

The Circle

Nathaniel Snyder

CS-113 Section C1

Prof. A. Campbell

2-18-98

Introduction

��	This program was designed to automatically compute the area, circumference and intercepts of a circle. A user inputs the values of the circle’s center coordinates and radius. The program then determines the area, circumference, and intercepts of the circle based on these user inputted values. If no intercepts exist then a message is outputted stating so. Area and circumference values are outputted as floating point values and they are calculated using the appropriate mathematical formula. X and y intercepts as well were outputted as integer values. The formulas to calculate the intercepts was somewhat more difficult to derive than the ones for area and circumference. A separate formula was used when there was one or two intercepts. All of the formulas are listed in the technical manual part of this paper. The flow of the program goes as this:

��	User inputted center x coordinate 	(User inputted center y coordinate

���	(Computer output of the circle’s area	(User inputted radius (

��Computer output of the circle’s circumference (Computer output of x intercept(s)

	End of program	(Computer output of y intercept(s) (

User Manual

All bold print indicates where the user should input or what the computer screen will print.

Contents

Page 4		Operating Instructions

Page 5		Acceptable Values

Page 6		Sample Interactions

Operating Instructions	

Running this program is a relatively simple and painless process. First start out by typing the executable at your system’s prompt. For example >circle. Once this has been done you will receive the message, Enter the center x coordinate:. From here the user can input any floating point number followed by the enter or return key. Next the program will prompt you to enter the center y coordinate, Enter the center y coordinate:. Here the user can input any floating point number followed by the enter or return key. Now the program will prompt you to enter the radius of the desired circle, Enter the radius:. Once again this can be any floating point number that the user would like followed by the enter or return key. Once these interactions are complete the system will automatically calculate the area, circumference and intercept(s), if any exist of the circle. Once the output is printed onto the screen the program will automatically end. A completed program run will look something like this, with bold type being the user’s input:

>circle

Enter the center x coordinate:

0

Enter the center y coordinate:

1

Enter the radius:

1

The area of the circle is: 3.14159

The circumference of the circle is: 6.28319

There is one x intercept: (0,0)

There are two y intercepts: (0,0) (0,2)

>

	As you can see once the y intercept(s) is outputted you will receive another prompt(>). If you wish to run the program again you can simply type in circle at the prompt and run through the program in the same way that is described above. If you are satisfied with the way the program ran simply copy down the desired information and either logout of the system or shut down the computer.

Acceptable Values

	Input Values: The program can accept any positive or negative floating point numbers for all inputs. If you are unsure of any of these values review the sample interactions provided on page six. When inputting values the enter or return key must be pressed. If this is not done then the value for the input will continue until the key is presses. This could provide you with undesirable results, so be sure to press enter or return after you type the numeric value. Decimal point for floating point numbers are a perfectly acceptable character in the input. An example of this is a value of 5.25. Multiple decimal points in a single value are not considered an acceptable form of input.

	Output Values: When the program computes area and circumference their values are represented as floating point values. These values are outputted as floating point values because their inputs(center coordinates and radius) are inputted as so. When the intercepts are outputted they are done so as a coordinate points with integer values. If the intercept values are not integers or if no values exist then a “There are no _ intercepts” message.

Sample Interactions

	The following are example executions of the program using different types of values. They are provided to give a visual display of the program and the types of values that can be used. User inputted values are given in bold type.

>circle

Enter the center x coordinate:

0

Enter the center y coordinate:

0

Enter the radius:

1

The area of the circle is: 3.14159.

The circumference of the circle is: 6.28319.

There are two x intercepts: (1,0) (-1,0)

There are two y intercepts: (0,1) (0,-1)

>

>circle

Enter the center x coordinate:

6

Enter the center y coordinate:

12

Enter the radius:

24

The area of the circle is: 1809.56

The circumference of the circle is: 150.796.

There are two x intercepts: (26,0) and (-14,0)

There are two y intercepts: (0,35) and (0,11)

>

>circle

Enter the center x coordinate:

-2

Enter the center y coordinate:

2

Enter the radius:

14

The area of the circle is: 615.752.

The circumference of the circle is: 87.9646.

There are two x intercepts: (11,0) and (-15,0)

There are two y intercepts: (0,15) and (0,-11)

>

>circle

Enter the center x coordinate:

57

Enter the center y coordinate:

37

Enter the radius:

14

The area of the circle is: 615.752.

The circumference of the circle is: 64.4026.

There are no x intercepts

There are no y intercepts

>

>circle

Enter the center x coordinate:

15.34

Enter the center y coordinate:

12.57

Enter the radius:

10.25

The area of the circle is: 330.064.

The circumference of the circle is: 64.4026.

There are no x intercepts

There are no y intercepts

>

Technical Manual

Contents

Page 9		Program Description

Page 12	Testing

Page 14 	Evaluation

Program Description

	In designing this program I split it up into three main parts. The first part was the input, second was the output of the circle’s area and circumference, and the third part was the calculation and output of the intercepts. For each section I defined variables, set up mathematical formulas and then implemented them into C++ code. For clarity I divided the procedure I used in setting up this program into parts which are described below.

��In designing the input part I first, defined the values and then set up the code that would allow the user to input values for these variables. There had to be messages printed to the screen that would prompt the user to enter values for the center x intercept, the center y intercept, and the radius. Once these prompts were displayed then the user needed a place to input their desired values. All of the input values were set up as floating point values to allow decimal point number inputs. This flowchart describes the flow that I followed in designing the input portion of the program.

��Prompt to enter center x coordinate:	(User enters center x coordinate

��Prompt to enter center y coordinate:	(User enters center y coordinate

Prompt to enter the radius:	(User enters the radius

	Once this flow was completed I began writing the C++ code for the input part of the program only. The code for this part is as follows

#include <iostream.h>

int main()

{

float xcoordinate;	//Center x coordinate of the circle

float ycoordinate;	//Center y coordinate of the circle

float radius;		//Radius of the circle

	

cout << “Enter the center x coordinate: ” <<endl;

cin >> xcoordinate;		//User inputted center x coordinate

cout << “Enter the center y coordinate: “ <<endl;

cin >> ycoordinate;		//User inputted center y coordinate

cout << “Enter the radius: “ <<endl;

cin >> radius;		//User inputted radius value

	After I coded the input portion of the program I began designing how the area and circumference values would be calculated and outputted. First I had to determine the mathematical formulas for determining the area and circumference of the circle based on the user inputted values. I used the A=pi * r2 formula to determine the area of the circle. In C++ terms the formula looks like area=PI * (radius*radius). Area was given a floating point value to coincide with the floating point values used in the input portion of the program. Circumference was determined using the formula C=2 * pi * r or in C++, (2*PI) * radius. Circumference is also given using floating point values.

	Once the mathematical formulas were determined and put into C++ terms I began to write the actual code for this portion of the program. Again I had to write output statements that told the user the computed values of the area and circumference. The C++ code for the output of the area and circumference portion looks like this:

float area;			//Area of the circle

float circumference;		//Circumference of the circle

float PI=3.1415927;		//Value of pi

area=PI*(radius*radius);	//Calculates the area of the circle

circumference=(2*PI)*radius;	//Calculates the circumference of the circle

cout << “The area of the circle is: “<< area <<’.’<<endl; //Prints the area of the circle

cout << “The circumference of the circle is: “<< circumference <<’.’ <<endl;		//Prints the circumference of the circle

	The third part of the program was to have the program compute and print out the intercepts, if any exist of the circle. In order to do so a mathematical formula needed to be determined that could find the intercepts of the circle. After many mathematical calculations I decided I using the equation of a circle in the quadratic equation to determine the intercepts. This left me with two formulas for finding intercepts, one if only one intercept exists and then another if two intercepts exist. I first used a root formula named intercept that is, -4*(_ coordinate*_ coordinate)+4(radius2). Using this formula allowed me so set up conditions if there is none, one, or two intercepts. Now by setting this equation less than zero I can determine that no intercepts exist. When this formula is set equal to zero one intercept exists. Now the only case left is if two intercepts exist. This is where the second formula that I mentioned above comes into play. This formula has two parts. I assigned the first part to _intercept1 and the second part to _intercept2. The formula for _intercept1 is, _intercept1=(2*_coordinate+sqrt(intercept))/2. For _intercept2 I used the formula, _intercept2=(2*_coordinate-sqrt(intercept))/2. In order to use the square root command I had to include the header file <math.h> into the program. Once these formulas were determined they had to be implemented and printed to the screen and then the whole part had to be put into C++ code. The code for just the third and final part of the program looks like this:

#include <math.h>		//For sqrt

intercept=-4*(ycoordinate*ycoordinate)+4(radius*radius);	//Root used for determining the number of intercepts

if (intercept<0){	//Condition if there is no x intercepts

	cout << “There are no x intercepts” <<endl;

}

if (intercept==0){	//Condition if there is only one x intercept

	cout << “There is one x intercept: (“ << intercept << “,0)” <<endl;	//Print out the value of the on x intercept

}

else{

xintercept1=(2*xcoordinate+sqrt(intercept))/2;	//Value of the first x intercept

xintercept2=(2*xcoordinate-sqrt(intercept))/2;	//Value of the second x intercept

cout << “There are two x intercepts: (“ << xintercept1 << “,0) and” << “(“ << xintercept2 << “,0)” <<endl;		//Prints out the pairs of both intercepts

}

intercept=-4*(xccordinate*xcoordinate)+4*(radius*radius);	//Root used for determining the number of y intercepts

if (intercept<0){ 	//Condition if there is no y intercepts

cout << “There are no y intercepts” <<endl;

}

if (intercept==0){	//Condition if there is only one y intercept

cout << “There is one y intercept: (0,” << intercept << “)” <<endl;

}

else{

	yintercept1=(2*ycoordinate+sqrt(intercept))/2;	//Calculation for finding the first y intercept

	yintercept2=(2*ycoordinate-sqrt(intercept))/2;	//Calculation for finding the second y intercept

cout << “There are two y intercepts: (,” << yintercept1 << “)” << “and” << “(0,” << yintercept2 << “)” <<endl;	//Prints out the pairs of y intercepts

Testing

	The program has been tested with many different types of values. These values include both positive and negative floating point and integer values for the center coordinates of the circle. Positive floating point values were used for the radius input. Example of each quantity of intercepts are also provided. One example with no x, no y, one x, one y, two x, and two y intercept or intercepts. Once again the bold type indicates a user inputted value.

Example of a run through which results with no x intercepts:

>circle

Enter the center x coordinate:

15.34

Enter the center y coordinate:

12.57

Enter the radius:

10.25

The area of the circle is: 330.064

The circumference of the circle is: 64.4026

There are no x intercepts

There are no y intercepts

>

Example run through which results with no y intercepts:

>circle

Enter the center x coordinate:

52

Enter the center y coordinate:

37

Enter the radius:

14

The area of the circle is: 615.752

The circumference of the circle is: 87.9646

There are no x intercepts

There are no y intercepts

>

 Example run through which results with one x intercept:

>circle

Enter the center x coordinate:

1

Enter the center y coordinate:

2.2

Enter the radius:

2.2

The area of the circle is: 15.2053

The circumference of the circle is: 13.823

There is one x intercept: (0,0)

There are two y intercepts: (0,4) and (0,0)

>

Example run through which results with one y intercept:

>circle

Enter the center x coordinate:

2

Enter the center y coordinate:

1

Enter the radius:

2

The area of the circle is: 12.5664

The circumference of the circle is: 12.5664

There are two x intercepts: (3,0) and (0,0)

There is one y intercept: (0,0)

>

Example run through which results with two x intercepts:

>circle

Enter the center x coordinate:

6

Enter the center y coordinate:

12

Enter the radius:

24

The area of the circle is: 1809.56

The circumference of the circle is: 150.796

There are two x intercepts: (26,0) and (-14,0)

There are two y intercepts: (0,35) and (0,11)

>

Example run through which results with two y intercepts:

>circle

Enter the center x coordinate:

-2

Enter the center y coordinate:

2

Enter the radius:

14

The area of the circle is: 615.752

The circumference of the circle is: 87.9646

There are two x intercepts: (11,0) and (-15,0)

There are two y intercepts: (0,15) and (0,-11)

>

	As you can see by these examples the program can handle pretty much any positive or negative floating point value for the center coordinate values. The radius value could become problematic. Negative values can not be used basically because a circle can not have a negative radius. That is the only value that I can see as being an unacceptable input value. Output values are pretty much dependent on their type. Area and circumference can handle positive and negative floating point numbers without a problem. The intercept(s) values are outputted as standard coordinate pairs which are an acceptable form in mathematics.

Evaluation

	As it stands, the limitations of the program as I can see mainly lie in the area of coercion. The input values are floating point numbers while the intercepts are represented by integers in the form of ordered pairs. This led to compiler warnings when I compiled the program using the g++ compiler. A possible improvement would be
