Synthetic Aperture Radar Signal Processing

with Matlab Algorithms

Mehrdad Soumekh
Acknowledgements

The work reported in this book was supported by the following government agencies and private industries: National Science Foundation, Grant #MIP-904996, P. Ramamoorthy, Program Director; Bell Aerospace (Textron), William Zwolinski, Technical Coordinator; Space Computer Corporation, Alan Stocker, Technical Coordinator; Summer Faculty Fellowships at Naval Research and Development (SPAWAR Systems Center), Robert Dinger (1992-95) and Lawrence Hoff (1995), Technical Coordinators; Summer Faculty Fellowship at Rome Laboratory, Air Force Office of Scientific Research, Michael Wicks, Technical Coordinator; Naval Research and Development, Grants #N66001-95-M-1383 and #N66001-7052-7595, Michael Pollock, Technical Coordinator; MITRE Corporation, Richard Perry, Technical Coordinator; Office of Naval Research, Grants #N00014-96-1-0586 and #N00014-97-1-0966, William Miceli, Program Officer; and Air Force Office of Scientific Research, Grant #F49620-99-1-0140, Jon Sjogren, Program Officer. Their generous support of this work is greatly appreciated.
Contents

PREFACE

INTRODUCTION

Synthetic Aperture Radar
The Book
Organization
SAR and ISAR Databases
List of Figures

CHAPTER 1 RANGE IMAGING

1.0 Introduction
 Outline
 Mathematical Notations and Symbols
1.1 System Model
1.2 Reconstruction via Matched Filtering
1.3 Range Resolution
1.4 Data Acquisition and Signal Processing
 Time Domain Sampling
 Time Interval of Sampling
 Number of Time Samples
1.5 Reconstruction Algorithm
1.6 Reconstruction via Pulse Compression for Chirp Signals
 Signal Model
 Reconstruction
 Range Resolution
 Time Domain Sampling
 Residual Video Phase Error
 Upsampling to Recover Alias-Free Echoed Signal
 Electronic Counter-Countermeasure (ECCM) Via Amplitude Modulation of Chirp Signals
1.7 Frequency-Dependent Target Reflectivity
 Reconstruction via Target Signature Matched Filtering
1.8 Matlab Algorithms
CHAPTER 2 CROSS-RANGE IMAGING

2.0 Introduction
 Outline
 Mathematical Notations and Symbols

2.1 System Model

2.2 Spherical PM Signal within an Infinite Aperture

2.3 Reconstruction via Matched Filtering: Infinite Aperture

2.4 Spherical PM Signal within a Finite Aperture
 Instantaneous Frequency
 Slow-Time Fourier Transform
 Slow-Time Angular Doppler Spectrum

2.5 Reconstruction via Matched Filtering: Finite Aperture

2.6 Cross-Range Resolution

2.7 Data Acquisition and Signal Processing
 Synthetic Aperture Sampling for a Broadside Target Area
 Synthetic Aperture Sampling for a Squint Target Area
 Reducing PRF via Slow-Time Compression
 Cross-Range Gating via Slow-Time Compression

2.8 Reconstruction Algorithm
 Baseband Conversion of Target Area
 Zero-Padding in Synthetic Aperture Domain
 Slow-Time Doppler Domain Subsampling
 Reducing Bandwidth of Reconstructed Image

2.9 Synthetic Aperture-Dependent Target Reflectivity
 AM-PM Signal Model
 Slow-Time Fourier Transform of AM-PM Signal
 Example 1: Spotlight SAR
 Example 2: Stripmap SAR
 Reconstruction
 Representation in Slow-Time Angular Doppler Domain

2.10 Reconstruction via Target Signature Slow-time Matched Filtering
 Type 1: Generalization of Spotlight SAR
 Type 2: Generalization of Stripmap SAR
 Type 3: Partial Observability

2.11 Matlab Algorithms
CHAPTER 3 SAR RADIATION PATTERN

3.0 Introduction
 Outline
 Mathematical Notations and Symbols
3.1 Transmit Mode Radar Radiation Pattern
 Example 1: Planar Radar Antenna
 Example 2: Parabolic Radar Antenna
 Example 3: Circular Radar Antenna
 Synthetic Aperture (Slow-Time) Dependence
3.2 Radiation Pattern in Three-Dimensional Spatial Domain
 Radar Footprint
 Slant-Range
3.3 Transmit-Receive Mode Radar Radiation Pattern
3.4 Transmit-Receive Mode Radar-Target Radiation Pattern
3.5 Polarization
3.6 Matlab Algorithms

CHAPTER 4 GENERIC SYNTHETIC APERTURE RADAR

4.0 Introduction
 Outline
 Mathematical Notations and Symbols
4.1 System Model
4.2 Fast-Time Fourier Transform
4.3 Slow-Time Fourier Transform
4.4 Reconstruction
4.5 Digital Reconstruction via Spatial Frequency Interpolation
 Baseband Conversion of Target Area
 Interpolation from Evenly Spaced Data
 Interpolation from Unevenly Spaced Data
4.6 Digital Reconstruction Via Range Stacking
 Algorithm 1: Fast-Time Slow-Time Matched Filtering
 Algorithm 2: Slow-Time Fast-Time Matched Filtering
4.7 Digital Reconstruction Via Time Domain Correlation and Backprojection
 Time Domain Correlation Algorithm
 Backprojection Algorithm

4.8 Frequency and Synthetic Aperture-Dependent Target Reflectivity

4.9 Motion Compensation Using Global Positioning System
 Spatial Frequency Modeling of Motion Errors
 Narrow-Beamwidth Motion Compensation
 Wide-Beamwidth Motion Compensation
 Three-Dimensional Wide-Beamwidth Motion Compensation
 Motion Compensation for Backprojection

4.10 Motion Compensation Using In-Scene Targets
 Narrow-Beamwidth Motion Compensation
 Wide-Beamwidth Motion Compensation
 Three-Dimensional Wide-Beamwidth Motion Compensation

4.11 Polar Format Processing
 Plane Wave Approximation-Based Reconstruction
 Narrow-Beamwidth Approximation
 Narrow-Bandwidth and Narrow-Beamwidth Approximation
 Wavefront Curvature Compensation
 Motion Compensation Using Global Positioning System

4.12 Conventional ISAR Modeling and Imaging
 ISAR Modeling
 Slow-Time Compression or Motion Compensation
 Polar Format Processing

4.13 Range-Doppler Imaging
 Fresnel Approximation-Based Reconstruction
 Narrow-Bandwidth and Narrow-Beamwidth Approximation

4.14 Three-Dimensional Imaging With Two-Dimensional Azimuth and Elevation Synthetic Apertures
 System Model
 Reconstruction

4.15 Electronic Counter-Countermeasure Via Pulse Diversity
CHAPTER 5 SPOTLIGHT SYNTHETIC APERTURE RADAR

5.0 Introduction
 Outline
 Mathematical Notations and Symbols

5.1 Mechanically Beam-Steered Spotlight SAR
 Mechanical Beam Steering
 System Model
 Reconstruction

5.2 Electronically Beam-Steered Spotlight SAR
 Electronic Beam Steering
 System Model
 Reconstruction

5.3 Bandwidth of Spotlight SAR Signal
 Single Target
 Target Area

5.4 Resolution and Point Spread Function

5.5 Data Acquisition and Signal Processing
 Fast-Time Domain Sampling and Processing
 Slow-Time Domain Sampling and Processing
 Reducing PRF via Slow-Time Compression
 Digital Spotlighting
 Subaperture Digital Spotlighting

5.6 Reconstruction Algorithms and SAR Image Processing
 Digital Reconstruction via Spatial Frequency Interpolation
 Reconstruction in Squint Spatial Coordinates
 Slow-Time Doppler Domain Subsampling
 Reducing Bandwidth of Reconstructed Image
 Digital Reconstruction via Range Stacking
 Digital Reconstruction via Time Domain Correlation and Backprojection
 Effect of Slow-time Doppler Filtering
 Effect of Motion Errors in Slow-time Doppler Spectrum

5.7 Matlab Algorithms
CHAPTER 6 STRIPMAP SYNTHETIC APERTURE RADAR

6.0 Introduction

Outline
Mathematical Notations and Symbols

6.1 System Model

Radar Radiation Pattern
Stripmap SAR Signal Model

6.2 Reconstruction

6.3 Bandwidth of Stripmap SAR Signal

Planar Radar Antenna
Curved Radar Antenna

6.4 Resolution and Point Spread Function

6.5 Data Acquisition and Signal Processing

Fast-Time Domain Sampling and Processing
Slow-Time Domain Sampling and Processing
Slow-time Compression and Processing
Subaperture Digital Spotlighting
Reducing Side Lobes Doppler Aliasing via Slow-Time Upsampling

6.6 Reconstruction Algorithms and SAR Image Processing

Digital Reconstruction via Spatial Frequency Interpolation
Slow-Time Doppler Domain Subsampling
Reducing Bandwidth of Reconstructed Image
Digital Reconstruction via Range Stacking
Digital Reconstruction via Time Domain Correlation and Backprojection
Effect of Beamwidth (Slow-time Doppler) Filtering
Effect of Motion Errors in Slow-time Doppler Spectrum
Subpatch “Mosaic” Digital Reconstruction with Subaperture Data

6.7 Moving Target Detection and Imaging

SAR Signal Model for a Moving Target with a Constant Velocity
Three-Dimensional Imaging in Motion-Transformed Spatial Domain
and Relative Speed Domain
Moving Target Indicator: SAR Ambiguity Function

6.8 Matlab Algorithms
CHAPTER 7 CIRCULAR SYNTHETIC APERTURE RADAR

7.0 Introduction
 Outline
 Mathematical Notations and Symbols

7.1 System Model
 CSAR Signal Model
 Fourier Properties of Slant Plane Green’s Function

7.2 Reconstruction
 Slant Plane to Ground Plane Transformation
 Ground Plane CSAR Reconstruction

7.3 Bandwidth of CSAR Signal

7.4 Resolution and Point Spread Function
 Full Rotation Aspect Angle Measurement
 Partial Rotation Aspect Angle Measurement

7.5 Data Acquisition and Signal Processing
 Fast-Time Domain Sampling and Processing
 Slow-Time Domain Sampling and Processing
 Digital Spotlighting and Clutter Filtering

7.6 Reconstruction Algorithms and CSAR Image Processing
 Digital Reconstruction via Spatial Frequency Interpolation
 Reducing Bandwidth of Reconstructed Image
 Digital Reconstruction via Time Domain Correlation and Backprojection

7.7 Three-Dimensional Imaging

7.8 Target Resolvability from Single Tone Fringe Patterns

7.9 Three-Dimensional Imaging With Two-Dimensional Circular
 and Elevation Synthetic Apertures
 System Model
 Reconstruction
 Digital Reconstruction

CHAPTER 8 MONOPULSE SYNTHETIC APERTURE RADAR

8.0 Introduction
 Outline
 Mathematical Notations and Symbols
8.1 Along-Track Moving Target Detector Monopulse SAR
 Along-Track Monopulse SAR System Geometry
 Monostatic SAR Signal Model
 Bistatic SAR Signal Model
 Synthesis of Monostatic SAR Signal from Bistatic SAR Signal
 Moving Target Indicator
 Effect of Variations in Altitude and Nonlinear Motion

8.2 Effect of Uncalibrated and Unstable Radars
 Amplitude Patterns of Monopulse Radars
 Instability of Monopulse Radars
 Wide-Beamwidth Monopulse Radars

8.3 Signal Subspace Registration of Uncalibrated SAR Images
 System Model
 Signal Subspace Processing
 Estimating Calibration Error Impulse Function
 Application in MTD Monopulse SAR
 Application in Automatic Target Recognition SAR

8.4 Slant Plane Topographic Mapper Monopulse SAR
 Slant Plane Monopulse SAR System Geometry
 Monostatic and Bistatic SAR Signal Models
 Narrow-Beamwidth and Narrow-Beamwidth Approximation: Interferometric SAR (IF-SAR)
 Wide-Beamwidth and Wide-Beamwidth Model
 Estimating Slant-Range Shift via Signal Subspace Processing

8.5 Multistatic Monopulse ISAR
 Multistatic ISAR Model
 Motion Tracking via Signal Subspace Processing

8.6 Matlab Algorithms

BIBLIOGRAPHY

INDEX