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Abstract

This paper studies the puzzle of employer financing for the general training of work-

ers. A parsimonious theory is developed based on asymmetric information between

employers about the quantity of training. The labor market is modeled as a common

value auction with an informed and an uninformed bidder. The novel feature of the

game is that one of the bidders can make an unobservable investment that increases the

value of the item before the auction. By randomizing the amount of training provided,

an employer can create an endogenous adverse selection problem, enabling it to com-

press the wage structure and capture some returns from its training investment. The

model generates continuous equilibrium wage and training distributions, and identical

employees can receive different wage offers and training levels. A parametric example

is used to illustrate how the shape of the wage distribution depends on the elasticity

of production with respect to human capital.

JEL Classification: D44, D82, J24, J31

Keywords: common value auctions, asymmetric information, investment behavior,

general human capital, wage dispersion, labor markets

∗E-mail: neelrao@buffalo.edu. Tel: 716-645-8674. Address: 423 Fronczak Hall, Buffalo, NY 14260. I
thank Robert Gibbons, Oliver Hart, two anonymous referees, and the editor for useful comments.

1



1 Introduction

Why do firms pay for the general training of employees? This paper constructs a model

of common value auctions with unobservable investment in order to address this question,

which has interested several generations of economists. In Wealth and Welfare, Pigou (1912)

observed that “under a free economy. . . socially profitable expenditure by employers in the

training of their workpeople. . . does not carry a corresponding private profit.” A trained

worker might quit his or her current position for a higher paying job, or an employer might

need to pay a higher wage in order to retain a trained worker. Hence, a firm may not capture

all of the returns to an investment in general training. Some of the gains may accrue to the

worker or even other firms in the labor market. Because of this sort of poaching externality,

firms might underinvest in training, resulting in inefficiently low levels of human capital and

labor productivity.

In Human Capital, Becker (1964) presented an influential analysis of training in perfectly

competitive labor markets. A key assumption of this study, which is relaxed in the cur-

rent paper, is the observability and contractibility of training. According to Becker (1964),

training can be either specific or general. Both a worker and a firm can share the costs of

and returns to specific training, which is useful only at the firm where it is received. By

contrast, general training is widely applicable, augmenting the productivity of a worker in

numerous firms. If the labor market is competitive, then a worker is paid a wage equal to his

or her marginal product. In this case, employers cannot recover any of the returns to general

training and are unwilling to fund the general training of employees. Ideally, a worker can

finance the efficient level of training by incurring a tuition fee or accepting a wage cut.

Some evidence supports the prediction that workers must bear a large portion of training

costs. For example, Minns and Wallis (2013) describe the premiums that apprentices in

preindustrial England paid to masters before receiving instruction. Nonetheless, as Bishop

(1996) notes when reviewing empirical work on the subject, employers often cover some of

the expenses for general training. For example, Barron, Berger, and Black (1999) find only a

small impact of training on the starting wage of an employee, and Loewenstein and Spletzer

(1999) find little difference between the wage gains from general and specific training. In

addition, Acemoglu and Pischke (1998) argue that the monetary cost of apprenticeships in

Germany is largely borne by employers, and Autor (2001) discusses the free provision of

general training by temporary help firms in the United States. Picchio and van Ours (2011)

observe that labor market frictions raise training investments by employers.

A considerable theoretical literature has developed in order to account for outlays by
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firms on the general training of employees. Several authors have suggested that adverse

selection might reduce the mobility of workers between employers, thereby enabling firms to

recover some returns to investments in general human capital. Chiang and Chiang (1990)

analyze the role of asymmetric information between employers about the teachability of a

worker. Katz and Ziderman (1990) propose that an incumbent employer might have better

knowledge than outside firms about the value of training provided, and Chang and Wang

(1996) attempt to formalize this idea. Acemoglu and Pischke (1998) construct a model in

which the innate ability of a worker is observable to the current employer of the worker but

not to outside firms. Autor (2001) argues that more able workers self-select into jobs that

offer training, which helps employers screen workers for their ability.

Informational asymmetries are not the only sort of market imperfection that can stim-

ulate general training by employers. Acemoglu (1997) demonstrates how search frictions

might facilitate training investments by enabling firms to collect some of the surplus from

an employment relationship. A linkage between general and specific human capital may

also be relevant. Stevens (1994) studies skill acquisition in situations where training is a

mixture of specific and general components. Lazear (2009) argues that each firm in the

labor market uses a specific combination of general skills; so that, training is only partially

transferable across employers. Finally, Acemoglu and Pischke (1999a) catalogue a variety of

labor market institutions like labor unions, efficiency wages, minimum wages, and unemploy-

ment insurance that can enhance training investments. Overall, as Acemoglu and Pischke

(1999b) demonstrate, firms may have an incentive to fund general training whenever the

wage structure is compressed, in which case training investments raise the marginal product

of a worker by more than they increase the wage rate.

The current paper endogenizes the process through which the wage structure is com-

pressed. It models general training in labor markets by introducing pre-bidding investment

into a first-price, sealed-bid auction with asymmetric information. The framework retains

the essential features of a perfectly competitive labor market, except for the observability

and contractibility of training. The key insight is that the opportunity for employers to train

workers might in itself be a justification for employers to finance training. In particular, if

the amount of training received from an incumbent employer cannot be accurately ascer-

tained by the outside market, then firms may have an incentive to randomize the quantity of

training provided, so as to endogenously generate uncertainty about an employee’s produc-

tivity. By rationing training to workers in this way, an employer can create a winner’s curse

problem that deters other firms from offering high wages to its employees. This mechanism
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may lower the wage below the marginal product of a worker, enabling an employer to earn

a return on its training outlays.

The basic intuition behind the model is straightforward. First, suppose that an employer

spends the same positive amount on training each worker. Outside firms would rationally

anticipate that each worker has received this particular amount of training and so would be

willing to offer each worker a wage equal to his or her marginal product at this training level.

Hence, an employer could retain a worker only by paying the worker a wage no less than his

or her marginal product. This arrangement cannot be supported as an equilibrium because

an employer invests in training but obtains no return on its investment.

Next, suppose that an employer never trains a worker. Outside firms would believe that

each worker has no training and so would be willing to offer each worker a wage no greater

than the marginal product of untrained labor. Hence, an employer could retain a worker

by paying the worker a wage equal to his or her marginal product without training. This

situation may not be an equilibrium outcome because an employer might have an incentive

to deviate by secretly training a worker and paying the worker a wage equal to his or her

marginal product without training. This deviation could enable an employer to obtain a

return on its training investment equal to the difference between the marginal products of a

trained and untrained worker.

Finally, suppose that an employer uses a mixed strategy such that the amount of training

provided varies across workers. Outside firms would be uncertain about the training received

by each worker and so could not offer each worker a wage equal to his or her marginal product.

As a result, an employer could potentially employ a trained worker at a wage below his or

her marginal product, thereby reaping a return on its training investment. The model in the

current paper has a unique Nash equilibrium, in which an employer implements this sort of

investment policy.

Although the game is simple, it generates a complex pattern of behavior. Ex ante identical

employees will receive unequal amounts of training. The equilibrium distribution of training

levels will have a positive density on the interval between a zero training level and the

socially optimal quantity. Furthermore, an incumbent employer and the outside market will

both offer the same atomless distribution of wages. An incumbent employer offers different

wages to employees with different training levels and the same wage to employees with the

same training level. By contrast, wage offers from the outside market do not depend on the

amount of training, which is unobservable except to the incumbent employer.

The remainder of this paper is structured as follows. Section 2 explains the relationship
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and contribution of the paper to the literatures on training, auctions, search, and holdup.

Section 3 presents a model of common value auctions with unobservable investment and

discusses some of the assumptions behind the model as applied to training and wages. Section

4 characterizes the equilibria of the model. It considers the benchmark cases in which training

is contractible or observable before analyzing the outcome with unobservable investment.

Section 5 motivates and interprets the prediction that training varies among workers at the

same firm. Section 6 provides a simple example with a Cobb-Douglas production function

in which closed-form solutions for the distributions of wage offers and training levels can

be obtained. Section 7 performs some modeling extensions to assess the robustness of the

findings. Section 8 concludes. The proofs of all the theoretical results are given in the

appendix.

2 Relation to Existing Literature

This paper lies at the intersection of four lines of research in economics. The first is the

literature on training in labor markets. The current paper models training as an unobservable

investment. This idea has some precedent in existing work. Katz and Ziderman (1990)

discuss the notion that employers are not well informed about the training supplied by

other firms, but they do not formally solve for an equilibrium with asymmetric information

between employers about the training level. Chang and Wang (1996) also analyze a setting

in which the amount of training provided by an employer is unobservable to the outside

market. However, their model relies on match-specific human capital and results in a single

level of training. In equilibrium, all workers receive the same amount of training; so that,

there is effectively no asymmetric information between employers about the quantity of

training. By contrast, the model in the current paper does not assume match-specific shocks

to productivity and generates a continuous equilibrium distribution of training investments.

Other relevant papers are Chiang and Chiang (1990) and Acemoglu and Pischke (1998).

In these studies, all workers receive the same amount of training. However, workers differ

in their learning capacity according to Chiang and Chiang (1990) and in their innate ability

according to Acemoglu and Pischke (1998). Such differences are known to an incumbent

firm but not to prospective employers. These papers show that employers make positive

investments in general training due to adverse selection. However, this result requires workers

to be risk averse in Chiang and Chiang (1990) and relies on complementarities between

ability and training in Acemoglu and Pischke (1998). Moreover, exogenous differences in

worker characteristics are invoked in order to produce asymmetric information. The theory
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in the current paper is more parsimonious. The model does not depend on risk aversion or

complementary skills. The asymmetric information is endogenous, resulting from the use of

a mixed strategy.

Second, this paper builds on and adds to the literature on auctions. The model of wage

setting is derived from existing work on first-price, sealed-bid auctions with asymmetric

information. In particular, wage determination is based on the framework in Engelbrecht-

Wiggans, Milgrom, and Weber (1983), who characterize equilibrium strategies in an auction

where one bidder has access to some private information that is unavailable to other bid-

ders. This setting was originally studied by Wilson (1969) and Weverbergh (1979). It was

also mentioned in Milgrom and Weber (1982a). Milgrom and Weber (1982b) analyze the

incentives for bidders in this environment to acquire information about the object for sale.

Hendricks and Porter (1988) apply the theory to empirically investigate auctions for oil

fields. The current paper contributes by incorporating unobservable investment that affects

the value of the item being auctioned. It endogenizes the private information.

In relation to labor markets, Li (2013) adapts the setup from Engelbrecht-Wiggans,

Milgrom, and Weber (1983) to study job mobility and wage inequality when employers

have asymmetric information. Virág (2007) considers a repeated version of this auction,

deriving a number of results about bidding strategies and wage dynamics. Another sequential

variant of this auction is presented in Hörner and Jamison (2008). However, these papers

do not examine the investment or training decisions of bidders or firms. In this context,

the contribution of the current paper is to show that informational asymmetries can arise

endogenously as a result of the incentive for employers to capture some of the returns from

general training.

Third, another pertinent literature comes from search theory. The role of search frictions

in explaining price dispersion has been studied by several authors including Butters (1977),

Burdett and Judd (1983), Lang (1991), and Burdett and Mortensen (1998). Some papers also

examine how wage dispersion due to matching frictions can generate variation in investment

decisions across firms. Acemoglu and Shimer (2000) demonstrate that search costs may

create differences among producers in the stock of physical capital. Mortensen (1998) and

Quercioli (2005) analyze firm-specific human capital in a frictional labor market. A search

model with investments in general human capital can be found in Fu (2011).

In the last paper, general training is assumed to be observable and contractible, whereas

the current paper investigates unobservable investment. Existing research shows that wage

dispersion due to search costs causes investment differences. The direction of causation
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is the opposite in the current paper. Training dispersion due to unobservable investment

causes asymmetric information and wage variation. If training is assumed to be observable

or contractible, then the model in the current paper would predict that all workers should

receive the same wage.

Fourth, this paper shares common themes with research on the hold-up problem. In

general, hold-up refers to a situation in which one party makes an investment specific to a

relationship but must share the returns to the investment with another party. As a result,

agents underinvest in a joint project. Gul (2001) constructs a bargaining model in which

the hold-up problem between a buyer and a seller is mitigated if investment is unobservable.

Lau (2008) characterizes the optimal degree of informational asymmetry in this framework.

Recent papers on similar topics are Hermalin (2013) and Kawai (2014). These authors

consider a hold-up problem where a seller makes an unobservable investment that increases

the value of an object to a buyer. The model in Kawai (2014) is static, whereas that in

Hermalin (2013) is dynamic. Another related paper is González (2004), which analyzes a

principle-agent problem in which the agent undertakes a cost-reducing investment that is un-

observable to the principal. In addition, Goldlücke and Schmitz (2014) present a signaling

model in which a seller follows a mixed strategy when making an observable but noncon-

tractible investment. The existing literature on hold-up studies bargaining games between

a buyer and a seller and does not examine general training by employers. By contrast, the

current paper investigates the training investments of firms in the context of an auction

between buyers. It extends the literature by introducing unobservable investment into an

environment where trade occurs through auctions instead of bargaining.

3 Model of Training and Wages

This section presents a simple model of general training and wage setting. The framework

is based on a common value auction with asymmetric bidders and unobservable investment.

The game comprises two stages. First, an insider firm invests in training a worker, and

the size of the investment is its private information. Second, the insider and an outsider

firm simultaneously offer wages to the worker, and the worker accepts the higher offer. The

details are as follows.

The labor market comprises one worker and two firms I and O. Firms I and O represent

an incumbent and a competing employer, respectively. At time t = 0, firm I invests an

amount h ∈ R+ in general training for the worker. The choice of the training level h is

observable to firm I but not to firm O. Given the specification of the bidding game between
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firms and the action space of the worker, it is irrelevant whether or not the worker knows

the quantity h of training received.

At time t = 1, firms I and O make simultaneous wage offers to the worker. Let bI ∈ R+

and bO ∈ R+ denote the respective offers of firms I and O. The worker accepts employment

from the firm offering the higher wage. If both offers are the same, then the worker accepts

employment from firm I with probability α and from firm O with probability 1− α, where

α ∈ [0, 1]. Firm I can use its knowledge of the training level h when formulating a wage

offer bI , whereas the wage bO offered by firm O cannot depend on h. The worker produces

an output worth g(h) for the firm that hires him or her at time t = 1.

The function g mapping training into output is assumed to satisfy the following regularity

conditions.

Assumption 1 The production function g : R+ → R+ has the following properties:

a) g′(h) > 0 and g′′(h) < 0 for all h ∈ R+

b) limh→0 g
′(h) =∞ and limh→∞ g

′(h) = 0

The first part of the assumption states that the output of the worker is a concave, increasing,

and twice differentiable function of training. The Inada conditions in the second part of the

assumption help ensure that the efficient level of training is positive.

The firms are assumed to be risk neutral, and there is no discounting between periods.

Hence, the payoffs to firms I and O are defined as follows. If firm I chooses training level h

and wage offer wI , then its payoff is [g(h)−wI ]−h when the worker accepts its offer, and its

payoff is −h when the worker rejects its offer. If firm O offers the wage wO, then its payoff

is [g(h)− wO] when the worker accepts its offer, and its payoff is 0 when the worker rejects

its offer.

Note that firms are restricted to offering flat-wage contracts. In other words, output is

assumed to be unverifiable by courts and thus noncontractible. This restriction is standard

in the literature on adverse selection in labor markets. For example, see the models of

asymmetric information in Greenwald (1986) and Gibbons and Katz (1991). Moreover, if

output were instead assumed to be verifiable, then training would effectively be contractible

since output is a function of training. However, this situation would be inconsistent with

the aim of the current paper, which is to understand investment behavior when training is

unobservable and noncontractible.

8



In practice, there are several reasons why employers may avoid output-contingent con-

tracts. First, performance pay might significantly raise an employer’s compensation costs

if a worker is risk averse and the output measure is noisy. See Prendergast (2002) for a

discussion of the literature on economic uncertainty and performance pay. Second, Baker,

Jensen, and Murphy (1987) observe that employees may substitute quantity for quality if

they are paid on a piece rate. Third, Kanemoto and MacLeod (1992) analyze a dynamic

model in which a piece rate induces a ratchet effect that may inefficiently lower productivity.

Fourth, an employee’s individual contribution to production may be difficult to determine

if agents work in teams with only group output being observed. See Alchian and Demsetz

(1972) for a classic description of the metering problem associated with team production.

The central assumption of the model is that training investments are not publicly ob-

servable. The literature on general training provides substantial support for this premise.

Katz and Ziderman (1990) argue that “potential recruiters do not possess much information

on the extent and type of workers’ on-the-job training.” Likewise, Acemoglu and Pischke

(1999a) note that “training practices inside the firm are hard to observe by outsiders” and

“important parts of the training programme are intangible, involving mentoring, advice, and

practice.” The hypothesis that training is unobservable has some precedent in the litera-

ture, but the current paper is unique in deriving an equilibrium in which there is asymmetric

information between employers about the quantity of training as well as a nondegenerate

distribution of training levels.

Although a worker might have knowledge of training received, he or she may be unable

to credibly signal this information to prospective employers. Acemoglu and Pischke (1999b)

mention that employer-sponsored training often provides “uncredentialed skills.” That is,

workers normally do not receive a certificate of completion or competency that they can

present to outsiders as evidence of on-the-job learning. It may be infeasible to design a

standardized test or interview question to assess the quality of instruction. Even if possible,

formal verification of training may not generate an efficiency improvement. As Katz and

Ziderman (1990) observe, “certification might lead to less rather than more general training”

because of a reduction in the returns that accrue to employers.

Some training activities like mentoring and advising may be spontaneous and idiosyn-

cratic. As Bishop (1996) notes, a substantial component of “training is informal and hard to

measure and its effects on productivity are even more difficult to quantify.” Similarly, Brown

(1990) argues that “much of the conceptual difficulty of measuring employer-provided train-

ing is due to the fact that an important part of such training occurs informally, on the job.”
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These problems of measurement are less characteristic of investment in physical capital such

as machinery or equipment. Becker (1962) describes physical capital as “tangible assets,”

whereas human capital comprises “intangible resources.” Accordingly, human capital may

be subject to greater uncertainty than physical capital, which is typically concrete, mate-

rial, and observable. Furthermore, human capital is “inalienable” as emphasized by Hart

and Moore (1994). An employee is generally free to leave a job at will, in which case the

employer loses access to the skills embodied in the worker. This special property of human

capital makes it difficult for a firm to obtain a return on its investment.

Another important assumption of the model is that wage offers are made simultaneously.

That is, each firm selects a wage offer without observing the wage chosen by the other firm.

Other papers that explore the implications of this specification are Virág (2007) and Li

(2013). Those authors provide a number of justifications for modeling offers as simultaneous.

First, a wage offer may be easy for a worker to falsify because a worker is not compelled

to accept an offer of employment. Hence, workers might be unable to credibly reveal a

wage offer from one firm to another employer. Second, compensation may be partly in the

form of nonmonetary perks, which could benefit different workers unequally. Hence, a firm

might have difficulty appraising the value of an employment offer from another firm. Third,

an employer may enforce a policy of ignoring wage offers from other firms. Otherwise, if

an employer matched offers from competitors, then workers might try to solicit offers from

other firms in order to start a bidding war among employers that raises wages and lowers

profits.

4 Analysis of Investment Behavior

This section examines training decisions under different assumptions about the contracting

environment. It begins with two benchmark scenarios. Section 4.1 considers the situation

where training is contractible; so that, an efficient level of investment can be implemented.

Section 4.2 documents the outcome when training is observable but not contractible, in

which case no investment occurs on the path of play. It then proceeds to analyze the setting

of interest, where investment is unobservable and so noncontractible. Section 4.3 derives an

equilibrium with randomized training and wage dispersion.
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4.1 Contractible Investment

In this section, training is assumed to be contractible. Hence, the worker can pay firm I a

fee in exchange for the efficient amount of training. The efficient investment level is defined

as follows.

Definition 1 The training level ĥ ∈ R+ is efficient if g(ĥ)− ĥ ≥ g(h)− h for all h ∈ R+.

In other words, the efficient investment level maximizes revenue minus training costs. The

result below characterizes the socially optimal quantity of training.

Proposition 1 The efficient training level is given by he = g′−1(1).

That is, the marginal revenue of g′(h) from an additional unit of human capital is equated

with the marginal cost of 1 for a unit of human capital. An agreement between the worker and

firm I might have the following form. First, the worker would pay firm I a fee f . Depending

on the bargaining powers of the two parties, the fee can vary from he to g(he)− g(0), where

f = he and f = g(he)−g(0) correspond to the respective cases where all the bargaining power

is vested in the worker and the firm. Second, firm I would provide the efficient amount he

of training to the worker. Third, Bertrand competition between firms I and O would result

in the worker being paid a wage equal to his or her marginal product g(he).

4.2 Observable Investment

In this section, training is assumed to be observable but not contractible. The setup is

as described in section 3, except that firms I and O both observe the amount of training

received by the worker. A formal definition of strategies for this game is provided below.

Definition 2 A mixed strategy for firm I consists of a distribution function D on R+ as well

as a collection {Bh
I } of distribution functions on R+ indexed by h ∈ R+. A mixed strategy

for firm O is a collection {Bh
O} of distribution functions on R+ indexed by h ∈ R+.

The preceding expressions can be interpreted as follows. D(h) is the probability that firm

I chooses a training level no greater than h, and Bh
I (wI) is the probability that firm I

chooses a wage offer no greater than wI when the training level is h. Given these terms, let

BI(h,wI) = D(h) ·Bh
I (wI) be the probability that firm I chooses a training level no greater

than h and a wage offer no greater than wI . Finally, Bh
O(wO) is the probability that firm O

offers a wage no greater than wO when the training level is h.
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To paraphrase, firm I chooses a training level h that is publicly observable. Thereafter,

firms I and O simultaneously and independently place bids for the labor services of the

worker. The wage offers wI and wO can vary with the amount h invested. The solution

concept for this model is subgame perfect Nash equilibrium, which is described below. The

notation Bh
I (w−) = limv↑w B

h
I (v) and Bh

O(w−) = limv↑w B
h
O(v) is used when w > 0. In

addition, let Bh
I (0−) = 0 and Bh

O(0−) = 0.

Definition 3 A subgame perfect Nash equilibrium consists of mixed strategies (D, {Bh
I }) and

{Bh
O} for firms I and O such that:

a) for any h ∈ R+, there is probability one that ŵI drawn from distribution Bh
I satisfies

{Bh
O(ŵ−I )+α[Bh

O(ŵI)−Bh
O(ŵ−I )]}[g(h)−ŵI ] ≥ {Bh

O(w−I )+α[Bh
O(wI)−Bh

O(w−I )]}[g(h)−
wI ] for all wI ∈ R+;

b) for any h ∈ R+, there is probability one that ŵO drawn from distribution Bh
O satisfies

{Bh
I (ŵ−O) + (1 − α)[Bh

I (ŵO) − Bh
I (ŵ−O)]}[g(h) − ŵO] ≥ {Bh

I (w−O) + (1 − α)[Bh
I (wO) −

Bh
I (w−O)]}[g(h)− wO] for all wO ∈ R+;

c) there is probability one that (ĥ, ŵI) drawn from distribution BI satisfies {Bĥ
O(ŵ−I ) +

α[Bĥ
O(ŵI)−Bĥ

O(ŵ−I )]}[g(ĥ)−ŵI ]− ĥ ≥ {Bh
O(w−I )+α[Bh

O(wI)−Bh
O(w−I )]}[g(h)−wI ]−h

for all (h,wI) ∈ R2
+.

The equilibrium conditions can be stated as follows. Conditional on the amount h invested,

each firm chooses a wage offer so as to maximize its profits given the distribution of wages

offered by the other firm. Moreover, firm I selects a training level and wage offer so as to

maximize its profits given the distribution of wages offered by firm O upon observing the

choice of investment. The result below summarizes the equilibrium of the game.

Proposition 2 The unique subgame perfect Nash equilibrium outcome is as follows. With

probability one, firm I chooses training level h = 0 and wage offer wI = g(0). With probability

one, firm O chooses wage offer wO = g(0). The resulting payoffs are 0 to firm I, 0 to firm

O, and g(0) to the worker.

In other words, no investment occurs in equilibrium. Consequently, each firm receives zero

profits, and the worker earns a wage equal to the marginal product of untrained labor. The

reasoning behind this finding is straightforward. Due to Bertrand competition between firms

I and O, the worker is always paid his or her marginal product. Hence, firm I would obtain

no return from training but would incur the cost of investment. That is, it is not profitable

for firm I to invest in training the worker.
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4.3 Unobservable Investment

As in section 3, training is assumed to be unobservable and so noncontractible. Below is the

specification of strategies in this case.

Definition 4 A mixed strategy for firm I is a distribution function GI on R2
+. A mixed

strategy for firm O is a distribution function FO on R+.

The terms in the preceding statement have the following meanings. GI(h,wI) is the proba-

bility that firm I chooses a training level no greater than h and a wage offer no greater than

wI . FO(wO) is the probability that firm O offers a wage no greater than wO. That is, firm

I selects an amount h to invest, after which both firms I and O make simultaneous wage

offers wI and wO to the worker. A critical aspect of the model is that firm I but not firm O

knows the training level h when placing a bid.

This is a game of complete but imperfect information. Any informational asymmetry

between firms I and O will arise not from a random move of Nature but from the endogenous

behavior of firm I. Hence, the appropriate solution concept is just a Nash equilibrium,

which is defined below for the current setting. The notation FI(w
−) = limv↑w FI(v) and

FO(w−) = limv↑w FO(v) is used when w > 0. In addition, let FI(0
−) = 0 and FO(0−) = 0.

Definition 5 A Nash equilibrium consists of mixed strategies GI and FO for firms I and O

such that:

a) there is probability one that (ĥ, ŵI) drawn from distribution GI satisfies {FO(ŵ−I ) +

α[FO(ŵI)−FO(ŵ−I )]}[g(ĥ)− ŵI ]− ĥ ≥ {FO(w−I )+α[FO(wI)−FO(w−I )]}[g(h)−wI ]−h
for all (h,wI) ∈ R2

+;

b) there is probability one that ŵO drawn from distribution FO satisfies E{[(1−α)1(ŵO ≥
wI)+α1(ŵO > wI)][g(h)− ŵO]} ≥ E{[(1−α)1(wO ≥ wI)+α1(wO > wI)][g(h)−wO]}
for all wO ∈ R+, where the expectation E{·} is taken over (h,wI) drawn from distribu-

tion GI , and 1(·) is an indicator function equal to 1 if the statement in parentheses is

true and equal to 0 otherwise.

The requirements for an equilibrium are simple. Firm I chooses a wage offer and training

level so as to maximize its profits given the distribution of wages offered by firm O. Firm O

chooses a wage offer so as to maximize its profits given the joint distribution of wage offers

and training levels selected by firm I.

The process of solving the model is subdivided into several parts. The basic properties

of an equilibrium are first derived. The unique strategy profile satisfying these conditions
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is then identified. The result below specifies the equilibrium relationship between the wage

offered and the training provided by firm I. It is convenient to denote PO(wI) = FO(w−I ) +

α[FO(wI) − FO(w−I )] for wI ∈ R+. That is, PO(wI) represents the probability that firm I

retains the worker when offering the wage wI given that firm O chooses a bid according to

the distribution FO.

Lemma 1 Suppose that the mixed strategies GI and FO for firms I and O constitute a

Nash equilibrium. There is probability one that (ĥ, ŵI) drawn from distribution GI satisfies

ĥ = g′−1[1/PO(ŵI)].

In other words, the wage offer ŵI and training level ĥ chosen by firm I almost surely fulfill

the equation ĥ = g′−1[1/PO(ŵI)]. This property maps each wage offered by the incum-

bent employer to a unique amount of training. As explained below, it helps simplify the

specification of an equilibrium strategy for firm I.

In particular, consider a Nash equilibrium in whichGI and FO are the respective strategies

of firms I and O. Denote x(wI) = g′−1[1/PO(wI)] for all wI ∈ R+. The strategy GI for firm

I can be represented as a pair (FI , x), where FI is a distribution function on R+, and the

function x is as just described. In this formulation, FI(wI) is the probability that firm I

offers a wage no greater than wI , and x(wI) can be interpreted as the training level chosen

by firm I when it selects the wage offer wI . Note that GI and (FI , x) are related through

the equation FI(w) = GI [x(w), w] for all w ∈ R+.

The preceding lemma reflects a simple intuition. Given the wage offered by firm I, there

is a particular probability that firm I has of retaining the worker. In turn, firm I should

optimally provide a certain amount of training to the worker based on the likelihood of

retention, which affects the fraction of the return on an investment that firm I captures.

According to the relation derived above, the training level is nondecreasing in the wage

offer. When firm I offers the worker a higher wage, the worker may be more likely to remain

with firm I, enabling firm I to recover more of the gains from training. Consequently, firm

I may find it profitable to invest a larger amount in the human capital of the worker.

The basic structure of an equilibrium is deduced by a lengthy process of elimination.

As detailed in the appendix, the results below are mostly proven by contradiction. An

equilibrium of a particular form is hypothesized, but a profitable deviation is shown to exist.

The next lemma relates to the infima and suprema of the supports for the distributions of

wages offered by firms I and O. For Y ∈ {I, O}, let wlY be the least w ∈ R+ such that

FY (w) > 0 for all w > wlY . That is, wlI and wlO respectively denote the infimum of the

support of FI and FO. For Y ∈ {I, O}, let wuY be the greatest w ∈ R+ such that FY (w) < 1
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for all w < wuY . That is, wuI and wuO respectively denote the supremum of the support of FI

and FO.

Lemma 2 Suppose that the mixed strategies (FI , x) and FO for firms I and O constitute a

Nash equilibrium. It must be that wlI = wlO and wuI = wuO.

In other words, the supports of the wage distributions offered by the incumbent and outside

employers have the same infimum and supremum. Henceforth, the notation wl = wlI = wlO
and wu = wuI = wuO is used given equilibrium strategies (FI , x) and FO for firms I and O.

The following is a sketch of the reasoning behind the result above. Let (FI , x) and FO be

the respective strategies of firms I and O in a Nash equilibrium. Consider first the suprema

of the supports of FI and FO. Suppose that wuI < wuO. In this case, firm O can get a higher

expected payoff by offering a wage slightly below wuO than by offering the wage wuO. Hence,

firm O has an incentive to deviate from choosing the bid wuO. Intuitively, this implies that

there cannot exist an equilibrium in which wuI < wuO. A similar argument holds under the

supposition that wuI > wuO. Therefore, it must be that wuI = wuO in any equilibrium.

Consider next the infima of the supports of FI and FO. Suppose that wlI > wlO. If so,

firm I has a positive probability of retaining the worker by offering a wage no less than wlI .

Hence, it is optimal for firm I to provide a positive amount of training when it chooses any

bid greater than or equal to wlI . Given that firm I must get a nonnegative expected payoff

in equilibrium, it can be argued that firm O will get a positive expected payoff by offering

a wage slightly above wlI . Intuitively, firm O may reap some of the gains from the training

received by the worker, even though it does not pay for this investment. However, firm O

gets zero profits by offering the worker a wage below wlI . Hence, firm O has an incentive to

deviate from choosing a bid lower than wlI . Thus, there cannot exist an equilibrium in which

wlI > wlO.

Suppose instead that wlI < wlO. When firm I offers any wage below wlO, the worker

accepts the offer of firm I with probability zero. Hence, it is not optimal for firm I to

provide any training when it chooses any bid less than wlO. Assume for simplicity that FI

does not have an atom at wlO. If wlO > g(0), then firm O gets a negative expected payoff from

offering the wage wlO, whereas it can get zero profits by bidding g(0). If wlO = g(0), then

firm O gets zero profits from offering the wage wlO, whereas it can obtain a positive expected

payoff by bidding slightly below g(0). If wlO < g(0), then firm I receives zero profits from

choosing a wage offer lower than wlO and a training level of 0, although it can get a positive

expected payoff by choosing a wage offer slightly higher than wlO along with a training level
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of 0. In each case, firm I or O appears to have a profitable deviation. Thus, there cannot

exist an equilibrium in which wlI < wlO. Overall, it must be that wlI = wlO in any equilibrium.

The lemma below states additional properties regarding the infimum of the supports

for the distributions of wages offered by firms I and O. In particular, the supports of the

equilibrium bid distributions FI and FO have an infimum wl equal to g(0), which is the

output produced by a worker with no training. Furthermore, the equilibrium distribution

FO of wages offered by the outside employer does not have a mass point at the infimum wl

of its support.

Lemma 3 Suppose that the mixed strategies (FI , x) and FO for firms I and O constitute a

Nash equilibrium. It must be that wl = g(0). Moreover, FO does not have an atom at wl.

It will also follow from later steps of the solution that there is no mass point at the infimum wl

of the support for the equilibrium bid distribution FI of the incumbent employer. The logic

underlying the lemma above can be summarized as follows. Consider a Nash equilibrium in

which (FI , x) and FO are the respective strategies of firms I and O. Assume provisionally

that PO(wl) = 0, which implies that x(wl) = 0. That is, firm I is assumed to have zero

probability of retaining the worker by offering the wage wl, in which case it is not profitable

for firm I to provide any training to the worker.

Suppose first that wl > g(0). If FI has an atom at wl, then firm O receives a negative

expected payoff by bidding wl, whereas it can get zero profits by offering a wage less than

wl. If FI does not have an atom at wl, then firm O receives zero profits by offering the

wage wl, but it can be argued that firm O can obtain a positive expected payoff by bidding

slightly higher than wl. The intuition is that firm O may collect some returns from the

training of the employee without incurring any costs for the training. In both cases, firm O

has an incentive to deviate from offering the wage wl. Hence, there does not seem to exist

an equilibrium in which wl > g(0) under the assumption that PO(wl) = 0.

Suppose next that wl < g(0). Firm I receives zero profits by choosing wage offer wl and

training level x(wl), whereas it can get a positive expected payoff by selecting a bid slightly

greater than wl along with the training level x(wl). This means that it is profitable for firm I

to deviate from offering the wage wl and providing the training x(wl). Thus, an equilibrium

with wl < g(0) does not appear to exist under the assumption that PO(wl) = 0. In sum, it

must be that wl = g(0) whenever PO(wl) = 0.

It now remains to argue that PO(wl) = 0. Suppose to the contrary that PO(wl) > 0,

which implies that x(w) > 0 for w ≥ wl. That is, if firm I offers the wage wl, then firm I

is presumed to retain the employee with positive probability. This would make it optimal
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for firm I to provide a positive amount of training whenever it offers a wage no less than

wl. Noting that the expected payoff to firm I must be nonnegative in equilibrium, firm O

can increase its profits by bidding slightly higher than wl instead of offering the wage wl.

Intuitively, firm O improves its chance of hiring the worker by bidding above wl, and firm O

gains from hiring the worker because it captures some returns to training without paying for

the investment. Hence, it is profitable for firm O to deviate from offering the wage wl. This

implies that there cannot be an equilibrium with PO(wl) > 0. Consequently, wl = g(0).

The final task is to explain why FO does not have an atom at wl. Suppose instead that

FO has an atom at wl. If so, firm I receives zero profits by choosing wage offer wl = g(0)

and training level x(wl) = 0, whereas firm I can obtain a positive expected payoff by offering

a wage slightly higher than wl and providing somewhat greater training than x(wl). That

is, firm I has an incentive to deviate from selecting the bid wl along with the training level

x(wl). Thus, there does not appear to be an equilibrium where FO has an atom at wl.

The result below reports the average profits of firms I and O in equilibrium. The expected

payoffs are defined as follows. For any (h,w) ∈ R2
+, let πI(h,w) = PO(w)[g(h)−w]−h denote

the expected payoff to firm I if firm I chooses training level h and wage offer w. Choose

any w ∈ R+. Let E{g[x(wI)] − w|wI ≤ w} be the conditional expectation of g[x(wI)] − w
given that wI ≤ w, where wI is drawn from FI . If there is zero probability that wI drawn

from FI satisfies wI ≤ w, then E{g[x(wI)] − w|wI ≤ w} is allowed to be any real number.

Let πO(w) = FI(w)E{g[x(wI)]− w|wI ≤ w} − α[FI(w)− FI(w−)]{g[x(w)]− w} denote the

expected payoff to firm O if firm O offers wage w.

Lemma 4 Suppose that the mixed strategies (FI , x) and FO for firms I and O constitute a

Nash equilibrium. There is probability one that ŵI drawn from FI satisfies πI [x(ŵI), ŵI ] = 0.

There is probability one that ŵO drawn from FO satisfies πO(ŵO) = 0.

To paraphrase, firm I almost surely chooses a wage offer and training level for which its

expected payoff is zero, and firm O almost surely offers a wage such that its expected payoff

is zero. The following is the main idea behind the preceding lemma. Assume that (FI , x)

and FO are the respective strategies of firms I and O in a Nash equilibrium. Firm O gets

zero profits by offering the wage wl because it has zero probability of hiring a trained worker

if it bids wl. Intuitively, firm O should be indifferent among the wages that it offers in

equilibrium because any such wage should maximize its expected payoff. Hence, firm O

would generally obtain an expected payoff of zero in equilibrium.

A similar argument can be applied to the expected payoff of firm I. Note that the actual

proof of the lemma in the appendix is more complicated than the logic presented above. The
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reason is as follows. Given any ε > 0, there is positive probability that firm O chooses a bid in

the interval [wl, wl+ ε]. However, firm O does not offer the wage wl with positive probability

in equilibrium. Hence, it is not entirely obvious that firm O maximizes its expected payoff by

bidding exactly wl. A related issue makes the proofs of several other results in the appendix

more elaborate than the intuition described in the body of the paper.

The next result pertains to the supremum of the supports for the distributions of wages

offered by firms I and O. Specifically, it shows that the supports of the equilibrium bid

distributions FI and FO have a supremum wu equal to g[g′−1(1)] − g′−1(1). This value

represents the output of a worker with the efficient level of training minus the cost of such

a training investment.

Lemma 5 Suppose that the mixed strategies (FI , x) and FO for firms I and O constitute a

Nash equilibrium. It must be that wu = g[g′−1(1)]− g′−1(1).

The following is an outline of the proof for the lemma above. Consider a Nash equilibrium

in which firms I and O follow the respective strategies (FI , x) and FO. If wu < g[g′−1(1)]−
g′−1(1), then firm I gets zero profits by choosing wage offer wl and training level x(wl), but

firm I would obtain a positive expected payoff by offering a wage slightly greater than wu

and providing the training level g′−1(1). If wu > g[g′−1(1)] − g′−1(1), then firm I can be

shown to obtain a negative expected payoff by choosing wage offer wu and training level

x(wu), whereas it would get zero profits by choosing wage offer wl and training level x(wl).

Hence, firm I seems to have an incentive to deviate in both cases, contradicting the existence

of an equilibrium in which wu 6= g[g′−1(1)]− g′−1(1).

The lemma below establishes some important characteristics for the distributions of wages

offered by firms I and O. It demonstrates that the equilibrium wage offer distributions FI

and FO do not have a mass point above the infimum wl of their supports. In addition, the

distribution functions FI and FO are shown to be strictly increasing on the interval [wl, wu],

which forms the support of FI and FO. In other words, the equilibrium bid distribution for

each firm is gapless and atomless above the infimum of its support.

Lemma 6 Suppose that the mixed strategies (FI , x) and FO for firms I and O constitute

a Nash equilibrium. Then neither FI nor FO has an atom at any w > wl. Moreover, for

any wa and wb such that wl ≤ wa < wb ≤ wu, it must be that FI(w
a) < FI(w

b) and

FO(wa) < FO(wb).

A synopsis of the argument behind the statement above would be as follows. Let (FI , x) and

FO be the respective strategies of firms I and O in a Nash equilibrium. Suppose first that
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FI has an atom at some wage ŵ > wl. Assume for concreteness that α > 0. That is, there is

positive probability of the worker accepting employment with firm I when both firms offer

the same wage.

It can be shown that there does not exist an equilibrium in which firm O offers a wage

equal to or slightly less than ŵ with positive probability. To understand this claim, suppose

to the contrary that such an equilibrium exists. Given that firm I receives an expected payoff

of zero in equilibrium, firm O can increase its expected payoff by bidding slightly above ŵ

instead of offering a wage equal to or slightly less than ŵ. Intuitively, firm O substantially

improves its likelihood of recruiting a trained worker by incrementally raising its bid to just

over ŵ, and firm O profits from employing such a worker because it captures some of the

gains from training but does not finance the cost of training. Hence, firm O would have an

incentive to deviate under such a scenario.

Since there is zero probability of firm O choosing a bid equal to or slightly below ŵ in

equilibrium, there exists a profitable deviation for firm I. In particular, firm I can increase

its expected payoff by choosing a wage offer slightly below ŵ along with a training level of

x(ŵ) instead of offering the wage ŵ and providing the training x(ŵ). By doing so, firm I

reduces the wage paid when it retains the worker without lowering its chance of hiring the

worker. Hence, FI cannot have an atom at any wage ŵ > wl. A similar style of reasoning

suggests that FO does not have a mass point at any wage above the infimum of its support.

Suppose now that there exists wa ≥ wl such that one can find wb ≤ wu for which wb > wa

but FI(w
b) = FI(w

a). That is, firm I offers a wage greater than wa but less than or equal

to wb with probability zero. Noting that FI is continuous on the interval [wl, wu], let wc be

the largest number wc ≤ wu with wc > wa but FI(w
c) = FI(w

a). It can be shown that no

equilibrium exists in which firm O chooses a bid higher than wa but no greater than wc with

positive probability. To see this, suppose otherwise that such an equilibrium exists. Then

firm O can increase its expected payoff by offering the wage wa instead of bidding over wa

but less than or equal to wc. Thus, firm O would have an incentive to deviate in this setting.

Since there is zero probability of firm O offering a wage above wa but below or the same

as wc, there appears to be a profitable deviation for firm I. Specifically, firm I can increase

its expected payoff by choosing a bid slightly under wc along with the investment level x(wc)

instead of selecting the bid wc and investing the amount x(wc). By doing so, firm I does not

change its probability of retaining the worker but decreases the wage paid in the event that

the worker accepts its offer. Hence, there cannot exist wa and wb with wl ≤ wa < wb ≤ wu for

which FI(w
a) = FI(w

b). A related justification can be given for why FO is strictly increasing
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between wl and wh.

The discussion so far has concentrated on the distributions of wages offered by firms I

and O. However, the preceding results also have implications for the equilibrium distribution

of human capital. The lemma below lists some key features of the investment distribution.

Given a Nash equilibrium strategy profile (FI , x) and FO, let the distribution function K

on R+ denote the resulting equilibrium distribution of training levels. That is, K(h) is the

probability that firm I chooses a training level no greater than h. In addition, let hl and hu

respectively denote the infimum and supremum of the support of K. That is, hl is the least

h ∈ R+ such that K(h) > 0 for all h > hl, and hu is the greatest h ∈ R+ such that K(h) < 1

for all h < hu.

Lemma 7 Suppose that the mixed strategies (FI , x) and FO for firms I and O constitute a

Nash equilibrium. Then hl = 0 and hu = g′−1(1). Furthermore, K does not have an atom

at any h > hl. Lastly, for any ha and hb such that hl ≤ ha < hb ≤ hu, it must be that

K(ha) < K(hb).

According to the lemma above, the support of the equilibrium training distribution has an

infimum hl of 0 and a supremum hu of g′−1(1). Recall that 0 is the amount invested when

training is observable but not contractible as in section 4.2 and that g′−1(1) is the amount

invested when training is observable and contractible as in section 4.1. Noting that g′−1(1)

is the efficient quantity of investment, training is generally below the socially optimal level

in equilibrium.

The basic logic behind this part of the lemma is straightforward. Consider equilibrium

strategies (FI , x) and FO. First, it is optimal for firm I to provide the training hl = 0 if it

offers the wage wl = g(0), which is the infimum of the support for the wage offer distribution

FI . In this case, firm I hires the worker with probability zero and so receives none of the

returns to investment. Second, it is optimal for firm I to invest the amount hu = g′−1(1) if

it chooses the bid wu = g[g′−1(1)] − g′−1(1), which is the supremum of the support for the

equilibrium bid distribution FI . In this case, firm I retains the employee with probability

one and so obtains all of the returns to training.

The preceding lemma also shows that the distribution function K is continuous and

strictly increasing on the interval [hl, hu]. In other words, the distribution of human capital

is gapless and atomless above the infimum of its support. Intuitively, the investment distri-

bution inherits these properties from the bid distribution. Let (FI , x) and FO be equilibrium

strategies. Then the wage offer distribution FI of firm I is continuous and strictly increasing

on the interval [wl, wu]. Furthermore, the wage offer ŵI and training level ĥ chosen by firm
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I satisfy the condition ĥ = g′−1[1/PO(ŵI)] with probability one, where PO is continuous

and strictly increasing on the interval [wl, wu]. Consequently, K should have the attributes

specified above.

The next theorem is the main result of the paper. It demonstrates the existence of a

unique Nash equilibrium for the model. It also characterizes the equilibrium bid distributions

of firms I and O. Remarkably, the distributions FI and FO of wages offered by the two

employers are identical to each other. Because the relation ĥ = x(ŵI) holds almost surely for

the bid selected ŵI and amount invested ĥ by firm I in equilibrium, the joint distribution GI

of training levels and wage offers chosen by firm I is known given the equilibrium distributions

of wages offered by firms I and O. Recall that x(wI) = g′−1[1/PO(wI)] for all wI ∈ R+, where

PO(wI) = FO(wI) for all wI ∈ R+ because the distribution FO has no mass point.

Theorem 1 There exists a unique Nash equilibrium profile of strategies (FI , x) and FO for

firms I and O. For Y ∈ {I, O}, the distribution function FY is defined by:

FY (w) =


0 if w ≤ g(0)

x(w)/{g[x(w)]− w} if g(0) < w < g[g′−1(1)]− g′−1(1)

1 if w ≥ g[g′−1(1)]− g′−1(1)

.

Suppose that the strategies (FI , x) and FO for firms I and O constitute a Nash equilibrium.

The following is an explanation for why FO must be as described in the theorem. It was shown

before that the bid ŵI chosen by firm I fulfills the indifference condition πI [x(ŵI), ŵI ] = 0

with probability one. Given the properties of FI and FO, this condition translates into a re-

quirement that FO(w){g[x(w)]−w}−x(w) = 0 holds on the interval [wl, wu]. Rearrangement

of this expression gives FO(w) = x(w)/{g[x(w)] − w} for w ∈ (wl, wu], where FO(wl) = 0

because FO must be continuous. It can be further argued that there actually exists a unique

distribution function satisfying the description in the theorem.

The next topic for discussion is why FI has the same formula as FO. As stated earlier, firm

O almost surely offers a wage ŵO that complies with the indifference condition πO(ŵO) = 0.

Given the characteristics of FI and FO, this condition can be rewritten as
∫ w
wl
g[x(v)] −

w dFI(v) + FI(w
l){g[x(wl)] − w} = 0 for w ∈ [wl, wu]. Differentiation of this equation

yields F ′I(w){g[x(w)]− w} = FI(w) on the interval (wl, wu], where the Leibniz integral rule

is applied. Now recall the condition FO(w){g[x(w)] − w} − x(w) = 0 for w ∈ [wl, wu].

Differentiation of this identity with the help of the envelope theorem gives F ′O(w){g[x(w)]−
w} = FO(w) on the interval (wl, wu]. That is, FI and FO satisfy the same differential
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equation with the same boundary condition FI(w
u) = FO(wu) = 1. This implies that the

distribution functions FI and FO should be the same as each other due to the existence and

uniqueness of the solution to a first-order linear differential equation.

Intuitively, the distribution functions FI and FO parallel each other because of an under-

lying symmetry between the payoff functions of firms I and O. When firm I contemplates

a marginal increase in its wage offer wI , it weighs the expected gain F ′O(wI){g[x(wI)]−wI}
in profits from a higher retention rate against the expected rise FO(wI) in wage payments.

Note that firm I chooses the training level x(wI) to maximize its expected payoff given its

anticipated wage offer wI . Hence, the envelope theorem implies that changes in x(wI) can

be suppressed when calculating the effect of a marginal change in wI on the expected payoff

of firm I.

When firm O considers raising its wage offer wO infinitesimally, it faces a tradeoff between

the expected gain F ′I(wO){g[x(wO)]−wO} in profits from a higher recruitment rate and the

expected rise FI(wO) in wage payments. Note that each wage wI offered by firm I can be

mapped to a unique training level x(wI). Hence, firm O can perfectly predict the productivity

of the marginal worker potentially being recruited when it incrementally raises its wage offer.

It can be seen that the problems faced by firms I and O are identical to each other on the

margin. This suggests that both employers would offer the same distribution of wages in

equilibrium, observing also that the supports for the bid distributions of the two firms should

have the same supremum.

The following corollary provides an explicit solution for the equilibrium distribution K

of training levels selected by firm I. In brief, the result follows from two attributes of an

equilibrium. First, the wage ŵI offered and training ĥ provided by firm I satisfy the condition

ĥ = g′−1[1/FO(ŵI)] with probability one, where FO is continuous and strictly increasing from

0 to 1 on the interval [wl, wh]. Second, the distributions FI and FO of wages offered by firms

I and O are identical.

Corollary 1 Suppose that the mixed strategies (FI , x) and FO for firms I and O constitute

a Nash equilibrium. The distribution function K is given by:

K(h) = 1/g′(h), 0 ≤ h ≤ g′−1(1).

The properties of the production function determine the shape of the equilibrium distribution

of human capital. Differentiating the cumulative distribution function in the corollary above,

the probability density function of investment is k(h) = −g′′(h)/[g′(h)]2 for h ∈ (hl, hu].

Remember that g′(h) > 0 and g′′(h) < 0 for all h ∈ R+ by assumption. Hence, if the second
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derivative g′′(h) of the production function is nonincreasing in human capital h, then the

density k(h) of the training distribution will be increasing. If so, the distribution function

K(h) will be convex. In the case where g′′(h) is increasing in h, it is possible for k(h) to be

decreasing and for K(h) to be concave.

It now remains to characterize the expected payoffs of the bidders and the seller. If

(FI , x) and FO are equilibrium strategies for firms I and O, then ŵI drawn from FI satisfies

πI [x(ŵI), ŵI ] = 0 with probability one, and ŵO drawn from FO satisfies πO(ŵO) = 0 with

probability one. That is, firms I and O each receive an expected payoff of zero in equilibrium.

An expression for the expected payoff to the worker is stated in the corollary below. Let

φS =
∫ wu
wl

∫ wu
wl

max(u, v) dFI(u)dFO(v) denote the expected payoff to the worker.

Corollary 2 Suppose that the mixed strategies (FI , x) and FO for firms I and O constitute

a Nash equilibrium. Then φS is given by:

φS = g[g′−1(1)]− 2g′−1(1) +

∫ g′−1(1)

0

1

g′(h)
dh.

The preceding formula is derived in two steps. First, the expected payoff φS to the worker is

written as the difference between the expected value of output produced and the expected

amount invested in training. This equality holds because the expected payoffs to firms I and

O are zero in equilibrium. Second, the solution for K presented above is used to substitute for

the cumulative distribution function of investment, and the resulting expression is simplified

using integration by parts.

This section closes with some remarks about the possible robustness of the solution to

changes in the setup of the model. It is straightforward to generalize the framework to

markets with a larger number of participants. Obviously, if the market contains several

independent workers, then each play of the game can be regarded as the outcome for a given

worker. Furthermore, the solution does not differ materially when there is an arbitrary

number N ≥ 2 of bidders. If the worker receives wage offers from the incumbent employer

as well as from more than one outside firm, then it can easily be seen that the model has

an equilibrium of the following form. The incumbent employer bids according to the same

distribution FI as in the theorem above. Moreover, the wage offer ŵI and training level ĥ

chosen by the incumbent employer continue to satisfy ĥ = x(ŵI) with probability one. The

distribution of the highest wage offered by an outside employer is FO, which has the same

formula as FI in the theorem above.
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Another possibility is that an individual firm cannot provide its employees with differen-

tial access to training. A specific firm may be constrained to choose a single training level

for all of its workers. In this situation, the solution presented above may still hold if there

is a continuum of agents with random matching of workers to firms. For example, suppose

that there are continua of incumbent and outside firms. Every incumbent firm trains a cer-

tain number of workers, after which the incumbent firm is paired with a randomly selected

outside firm, and both firms make simultaneous wage offers to the workers trained by the

incumbent firm. Even if each employer is restricted to playing pure strategies, the equilib-

rium distributions of wage offers across incumbent and outside employers would be identical

to those in the theorem above. Likewise, the mapping from wage offers to training levels

and the resulting distribution of human capital would be as previously specified. That is,

randomization would occur at the market scale instead of within a firm.

Nonetheless, some extensions of the model would alter the structure of the solution,

although they may not eliminate the incentive for firms to provide general training by ran-

domizing their actions. Perhaps, an outside employer can observe the skills of a worker by

conducting an interview or administering a test before placing a bid. If so, the incumbent

firm might not provide training as in the case where investment is observable but not con-

tractible. However, such screening may be costly for employers to perform, in which case a

time-inconsistency problem would prevent the existence of an equilibrium without employer-

financed training. To see this, suppose otherwise that the incumbent employer never trains

a worker in equilibrium. Then an outside firm would surmise any employee of the incumbent

firm to be untrained and would not incur the cost for checking the skills of a worker. Con-

sequently, the incumbent employer might have an incentive to deviate by secretly training a

worker.

The solution would also change if the bidding game were extended beyond one period.

In a model with one period of bidding as above, the wage offer of the incumbent employer

would perfectly reveal the training level of a worker if the bid were observed after the game.

However, if there are several periods of bidding, then an incumbent employer might have an

incentive to offer the same wage to workers with different training levels, so as to conceal

information about the productivity of a worker from the outside market. In addition, an

employer might provide additional random increments of training between rounds of bidding,

thereby ensuring that outside firms remain uncertain about the productivity of a worker.

The solution derived in this section can be regarded as modeling the special case where all of

the training provided by an employer depreciates after each period of bidding. Under such
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an interpretation, each play of the game in this section would represent a particular round

of investment and bidding.

5 Randomness in Training Outcomes

The model suggests that training should vary across workers at the same firm. A relevant

question is whether this prediction is plausible given the empirical evidence. If so, how might

such differences in skill provision arise in the workplace? Some economists have documented

variability in training outcomes within a given establishment. For example, Lynch and Black

(1998) examine the proportion of workers that receive training on the job. They observe

that “while most firms provide training, relatively few workers appear to be getting it.”

Likewise, Liu and Batt (2007) find that different managers at the same company provide

unequal levels of training to staff members. They also demonstrate that the effectiveness of

training is related to the seniority of the trainer.

A mechanism that might generate disparities in training is the process of mentoring,

whereby an experienced worker guides, advises, and sponsors a junior colleague. As noted by

Laband and Lentz (1995), mentor-protégé relationships are common in some professions such

as law. However, a number of studies have uncovered substantial dispersion in the quality of

such interactions. Ragins, Cotton, and Miller (2000) note that “mentoring relationships fall

along a continuum” with some situations being productive, others being detrimental, and

many being ineffectual but not harmful. Scandura (1998) examines cases in which mentoring

arrangements become dysfunctional despite their potential to provide both vocational and

emotional support.

Furthermore, mentoring can confer benefits and impose costs not only on protégés but

also on mentors. The benefits from being a mentor comprise personal satisfaction, profes-

sional recognition, and loyal support from trainees. The costs include time and energy spent

on mentoring instead of other tasks, the risk of being replaced by a trainee, and reputa-

tional damage from an underperforming protégé. Ragins and Scandura (1999) conduct a

survey illustrating how the perceived costs and benefits of being a mentor as well as overall

preferences for becoming a mentor differ across corporate executives.

Indeed, the framework in this paper can be interpreted in terms of a story about men-

toring. One version of the story is as follows. Suppose that mentors differ in their coaching

and tutoring abilities. Let s ∈ R+ represent the teaching skills of a mentor. If a worker is

assigned to a mentor with skill level s, then the firm incurs the cost s, and the output of

the worker is g(s), where the function g has the properties listed in assumption 1. In this
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case, the human capital distribution K in corollary 1 would arise if a worker is assigned to

a mentor whose skill level s is distributed according to K.

Note that the output of a worker is higher if he or she is assigned to a mentor with stronger

teaching skills. Furthermore, assigning a worker to a mentor with stronger teaching skills is

more costly for the firm. This assumption is reasonable if better instructors also have greater

productivity in other roles. For example, more senior employees may be more effective at

mentoring. However, they have a greater opportunity cost for serving as mentors instead of

participating in alternative activities like meetings, speeches, and strategic planning.

The following is another variant of the story about mentoring. Suppose that mentors

differ in their preferences for assisting and educating younger coworkers. These preferences

might derive from the tradeoff between the costs and benefits of mentoring described above.

Let t ∈ R+ represent the taste of a mentor for teaching. In particular, t is the amount of

training that a mentor prefers to provide. If a worker is assigned to a mentor with taste level

t, then the firm incurs the cost t, and the output of the worker is g(t), where the function g

has the properties listed in assumption 1. The cost of training might reflect the opportunity

cost of time that a mentor could be spending on other productive tasks. The human capital

distribution K in corollary 1 would arise if a worker is assigned to a mentor whose taste level

t is distributed according to K.

6 Example with Constant Output Elasticity

This section presents a tractable parametric example to illustrate the main features of the

solution to the model with unobservable investment. The production function is assumed to

have the Cobb-Douglas form g(h) = Ahθ for all h ∈ R+, where θ ∈ (0, 1) is the elasticity of

output with respect to human capital, and A > 0 represents other factors affecting worker

productivity. Both the total amount of output and the marginal return to training at a

given level of investment h are increasing in the efficiency A. Note that this specification is

consistent with assumption 1. The equilibrium of the game is given below in closed form.

The derivations are explained in the appendix.

Example 1 Consider the game with an unobservable training level. Assume that the pro-

duction function is given by g(h) = Ahθ for all h ∈ R+, where θ ∈ (0, 1) and A > 0. There

exists a unique Nash equilibrium profile of strategies (FI , x) and FO for firms I and O. The
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cdf of the wage offer distributions for firms I and O is:

FI(w) = FO(w) =

(
w

A
1

1−θ (θ
θ

1−θ − θ
1

1−θ )

) 1−θ
θ

, 0 ≤ w ≤ A
1

1−θ (θ
θ

1−θ − θ
1

1−θ ),

and the function relating the wage offered to the training provided by firm I is:

x(w) =

(
w

A(1− θ)

) 1
θ

.

In equilibrium, the cdf of the human capital distribution is:

K(h) =
h1−θ

Aθ
, 0 ≤ h ≤ (Aθ)

1
1−θ ,

and the expected payoff to the worker is:

φS =
2(1− θ)2(Aθθ)

1
1−θ

2− θ
.

The shape of the equilibrium bid distributions FI and FO depends critically on the elasticity

θ. In particular, the density functions F ′I and F ′O of the wage offer distributions are increasing

if θ < 1/2, decreasing if θ > 1/2, and uniform if θ = 1/2. That is, the distribution of wages

offered by each firm is left-skewed if θ < 1/2, right-skewed if θ > 1/2, and symmetric if

θ = 1/2. Note that the equilibrium distribution of wages received by the worker is given by

FI ·FO because the worker accepts the higher of the offers from firms I and O. Consequently,

the density of wages received by the worker is increasing if θ < 2/3, decreasing if θ > 2/3,

and uniform if θ = 2/3. Overall, the distributions of amounts offered and offers accepted

shift from being negatively to positively skewed as the elasticity of output with respect to

training increases.

The parameter θ also influences the equilibrium training distribution K. However, the

distribution function K is always concave, provided that the production technology has the

above functional form. That is, the density function K ′ of the human capital distribution is

decreasing, and so the distribution of human capital is skewed to the right. More generally,

if the restriction on the functional form is removed, then the distribution function K may

be convex as explained in the discussion following corollary 1.

The above expressions for the distributions of wage offers and human capital can be

related to some common probability distributions in statistics and economics. Let the dis-
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tribution functions FI , FO, and K be as specified in the example above. First, consider the

random variables ŵ/wu and wu/ŵ, where ŵ is drawn from either distribution FI or FO, and

wu is the supremum of the support for both distributions FI and FO. It can easily be shown

that ŵ/wu has a beta distribution with left parameter (1− θ)/θ and right parameter 1 and

that wu/ŵ has a Pareto distribution with scale parameter 1 and shape parameter (1− θ)/θ.
Next, consider the random variables ĥ/hu and hu/ĥ, where ĥ is drawn from distribution K,

and hu is the supremum of the support for distribution K. It can similarly be shown that

ĥ/hu has a beta distribution with left parameter 1− θ and right parameter 1 and that hu/ĥ

has a Pareto distribution with scale parameter 1 and shape parameter 1− θ.
Recall from the discussion preceding corollary 2 that the expected payoff to the worker

is positive, whereas the expected payoffs to firms I and O are zero. In the example above, it

is straightforward to show from the formula that the expected payoff φS to the worker has

the following properties. If A ≤ 1, then the expected payoff φS is decreasing in the elasticity

θ, and φS approaches zero in the limit as θ goes to one. If A > 1, then the expected payoff

φS is a non-monotonic function of the elasticity θ, and φS becomes infinite in the limit as

θ tends to one. In this case, the relationship between φS and θ is U-shaped, with φS being

first decreasing and then increasing in θ.

The model in this paper is consistent with some important stylized facts about training,

turnover, and wages. Lynch (1992) and Parent (1999) find that training has a positive

impact on wages. In addition, Parent (1999) infers that “firms tend to keep their trained

workers longer as compared with other workers because they are more productive.” Similarly,

Loewenstein and Spletzer (1997) as well as Royalty (1996) identify a negative association

between training and turnover. In the current framework, the wage offered by the incumbent

employer is increasing in the training level. Consequently, the training level is positively

related to the probability of the worker remaining with the incumbent employer.

The model can also match some empirical regularities concerning the shape of the wage

and training distributions. According to Neal and Rosen (2000), one of the main properties of

the wage distribution is that it is positively skewed with a long right tail. The example above

possesses this feature provided that the elasticity parameter is sufficiently high. In addition,

Frazis and Loewenstein (2005) observe that the “training distribution is quite skewed to the

right,” and Frazis and Spletzer (2005) document a similar pattern. Likewise, the example

above generates a human capital distribution with a decreasing density.
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7 Modeling Extensions and Robustness Checks

This section discusses some variations of the main model. Section 7.1 examines the case in

which the training decision is dichotomous. Section 7.2 addresses the possibility of commit-

ment by a worker to remain with an employer. Section 7.3 identifies a strategy that might

enable the incumbent employer to obtain positive expected profits from training.

7.1 Binary Training

The main model assumes that the training level is a continuous instead of discrete choice.

However, this feature is not critical for supporting an equilibrium with randomness in train-

ing. The framework can be modified as follows to permit only a binary choice of training

level by the incumbent employer. Restrict firm I to choose between training levels h = 0

and h = κ. That is, the worker is either trained or untrained. The constant κ > 0 should

satisfy κ < g(κ)− g(0), in which case the training cost is less than the gain in productivity

from training. All the other assumptions are the same as in the original version of the model

with unobservable investment.

The proposition below demonstrates the existence of an equilibrium when the training

decision is dichotomous. The associated distribution of human capital is nondegenerate.

The uniqueness of the equilibrium can also be shown for the model with binary training.

However, the result is omitted because the proof is lengthy and similar in style to the analysis

of the main model.

Proposition 3 The model with unobservable investment and binary training has a Nash

equilibrium in which the incumbent employer trains the worker with probability p = 1 −
κ/[g(κ)− g(0)].

7.2 Worker Commitment

In some situations, a worker might commit to remain with an employer in return for the

opportunity to receive training. For example, Cappelli (2004) describes programs in which an

employer covers the cost of attending college as long as a worker does not leave the firm too

early, and Benson, Finegold, and Mohrman (2004) analyze how such tuition reimbursement

policies affect the turnover of employees. There is a straightforward way to incorporate this

possibility into the above model with binary training. At time t = 0, firm I chooses between

training levels h = 0 and h = λ, where λ > 0. At time t = 1/2, the worker is constrained to
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stay at firm I, and firm I receives an output worth g(h) from the worker. For concreteness,

assume that firm I pays the worker the wage g(0) at time t = 1/2.

The events at time t = 1 are the same as in the original model with unobservable

investment. That is, firms I and O make simultaneous wage offers to the worker, and

the worker is free to accept employment from the firm offering the higher wage. The worker

produces an output worth g(h) for his or her employer at time t = 1. There is no discounting

over time. This extension is equivalent to the model with only two levels of training and

just one round of production. The commitment by the worker to remain with the incumbent

employer simply serves as a reduction in the training cost. If firm I trains the worker, then

it enjoys a profit of g(λ) − g(0) at time t = 1/2, and so the cost of training is effectively

decreased by this amount.

The solution to the extended model is as follows. For λ ≤ g(λ)− g(0), the commitment

scheme fully covers the training cost, and so the incumbent employer trains the worker with

probability one. For λ ≥ 2[g(λ)−g(0)], the cost of training is sufficiently large that there is no

efficiency gain from training, and the incumbent employer trains the worker with probability

zero. If g(λ) − g(0) < λ < 2[g(λ) − g(0)], then the provision of training is random. In

particular, there exists an equilibrium in which the incumbent employer trains the worker

with probability 1−{λ− [g(λ)−g(0)]}/[g(λ)−g(0)]. This case matches the basic framework

with binary training when the output of an untrained worker is worth g(0), the output of a

trained worker is worth g(λ), and the cost of training is λ− [g(λ)− g(0)].

Nevertheless, there are important legal and technical limitations on policies that bind

a worker to an employer. First, common law normally allows a worker to leave a job at

will. Because of protections against involuntary servitude, an employer cannot coerce an

individual to work, but it may legally require a worker to repay the cost of training if he or

she does not return to work. Thus, an employee may be unable to commit to staying with

a firm unless credit constraints prevent him or her from compensating the employer for the

cost of training. Second, the requirement for a worker to reimburse an employer for the cost

of training may be enforceable only if the receipt of training is observable and contractible.

By contrast, this paper focuses on activities like mentoring and advising that are more

likely to be unobservable and noncontractible. If training is unverifiable, then a worker can

leave an employer and claim that training was not supplied. The courts may be reluctant to

compel the employee to repay the firm because the provision of training by the firm cannot

be confirmed. As noted by Rubin and Shedd (1981), an employee may nonetheless sign a

restrictive covenant, which limits his or her employment options after leaving a job. For
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example, a person might agree not to work for a direct competitor for a certain length of

time after leaving an employer. However, the enforcement of such noncompetition clauses

varies substantially across jurisdictions with some states prohibiting them almost entirely.

7.3 Positive Profits

A counterintuitive property of the equilibrium with randomized training is that the ability to

train the worker does not confer any profits upon a firm. Although the incumbent employer

derives an informational rent by training the worker, the rent is exactly offset by the cost of

training required to generate the rent. Thus, the incumbent employer obtains an expected

payoff of zero in equilibrium. This result is a consequence of the behavioral restrictions

imposed by a Nash equilibrium. Consider the model with a binary choice of training level. In

order for the incumbent employer to randomize the investment decision, it must be indifferent

between supplying and withholding training. Since its expected profits are zero when the

worker is untrained, its expected profits must also be zero when the worker is trained.

If this indifference condition is relaxed, then the incumbent employer can earn a positive

expected payoff. The resulting strategies do not constitute a Nash equilibrium because the

incumbent employer has an incentive to deviate by training the worker with probability one

instead of randomizing the training decision. Nevertheless, the outcome might be reasonable

if a firm can credibly commit to a particular training policy. The model with binary training

is adjusted as follows. At time t = 0, the worker is trained with exogenous probability

q ∈ [0, 1]. That is, firm I provides training level h = 0 with probability 1 − q and training

level h = κ with probability q, where 0 < κ < g(κ)− g(0). At time t = 1/2, firm I observes

whether the worker is trained or untrained, but firm O does not learn the training status of

the worker.

The events at time t = 1 are the same as in the original setup. Firms I and O place

bids for the services of the worker, and his or her employer receives an output worth g(h).

Assume no discounting. The result below identifies the value of the training probability q

that maximizes the expected profits of the incumbent employer. Since the distribution of

values is exogenous in this version of the model, the bidding game at time t = 1 is analogous

to that in Engelbrecht-Wiggans, Milgrom, and Weber (1983), who examine a first-price,

sealed-bid auction with asymmetrically informed bidders. The proposition simply solves

for the distribution of values that makes the bidding game most profitable to the better

informed bidder given the cost of investment. The training probability is less than in the

Nash equilibrium characterized above, and the incumbent employer obtains positive expected
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profits.

Proposition 4 Suppose that a Bayesian Nash equilibrium is played in the bidding game

between firms I and O in the model with binary training. The exogenous training probability

that maximizes the expected payoff to firm I is q = 1
2
{1 − κ/[g(κ) − g(0)]}. The maximum

expected payoff to firm I is positive, and the expected payoff to firm O is zero.

8 Conclusion

A model of common value auctions with unobservable investment has been presented to

explain firm sponsorship for the general training of workers. The setup preserves the basic

assumptions of perfect competition, except for the premise that training is observable and

contractible. In equilibrium, firms play mixed strategies, randomizing the amount invested

and the wage offered. These actions create an endogenous adverse selection problem that

allows employers to recover some returns to training investments by compressing the wage

structure. Unlike existing research on general training in labor markets with informational

imperfections, the framework in this paper does not rely on risk aversion among workers,

complementarities between training and ability, exogenous sources of asymmetric informa-

tion, or match-specific heterogeneity across worker-firm pairs.

Despite its simplicity, the game produces a sophisticated pattern of equilibrium behavior.

The training distribution has a positive density on the interval between zero investment and

the efficient level. The incumbent employer and the outside market offer the same continuous

distribution of wages, although only the bids of the incumbent employer can vary with the

quantity invested. As a result, ex ante identical workers can have different outcomes in

terms of human capital and labor income. Overall, firms receive zero expected profits in

equilibrium, whereas the expected payoff to the worker is positive. A parametric example

indicates that the wage distribution is positively skewed if the elasticity of output with

respect to training is sufficiently high.

The following are some extensions of the model for future study. One possibility is to

introduce variation among workers in characteristics like schooling, aptitude, and talent.

If firms have symmetric information about these variables, then the analysis would not

change substantially because such heterogeneity can simply be modeled as differences across

workers in the applicable production function. However, asymmetric information among

employers about worker attributes may be significantly more complicated to incorporate.

Other potential variants are to include several rounds of bidding between firms and to enable
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firms to screen workers for training. The firm specificity of human capital and interactions

between innate and acquired skills may also be factors to explore.
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A Appendix

A.1 Proof of Proposition 1

The efficient training level he solves maxh∈R+ g(h)−h. The first-order condition is g′(he)−1 =

0. Recall that limh↓0 g
′(h) =∞, limh↑∞ g

′(h) = 0, and g′′(h) < 0 for all h ∈ R+. Hence, the

global maximizer is he = g′−1(1).

A.2 Proof of Proposition 2

Suppose that the training level is h ∈ R+. The corresponding subgame involves Bertrand

competition between firms I and O for a worker whose productivity is g(h) at each firm.

It is widely known and easily shown that the subgame has a unique Nash equilibrium, in

which firms I and O both offer wage wO = wI = g(h) with probability one. Hence, if firm I

chooses training level h ∈ R+, then the expected payoff of firm I is −h, which is maximized

when h = 0. It follows that the unique subgame perfect Nash equilibrium outcome is as

described in the statement of the proposition.

A.3 Proof of Lemma 1

Suppose that firm O plays mixed strategy FO. If firm I chooses training level h ∈ R+ and

wage offer wI ∈ R+, then the expected payoff of firm I is πI(h,wI) = PO(wI)[g(h)−wI ]−h. A

necessary condition for (ĥ, ŵI) ∈ R2
+ to maximize πI(h,wI) is ∂πI(ĥ, ŵI)/∂h = PO(ŵI)g

′(ĥ)−
1 = 0, which gives ĥ = g′−1[1/PO(ŵI)]. Hence, a Nash equilibrium must have the property

described in the statement of the lemma.

A.4 Proof of Lemma 2

The lemma follows from the claims below. Suppose that the mixed strategies (FI , x) and FO

for firms I and O constitute a Nash equilibrium.

Claim 1 It must be that wuI = wuO.

Proof Suppose that wuI > wuO. Choose any ŵ ∈ (wuO, w
u
I ]. If firm I chooses training level

x(ŵ) and wage offer ŵ, then the payoff to firm I is πI [x(ŵ), ŵ] = {g[x(ŵ)]− ŵ}− x(ŵ) with

probability one. Choose any w̃ ∈ (wuO, ŵ). If firm I chooses training level x(ŵ) and wage

offer w̃, then the payoff to firm I is πI [x(ŵ), w̃] = {g[x(ŵ)]− w̃}−x(ŵ) with probability one.

Because πI [x(ŵ), w̃] > πI [x(ŵ), ŵ], there cannot be a Nash equilibrium in which ŵ drawn
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from distribution FI satisfies wuO < ŵ ≤ wuI with positive probability. This contradicts the

fact that wuI is the supremum of the support of FI . Hence, it must be that wuI ≤ wuO.

Suppose that wuI < wuO. Let E{·} denote the expectation taken over wI drawn from

distribution FI . Choose any ŵ ∈ (wuI , w
u
O]. If firm O offers the wage ŵ, then the expected

payoff to firm O is πO(ŵ) = E{g[x(wI)]} − ŵ. Choose any w̃ ∈ (wuI , ŵ). If firm O offers

the wage w̃, then the expected payoff to firm O is πO(w̃) = E{g[x(wI)]} − w̃. Because

πO(w̃) > πO(ŵ), there cannot be a Nash equilibrium in which ŵ drawn from distribution FO

satisfies wuI < ŵ ≤ wuO. This contradicts the fact that wuO is the supremum of the support of

FO. Hence, it must be that wuI ≥ wuO.

Claim 2 It must be that wlI ≤ wlO.

Proof Suppose that wlI > wlO. Consider any wage offer ŵ ∈ R+ such that {g[x(ŵ)]− ŵ} −
x(ŵ) < 0. Firm I would obtain a negative expected payoff from choosing training level x(ŵ)

and wage offer ŵ. Firm I could obtain a zero expected payoff from choosing training level 0

and wage offer g(0). Hence, w̃ drawn from FI must satisfy {g[x(w̃)] − w̃} − x(w̃) ≥ 0 with

probability one. Because wlI > wlO, it must be that PO(w) > 0 and x(w) > 0 for all w ≥ wlI .

Moreover, note that PO(w) and x(w) are nondecreasing for w ≥ wlI . Thus, w̃ drawn from

FI satisfies g[x(w̃)] − [w̃ + x(wlI)] ≥ 0 with probability one. It follows that for any w such

that wlI ≤ w < wlI + x(wlI), w̃ drawn from FI satisfies g[x(w̃)]−w > 0 with probability one.

Choose any w∗ satisfying wlI < w∗ < wlI + x(wlI) such that FI does not have an atom at

w∗. Let E{g[x(wI)]−w∗|wI ≤ w∗} denote the conditional expectation of g[x(wI)]−w∗ given

that wI ≤ w∗, where wI is drawn from FI . If firm O offers the wage w∗, then the expected

payoff to firm O is πO(w∗) = FI(w
∗)E{g[x(wI)] − w∗|wI ≤ w∗}. Because wI drawn from

FI satisfies g[x(wI)] − w∗ > 0 with probability one, it must be that πO(w∗) > 0. If firm O

offers a wage w∗∗ ∈ [wlO, w
l
I), then the expected payoff to firm O is πO(w∗∗) = 0. Because

πO(w∗) > πO(w∗∗), there cannot be a Nash equilibrium in which wO drawn from distribution

FO satisfies wlO ≤ wO < wlI with positive probability. This contradicts the fact that wlO is

the infimum of the support of FO. Hence, it must be that wlI ≤ wlO.

Claim 3 It must be that wlI ≥ wlO.

Proof Suppose that wlI < wlO. It must be that PO(w) = 0 and so x(w) = 0 for all

w ∈ [wlI , w
l
O). If FO does not have an atom at wlO, then PO(wlO) = 0 and so x(wlO) = 0. If

FO and FI each have an atom at wlO, then I argue in the next paragraph that PO(wlO) = 0

and so x(wlO) = 0.
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Suppose that FO and FI each have an atom at wlO. Assume that PO(wlO) > 0 and so

x(wlO) > 0. For any w ∈ R+, the expected payoff to firm I is πI [x(w), w] = {FO(w−) +

α[FO(w) − FO(w−)]}{g[x(w)] − w} − x(w) if firm I chooses training level x(w) and wage

offer w. For any w > wlI , let E{g[x(wI)]− w|wI ≤ w} denote the conditional expectation of

g[x(wI)]− w given that wI ≤ w, where wI is drawn from FI . For any w > wlI , the expected

payoff to firm O is πO(w) = FI(w)E{g[x(wI)]−w|wI ≤ w}−α[FI(w)−FI(w−)]{g[x(w)]−w}
if firm O offers wage w. Noting that FI and FO are right continuous, limw↓wlO

πI [x(w), w] =

FO(wlO){g[x(wlO)] − wlO} − x(wlO) and limw↓wlO
πO(w) = FI(w

l
O)E{g[x(wI)] − w|wI ≤ wlO}.

Because firm I can obtain a payoff of zero by choosing training level 0 and wage offer g(0), it

must be that πI [x(wlO), wlO] ≥ 0 in any Nash equilibrium. Since P (wlO) > 0 and x(wlO) > 0,

it must be that g[x(wlO)]−wlO > 0. Hence, limw↓wlO
πI [x(w), w] > πI [x(wlO), wlO] if α ∈ [0, 1)

and limw↓wlO
πO(w) > πO(wlO) if α ∈ (0, 1]. This implies that there exists ε > 0 such that

firm I obtains a higher expected payoff by choosing training level x(wlO + ε) and wage offer

wlO + ε than by choosing training level x(wlO) and wage offer wlO or such that firm O obtains

a higher expected payoff by offering wage wlO + ε than by offering wage wlO. It follows that

there cannot be a Nash equilibrium in which PO(wlO) > 0 and x(wlO) > 0 if FO and FI each

have an atom at wlO.

I now argue that the assumption wlI < wlO leads to a contradiction. First, consider

the case where wlO > g(0). For any w > wlI , the expected payoff to firm O is πO(w) =

FI(w)E{g[x(wI)] − w|wI ≤ w} − α[FI(w) − FI(w
−)]{g[x(w)] − w} if firm O offers wage

w. Note that πO(wlO) = {FI(wl−O ) + (1 − α)[FI(w
l
O) − FI(wl−O )]}[g(0) − wlO] < 0 and that

limw↓wlO
πO(w) = FI(w

l
O)[g(0)−wlO] < 0. Hence, there exists ε > 0 such that firm O obtains

a negative expected payoff by choosing a wage w ∈ [wlO, w
l
O+ε). However, firm O can obtain

a zero payoff with probability one by offering a wage w̃ = g(0). It follows that there cannot

be a Nash equilibrium in which wO drawn from distribution FO satisfies wlO ≤ wO < wlO + ε

with positive probability. This contradicts the fact that wlO is the infimum of the support of

FO. Hence, there cannot be a Nash equilibrium in which wlI < wlO and wlO > g(0).

Second, consider the case where wlO = g(0). For any w > wlI , the expected payoff

to firm O is πO(w) = FI(w)E{g[x(wI)] − w|wI ≤ w} − α[FI(w) − FI(w
−)]{g[x(w)] − w}

if firm O offers wage w. Choose any w̃ ∈ (wlI , w
l
O). Note that πO(wlO) = {FI(wl−O ) +

(1 − α)[FI(w
l
O) − FI(wl−O )]}[g(0) − wlO] = 0, limw↓wlO

πO(w) = FI(w
l
O)[g(0) − wlO] = 0, and

πO(w̃) = {FI(w̃−) + (1− α)[FI(w̃)− FI(w̃−)]}[g(0)− w̃] > 0. Hence, there exists ε > 0 such

that πO(w̃) > πO(w) for all w ∈ [wlO, w
l
O + ε). Because firm O obtains a higher expected

payoff by offering wage w̃ than by offering any wage w ∈ [wlO, w
l
O + ε), there cannot be a
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Nash equilibrium in which wO drawn from distribution FO satisfies wlO ≤ wO < wlO + ε with

positive probability. This contradicts the fact that wlO is the infimum of the support of FO.

Hence, there cannot be a Nash equilibrium in which wlI < wlO and wlO = g(0).

Third, consider the case where wlO < g(0). If firm I chooses training level x(ŵ) = 0

and wage offer ŵ satisfying wlI ≤ ŵ < wlO, then the payoff to firm I is πI [x(ŵ), ŵ] = 0 with

probability one. If firm I chooses training level 0 and wage offer w̃ satisfying wlO < w̃ < g(0),

then the expected payoff to firm I is πI(0, w̃) = PO(w̃)[g(0) − w̃] > 0. Because πI(0, w̃) >

πI [x(ŵ), ŵ], there cannot be a Nash equilibrium in which wI drawn from distribution FI

satisfies wlI ≤ wI < wlO with positive probability. This contradicts the fact that wlI is the

infimum of the support of FI . Hence, there cannot be a Nash equilibrium in which wlI < wlO
and wlO < g(0).

A.5 Proof of Lemma 3

The lemma follows from the claims below. Suppose that the mixed strategies (FI , x) and FO

for firms I and O constitute a Nash equilibrium.

Claim 4 Assume that PO(wl) = 0. Then it must be that wl ≤ g(0).

Proof Suppose that wl > g(0). Because PO(wl) = 0, it must be that x(wl) = 0. I first argue

that FI does not have an atom at wl. Suppose to the contrary that FI has an atom at wl. For

any w ≥ wl, let E{g[x(wI)]−w|wI ≤ w} denote the conditional expectation of g[x(wI)]−w
given that wI ≤ w, where wI is drawn from FI . For any w ≥ wl, the expected payoff to

firm O is πO(w) = FI(w)E{g[x(wI)]−w|wI ≤ w} − α[FI(w)− FI(w−)]{g[x(w)]−w} if firm

O offers wage w. Note that πO(wl) = (1 − α)FI(w
l)[g(0) − wl] < 0 and limw↓wl πO(w) =

FI(w
l)[g(0)−wl] < 0. Hence, there exists ε > 0 such that πO(w) < 0 for all w ∈ [wl, wl + ε).

If firm O offers wage g(0), then firm O obtains a zero payoff with probability one. Because

firm O obtains a higher payoff by offering wage g(0) than by offering a wage w ∈ [wl, wl + ε),

there cannot be a Nash equilibrium in which wO drawn from FO satisfies wl ≤ wO < wl + ε

with positive probability. This contradicts the fact that wl is the infimum of the support

of FO. Hence, assuming that PO(wl) = 0, there cannot be a Nash equilibrium in which

wl > g(0) and FI has an atom at wl.

I next argue that FO has an atom at wl. Suppose to the contrary that FO does not have an

atom at wl. For any w ∈ R+, the expected payoff to firm I is πI [x(w), w] = PO(w){g[x(w)]−
w}−x(w) if firm I chooses training level x(w) and wage offer w. Note that limw↓wl PO(w) = 0,

limw↓wl x(w) = 0, limw↓wl g[x(w)] = g(0), and limw↓wl{g[x(w)]−w} = g(0)−wl < 0. Hence,
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there exists ε > 0 such that g(0) − wl < 0 for all w ∈ (wl, wl + ε). Because PO(w) > 0 and

x(w) > 0 for all w > wl, it must be that PO(w){g[x(w)]−w}−x(w) < 0 for w ∈ (wl, wl+ ε).

If firm I chooses training level 0 and wage offer g(0), then firm I obtains a zero payoff with

probability one. Because firm I obtains a higher payoff by choosing training level 0 and wage

offer g(0) than by choosing training level x(w) and wage offer w satisfying w ∈ (wl, wl + ε),

there cannot be a Nash equilibrium in which wI drawn from FI satisfies wl < wI < wl+ε with

positive probability. Moreover, since FI does not have an atom at wl, there cannot be a Nash

equilibrium in which wI drawn from FI satisfies wI = wl with positive probability. These

results contradict the fact that wl is the infimum of the support of FI . Hence, assuming that

PO(wl) = 0, there cannot be a Nash equilibrium in which wl > g(0) and FO does not have

an atom at wl.

I now show that there is a contradiction if FI does not have an atom at wl and FO has an

atom at wl. If firm I chooses training level 0 and wage offer g(0), then firm I obtains a zero

payoff with probability one. Hence, w̃ drawn from FI must satisfy {g[x(w̃)]− w̃} − x(w̃) ≥
0 with probability one. Noting that FO has an atom at wl, it must be that PO(w) ≥
limw↓wl PO(w) > 0 and x(w) ≥ limw↓wl x(w) > 0 for w > wl. Noting that FI does not have

an atom at wl, it must be that w̃ drawn from FI satisfies g[x(w̃)] − [w̃ + limw↓wl x(w)] ≥ 0

with probability one. Hence, for any w satisfying wl ≤ w < wl + limw↓wl x(w), it must be

that w̃ drawn from FI satisfies g[x(w̃)]− w > 0 with probability one.

Choose any ŵ satisfying wl < ŵ < wl + limw↓wl x(w) such that FI does not have an atom

at ŵ. Let E{g[x(wI)]− ŵ|wI ≤ ŵ} denote the conditional expectation of g[x(wI)]− ŵ given

that wI ≤ ŵ, where wI is drawn from FI . If firm O offers the wage ŵ, then the expected

payoff to firm O is πO(ŵ) = FI(ŵ)E{g[x(wI)] − ŵ|wI ≤ ŵ}. Because wI drawn from FI

satisfies g[x(wI)] − ŵ > 0 with probability one, it must be that πO(ŵ) > 0. Noting that

FI does not have an atom at wl, the payoff to firm O is πO(wl) = 0 with probability one if

firm O offers the wage wl. Because πO(ŵ) > πO(wl), there cannot be a Nash equilibrium in

which FO has an atom at wl. This contradicts the result that FO has an atom at wl. Hence,

assuming that PO(wl) = 0, it must be that wl ≤ g(0).

Claim 5 Assume that PO(wl) = 0. Then it must be that wl ≥ g(0).

Proof Suppose that wl < g(0). Because PO(wl) = 0, it must be that x(wl) = 0. If

PO(wl) = 0, then either FO does not have an atom at wl or FO has an atom at wl but α = 0.

I show that there is a contradiction in each of these cases. It will then follow that wl ≥ g(0)

if PO(wl) = 0.
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Consider the case where FO does not have an atom at wl. Choose any ŵ satisfying

wl < ŵ < g(0). If firm I chooses training level 0 and wage offer ŵ, then the expected payoff

to firm I is πI(0, ŵ) = PO(ŵ)[g(0)− ŵ] > 0. For any w ∈ R+, the expected payoff to firm I is

πI [x(w), w] = PO(w){g[x(w)]−w}−x(w) if firm I chooses training level x(w) and wage offer

w. Note that πI [x(wl), wl] = 0 and limw↓wl πI [x(w), w] = 0. Hence, there exists ε > 0 such

that πI [x(w), w] < πI(0, ŵ) for all w ∈ [wl, wl + ε). Because firm I obtains a higher expected

payoff by choosing training level 0 and wage offer ŵ than by choosing training level x(w)

and wage offer w satisfying wl ≤ w < wl + ε, there cannot be a Nash equilibrium in which

wI drawn from FI satisfies wl ≤ wI < wl + ε with positive probability. This contradicts the

fact that wl is the infimum of the support of FI . Hence, assuming that PO(wl) = 0, there

cannot be a Nash equilibrium in which wl < g(0) and FO does not have an atom at wl.

Consider the case where FO has an atom at wl but α = 0. I begin by arguing that FI does

not have an atom at wl. Suppose to the contrary that FI has an atom at wl. If firm I chooses

training level x(wl) = 0 and wage offer wl, then the payoff to firm I is πI [x(wl), wl] = 0 with

probability one. For any w satisfying wl < w < g(0), the expected payoff to firm I is

πI(0, w) = PO(w)[g(0)− w] > 0 if firm I chooses training level 0 and wage offer w. Because

πI(0, w) > πI [x(wl), wl], there cannot be a Nash equilibrium in which FI has an atom at wl.

I now show that there is a contradiction if FO has an atom at wl and FI does not have an

atom at wl. If firm O offers wage wl, then the payoff to firm O is πO(wl) = 0 with probability

one. Choose any w̃ satisfying wl < w̃ < g(0) such that FI does not have an atom at w̃.

Let E{g[x(wI)]− w|wI ≤ w̃} denote the conditional expectation of g[x(wI)]− w̃ given that

wI ≤ w̃, where wI is drawn from FI . If firm O offers wage w̃, then the expected payoff to

firm O is πO(w̃) = E{g[x(wI)]− w̃|wI ≤ w̃} ≥ F (w̃)[g(0)− w̃] > 0. Because firm O obtains a

higher expected payoff by offering wage w̃ than by offering wage wl, there cannot be a Nash

equilibrium in which wO drawn from FO satisfies wO = wl with positive probability. This

contradicts the fact that FO has an atom at wl. Hence, assuming that PO(wl) = 0, there

cannot be a Nash equilibrium in which wl < g(0) and FO has an atom at wl but α = 0.

Claim 6 It must be that PO(wl) = 0.

Proof Suppose that PO(wl) > 0. In this case, FO must have an atom at wl and α > 0. If

firm I chooses training level 0 and wage offer g(0), then firm I obtains a zero payoff with

probability one. Hence, w̃ drawn from FI must satisfy {g[x(w̃)] − w̃} − x(w̃) ≥ 0 with

probability one. Note that PO(w) > 0 and x(w) > 0 for all w ≥ wl and that PO(w) and x(w)

are nondecreasing for w ≥ wl. Thus, w̃ drawn from FI satisfies g[x(w̃)] − [w̃ + x(wl)] ≥ 0
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with probability one. It follows that for any w such that wl ≤ w < wl + x(wl), w̃ drawn

from FI satisfies g[x(w̃)]− w > 0 with probability one.

For any w > wl, let E{g[x(wI)] − w|wI ≤ w} denote the conditional expectation of

g[x(wI)]− w given that wI ≤ w, where wI is drawn from FI . For any w > wl, the expected

payoff to firm O is πO(w) = FI(w)E{g[x(wI)]−w|wI ≤ w}−α[FI(w)−FI(w−)]{g[x(w)]−w}
if firm O offers wage w. There are two cases, one in which FI does not have an atom at wl,

and one in which FI has an atom at wl. I argue that there is a contradiction in each case.

It will then follow that PO(wl) = 0.

Consider the case where FI does not have an atom at wl. If firm O offers wage wl,

then firm O obtains a zero payoff with probability one. Choose any ŵ satisfying wl <

ŵ < wl + x(wl) such that FI does not have an atom at ŵ. Noting that wI drawn from FI

satisfies g[x(wI)] − ŵ > 0 with probability one, the expected payoff to firm O is πO(ŵ) =

FI(ŵ)E{g[x(wI)]− ŵ|wI ≤ ŵ} > 0 if firm O offers wage ŵ. Because firm O obtains a higher

payoff by offering wage ŵ than by offering wage wl, there cannot be a Nash equilibrium in

which firm O offers wage wl with positive probability. This contradicts the fact that FO has

an atom at wl. Hence, there cannot be a Nash equilibrium in which PO(wl) > 0 and FI does

not have an atom at wl.

Consider the case where FI has an atom at wl. If firm O offers wage wl, then the

expected payoff to firm O is πO(wl) = (1 − α)[FI(w
l) − FI(w

l−)]{g[x(wl)] − wl}. Note

that limw↓wl πO(w) = [FI(w
l) − FI(wl−)]{g[x(wl)] − wl}. It follows from g[x(wl)] − wl > 0,

FI(w
l)−FI(wl−) > 0, and α > 0 that limw↓wl πO(w) > πO(wl). This implies that there exists

ε > 0 such that firm O gets a higher expected payoff by offering wage wl + ε than by offering

wage wl. It follows that there cannot be a Nash equilibrium in which firm O offers wage wl

with positive probability. This contradicts the fact that FO has an atom at wl. Hence, there

cannot be a Nash equilibrium in which PO(wl) > 0 and FI has an atom at wl.

Claim 7 It must be that FO does not have an atom at wl.

Proof Suppose to the contrary that FO has an atom at wl. There are two cases, one in

which FI does not have an atom at wl, and one in which FI has an atom at wl. I argue that

there is a contradiction in each case. It will then follow that FO does not have an atom at

wl.

Consider the case where FI does not have an atom at wl. If firm I chooses training

level 0 and wage offer g(0), then firm I obtains a zero payoff with probability one. Hence,

w̃ drawn from FI must satisfy {g[x(w̃)] − w̃} − x(w̃) ≥ 0 with probability one. Note that
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PO(w) > 0 and x(w) > 0 for all w > wl and that PO(w) and x(w) are nondecreasing for

w > wl. Thus, w̃ drawn from FI satisfies g[x(w̃)]− [w̃ + limw↓wl x(w)] ≥ 0 with probability

one. It follows that for any w such that wl ≤ w < wl + limw↓wl x(w), w̃ drawn from FI

satisfies g[x(w̃)]− w > 0 with probability one.

For any w > wl, let E{g[x(wI)] − w|wI ≤ w} denote the conditional expectation of

g[x(wI)]− w given that wI ≤ w, where wI is drawn from FI . For any w > wl, the expected

payoff to firm O is πO(w) = FI(w)E{g[x(wI)]−w|wI ≤ w}−α[FI(w)−FI(w−)]{g[x(w)]−w}
if firm O offers wage w. If firm O offers wage wl, then firm O obtains a zero payoff with

probability one.

Choose any ŵ satisfying wl < ŵ < wl + limw↓wl x(w) such that FI does not have an atom

at ŵ. Noting that wI drawn from FI satisfies g[x(wI)] − ŵ > 0 with probability one, the

expected payoff to firm O is πO(ŵ) = FI(ŵ)E{g[x(wI)]−ŵ|wI ≤ ŵ} > 0 if firm O offers wage

ŵ. Because firm O obtains a higher payoff by offering wage ŵ than by offering wage wl, there

cannot be a Nash equilibrium in which firm O offers wage wl with positive probability. This

contradicts the fact that FO has an atom at wl. Hence, there cannot be a Nash equilibrium

in which FO but not FI has an atom at wl.

Consider the case where FI has an atom at wl. It follows from PO(wl) = 0 that x(wl) = 0.

For any (h,w) ∈ R2
+, the expected payoff to firm I is πI(h,w) = PO(w)[g(h) − w] − h if

firm I chooses training level h and wage offer w. If firm I chooses training level x(wl) = 0

and wage offer wl = g(0), then the payoff to firm I is zero with probability one. Note that

limw↓wl πI(h,w) = FO(wl)[g(h)−g(0)]−h, where FO(wl) > 0 because FO is assumed to have

an atom at wl. The statement limw↓wl πI(h,w) > 0 is equivalent to g(h)− g(0) > h/FO(wl).

Because g is a differentiable concave function, it must be that hg′(h) < g(h) − g(0) for all

h > 0. Hence, if h > 0 is such that hg′(h) > h/FO(wl), then limw↓wl πI(h,w) > 0. It follows

that limw↓wl πI(h,w) > 0 whenever 0 < h < g′−1[1/FO(wl)], where g′−1[1/FO(wl)] > 0 is well

defined because limh↓0 g
′(h) =∞, limh↑∞ g

′(h) = 0, and g′′(h) < 0 for all h ∈ R+.

Choose any ĥ satisfying 0 < ĥ < g′−1[1/FO(wl)]. Since limw↓wl πI(ĥ, w) > 0, there exists

ε > 0 such that πI(ĥ, w
l + ε) > 0. Because firm I obtains a higher expected payoff by

choosing training level ĥ and wage offer wl + ε than by choosing training level x(wl) and

wage offer wl, there cannot be a Nash equilibrium in which firm I offers wage wl with positive

probability. This contradicts the fact that FI has an atom at wl. Hence, there cannot be a

Nash equilibrium in which FO and FI each have an atom at wl.
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A.6 Proof of Lemma 4

The lemma follows from the claims below. Suppose that the mixed strategies (FI , x) and FO

for firms I and O constitute a Nash equilibrium.

Claim 8 There is probability one that ŵI drawn from FI satisfies πI [x(ŵI), ŵI ] = 0.

Proof If firm I chooses training level 0 and wage offer g(0), then firm I obtains a zero

payoff with probability one. Hence, ŵI drawn from FI must satisfy πI [x(ŵI), ŵI ] ≥ 0 with

probability one in any Nash equilibrium. Suppose now that ŵI drawn from FI satisfies

πI [x(ŵI), ŵI ] > 0 with positive probability. Choose any w̃ ∈ R+ such that πI [x(w̃), w̃] > 0.

Consider first the case where FI has an atom at wl. Recall that PO(wl) = 0. If firm

I chooses training level x(wl) = 0 and wage offer wl = g(0), then the expected payoff to

firm I is πI [x(wl), wl] = 0. However, the expected payoff to firm I is πI [x(w̃), w̃] > 0 if

firm I chooses training level x(w̃) and wage offer w̃. Consequently, there cannot be a Nash

equilibrium in which ŵI drawn from FI satisfies ŵI = wl with positive probability. This

contradicts the fact that FI has an atom at wl. Thus, ŵI drawn from FI must satisfy

πI [x(ŵI), ŵI ] = 0 with probability one in any Nash equilibrium such that FI has an atom at

wl.

Consider next the case where FI does not have an atom at wl. Recall that FO does

not have an atom at wl. Hence, limw↓wl PO(w) = PO(wl) = 0 and limw↓wl πI [x(w), w] =

πI [x(wl), wl] = 0, noting that FO is a right continuous function. This implies that there

exists ε > 0 such that πI [x(w), w] < πI [x(w̃), w̃] for all w ∈ [wl, wl + ε). Because firm I

obtains a higher expected payoff by choosing training level x(w̃) and wage offer w̃ than by

choosing any training level x(w) and wage offer w such that w ∈ [wl, wl + ε), there cannot

be a Nash equilibrium in which ŵI drawn from FI satisfies ŵI ∈ [wl, wl + ε) with positive

probability. This contradicts the fact that wl is the infimum of the support of FI . Thus, ŵI

drawn from FI must satisfy πI [x(ŵI), ŵI ] = 0 with probability one in any Nash equilibrium

such that FI does not have an atom at wl.

Claim 9 There is probability one that ŵO drawn from FO satisfies πO(ŵO) = 0.

Proof Recall that PO(wl) = 0 and so x(wl) = 0. If firm O offers the wage wl = g(0), then

firm O obtains a zero payoff with probability one. Hence, ŵO drawn from FO must satisfy

πO(ŵO) ≥ 0 with probability one in any Nash equilibrium. Suppose now that ŵO drawn from

FO satisfies πO(ŵO) > 0 with positive probability. Choose any w̃ ∈ R+ such that πO(w̃) > 0.
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Recall that FO does not have an atom at wl. Hence, limw↓wl PO(w) = PO(wl) = 0,

limw↓wl x(w) = x(wl) = 0, and limw↓wl πO(w) = πO(wl) = 0, noting that FO is a right

continuous function. This implies that there exists ε > 0 such that πO(w) < πO(w̃) for all

w ∈ [wl, wl + ε). Because firm O obtains a higher expected payoff by offering the wage w̃

than by offering any wage w ∈ [wl, wl + ε), there cannot be a Nash equilibrium in which

ŵO drawn from FO satisfies ŵO ∈ [wl, wl + ε) with positive probability. This contradicts the

fact that wl is the infimum of the support of FO. Thus, ŵO drawn from FO must satisfy

πO(ŵO) = 0 with probability one in any Nash equilibrium.

A.7 Proof of Lemma 5

The lemma follows from the claims below. Suppose that the mixed strategies (FI , x) and FO

for firms I and O constitute a Nash equilibrium.

Claim 10 It must be that wu ≤ g[g′−1(1)]− g′−1(1).

Proof Suppose to the contrary that wu > g[g′−1(1)] − g′−1(1). Choose any wage ŵ >

g[g′−1(1)] − g′−1(1). Note that PO(ŵ) > 0 because ŵ > g[g′−1(1)] − g′−1(1) > g(0) = wl.

If firm I chooses training level x(ŵ) and wage offer ŵ, then the expected payoff to firm I

is πI [x(ŵ), ŵ] = PO(ŵ){g[x(ŵ)] − ŵ} − x(ŵ), where x(ŵ) = g′−1[1/PO(ŵ)] by definition.

Observe that πI [x(ŵ), ŵ] satisfies:

πI [x(ŵ), ŵ] = PO(ŵ) · g{g′−1[1/PO(ŵ)]} − PO(ŵ) · ŵ − g′−1[1/PO(ŵ)]

< PO(ŵ) · g{g′−1[1/PO(ŵ)]} − PO(ŵ) ·
(
g{g′−1[1/PO(ŵ)]} − g′−1[1/PO(ŵ)]

)
− g′−1[1/PO(ŵ)]

= PO(ŵ) · g′−1[1/PO(ŵ)]− g′−1[1/PO(ŵ)] ≤ 0

,

where the strict inequality holds because ŵ > g[g′−1(1)] − g′−1(1) and g{g′−1[1/PO(ŵ)]} −
g′−1[1/PO(ŵ)] ≤ g[g′−1(1)]− g′−1(1).

Hence, the expected payoff to firm I is negative if firm I chooses training level x(ŵ) and

wage offer ŵ, where ŵ > g[g′−1(1)]− g′−1(1). However, if firm I chooses training level 0 and

wage offer g(0), then firm I obtains a zero payoff with probability one. Consequently, there

cannot be a Nash equilibrium in which w̃ drawn from FI satisfies w̃ > g[g′−1(1)] − g′−1(1)

with positive probability. This contradicts the fact that wu > g[g′−1(1)]− g′−1(1), where wu

is the supremum of the support of FI . Thus, it must be that wu ≤ g[g′−1(1)] − g′−1(1) in

any Nash equilibrium.

Claim 11 It must be that wu ≥ g[g′−1(1)]− g′−1(1).
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Proof Suppose to the contrary that wu < g[g′−1(1)]−g′−1(1). Choose any wage ŵ satisfying

wu < ŵ < g[g′−1(1)] − g′−1(1). Note that PO(ŵ) = 1 because ŵ > wu. Hence, x(ŵ) =

g′−1[1/PO(ŵ)] = g′−1(1). If firm I chooses training level x(ŵ) = g′−1(1) and wage offer ŵ,

then the expected payoff to firm I is given by:

πI [x(ŵ), ŵ]=PO(ŵ){g[x(ŵ)]−ŵ}−x(ŵ)={g[g′−1(1)]−ŵ}−g′−1(1)={g[g′−1(1)]−g′−1(1)}−ŵ.

Observe that πI [x(ŵ), ŵ] > 0 because ŵ < g[g′−1(1)]− g′−1(1).

As shown above, there is probability one in any Nash equilibrium that w̃ drawn from

FI satisfies πI [x(w̃), w̃] = 0. By definition, there is probability one in any Nash equilibrium

that w̃ drawn from FI satisfies πI [x(w̃), w̃] ≥ πI [x(w), w] for all w ∈ R+. It follows that

πI [x(w), w] ≤ 0 for all w ∈ R+. However, this contradicts the fact that πI [x(ŵ), ŵ] > 0.

Thus, it must be that wu ≥ g[g′−1(1)]− g′−1(1) in any Nash equilibrium.

A.8 Proof of Lemma 6

The lemma follows from the claims below. Suppose that the mixed strategies (FI , x) and FO

for firms I and O constitute a Nash equilibrium.

Claim 12 It must be that FI does not have an atom at any w > wl.

Proof Suppose to the contrary that there exists ŵ > wl such that FI has an atom at ŵ.

I begin by arguing that for any ε > 0, there is positive probability that w drawn from FO

satisfies w ∈ [ŵ − ε, ŵ].

Suppose that there exists ε > 0 such that w drawn from FO satisfies w < ŵ − ε or

w > ŵ with probability one. If firm I chooses training level x(ŵ) and wage offer ŵ, then the

expected payoff to firm I is given by:

πI [x(ŵ), ŵ] = PO(ŵ){g[x(ŵ)]− ŵ} − x(ŵ).

Because ŵ > wl, it must be that PO(ŵ) > 0. Choose any w̃ ∈ (ŵ − ε, ŵ). If firm I chooses

training level x(w̃) and wage offer w̃, then the expected payoff to firm I is given by:

πI [x(w̃), w̃] = PO(w̃){g[x(w̃)]− w̃} − x(w̃) = PO(ŵ){g[x(ŵ)]− w̃} − x(ŵ)

> PO(ŵ){g[x(ŵ)]− ŵ} − x(ŵ) = πI [x(ŵ), ŵ],

where the second equality follows because PO(w̃) = PO(ŵ) and so x(w̃) = x(ŵ). Because

firm I obtains a higher expected payoff by choosing training level x(w̃) and wage offer w̃
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than by choosing training level x(ŵ) and wage offer ŵ, there cannot be a Nash equilibrium

in which w drawn from FI satisfies w = ŵ with positive probability. This contradicts the

fact that FI has an atom at ŵ. It follows that for any ε > 0, there is positive probability

that w drawn from FO satisfies w ∈ [ŵ − ε, ŵ].

Consider first the case where FO has an atom at ŵ and α > 0. If firm O offers the wage

ŵ, then the expected payoff to firm O is given by:

πO(ŵ) = FI(ŵ)E{g[x(wI)]− ŵ|wI ≤ ŵ} − α[FI(ŵ)− FI(ŵ−)]{g[x(ŵ)]− ŵ}.

Because FI has an atom at ŵ, it must be that FI(ŵ)−FI(ŵ−) > 0. In addition, g[x(ŵ)]−ŵ >

0, noting that PO(ŵ) > 0, x(ŵ) > 0, and πI(ŵ) ≥ 0 in a Nash equilibrium. Observe that:

lim
w↓ŵ

πO(w) = FI(ŵ)E{g[x(wI)]− ŵ|wI ≤ ŵ}

> FI(ŵ)E{g[x(wI)]− ŵ|wI ≤ ŵ} − α[FI(ŵ)− FI(ŵ−)]{g[x(ŵ)]− ŵ} = πO(ŵ).

Hence, there exists η > 0 such that firm O obtains a higher expected payoff by offering the

wage ŵ+ η than by offering the wage ŵ. It follows that there cannot be a Nash equilibrium

in which w drawn from FO satisfies w = ŵ with positive probability. This contradicts the

fact that FO has an atom at ŵ. Thus, if α > 0, then there cannot be a Nash equilibrium in

which FI and FO both have an atom at ŵ.

Consider next the case where FO has an atom at ŵ and α = 0. If firm I chooses training

level x(ŵ) and wage offer ŵ, then the expected payoff to firm I is given by:

πI [x(ŵ), ŵ] = FO(ŵ−){g[x(ŵ)]− ŵ} − x(ŵ).

Because FO has an atom at ŵ, it must be that FO(ŵ−) < FO(ŵ). In addition, g[x(ŵ)]−ŵ > 0,

noting that PO(ŵ) > 0, x(ŵ) > 0, and πI(ŵ) ≥ 0 in a Nash equilibrium. Observe that:

lim
w↓ŵ

πI [x(ŵ), w] = FO(ŵ){g[x(ŵ)]− ŵ} − x(ŵ)

> FO(ŵ−){g[x(ŵ)]− ŵ} − x(ŵ) = πI [x(ŵ), ŵ].

Hence, there exists η > 0 such that firm I obtains a higher expected payoff by choosing

training level x(ŵ) and wage offer ŵ+ η than by choosing training level x(ŵ) and wage offer

ŵ. It follows that there cannot be a Nash equilibrium in which w drawn from FI satisfies

w = ŵ with positive probability. This contradicts the fact that FI has an atom at ŵ. Thus,
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if α = 0, then there cannot be a Nash equilibrium in which FI and FO both have an atom

at ŵ.

Consider finally the case where FO does not have an atom at ŵ. Observe that:

lim
w↑ŵ

πO(w) = FI(ŵ)E{g[x(wI)]− ŵ|wI ≤ ŵ} − [FI(ŵ)− FI(ŵ−)]{g[x(ŵ)]− ŵ}

and that:

lim
w↓ŵ

πO(w) = FI(ŵ)E{g[x(wI)]− ŵ|wI ≤ ŵ}.

Because FI has an atom at ŵ, it must be that FI(ŵ)−FI(ŵ−) > 0. In addition, g[x(ŵ)]−ŵ >

0, noting that PO(ŵ) > 0, x(ŵ) > 0, and πI(ŵ) ≥ 0 in a Nash equilibrium. It follows that

limw↑ŵ πO(w) < limw↓ŵ πO(w). Hence, there exist η > 0 and ξ > 0 such that firm O obtains

a higher expected payoff by offering the wage ŵ+η than by offering any wage w ∈ [ŵ−ξ, ŵ).

Noting also that FO does not have an atom at ŵ, it follows that there cannot be a Nash

equilibrium in which w drawn from FO satisfies w ∈ [ŵ − ξ, ŵ]. This contradicts the fact

that for any ε > 0, w drawn from FO satisfies w ∈ [ŵ− ε, ŵ] with positive probability. Thus,

there cannot be a Nash equilibrium in which FI but not FO has an atom at ŵ.

Claim 13 It must be that FO does not have an atom at any w > wl.

Proof Suppose to the contrary that there exists ŵ > wl such that FO has an atom at ŵ.

I begin by arguing that for any ε > 0, there is positive probability that w drawn from FI

satisfies w ∈ [ŵ − ε, ŵ].

Suppose that there exists ε > 0 such that w drawn from FI satisfies w < ŵ− ε or w > ŵ

with probability one. Recall that FI does not have an atom at any w > wl. If firm O offers

the wage ŵ, then the expected payoff to firm O is given by:

πO(ŵ) = FI(ŵ)E{g[x(wI)]− ŵ|wI ≤ ŵ}.

Because ŵ > wl, it must be that FI(ŵ) > 0. Choose any w̃ ∈ (ŵ− ε, ŵ). If firm O offers the

wage w̃, then the expected payoff to firm O is given by:

πO(w̃) = FI(w̃)E{g[x(wI)]− w̃|wI ≤ w̃} = FI(ŵ)E{g[x(wI)]− w̃|wI ≤ ŵ}

> FI(ŵ)E{g[x(wI)]− ŵ|wI ≤ ŵ} = πO(ŵ),

where the second equality follows because FI(w̃) = FI(ŵ) and so E{g[x(wI)]|wI ≤ w̃} =

E{g[x(wI)]|wI ≤ ŵ}. Because firm O obtains a higher expected payoff by offering the wage
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w̃ than by offering the wage ŵ, there cannot be a Nash equilibrium in which w drawn from

FO satisfies w = ŵ with positive probability. This contradicts the fact that FO has an atom

at ŵ. It follows that for any ε > 0, there is positive probability that w drawn from FI

satisfies w ∈ [ŵ − ε, ŵ].

Recall that FI does not have an atom at ŵ. Observe that:

lim
w↓ŵ

πI [x(ŵ), w] = FO(ŵ){g[x(ŵ)]− ŵ} − x(ŵ)

and that:

lim
w↑ŵ

πI [x(w), w] ≥ lim
w↑ŵ

πI [x(ŵ), w] = FO(ŵ−){g[x(ŵ)]− ŵ} − x(ŵ),

where the inequality follows because x(w) = arg maxh∈R+ πI(h,w). Because FO has an

atom at ŵ, it must be that FO(ŵ) > FO(ŵ−). In addition, E{g[x(wI)] − ŵ|wI ≤ ŵ} ≥
0, noting that FI(ŵ) > 0 because ŵ > wl and that πO(ŵ) ≥ 0 in a Nash equilibrium.

Since g[x(ŵ)] > E{g[x(wI)]|wI ≤ ŵ}, it must be that g[x(ŵ)] − ŵ > 0. It follows that

limw↑ŵ πI [x(w), w] < limw↓ŵ πI [x(ŵ), w]. Hence, there exist η > 0 and ξ > 0 such that firm I

obtains a higher expected payoff by choosing training level x(ŵ) and wage offer ŵ + η than

by choosing any training level x(w) and wage offer w such that w ∈ [ŵ − ξ, ŵ). Noting also

that FI does not have an atom at ŵ, it follows that there cannot be a Nash equilibrium in

which w drawn from FI satisfies w ∈ [ŵ − ξ, ŵ] with positive probability. This contradicts

the fact that for any ε > 0, w drawn from FI satisfies w ∈ [ŵ−ε, ŵ] with positive probability.

Thus, there cannot be a Nash equilibrium in which FO has an atom at ŵ.

Claim 14 For any wa and wb such that wl ≤ wa < wb ≤ wu, it must be that FI(w
a) <

FI(w
b).

Proof Assume to the contrary that there exist wa and wb with wl ≤ wa < wb ≤ wu such

that FI(w
a) = FI(w

b). Let wc be the least number such that FI(w) > FI(w
a) for all w > wc.

Because FI(w
a) = FI(w

b) where wa < wb, it must be that wc > wa. Recall that FI does not

have an atom at any w > wl. This implies that FI(w
c) = FI(w

a). Hence, it must be that

wc < wu. Otherwise, if wc = wu, then it would have to be that FI(w
a) = FI(w

c) = 1 where

wa < wc, which would lead to the contradiction that wa < wu is no less than the supremum

of the support of FI .

First, suppose that FO(w) > FO(wc) for all w > wc. Choose any w̃ ∈ (wa, wc). Recall
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that FI does not have an atom at any w > wl. Noting that FI(w
c) = FI(w̃) > 0, one obtains:

πO(wc) = lim
w↓wc

πO(w) = FI(w
c)E{g[x(wI)]− wc|wI ≤ wc} = FI(w̃)E{g[x(wI)]− wc|wI ≤ w̃}

< FI(w̃)E{g[x(wI)]− w̃|wI ≤ w̃} = πO(w̃).

Thus, there exists ε > 0 such that firm O obtains a higher expected payoff by offering the

wage w̃ than by offering any wage w ∈ [wc, wc + ε). It follows that there cannot be a Nash

equilibrium in which w drawn from FO satisfies w ∈ [wc, wc + ε) with positive probability.

This contradicts the fact that FO(w) > FO(wc) for all w > wc.

Hence, there must exist ε > 0 such that FO(w) = FO(wc) for all w ∈ (wc, wc + ε). Recall

that FO does not have an atom. For any w ∈ (wc, wc + ε), note that FO(wc) = FO(w) > 0

and so x(wc) = x(w) > 0. The following holds for all w ∈ (wc, wc + ε):

πI [x(wc), wc] = FO(wc){g[x(wc)]− wc} − x(wc) = FO(w){g[x(w)]− wc} − x(w)

> FO(w){g[x(w)]− w} − x(w) = πI [x(w), w].

Thus, firm I obtains a higher expected payoff by choosing training level x(wc) and wage offer

wc than by choosing training level x(w) and wage offer w, where w ∈ (wc, wc+ε). Noting also

that FI does not have an atom at wc, it follows that there cannot be a Nash equilibrium in

which w drawn from FI satisfies w ∈ [wc, wc + ε) with positive probability. This contradicts

the fact that wc is the least number such that FI(w) > FI(w
a) for all w > wc. Thus, there

cannot exist wa and wb with wl ≤ wa < wb ≤ wu such that FI(w
a) = FI(w

b).

Claim 15 For any wa and wb such that wl ≤ wa < wb ≤ wu, it must be that FO(wa) <

FO(wb).

Proof Assume to the contrary that there exist wa and wb with wl ≤ wa < wb ≤ wu such

that FO(wa) = FO(wb). Let wc be the least number such that FO(w) > FO(wa) for all

w > wc. Because FO(wa) = FO(wb) where wa < wb, it must be that wc > wa. Recall that

FO does not have an atom. This implies that FO(wc) = FO(wa). Hence, it must be that

wc < wu. Otherwise, if wc = wu, then it would have to be that FO(wa) = FO(wc) = 1 where

wa < wc, which would lead to the contradiction that wa < wu is no less than the supremum

of the support of FO.

Recall that FI(w) is increasing for w ∈ [wl, wu]. Hence, FI(w) > FI(w
c) for all w > wc.

Choose any w̃ ∈ (wa, wc). Recall that FO does not have an atom. Noting that FO(wc) =
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FO(w̃) > 0 and so x(wc) = x(w̃) > 0, one obtains:

πI [x(wc), wc] = lim
w↓wc

πI [x(w), w] = FO(wc){g[x(wc)]− wc} − x(wc)

= FO(w̃){g[x(w̃)]− wc} − x(w̃) < FO(w̃){g[x(w̃)]− w̃} − x(w̃) = πI [x(w̃), w̃].

Thus, there exists ε > 0 such that firm I obtains a higher expected payoff by choosing

training level x(w̃) and wage offer w̃ than by choosing any training level x(w) and wage

offer w such that w ∈ [wc, wc + ε). It follows that there cannot be a Nash equilibrium in

which w drawn from FI satisfies w ∈ [wc, wc + ε) with positive probability. This contradicts

the fact that FI(w) > FI(w
c) for all w > wc. Hence, there cannot exist wa and wb with

wl ≤ wa < wb ≤ wu such that FO(wa) = FO(wb).

A.9 Proof of Lemma 7

The lemma follows from the claims below. Suppose that the mixed strategies (FI , x) and FO

for firms I and O constitute a Nash equilibrium.

Claim 16 It must be that hl = 0 and hu = g′−1(1).

Proof Recall that the training level ĥ and wage offer ŵI chosen by firm I satisfy ĥ = x(ŵI)

with probability one, where x(ŵI) = g′−1[1/FO(ŵI)]. Let Pr(·) represent the probability that

wI drawn from FI is such that the enclosed statement is true. Recall that FO does not have

an atom at any w ∈ R+ and is increasing for w ∈ [wl, wu]. Note that FO is invertible over

the set consisting of all w ∈ R+ such that FO(w) ∈ (0, 1). The distribution function K is

given by the following for all h ∈ R+:

K(h) = Pr[x(wI) ≤ h] = Pr{g′−1[1/FO(wI)] ≤ h} = Pr[FO(wI) ≤ 1/g′(h)]

= Pr{wI ≤ F−1O [1/g′(h)]} = FI{F−1O [1/g′(h)]},

where the function F−1O (z) is the inverse of FO for z ∈ (0, 1) and is defined as wl for z = 0

and as wu for z ≥ 1. Note that hl = 0 is the smallest number r such that K(h) > 0 for all

h > r and that hu = g′−1(1) is the greatest number r such that K(h) < 1 for all h < r.

Claim 17 It must be that K does not have an atom at any h > hl.

Proof Recall that the training level ĥ and wage offer ŵI chosen by firm I satisfy ĥ = x(ŵI)

with probability one, where x(ŵI) = g′−1[1/FO(ŵI)]. Let Pr(·) represent the probability that
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wI drawn from FI is such that the enclosed statement is true. Recall that FO does not have

an atom at any w ∈ R+ and is increasing for w ∈ [wl, wu]. Note that FO is invertible over

the set consisting of all w ∈ R+ such that FO(w) ∈ (0, 1). The distribution function K is

given by the following for all h ∈ R+:

K(h) = Pr[x(wI) ≤ h] = Pr{g′−1[1/FO(wI)] ≤ h} = Pr[FO(wI) ≤ 1/g′(h)]

= Pr{wI ≤ F−1O [1/g′(h)]} = FI{F−1O [1/g′(h)]},

where the function F−1O (z) is the inverse of FO for z ∈ (0, 1) and is defined as wl for z = 0

and as wu for z ≥ 1. Recall that g′ and F−1O are continuous on the domain R++. Moveover,

FI is continuous on the domain [wl,∞). Hence, K(h) is continuous for all h ∈ R++. It

follows that K does not have an atom at any h > hl.

Claim 18 For any ha and hb such that hl ≤ ha < hb ≤ hu, it must be that K(ha) < K(hb).

Proof Recall that the training level ĥ and wage offer ŵI chosen by firm I satisfy ĥ = x(ŵI)

with probability one, where x(ŵI) = g′−1[1/FO(ŵI)]. Let Pr(·) represent the probability that

wI drawn from FI is such that the enclosed statement is true. Recall that FO does not have

an atom at any w ∈ R+ and is increasing for w ∈ [wl, wu]. Note that FO is invertible over

the set consisting of all w ∈ R+ such that FO(w) ∈ (0, 1). The distribution function K is

given by the following for all h ∈ R+:

K(h) = Pr[x(wI) ≤ h] = Pr{g′−1[1/FO(wI)] ≤ h} = Pr[FO(wI) ≤ 1/g′(h)]

= Pr{wI ≤ F−1O [1/g′(h)]} = FI{F−1O [1/g′(h)]},

where the function F−1O (z) is the inverse of FO for z ∈ (0, 1) and is defined as wl for z = 0

and as wu for z ≥ 1. Recall that g′ is decreasing on R+, F−1O is increasing on [0, 1], and FI

is increasing on [wl, wu]. Hence, K is increasing on [hl, hu] as desired.

A.10 Proof of Theorem 1

The theorem follows from the claims below. Suppose that the mixed strategies (FI , x) and

FO for firms I and O constitute a Nash equilibrium.

54



Claim 19 The distribution function FO is uniquely defined by:

FO(w) =


0 if w ≤ g(0)

x(w)/{g[x(w)]− w} if g(0) < w < g[g′−1(1)]− g′−1(1)

1 if w ≥ g[g′−1(1)]− g′−1(1)

.

Proof Recall that ŵI drawn from FI satisfies πI [x(ŵI), ŵI ] = 0 with probability one. Noting

that FO does not have an atom at any w ∈ R+, this implies that ŵI drawn from FI satisfies

FO(ŵI){g[x(ŵI)] − ŵI} − x(ŵI) = 0 with probability one. Because FI is strictly increasing

on the interval [wl, wu], it follows that FO(w){g[x(w)]− w} − x(w) = 0 for all w ∈ [wl, wu].

Hence, FO(w) = x(w)/{g[x(w)] − w}, where wl < w ≤ wu. In addition, it must be that

FO(wl) = 0 because FO does not have an atom at any w ∈ R+.

I next argue that the expression in the statement of the claim defines a unique strategy

FO for firm O. By definition, x(w) = g′−1[1/FO(w)] for all w ∈ [wl, wu]. Noting that

FO is strictly increasing on the interval [wl, wu], let F−1O be the inverse of FO when FO is

restricted to the interval [wl, wu]. It follows that w = F−1O {1/g′[x(w)]}, where wl ≤ w ≤ wu.

Thus, the condition FO(w){g[x(w)] − w} − x(w) = 0 for all w such that wl ≤ w ≤ wu is

equivalent to the condition {1/g′[x(w)]}
(
g[x(w)]−F−1O {1/g′[x(w)]}

)
−x(w) = 0 for all x(w)

such that hl ≤ x(w) ≤ hu. For hl < x(w) ≤ hu, the preceding equality can be written as

1/g′[x(w)] = FO{g[x(w)]− x(w)g′[x(w)]}.
The left-hand side of this equation is continuous and increasing in x(w), approaching 0

in the limit as x(w) goes to hl, and equal to 1 for x(w) = hu. The term inside braces on the

right-hand side of this equation is continuous and increasing in x(w), approaching wl in the

limit as x(w) goes to hl, and equal to wu for x(w) = hu. Hence, this equation is satisfied by

a unique distribution function FO, which is continuous and increasing on the interval [wl, wu]

and satisfies FO(wl) = 0 and FO(wu) = 1.

Claim 20 The distribution function FI is uniquely defined by:

FI(w) =


0 if w ≤ g(0)

x(w)/{g[x(w)]− w} if g(0) < w < g[g′−1(1)]− g′−1(1)

1 if w ≥ g[g′−1(1)]− g′−1(1)

.

Proof Recall that ŵO drawn from FO satisfies πO(ŵO) = 0 with probability one. Noting

that FO does not have an atom at any w ≥ wl and that FI does not have an atom at any
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w > wl, this implies that ŵO drawn from FO satisfies FI(ŵO)E{g[x(wI)]− ŵO|wI ≤ ŵO} = 0

with probability one. Because FO is strictly increasing on the interval [wl, wu], it follows

that FI(w)E{g[x(wI)] − w|wI ≤ w} = 0 for all w ∈ [wl, wu]. This condition for FI can be

written as follows for w ∈ [wl, wu]:∫ w

wl
g[x(v)]− w dFI(v) + FI(w

l){g[x(wl)]− w} = 0.

The preceding expression yields the differential equation F ′I(w){g[x(w)] − w} = FI(w) on

the interval (wl, wu], where the Leibniz integral rule is used to help compute the derivative.

Recall that FO is defined by the following equation for w ∈ [wl, wu]:

FO(w){g[x(w)]− w} − x(w) = 0.

The preceding expression yields the differential equation F ′O(w){g[x(w)] − w} = FO(w) on

the interval (wl, wu], where the envelope theorem is applied when calculating the derivative.

Hence, FI and FO are required to satisfy the same differential equation with the same bound-

ary condition FI(w
u) = FO(wu) = 1. By the existence and uniqueness theorem for first-order

linear differential equations, it must be that FI(w) = FO(w) for w ∈ (wl, wu], where FO(w)

is defined as above. Moreover, it must be that FI(w
l) = 0 because FI is a nonnegative and

nondecreasing function with limw↓wl FI(w) = 0.

It is straightforward to confirm that the strategies (FI , x) and FO fulfill all of the requirements

for a Nash equilibrium when FI and FO are as defined in the two preceding claims and x is

as specified in the main text.

A.11 Proof of Corollary 1

Recall that the training level ĥ and wage offer ŵI chosen by firm I satisfy ĥ = x(ŵI) with

probability one, where x(ŵI) = g′−1[1/FO(ŵI)]. Let Pr(·) represent the probability that wI

drawn from FI is such that the enclosed statement is true. Recall that FO does not have an

atom at any w ∈ R+ and is increasing for w ∈ [wl, wu]. Note that FO is invertible over the

set consisting of all w ∈ R+ such that FO(w) ∈ (0, 1). As shown above, FI(w) = FO(w) for

all w ∈ R+. The distribution function K is given by the following for all h ∈ [hl, hu]:

K(h) = Pr[x(wI) ≤ h] = Pr{g′−1[1/FO(wI)] ≤ h} = Pr[FO(wI) ≤ 1/g′(h)]

= Pr{wI ≤ F−1O [1/g′(h)]} = FI{F−1O [1/g′(h)]} = 1/g′(h),
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where the function F−1O (z) is the inverse of FO for z ∈ (0, 1) and is defined as wl for z = 0

and as wu for z = 1.

A.12 Proof of Corollary 2

The expected payoffs to the firms and the worker must satisfy:∫ wu

wl
πI [x(v), v] dFI(v) +

∫ wu

wl
πO(v) dFO(v) + φS =

∫ hu

hl
g(h) dK(h)−

∫ hu

hl
h dK(h).

On the left-hand side, the first, second, and third terms are the expected payoffs to firm I,

firm O, and the worker, respectively. On the right-hand side, the first term is the expected

output produced by the worker, and the second term is the expected cost of training the

worker. As shown above, wI drawn from FI satisfies πI [x(wI), wI ] = 0 with probability

one, and wO drawn from FO satisfies πO(wO) = 0 with probability one. It follows that∫ wu
wl

πI [x(v), v] dFI(v) = 0 and
∫ wu
wl

πO(v) dFO(v) = 0. Hence, the preceding expression

reduces to:

φS =

∫ hu

hl
g(h)− h dK(h).

Substituting for K(h) using the formula derived above, one obtains:

φS =

∫ hu

hl
[g(h)−h]

−g′′(h)

[g′(h)]2
dh =

g(h)− h
g′(h)

∣∣∣∣hu
hl
−
∫ hu

hl
1− 1

g′(h)
dh = g(hu)−2hu+

∫ hu

hl

1

g′(h)
dh,

where integration by parts is used.

A.13 Derivations for Example 1

Given the production function g(h) = Ahθ for all h ∈ R+, the first derivative is g′(h) =

Aθ/h1−θ, and the second derivative is g′′(h) = −Aθ(1 − θ)/h2−θ. The inverse of the first

derivative of the production function is g′−1(r) = (Aθ/r)1/(1−θ), where r > 0. Plugging the

above functional forms for g and g′−1 into the expressions from lemmata 3 and 5, the infimum

wl and supremum wu of the supports for the equilibrium wage offer distributions FI and FO

are the following:

wl = g(0) = 0,

wu = g[g′−1(1)]− g′−1(1) = A
1

1−θ (θ
θ

1−θ − θ
1

1−θ ).
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Recall from lemmata 3 and 6 that FO is atomless. Substituting for g′−1 in the definition of x

following lemma 1, the function mapping the wage offered to the training provided by firm

I is given by:

x(w) = g′−1[1/PO(w)] = [AθFO(w)]
1

1−θ .

From theorem 1, the cdf of the bid distribution is simply FY (w) = 0 for w ≤ 0 and FY (w) = 1

for w ≥ A1/(1−θ)(θθ/(1−θ)−θ1/(1−θ)), where Y ∈ {I, O}. If 0 < w < A1/(1−θ)(θθ/(1−θ)−θ1/(1−θ)),
then the bid distribution satisfies the following condition for Y ∈ {I, O}:

FY (w) =
x(w)

g[x(w)]− w
=

[AθFY (w)]
1

1−θ

A[AθFY (w)]
θ

1−θ − w
,

where the functional form for g, the above expression for x, and the fact that FI = FO are

used. Solving the preceding equation for FY yields:

FY (w) =

(
w

A
1

1−θ (θ
θ

1−θ − θ
1

1−θ )

) 1−θ
θ

.

Using this result to substitute for FO in the above expression for x, one has:

x(w) = A
1

1−θ θ
1

1−θ

(
w

A
1

1−θ (θ
θ

1−θ − θ
1

1−θ )

) 1
θ

=

(
w

A(1− θ)

) 1
θ

.

Plugging the above functional form for g′−1 into the expressions from lemma 7, the infimum

hl and supremum hu of the support for the equilibrium human capital distribution K are

the following:

hl = 0,

hu = g′−1(1) = (Aθ)
1

1−θ .

From corollary 1, the cdf of the training distribution is as follows for 0 ≤ h ≤ (Aθ)1/(1−θ):

K(h) =
1

g′(h)
=
h1−θ

Aθ
,
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where the functional form for g′ is used. Based on corollary 2, the expected payoff to the

worker is equal to:

φS = g[g′−1(1)]− 2g′−1(1) +

∫ g′−1(1)

0

1

g′(h)
dh = A(Aθ)

θ
1−θ − 2(Aθ)

1
1−θ +

∫ (Aθ)
1

1−θ

0

h1−θ

Aθ
dh,

where the above expressions are substituted for g, g′, and g′−1. Evaluating the integral and

simplifying the result, one has:

φS =
2(1− θ)2(Aθθ)

1
1−θ

2− θ
.

A.14 Proof of Proposition 3

Consider the following strategy profile. As in the statement of the proposition, firm I

chooses training level h = κ with probability p = 1 − κ/[g(κ) − g(0)]. The cumulative

distribution function Ωκ
I of wages offered by firm I to a worker with training level h = κ

satisfies Ωκ
I (w) = 0 for w < g(0), Ωκ

I (w) = 1 for w > g(κ) − κ, and is defined as Ωκ
I (w) =

{[w − g(0)](1 − p)}/{[g(κ) − w]p} for g(0) ≤ w ≤ g(κ) − κ. The cumulative distribution

function Ω0
I of wages offered by firm I to a worker with training level h = 0 is Ω0

I(w) = 0

if w < g(0) and Ω0
I(w) = 1 if w ≥ g(0). The cumulative distribution function ΩO of wages

offered by firm O satisfies ΩO(w) = 0 for w < g(0), ΩO(w) = 1 for w > g(κ) − κ, and is

defined as ΩO(w) = κ/[g(κ) − w] for g(0) ≤ w ≤ g(κ) − κ. I confirm that these strategies

constitute a Nash equilibrium by showing that neither firm I nor firm O has an incentive to

deviate.

Assume that firm O follows the strategy ΩO described above. Suppose first that firm I

chooses training level 0 and wage offer w ∈ R+. If w = g(0), then firm I receives the payoff

αΩO[g(0)][g(0)− g(0)] = 0 with probability one. Otherwise, the expected payoff to firm I is

zero for w < g(0) and negative for w > g(0). Suppose next that firm I chooses training level

κ and wage offer w ∈ R+. If g(0) < w ≤ g(κ)− κ, then firm I receives the expected payoff

ΩO(w)[g(κ)−w]−κ = {κ/[g(κ)−w]}[g(κ)−w]−κ = 0. Otherwise, the expected payoff to firm

I is negative for w < g(0), nonpositive for w = g(0), and negative for w > g(κ)− κ. Hence,

firm I has no incentive to deviate from the strategy (p,Ωκ
I ,Ω

0
I) described above because this

strategy yields an expected payoff of zero, which is the maximum expected payoff attainable

by firm I given that firm O follows the strategy ΩO.
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Assume that firm I follows the strategy (p,Ωκ
I ,Ω

0
I) described above. If firm O offers a

wage w with g(0) < w ≤ g(κ)−κ, then firm O receives the expected payoff pΩκ
I (w)[g(κ)−w]+

(1−p)Ω0
I(w)[g(0)−w] = [g(κ)−w]p{[w−g(0)](1−p)}/{[g(κ)−w]p}+[g(0)−w](1−p) = 0.

If firm O offers the wage g(0), then the payoff to firm O is pΩκ
I [g(0)][g(κ)−g(0)]+(1−p)(1−

α)Ω0
I [g(0)][g(0)− g(0)] = 0 with probability one. If firm O offers a wage w < g(0), then the

payoff to firm O is zero with probability one. If firm O offers a wage w > g(κ)−κ, then firm

O receives a negative expected payoff. Hence, firm O has no incentive to deviate from the

strategy ΩO described above because this strategy yields an expected payoff of zero, which

is the maximum expected payoff attainable by firm O given that firm I follows the strategy

(p,Ωκ
I ,Ω

0
I).

A.15 Proof of Proposition 4

The analysis of Engelbrecht-Wiggans, Milgrom, and Weber (1983) shows that the following

are the equilibrium strategies in the bidding game. The cumulative distribution function

ΓκI of wages offered by firm I to a worker with training level h = κ satisfies ΓκI (w) = 0 for

w < g(0), ΓκI (w) = 1 for w ≥ (1− q)g(0) + qg(κ), and is defined as ΓκI (w) = {[w− g(0)](1−
q)}/{[g(κ)−w]q} for g(0) ≤ w < (1− q)g(0) + qg(κ). The cumulative distribution function

Γ0
I of wages offered by firm I to a worker with training level h = 0 is Γ0

I(w) = 0 if w < g(0)

and Γ0
I(w) = 1 if w ≥ g(0). The cumulative distribution function ΓO of wages offered by

firm O satisfies ΓO(w) = 0 for w < g(0), ΓO(w) = 1 for w ≥ (1 − q)g(0) + qg(κ), and is

defined as ΓO(w) = [g(κ)− g(0)](1− q)/[g(κ)− w] for g(0) ≤ w < (1− q)g(0) + qg(κ).

Assume that firms I and O follow the strategies in the preceding paragraph. If firm

O offers the wage g(0), then it receives the payoff qΓκI [g(0)][g(κ) − g(0)] + (1 − q)(1 −
α)Γ0

I [g(0)][g(0)−g(0)] = 0 with probability one. The expected payoff to firmO from offering a

wage w with g(0) < w ≤ (1−q)g(0)+qg(κ) is qΓκI (w)[g(κ)−w]+(1−q)Γ0
I(w)[g(0)−w] = 0. If

h = 0, then the expected payoff to firm I from offering the wage g(0) is ψ0
I = αΓO[g(0)][g(0)−

g(0)] = 0. If h = κ, then the expected payoff to firm I from offering a wage w with

g(0) < w ≤ (1− q)g(0) + qg(κ) is ψκI = ΓO(w)[g(κ)−w]−κ = [g(κ)− g(0)](1− q)−κ. Since

q is the training probability, the expected payoff to firm I is (1− q)ψ0
I + qψκI or, equivalently,

ψI(q) = [g(κ)− g(0)]q(1− q)− qκ.

The value of the training probability q that maximizes the expected payoff to firm I solves

the first-order condition ψ′I(q) = [g(κ)−g(0)](1−2q)−κ = 0, which gives q = 1
2
{1−κ/[g(κ)−

g(0)]}. Note that the second-order condition ψ′′I (q) = −2[g(κ) − g(0)] < 0 is satisfied. The

expected payoff to firm I at this value of q is {[g(κ)− g(0)]−κ}2/{4[g(κ)− g(0)]} > 0.
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