //new value of gas in tank

 	money+money-(gas*1.29); //new money value

	}

 }

}

//*******************

void take_trip(float& odometer, float& trip_odometer, float& trip_length, float& tank) //function for taking a trip

{

	cout <<”How long of a trip would you like to take?” <<endl;

	cin >>trip_length; //user inputted trip length

 if(trip_length>(tank*30))

	cout <<”You do not have enough gas to take a trip that long.” <<endl; //error message if there is not enough gas

 else

 {

	odometer=odometer+trip_length; //new odometer reading

	trip_odometer=trip_odometer+trip_length; //new trip odometer value

	tank=tank-(trip_length/30); //new value of gas in tank

 }

}

//**

void reset_odometer(float& trip_odometer) //function for resetting the trip odometer

{

	trip_odometer=0.0; //set trip odometer to zero

}

//**

void earn_money(float& money, float& money_added) //function for earning money

{

	cout <<”How much money would you like to earn?” <<endl;

	cin >> money_added; //amount of additional money

	money=money+money_added; //new money value

}

Appendix B

Programmer Log

Programmer Log

�
�
�
Thinking, Reading, Research

2hr, 45 min

�
Included
“
atta
c
k
 plan for program
”
,

deciding on program design, and reading on the proper syntax for all of the elements that
are included in this program.

��
�
Writing Code

4
hr,
10
 min

�
Time spent in Norton 19 lab and teleneting from home on putting
 together the C++ code for this program.
��
�
Debugging & Testing

4
hr, 20

min

�
Time spent on correcting errors in syntax
 and pro
gram design as well as fixing all of the
compiler
 errors and warnings
��
Writing the Technical Paper

6hr,
50min
�
Includes word processor and editing time.
��

Total Time: 18hr, 8min

	

�PAGE �
26
�

�PAGE �
1
�

