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Abstract

This chapter reviews Bayesian analysis of models commonly employed in microeconometric
applications. We begin with the model central to this literature - the linear regression model -
and also explore some of its basic generalizations. We then turn to analysis of other common
microeconometric models, including the probit, logit, tobit and ordered probit, and unite these
within a common hierarchical structure. Finally, other prominent topics in microeconometrics,
including problems of endogeneity, analysis of treatment effects, and the analysis of count and
duration data, are also discussed and references to the literature are provided. Throughout
we provide a description of Markov Chain Monte Carlo (MCMC) samplers for estimating the
models and also provide several illustrative examples.
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1 Introduction

This chapter is intended to serve as an introduction to Bayesian analysis of models commonly

encountered in microeconomics. In what follows we cover much of the “how” to conduct Bayesian

inference in microeconometric applications by discussing, in reasonable detail, the steps involved in

posterior simulation via Markov Chain Monte Carlo (MCMC) methods in a wide array of models.

To a lesser extent we also address issues of “why” one might choose to employ a Bayesian approach

for estimating these models over well-established frequentist alternatives. Our answers to the latter

types of questions tend to be pragmatic rather than grounded in theory, emphasizing the ease with

which simulations from the posterior distribution can be used to calculate exact finite sample point

estimates or complete posterior distributions for economically relevant quantities of interest.

The level of presentation of this chapter is quite similar to that provided in recent Bayesian text-

books, including (Koop 2003; Lancaster 2004; Geweke 2005; Koop, Poirier and Tobias 2007). The

reader may, in fact, regard this chapter as an introduction to several of the more specialized chap-

ters that appear elsewhere in this volume. For example, (Griffin, Quintana and Steel 2010) provide

flexible alternatives to many of the more restrictive assumptions entertained here, all of which are

presented under the assumption of normal sampling. Furthermore, (Rossi and Allenby 2010) also

relax some of the distributional and prior assumptions made in the basic hierarchical and multino-

mial choice frameworks and illustrate the value of such models in marketing applications. Given

the broad scope of a chapter like this one, however, our coverage of a representative model will

typically be brief rather than fully detailed and, as is necessary, we will provide the reader with

references to the literature that extend the basic methodology.

Our approach to this chapter is to teach by example. By this we mean that many of the models

considered will contain an actual empirical example to illustrate the use of MCMC methods in

practice. In most cases our examples employ data sets that are specific to the model being consid-

ered, although the estimation of several different types of models will be illustrated with a common

data set on BMI (Body Mass Index) and wage outcomes. Finally, all of our applications are coded

in MATLAB and our programs made available to the interested reader for inspection, refinement

and additional modifications.1

1The code can be obtained from the website: http://web.ics.purdue.edu/∼jltobias/handbook.html.
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The outline of this chapter is as follows. Section 2 discusses linear models. We begin this pre-

sentation with a review of the normal linear regression model, deriving marginal, conditional and

predictive posterior densities of interest. To illustrate how MCMC methods can be employed to

accommodate interesting departures from the standard linear regression framework under “ideal”

conditions, we also discuss several generalizations of the basic model, including allowing for para-

metric heteroscedasticity and incorporating a changepoint into the analysis. Our treatment of

linear models then moves on to discuss hierarchical linear models and to review approaches to

handling endogeneity problems in the context of a bivariate system of linear equations. Section

3 presents applications and posterior simulation strategies for univariate (nonlinear) latent vari-

able models, including the probit, logit, tobit and ordered probit specifications. Section 4 extends

these approaches to the multivariate case and considers the analysis of treatment effects models

and multinomial and multivariate probit models. Finally, section 5 briefly reviews basic Bayesian

approaches to the analysis of duration data, and the paper concludes with a summary in section 6.

2 Linear Models

The linear regression model is central to microeconometrics, and so it seems natural to begin our

review of Bayesian microeconometrics with an investigation of this model. We start by discussing

Bayesian inference in the linear regression model under ideal conditions. While a careful under-

standing of this model is surely useful in its own right, what is learned from analysis of the linear

model will also prove useful when estimating generalized models, like those of sections 3 and 4,

that will be linear in suitably defined latent data.

2.1 Bayesian Analysis of the Linear Regression Model

Before discussing such generalizations, we first consider a standard regression model of the form

yi = xiβ + ui, ui|X, σ2 iid∼ N (0, σ2), i = 1, 2, . . . , n, (1)
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where xi is a 1× k vector of covariate data, yi is a scalar outcome of interest, β and σ2 are a k× 1

vector of regression parameters and a scalar variance parameter, respectively, and

X ≡


x1

x2
...
xn

 .
The likelihood is derived from (1), and specification of the model is completed upon selecting a

prior for the parameters β and σ2. To this end, we choose proper priors of the forms:

β|σ2 ∼ N
(
µβ, σ

2Vβ
)

(2)

σ2 ∼ IG
(a

2
, b
)
, (3)

that is, a conditional normal prior for the regression coefficients and an inverse gamma prior for

the variance parameter.2 The hyperparameters µβ,Vβ, a and b are known and selected by the

researcher.

With respect to the prior, it is often selected to be conjugate (meaning that posteriors in the

same distributional family are produced), as will be the case for (2)-(3), primarily for reasons of

computational tractability [see, e.g., (Bernardo and Smith 1994; Poirier 1995)]. The adoption of

conjugate priors can also be viewed as the addition of “fictitious” sample information to the analysis

that is combined with the data in exactly the same way that additional (real) sample information

would have been combined. Thus, conjugate priors enable the researcher to directly assess the

informational content of the prior in terms of equivalent sample information - a useful result in

practice, if for no other reason than to potentially mitigate concerns about the influence of the

prior.

Within a given class of priors it remains, of course, to choose the hyperparameters. This decision

can potentially be guided based upon the findings of past research, when available. While it

may be difficult in general for the researcher to elicit her prior beliefs regarding unobservable

parameters when such information does not exist, a useful exercise is to think about implications

of the prior on the prior predictive, p(y) =
∫
p(y|β, σ2)p(β, σ2)dβdσ2, which is something the

researcher is probably informed about. Here, y = ( y1 y2 · · · yn )′ and we will discuss more

2In this chapter we follow the general conventions of the Handbook and parameterize the inverse gamma as follows:
x ∼ IG(c, d) ⇒ p(x) ∝ x−(c+1) exp(−d/x), c > 0, d > 0, x > 0. For c > 1 it follows that E(x) = d(c − 1)−1 and, for
c > 2, Var(x) = d2[(c− 1)2(c− 2)]−1.
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on the calculation of p(y) below. Finally, it may also be tempting to simply use improper priors in

practice, as they appear to be the closest approximation to letting the data completely speak for

itself. Doing so is not without problems, however, as marginal likelihoods are generally no longer

well-defined, improper priors can be unexpectedly informative for functions of the parameters, and

marginalization paradoxes can occur. In this chapter, we simply employ conjugate (or conditionally

conjugate) priors and in the limited space available focus on issues of implementation and posterior

simulation rather than prior selection. Interested readers can specify their own priors, of course,

and slightly modify the code provided to see how results change.

2.1.1 Marginal Posteriors, Conditional Posteriors and Posterior Predictive Distribu-
tions

The prior and likelihood combine via Bayes’ Theorem to yield the joint posterior, up to a constant

of proportionality. Applying this general result to our linear regression model, we obtain:

p(β, σ2|y) ∝ p(β, σ2)p(y|β, σ2), (4)

without the conditioning on X explicitly denoted. Though (4) will be tailored to the case of linear

regression in this section, it also summarizes the general process of Bayesian learning, as priors

combine with the likelihood to form posterior distributions for the model parameters. For low

dimension problems, the right-hand side of (4) can be plotted to visualize how prior beliefs have

been updated from the data. When the dimension of the parameter vector is very low, standard

numerical integration routines such as Simpson’s rule or Gaussian quadrature can be employed to

approximate the normalizing constant of (4) and thereby plot a proper joint posterior density.

When the dimension of the parameter space is moderate or large and the structure of the posterior

distribution is not simple, however, it becomes far more difficult to visualize interesting features of

the posterior surface and direct calculation of the normalizing constant using standard methods is

no longer possible. As many of the chapters of this volume describe, it is often possible, however,

to simulate draws from (4) and use these draws to calculate posterior quantities of interest.

In the case of the linear regression model described here, such numerical methods are not required

as the priors in (2)-(3) combine nicely with the likelihood function, and all of the requisite posterior

densities are available in closed form. To see this, suppose that the objects of interest happen to
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be the regression coefficients β.3 To this end, one would like to report posterior summary statistics

such as posterior means or posterior standard deviations for the elements of the regression coefficient

vector.

A step in this direction leads us to consider the posterior conditional β|σ2,y. This is obtained

upon noting that its density is proportional to that of the joint posterior β, σ2|y in (4) and then

completing the square in β to obtain [e.g., (Lindley and Smith 1972)]:

β|σ2,y ∼ N
(
µβ|y, σ

2Vβ|y
)

(5)

where

Vβ|y =
(
X′X + V −1

β

)−1
and µβ|y = Vβ|y

(
X′y + V −1

β µβ

)
. (6)

The dependence of this density on σ2 is rather undesirable, however, as we seek to report pos-

terior statistics about β that do not require such conditioning on unobservables. The Bayesian

prescription is clear: simply marginalize the nuisance parameter out of the problem, or obtain:

p(β|y) =
∫ ∞

0
p(β|σ2,y)p(σ2|y)dσ2. (7)

The first term within the integral has been determined, as in (5), and it remains to calculate the

marginal posterior for the variance parameter, p(σ2|y). This quantity can be obtained by starting

with the joint posterior p(β, σ2|y) in (4), completing the square in β, recognizing the resulting

quadratic form in β as being part of a multivariate normal kernel for β, and then integrating over

the multivariate normal. Doing so gives:

σ2|y ∼ IG
(
n+ a

2
, b̃

)
, (8)

where

b̃ =
[
b+

1
2

(
SSE + (µβ − β̂)′

[
Vβ + (X′X)−1

]−1
(µβ − β̂)

)]
, (9)

with

β̂ ≡ (X′X)−1X′y and SSE ≡ (y −Xβ̂)′(y −Xβ̂). (10)

Equation (8), of course, is interesting in its own right as it can be used to calculate marginal

posterior statistics for the variance parameter σ2, using known properties of the inverse gamma
3Though it is convention in the profession to at least report a table of coefficient posterior means and standard

deviations, and we tend to follow this convention in this chapter, parameters themselves rarely tell the whole story.
The examples provided in the following subsections illustrate how quantities of interest are commonly functions of
the parameters, and how posterior simulations can be easily used to make inference regarding such quantities.
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distribution. Equations (5) and (8) also reveal that the prior in (2)-(3) is conjugate, as originally

asserted, since the prior and posterior are of the same distributional family. For our purposes here,

the result in (8) can also be substituted into (7) and the necessary integration performed to obtain

the marginal posterior for β. By doing so, we obtain:4

β|y ∼ t(µβ|y, [2b̃Vβ|y]−1, n+ a), (11)

a multivariate t density with mean µβ|y (for n + a > 1) and variance (n + a − 2)−12b̃Vβ|y =

E(σ2|y)Vβ|y (for n + a > 2), with both µβ|y and Vβ|y being defined in (6). The parameter b̃

is defined in (9) as the second parameter of the IG density. The density in (11) can be used to

calculate posterior means, posterior standard deviations, optimal point and interval estimates [see,

e.g., (Poirier 1995: Chapters 6 and 9)] or other desired quantities for the regression parameters β.

Apart from estimation, we would also like to use our linear regression framework for two additional

purposes: prediction and model comparison. In terms of the latter, marginal likelihoods [see,

e.g., (Chib 2010) of this volume] are often calculated and Bayes factors and/or posterior model

probabilities reported to compare models or average model-specific posterior predictions. With the

priors employed in (2)-(3) together with our normal sampling model, the marginal density of the

data y is also available analytically (e.g., Poirier 1995):

y ∼ t
(
Xµβ,

[
2b
(
In +XVβX′

)]−1
, a
)
. (12)

Equation (12), when evaluated at the observed sample of data yo, provides the marginal likelihood,

which provides a vehicle for model comparison, selection and averaging. (Chib 2010) of this volume

provides many more details surrounding the calculation and use of marginal likelihoods in practice

and we refer the interested reader there for further details.

In terms of prediction, consider a future, out-of-sample value yf , presumed to be generated by the

model in (1):

yf = xfβ + uf , uf |X,xf , σ
2 ∼ N (0, σ2). (13)

The posterior predictive density for yf (given values of the covariates xf ) is obtained as:

p(yf |xf ,y) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ ∞
0

p(yf |xf ,β, σ2)p(β, σ2|y)dσ2dβ, (14)

4We, again, employ a parameterization of the multivariate t distribution that is consistent with the usage in this
Handbook. Specifically, for a k × 1 vector x, writing x ∼ t(µ,V , ν) implies p(x) ∝ [1 + (x− µ)′V (x− µ)]−(k+ν)/2.
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noting that the future outcome yf is independent of the past outcomes y, given the covariates xf
and parameters β and σ2. Methods similar to those used in deriving (11) produce:

yf |xf ,y ∼ t
(
xfµβ|y,

[
2b̃(1 + xfVβ|yx′f )

]−1
, n+ a

)
, (15)

which can be used to make point, interval or other predictions regarding out-of-sample outcomes.

The following example illustrates how such results can be used in practice.

2.1.2 An Illustrative Application with (Log) Wage Data

To illustrate how Bayesian calculations are carried out in this simplest specification, we obtain

a sample of n = 1, 645 observations on white males in the U.S. in 1993. Our data, taken from

the National Longitudinal Survey of Youth (NLSY), contain information on wage outcomes for

all of these respondents. The dependent variable we employ is the natural logarithm of hourly

wages received in 1993, measured in 1993 dollars. Other demographic variables, included as right-

hand-side covariates in our analysis, include years of schooling completed (EDUCATION), a test

score variable (SCORE), years of schooling completed by the respondent’s parents (MOMED

and DADED) and number of siblings (NUMSIBS) of the respondent. The variable SCORE

is constructed from a battery of tests administered to the NLSY participants during the fall and

summer of 1980, and is standardized to have a sample mean of zero and sample variance equal to

unity.

While analytic results are available for the β and σ2 marginal posteriors, we employ simulation

methods to generate draws from the joint posterior p(β, σ2|y) and use these simulations to calculate

posterior quantities of interest. Sampling is conducted using the method of composition, first

drawing from the marginal posterior for the variance parameter, σ2|y in (8) and then sampling from

the conditional posterior for the regression parameters, β|σ2,y in (5). This is repeated 25,000 times,

producing 25,000 iid samples from the joint posterior p(β, σ2|y). Monte Carlo simulation methods

are employed as their use will easily enable us to calculate posterior statistics for economically

relevant (nonlinear) hourly wage gaps of the form:

∆(β, σ2;xl,xh) = exp
(
xhβ +

σ2

2

)
− exp

(
xlβ +

σ2

2

)
(16)

in addition to simple posterior statistics regarding the parameters β and σ2.
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Equation (16) represents the expected hourly wage gap between persons of characteristics xh and

xl. In practice, the two sets of covariates are distinguished by evaluating xh at a “higher” education

category and xl at a lower education category, while the remaining values in both covariate vectors

are fixed at sample means. We focus in particular on the B.A./ High School wage gap, and the

Ph.D./ High School wage gap. For the first of these cases, xh sets EDUCATION = 16 while in

the second, xh sets EDUCATION = 20. For the High School comparison group, xl sets education

equal to 12 each time.

The ease with which our posterior simulations can be used to calculate quantities like (16) should not

be overlooked, as classical approaches to inference, via delta-method asymptotics or the bootstrap,

seem to be significantly more difficult to implement. For example, a point estimate (posterior

mean) of (16) can be readily calculated as

∆̂(xl,xh) =
1
R

R∑
r=1

∆(β(r), σ2,(r);xl,xh), (17)

with β(r) and σ2,(r) denoting the rth simulation from the joint posterior and R denoting the to-

tal number of simulations. A point estimate of the posterior standard deviation of (16) can be

calculated in an analogous way, using the simulations produced from the Monte Carlo sampling

scheme.

Posterior summary statistics associated with two different ∆ parameters and the regression coeffi-

cients are reported in Table 1. These results are obtained upon setting a = 6, b = 1, µβ = 0k and

Vβ = 10Ik, providing a proper yet reasonably uninformative prior.

Table 1: Posterior Statistics From Wage Data Application
Variable / Parameter Posterior Mean Posterior Std. Dev.
Constant 1.79 .102
EDUCATION .044 .007
SCORE .096 .017
MOMED .003 .006
DADED .007 .005
NUMSIBS .004 .006
BA/HS GAP 2.51 .406
Ph.D./HS GAP 5.51 .971

The entries of Table 1 have the expected signs and posterior means appear reasonable in magnitude,

with education and test scores clearly having a meaningful impact on earnings. On average (and in
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1993 dollars), those graduating with a four-year degree earn about $2.51 more per hour than high

school graduates while those with a Ph.D. earn about $5.51 more per hour than their high school

counterparts.

Rather than simply looking at differences in means, one can also obtain entire predictive wage

distributions. To illustrate how this is done, Figure 1A plots posterior predictive hourly wage

densities for two different hypothetical individuals - an individual with a high school degree who is

otherwise “average” (that is, all other covariates are fixed at sample mean values), and a similarly

average individual with a BA degree.
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Figure 1A: Posterior Predictive Hourly Wage Densities

Letting wf = exp(yf ) denote the hourly wage for a future or out-of-sample individual with charac-

teristics xf , these figures can be obtained by noting:

p(wf |xf ,y) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ ∞
0

p(wf |yf )p(yf |xf ,β, σ2)p(β|σ2,y)p(σ2|y)dσ2dβ (18)

where superfluous information has been dropped from the conditioning above, when applicable.

Although evaluation of the multiple integral in (18) may seem like a daunting task, it is useful

to pause and emphasize how simulation methods can be employed to generate draws from this

predictive density. To begin, samples from p(σ2|y) and p(β|σ2,y) are obtained by first drawing

from (8) and then (5) immediately after, updating the conditioning in (5) to reflect the σ2 just

generated from (8). Let us denote this posterior sample at iteration r as (σ2,(r),β(r)). A log
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wage simulation y(r)
f is then produced by drawing from the normal sampling model in (13), setting

y
(r)
f = xfβ

(r) + σ(r)z, where z ∼ N (0, 1). Finally, an hourly wage simulation w
(r)
f is produced

by simply exponentiating the log wage simulation y
(r)
f , given that the conditional distribution is

degenerate, i.e., p(wf |yf ) = I(wf = exp[yf ]). This produces a set of draws from the posterior

predictive density of hourly wages. Therefore, draws from (18) only require a few additional lines

of code beyond what have already been written to fit the model, and obtaining them does not

require change of variables analytics or large-sample approximations for inference.

In Figure 1A we generate 25,000 simulations from the posterior predictive density (18) in this

manner and smooth these simulations via a kernel method to plot the posterior predictive hourly

wage densities for the High School graduate and B.A. groups. In these calculations all covariates

other than education are fixed at their sample mean values. The posterior simulations can also

be used to directly calculate posterior predictive means, standard deviations, etc., as well as other

economically relevant quantities such as the probability of being in poverty [e.g., (Geweke and

Keane 2000)], and we briefly take up the last of these in the context of our application. Specifically,

we calculate Pr(wf < $5 |y, Ed = 12, X−Ed = X−Ed) ≈ .05 and Pr(wf < $5 |y, Ed = 16, X−Ed =

X−Ed) ≈ .025 where Ed denotes education, X−c denotes all variables other than c and X denotes

the sample average. The value $5 was chosen as an approximate hourly wage consistent with the

poverty threshold at full-time employment.5

2.2 Heteroscedasticity in Linear Models

Despite the prominence of heteroscedasticity in the theory and practice of frequentist economet-

rics, and its ubiquitousness in classical graduate econometrics texts, the role of heteroscedasticity

in Bayesian treatments is comparatively minor, and its appearance as a component of Bayesian

empirical work seems the exception rather than the rule. Although several explanations exist for

the differential treatment of this issue among frequentists and Bayesians, it remains rather strange,

and potentially troubling, that heteroscedasticity seems to garner comparatively little attention.

Of course, the issue of heteroscedasticity has not been completely neglected among Bayesians.
5The U.S. Census Bureau reports a 1993 poverty threshold for a two person family with one child less than 18

years of age equal to $9,960. Using 2,000 hours as the number of annual hours worked for someone engaged in full-
time employment motivates our decision to use $5 as the approximate hourly wage threshold. This is, admittedly, a
simplified calculation and, among other things, assumes no other sources of income for the household.
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(Poirier 2008), for example, builds upon (Lancaster 2003) and seeks to reconcile (White’s 1980)

heteroscedasticity-robust estimation of the OLS covariance matrix within the Bayesian framework.6

In a different spirit, which seeks to employ Bayesian methods to flexibly model the variance function,

(Yau and Kohn 2003) consider analysis of a normal linear regression model with splines employed

for both the mean and variance functions and variable selection used to determine key terms

in the variance function. (Leslie, Kohn and Nott 2007) present a related approach, where the

error distribution is modeled nonparametrically, parameteric forms are specified for the mean and

variance functions, and variable selection methods are used to select appropriate covariates in both

sets of functions. Villani et al (2007), based upon an approach similar to the smoothly mixing

regression model of Geweke and Keane (2007), describe a nonparametric-type approach to the

modeling of heteroscedasticity.

Although these papers offer valuable contributions, the norm in applied work appears to remain

one of conditional homoscedasticity. With this in mind we describe in the following section a simple

generalization of this assumption which permits a multiplicative, parametric form of heteroscedas-

ticity. When such a specification is not adequately flexible, the reader is invited to see the references

listed above for more advanced alternatives.

2.2.1 Posterior Simulation in a Model of Parametric Heteroscedasticity

To provide some initial guidance and a simple first step toward handling linear models in the

presence of heteroscedasticity, we consider analysis of the following specification:

yi = xiβ + εi, εi|X,Z,α
ind∼ N [0, exp(ziα)] (19)

where it is understood that an intercept is included in zi and that zi can be the same as, or

potentially different from xi. We complete the specification of our model in (19) with priors of the

forms:

β ∼ N (µβ,Vβ) (20)

α ∼ N (µα,Vα). (21)
6Interestingly, the first sentence of (Poirier 2008) frames the exercise well, as it reads: “Often, researchers find it

useful to recast frequentist procedures in Bayesian terms, so as to get a clear understanding of how and when the
procedures work.”
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These priors in (20) and (21) together with the likelihood implied by (19) yield a posterior of the

form:

p(α,β|y) ∝ p(β)p(α)

[
n∏
i=1

exp(ziα)

]−1/2

exp

(
−1

2

n∑
i=1

(yi − xiβ)2

exp(ziα)

)
. (22)

We propose a Metropolis-within-Gibbs algorithm [see (Chib 2010) of this volume for further details]

to generate draws from this posterior density.7

To this end, we first recognize that:

β|α,y ∼ N (Dβdβ,Dβ) , (23)

where

Dβ =
(
X′W−1X + V −1

β

)−1
, dβ = X′W−1y + V −1

β µβ, (24)

and

W = W (α) ≡ diag{exp(ziα)}. (25)

As for the sampling of α|β, y we note from (22),

p(α|β,y) ∝ p(α)

[
n∏
i=1

exp(ziα)

]−1/2

exp

(
−1

2

n∑
i=1

(yi − xiβ)2

exp(ziα)

)
, (26)

which is not of a known form. We employ a random walk Metropolis-within-Gibbs step to generate

draws from (26). Specifically, we first sample a candidate α∗ from a multivariate normal proposal

density:

α∗ ∼ N (α(r), c2Σα) (27)

where the (r) superscript denotes the current value of the chain at iteration r. Implementation of

our method requires choosing the scale matrix Σα as well as the “tuning parameter” c2, the latter

of which will be chosen to optimize the mixing of the simulations within this scheme for variance

parameter simulation. Following (Harvey 1976), we select the scale matrix by first noting

ε2i
exp(ziα)

≡ νi, νi ∼ χ2
1, (28)

suggesting that a point estimate of α can be obtained from a regression of log ε2i (which is known,

given β) on zi.8 A reasonable choice for Σα, then, is the variance-covariance matrix from this
7(Tanizaki and Zhang 2001) provide a similar analysis to the one presented here.
8In practice, we start the MCMC chain by first running an OLS regression of yi on xi to obtain the initial value

of β. We then run the above regression of log ε2i on zi to obtain an initial value of α, adding 1.27 to the intercept
parameter. The adjustment to the intercept is due to the fact that the mean of log νi is (approximately) -1.27 instead
of zero.
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regression, or,

Σα = 4.93(Z′Z)−1 (29)

where the value 4.93 denotes the approximate variance of log νi. The candidate α∗ generated from

the proposal is then accepted with probability

min

{
1,

p(y|α = α∗,β = β(r))p(α∗)
p(y|α = α(r),β = β(r))p(α(r))

}
≡ min

{
1, exp[g(α∗,α(r),β(r))]

}
, (30)

where

g(α∗,α(r),β(r)) = −1
2

[
ι′nZ(α∗ −α(r)) +

∑
i

(yi − xiβ(r))2
(

exp(−ziα∗)− exp(−ziα(r))
)

(31)

+(α∗ − µα)′Vα−1(α∗ − µα)− (α(r) − µα)′Vα−1(α(r) − µα)
]
,

and ιn denotes an n × 1 vector of ones. If the candidate α∗ is accepted, then α(r+1) = α∗.

Otherwise, the chain remains at its current value, setting α(r+1) = α(r).

2.2.2 Adding Parametric Heteroscedasticity to the Log Wage Data Application

Using the algorithm above we estimate the heteroscedastic regression model employing the wage

data of section 2.1.2. All covariates in xi are included as covariates in zi and we fit the model

by sampling successively from the conditional posteriors in (23) and (26), discarding the first

10,000 of 100,000 simulations as the burn-in period. For our priors, we set µβ = µα = 0k and

Vβ = Vα = 100Ik.

The tuning parameter c2 is set equal to 1/2, which was chosen experimentally and in a rather

ad hoc fashion, and results in an acceptance rate of approximately 23% in the M-H (Metropolis-

Hastings) step. This roughly matches the rule of thumb of (Gelman, Roberts and Gilks 1996; Koop

2004: section 5.5.2), suggesting that random walk chain acceptance rates near 25 percent in large

dimension problems may offer reasonable targets. Of course, interest should ultimately center on

the numerical precision of the simulation-based estimate (which will vary with different choices of

c) as well as its precision relative to what we could have obtained had iid draws been employed.

To this end, we report in Table 2 inefficiency factors associated with alternate choices of c2, and

specifically consider c2 ∈ {.1, .5, 1} for illustration purposes. As shown in that table, the 25% target

(which we come close to with c2 = .5, whereas c2 = .1 and c2 = 1 yield acceptance rates of 56%
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and 10%, respectively) has steered us in the right direction, and produces the lowest inefficiency

factors among this set. In terms of the precision of posterior mean estimates of the regression

parameters β, these are largely unaffected by the choice of c and the level of precision essentially

equals what we would have obtained with an iid sample of equal size. The numerical precisions

of our simulation-based estimates of E(αj |y) are rather low relative to those obtained under iid

sampling, however, as the inefficiency factors with c2 = .5 are near 20.9

Posterior means and standard deviations of β and α are also provided in the table below. As

the reader can see, posterior means and standard deviations of the regression parameters are only

slightly changed relative to those reported in Table 1. In addition, we find some evidence that higher

education increases conditional log wage variability, while the other covariates do not appear to

play a strong role in explaining variation in log wages.

Table 2: Heteroscedastic Wage Application
Variable β Parameters α Parameters

Post. Post. Ineff. Factors (c2) Post. Post. Ineff. Factors (c2)
Mean Std. .1 .5 1 Mean Std. .1 .5 = 1

Constant 1.79 .103 1.12 1.18 1.19 -1.97 .287 33.83 21.52 28.27
EDUCATION .045 .007 1.09 1.05 1.02 .047 .019 34.92 21.56 30.80

SCORE .094 .017 1.10 1.16 1.15 -.009 .048 34.00 21.59 30.45
MOMED .002 .006 1.03 1.04 1.05 -.012 .016 30.58 19.97 28.37
DADED .007 .005 1.01 1.02 1.00 .012 .013 32.27 22.07 28.57

NUMSIBS .004 .007 1.01 1.00 1.00 .007 .019 31.20 20.16 28.46
BA / HS GAP 2.97 .47

Ph.D. / HS GAP 6.77 1.22

Like the homoscedastic version of this model in section 2.1.2, we can also examine posterior dis-

tributions of various hourly wage gaps, though now we additionally account for heteroscedasticity.

Specifically, we consider:

∆(β,α;xl,xh, zl, zh) = exp
(
xhβ +

exp(zhα)
2

)
− exp

(
xlβ +

exp(zlα)
2

)
(32)

and obtain posterior means and standard deviations of ∆ for the same choices that were made in
9This implies that the numerical standard error of the MCMC-based estimate of α is (approximately) 4.64 ≈

√
21.5

times as large as the numerical standard error that would have been attained under iid sampling. Said differently, in
order to achieve the sample level of numerical precision for the estimated mean of α that we would get with m iid
draws, we would need to run the sampler for M ≈ 21.5m iterations.
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Figure 1B: Posterior Predictive Hourly Wage Densities

section 2.1.2. Table 2 reveals that point estimates of the wage gaps increase (relative to those of

Table 1) when accounting for heteroscedasticity.

Lastly, we present in Figure 1B a plot of the hourly wage densities obtained within our heteroscedas-

tic regression model along with those previously reported in Figure 1A under homoscedasticity. As

the figure reveals, for high school graduates, little difference emerges between the posterior predic-

tive densities. For the BA group, however, we begin to see the increased variance associated with

the heteroscedastic predictive density, though these two curves are, again, rather similar. Anal-

ogous poverty probability calculations also remain nearly the same for the high school graduate

group ( Pr(wf < $5 |y, Ed = 12, X−Ed = X−Ed) = .047) and have slightly increased for the BA

group ( Pr(wf < $5 |y, Ed = 16, X−Ed = X−Ed) = .032).

2.3 A Linear Model with a Changepoint

The previous section illustrated the relative ease with which MCMC methods can be used to ac-

commodate a departure from standard assumptions of the classical linear regression model. Other

straightforward extensions include the imposition of inequality restrictions on the elements of β

[e.g., (Geweke 1996b)] or analysis of multivariate linear outcomes, such as the Seemingly Unrelated

Regressions (SUR) Model [e.g., (Zellner 1962; Percy 1992)]. We do not discuss these particular
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extensions in this chapter, but turn our attention instead to an alternate generalization by consid-

ering a linear regression model with a single, unknown changepoint. The generalizations of such a

model frequently appear in time series econometrics (Geweke and Terui 1993). Apart from simply

keeping with our theme of generalizing the standard linear model, the methods described in this

section also have considerable value in microeconomic applications - for example, in order to allow

for jumps and nonlinearities in a regression function, or as a stepping stone toward understanding

other related methods for nonparametric regression [e.g., (Smith and Kohn 1996)], as the resulting

posterior simulators are highly similar to the one described here.

Let us switch notation slightly and suppose that a scalar outcome of interest, yt, t = 1, 2, · · · , T,
can be expressed as

yt|α,θ, σ2, λ,X1,(λ),X2,(λ) ∼
{
N (xtα, σ2) if t ≤ λ
N (xtθ, σ2) if t > λ,

(33)

where xt denotes a 1× k vector of characteristics at time t and Xj,(λ), for j = 1, 2, assembles the

covariate data for each “regime”:

X1,(λ) ≡


x1

x2
...
xλ

 , and X2,(λ) ≡


xλ+1

xλ+2
...
xT

 . (34)

The parameter λ is a changepoint or breakpoint - for periods until λ, one regression is specified to

generate y, and following λ, a new regression is specified to generate y. For simplicity, and with

an eye toward our application in the following section, we suppose that the error variance in each

regime is the same.

The priors for β = [α′ θ′]′ and σ2 are the same as those given in (2) and (3). The changepoint λ

is integer-valued and we choose a prior that specifies equal probability over each discrete value in

the support. For example, one could specify

p(λ) =
1

T − 1
I(λ ∈ {1, 2, . . . , T − 1}), (35)

which imposes that at least one observation belongs to each regime.
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2.3.1 Posterior Simulation

Stacking observations over i, we can write:

y = X(λ)β + ε, ε|X, λ, σ2 ∼ N(0, σ2In), (36)

where X(λ) is a block diagonal matrix with X1,(λ) in the upper block and X2,(λ) in the lower block.

The assumptions of our model imply:

p(β, σ2, λ|y) ∝ p(β|σ2)p(σ2)p(λ)φ(y|X(λ)β, σ
2In). (37)

We use the method of composition, as discussed in section 2.1.2, to directly generate samples from

the joint posterior above, following the results of (Chin Choy and Broemeling 1980). This proceeds

by drawing (in order) from λ|y, σ2|λ,y and β|σ2, λ,y.

With respect to the first of these, one can show:

p(λ|y) ∝ p(λ)|D(λ)|−1/2

[
b+

1
2

(y −X(λ)µβ)′D−1
(λ)(y −X(λ)µβ)

]−(n+a)/2

(38)

with

D(λ) ≡ In +X(λ)VβX
′
(λ). (39)

Since the prior for λ is discrete-valued, one can calculate the (unnormalized) ordinates above for

λ ∈ {1, 2, . . . , T − 1}, normalize these by dividing through by the sum of all such values, and

then obtain a draw from the resulting discrete distribution.10 The posterior conditional σ2|λ,y is

identical to that in (8), recognizing that X is now X(λ) and must be re-calculated at each iteration

of the algorithm. Similarly, β|λ, σ2,y is given in (5) and (6) where X is, again, replaced with X(λ).

2.3.2 Example with U.S. Annual Temperature Data

In what follows we illustrate use of the changepoint model using a sample of annual U.S. temperature

data. Specifically, we obtain information on annual temperatures in the United States over the

period 1895-2006, providing n = 112 data points.
10To avoid calculating determinants and inverses of n−dimensional matrices in this step, note D−1

(λ) = In −
X[X′X + Vβ

−1]−1X ′ and |D(λ)| = |Vβ||Vβ−1 +X′X|.
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In providing this example we confess to know little (if anything) about the science of climate change.

We do not introduce this example to either support or cast doubt on theories of global warming,

but simply include it with the hope that the reader may appreciate the generality and usefulness

of the model considered in this section as well as the relative ease with which simulation methods

can be used to estimate its parameters.

We suppose that temperature patterns over this period may have a single break date and seek to

learn about the location of this break as well as its magnitude. Although the simplicity of this

model likely discredits it as an accurate descriptor of the evolution of U.S. temperature, it is worth

noting that similar models with break points have been considered by others in the field, including

(Ivanov and Evtimov 2009; Stockwell and Cox 2009) and that this issue has also been investigated

by economists (e.g., Fomby and Vogelsang 2002) employing related models that potentially include

breaks (Vogelsang and Franses 2005). We consider below a restricted version of the changepoint

model discussed earlier in this section, tailored to our application, and specify:

yt = β0 + β1t+ β2(t− λ)+ + εt, t = 1, 2, . . . , T (40)

= xt,λβ + εt, εt|X, λ, σ2 iid∼ N (0, σ2) (41)

or stacked over t, we have, identical to (35),

y = X(λ)β + ε, ε|X, λ, σ2 ∼ N(0, σ2In), (42)

where

z+ ≡ max{0, z}, xt,λ = [1 t (t− λ)+], β =

 β0

β1

β2

 , and X(λ) ≡


x1,λ

x2,λ
...

xT,λ

 . (43)

This specification allows for different slopes before and after λ, but does not allow for a discrete

jump in temperatures before and after the break. While such jumps may exist, we abstract from this

possibility here and impose a smooth function relating year to expected temperature. Moreover,

we do not consider the possibility of multiple breaks or potentially different variances across the

regimes. Models of multiple breaks can be found, for example, in (Chib 1998; Koop and Potter

2007), among others. Finally, we restrict λ ∈ {3, 4, . . . , T − 3}, specify equal prior probability over

each element of this set, and choose β0

β1

β2

 ∼ N
 52

0
0

 ,

 10 0 0
0 10 0
0 0 10

 , (44)
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σ2 ∼ IG(3, 1) (45)

as our remaining priors. The sampling procedure of section 2.3.1 is employed to generate 10, 000

simulations from the joint posterior in (37), which are used to calculate the quantities in Figures 2

and 3.

Figure 2 plots the posterior mean of the regression function relating time to average temperature.

To do this we calculate the conditional mean function X(λ)β for each simulation from the joint

posterior. The collection of these functions are then averaged to obtain the posterior mean, which

is presented in the figure along with the scatterplot of the raw data. Importantly, note that this

approach accounts for uncertainty regarding the location of the changepoint and thus, unlike a clas-

sical method that would condition on a point estimate of the changepoint’s location, is smooth and

not necessarily “kinked.” Again, it is worthwhile to emphasize how uncertainty in the location of

the changepoint is easily accounted for when using our posterior simulations to calculate quantities

of interest.
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Figure 2: Raw temperature data and Posterior Mean

Figure 3 plots posterior simulations associated with the changepoint λ. The figure clearly shows an

update of our uniform prior to a posterior suggesting that the changepoint has occurred since 1970

with a mode occurring in the late 1990’s. This offers suggestive evidence that is broadly consistent

with the global (or, at least U.S.) warming message.
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Figure 3: Posterior Changepoint Frequencies

2.4 Hierarchical Linear Models

Many data sets commonly used in applied work, including the National Longitudinal Survey of

Youth (NLSY), Panel Study of Income Dynamics (PSID) and the Survey of Income and Program

Participation (SIPP) are longitudinal in nature, tracking behaviors, outcomes and responses of a

given set of individuals over a period of time. In a similar spirit, other data sets are characterized

by (and the models employed should account for) clustering - where the outcomes of particular

units are likely to be correlated with one another, given the sampling scheme or structure of the

problem at hand. For example, wage outcomes are likely to be correlated across individuals within

a given family, and student achievement scores are likely to be correlated across students within

the same school. In this section we investigate hierarchical models for application to these types of

data.

The literature on hierarchical models in Bayesian work is voluminous, originating with Lindley and

Smith (1972) and Smith (1973) on the use of hierarchical priors. Recent Bayesian econometrics

texts also highlight the importance of such models in applied work, (e.g., Geweke 2005, Section

3.1; Rossi, Allenby and McCulloch 2005, Chapter 5; Koop, Poirier and Tobias 2007, Chapter

12). (Geweke 2005) notes the connection between models with multilevel (i.e., hierarchical) priors
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and latent variable specifications with conventional priors, while (Rossi, Allenby and McCulloch

2005) note that individual-level parameters in these types of analyses may be of primary interest

and should not be simply regarded as nuisance parameters and marginalized out of the problem.

Later in this chapter, following Geweke and Keane (2001), we unite a variety of popular univariate

and multivariate nonlinear models within an encompassing hierarchial structure. In this section

our goal is to briefly review how the linear regression framework of the previous sections can be

generalized to accommodate the correlation patterns present in such data. We do so by considering

the following basic hierarchical specification:

yit = β0i + xitβ1i + εit, i = 1, 2, . . . , n, t = 1, 2, . . . , Ti, (46)

or

yit = zitβi + εit (47)

with zit = [1 xit] and βi = [β0i β
′
1i]
′. In the above, i indexes outcomes for unit (or “individual”) i

and t is typically interpreted as time index. In this formulation we permit unit-level variation in both

intercepts and slopes. This level of generality is seemingly reasonable yet somewhat uncommon, as

much of the applied microeconometric literature finds it sufficient to impose homogeneity in slopes,

(i.e., β1i = β1) and to permit variation only through unit-level intercepts. Such analyses follow

as a restricted case of the analysis presented here. Finally, we also consider the general case of

an unbalanced panel while simultaneously abstracting from related issues such as augmenting the

model to include missing outcomes or covariate data.

We add structure to the model by supposing that the unit-level parameters are drawn from a

common distribution. To this end, we specify a prior of the form:

βi|β,Σ
ind∼ G(βi|β,Σ), (48)

where the common parameters β and Σ are of interest, and are objects we seek to learn about

from the given data. The model is completed by adding priors for the common parameters β and

Σ and a prior for the variance parameter σ2.

This formulation of the model appears rather similar to classical random effects approaches where a

distribution, like that in (48), is specified yet is typically designated as a “population distribution”

characterizing variation in tastes. Unlike the Bayesian approach to this model, however, the unit-

level parameters βi from the frequentist perspective are commonly regarded as nuisance parameters
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and are integrated out of the conditional likelihood. In many applications the βi are, however, of

primary interest and in such situations the Bayesian methodology seems particularly attractive, as

the unit-level parameters are sampled in the course of implementing the posterior simulator. The

adoption of the prior in (48) also imparts a form of shrinkage in the estimation of the βi and helps

to reduce concerns regarding overfitting in standard fixed effects modeling. Our representation of

the model also assumes independence between the parameters of (48) and variables in xit, although

such correlations can be modeled in generalizations of this specification.

2.4.1 Posterior Simulation in the Gaussian Hierarchical Model

To fix ideas, let us suppose that εit|Z, σ2 iid∼ N (0, σ2). Extensions of the model to allow for unit-

specific variance parameters or non-normality can also be handled, when desired. In addition, we

employ specific priors of the forms:

βi|β,Σβ
iid∼ N (β,Σβ) , i = 1, 2, . . . , n (49)

β ∼ N (µβ,Vβ) (50)

Σ−1
β ∼ W

(
[κR]−1, κ

)
(51)

σ2 ∼ IG
(a

2
, b
)
, (52)

with W denoting a Wishart distribution.11 The joint posterior distribution of all parameters of the

model is then:

p
(
{βi}ni=1,β,Σ

−1
β , σ2|y

)
∝ p(σ2)p(β)p(Σ−1

β )
n∏
i=1

[
φ
(
yi|Ziβi, σ

2ITi
)
φ(βi|β,Σβ)

]
, (53)

where yi = [yi1 yi2 · · · yiTi ]
′, y = [ y′1 y′2 · · · y′n ]′, Zi, in a similar manner, stacks the

{zit}Tit=1 into a Ti × k matrix, and βi is a k × 1 vector of parameters.

We generate samples from this joint posterior by employing a blocking step, as described in

(Chib and Carlin 1999). That is, we propose a scheme to sample from the joint conditional

p({βi}ni=1,β|Σ
−1
β , σ2,y) by first drawing from p(β|Σ−1

β , σ2,y) and then drawing (independently)

from the series of conditional posteriors: p(βi|β,Σ−1
β , σ2,y). As such, the sampling of β and {βi}

makes uses of the marginal-conditional decomposition, takes place in a single block and, impor-

tantly, the sampling of β1,β2, . . . ,βn must occur immediately following the sampling of β, with
11We parameterize the Wishart as follows: H ∼ Wk(A, ν) ⇒ p(H) ∝ |H|(ν−k−1)/2 exp[−(1/2)tr(A−1H)] where

H is a k × k matrix.
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no other simulation steps intervening. The sampler is completed by drawing from the complete

posterior conditionals for the variance parameter and inverse covariance matrix.

Noting

yi|β,Σ−1
β , σ2 ind∼ N

(
Ziβ, σ

2ITi +ZiΣβZ
′
i

)
, i = 1, 2, . . . , n, (54)

it follows that

β|Σ−1
β , σ2,y ∼ N (Dβdβ,Dβ), (55)

where

Dβ ≡

[(∑
i

Z ′i[σ
2ITi +ZiΣβZ

′
i]
−1Zi

)
+ V −1

β

]−1

(56)

and

dβ =

(∑
i

Z ′i[σ
2ITi +ZiΣβZ

′
i]
−1yi

)
+ V −1

β µβ. (57)

A sample from the conditional density p({βi}|β,Σ−1
β , σ2,y) will then produce the desired draw

from our joint conditional posterior distribution. Inspection of (53) shows that each of the βi are

conditionally independent a posteriori. Thus, we can independently sample from each conditional

posterior, or specifically, we can independently draw, for i = 1, 2, . . . , n:

βi|β,Σ−1
β , σ2,y

ind∼ N
([
Z ′iZi/σ

2 + Σ−1
β

]−1 (
Z ′iyi/σ

2 + Σ−1
β β

)
,
[
Z ′iZi/σ

2 + Σ−1
β

]−1
)
. (58)

Finally, letting T =
∑n

i=1 Ti we obtain:

σ2|β1,β2, · · · ,βn,y ∼ IG

(
T + a

2
,

[
b+

1
2

n∑
i=1

Ti∑
t=1

(yit − zitβi)2
])

(59)

and the conditional posterior density for the inverse covariance matrix Σ−1
β is

Σ−1
β |β,β1,β2, · · · ,βn,y ∼W

[ n∑
i=1

(βi − β)(βi − β)′ + κR

]−1

, n+ κ

 . (60)

A posterior simulator for this normal hierarchical linear model proceeds by successively sampling

from (55), (58), (59) and (60).
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2.4.2 Two Applications of Hierarchical Linear Modeling

To show how hierarchical models can be estimated in practice we provide two illustrative examples.

The first application has become something of a classic in the MCMC literature (though the appli-

cation itself is, perhaps, rather unappealing), making use of the data set employed in the seminal

study of (Gelfand et al. 1990) that helped to illuminate the benefits afforded by Gibbs sampling

in empirical work. The second application, hopefully more engaging, involves the impact of class

size on student achievement.

Application #1

In our initial application, each of n = 30 rats are weighed at five different points in time, specifically

8, 15, 22, 29 and 36 days since birth. The outcome, yit, denotes the weight of rat i in grams at

date t, while xit simply denotes the time of measurement, and as such, xit = xjt for all i, j.

For our priors, we set

µβ =
[

100
15

]
, Vβ =

[
402 0
0 100

]
, a = 6, b = 40, κ = 5 and R =

[
100 0
0 .25

]
. (61)

Posterior means and standard deviations for a selection of parameters are provided in Table 3

below.

Table 3: Posterior Quantities for a Selection of Parameters
Parameter Post Mean Post Std.
βIntercept 106.6 2.33
βSlope 6.18 .108
Σβ(1, 1) 124.7 42.00
Σβ(2, 2) .277 .087
Σβ(1, 2)/

√
Σβ(1, 1)×Σβ(2, 2) -.126 .210

β0,5 90.73 5.50
β0,30 106.62 5.15
β1,5 6.43 .229
β1,30 6.13 .214

The results suggest that the birth weight of an “average” rat is about 106.6 grams, and the average

weight gained per day is about 6.2 grams. The 5th entry of the table gives the correlation between
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the unit-level intercept and slope parameters. The posterior mean of this correlation is negative,

suggesting a degree of “catching up”- rats that are large at birth tend to have lower growth rates

than rats that are comparably small at birth. The last four entries of the table provide posterior

means and standard deviations of parameters for the 5th and 30th rats. The results here are

consistent with the general pattern in the “population”: rat 5 is smaller at birth than rat 30, but

also has a higher growth rate.

It is also worth noting that our posterior simulator produces draws for each βi and therefore in-

teresting quantities involving comparisons of unit-level parameters can be easily calculated. For

example, we can state: Pr(β1,5 > β1,30|y) ≈ .84, suggesting reasonably strong evidence that the

5th rat possesses a faster rate of growth than the 30th. Quantities like these can be quite useful

in practice, particularly when using a hierarchical model for other, more interesting pursuits. For

example, (Geweke, Gowrisankaran and Town 2003) use a hierarchical model and unit-level pa-

rameter estimates to evaluate and rank the performances of hospitals while (Aitken and Longford

1986; Laird 1989; Li and Tobias 2005) have used them to compare the performances of schools.

Stochastic frontier models [e.g., (Koop et al. 1997; Koop and Steel 2001)] also share a very simi-

lar structure and goal, with one-sided distributions for unit-level parameters commonly employed

to gauge the “efficiency” of cross-sectional units. In these applications, posterior simulations of

the unit-level parameters are quite valuable and can be used to address interesting and relevant

economic questions.

Application #2

In our second application we follow (Krueger 1998; Krueger and Whitmore 2001) and apply our

model to analyze data from Project STAR (Student/Teacher Achievement Ratio). Project STAR

was an experiment in Tennessee that randomly assigned students to one of three types of classes -

small class, regular size class, and regular size class with a teacher’s aide (regular/aide class). In

order to be eligible for participation in the experiment, each school had to be large enough to have

at least three classes per grade, thus enabling all three types of classes to be represented in every

school. The panel used in our application is unbalanced, as some schools have more than three

classes per grade (though all have at least three), and moreover, the number of students within a

given class type is not always constant in the data (for example, some small classes have 15 students

while others have 16). The dependent variable we specify is a measure of student achievement and,

specifically, is the average of a reading percentile score and math percentile score of a Project STAR
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student. There are two treatment variables - a dummy variable indicating whether a student is

assigned to a small class and another indicating assignment to a regular/aide class. The default

category, therefore, is assignment to regular class.

The Project STAR data we use contains 79 participating schools with a total of 5,726 students who

entered the project during kindergarten. The panel is unbalanced, as each school is not represented

by the same number of students. We focus on the achievement measure taken at the end of the

kindergarten year and consider heterogeneity of treatment impacts across schools. Therefore, in

this application of the model in (47), i denotes the school and t no longer represents a time index

but, instead, denotes the student within a school.

As one can see from the estimation results in Table 4, being in a small class is associated with an

expected increase of 5.48 percentile points in the average test score. Furthermore, being assigned

to a regular sized class with a teacher’s aide does not appear to provide any large improvement

on average over assignment to a regular classroom. Importantly, the effects of class size reductions

appear to vary greatly across schools, as reflected in the posterior mean of the square root of the

(2,2) element of Σβ in (49), which is 10.6. As (49) suggests with these values, and our posterior

simulations directly reveal, several schools even show a negative small class effect.

We also note that the correlation among elements of βi are quite strong. The positive correlation

between the small class and regular / aide parameters suggests that schools most inclined to benefit

from smaller classes are also the ones with relatively large benefits to adding an aide to regular sized

classrooms. We also see a rather strong, negative correlation between the school specific intercepts

(regular-sized class parameters) and small and regular / aide parameters. One interpretation of

this result, which seems to be sensible, is that schools whose students score low (high) in regular-

sized classes are the ones that benefit the most (least) from class size reductions. Adoption of the

hierarchical specification to this data reveals not only a sizeable amount of heterogeneity across

schools, but also sheds light on the schools that would be most impacted by changes to class size.
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Table 4: Posterior means, standard deviations and probabilities of being
positive of the parameters
Parameter Post. Mean Post. Std. Pr(· > 0|y)
β0 (intercept) 51 1.82 1
β1 (small class) 5.48 1.44 1
β2 (regular/aide class) 0.311 1.26 0.596√
σ2 22.9 0.221 1√
Σβ(1, 1) 15.2 1.32 1√
Σβ(2, 2) 10.6 1.24 1√
Σβ(3, 3) 8.93 1.14 1

Σβ(1, 2)/
√

Σβ(1, 1)×Σβ(2, 2) -0.454 0.111 0.000125
Σβ(1, 3)/

√
Σβ(1, 1)×Σβ(3, 3) -0.483 0.111 0.000125

Σβ(2, 3)/
√

Σβ(2, 2)×Σβ(3, 3) 0.548 0.118 1

The foregoing examples and discussion were intended to introduce rather than fully describe

Bayesian approaches to hierarchical linear models. Such methods can be easily extended to non-

linear models, including the binary and multiple choice models we will discuss in later sections.

Moreover, recent work has sought to relax many of the distributional assumptions made, partic-

ularly in modeling the unit-level parameters (see, e.g., (Rossi and Allenby 2010) of this volume).

Finally, we note that time-invariant covariates can be included in the middle stage of the hierarchy,

or the modeling of βi, and more general error structures can be considered, for example, allowing

for autocorrelation among the εit [see, e.g., (Chib and Jeliazkov 2006) for handling this and other

issues in a more complex dynamic binary choice setting].

2.5 Endogeneity in Linear Models

The problem of endogeneity plays a central role in the practice of microeconometrics. While most

textbook discussions of and applications involving endogeneity are classical in nature, centered

upon or employing IV, 2SLS or other approaches for estimation, studies such as (Drèze 1976; Drèze

and Richard 1983; Geweke 1996a; Kleibergen and Zivot 2003; Hoogerheide, Kleibergen and van

Dijk 2007; Sims 2007; Conley et al 2008) mark important Bayesian advances to this literature.

The importance of this issue is also suggested by the rather prominent and detailed treatment

it receives in many current Bayesian textbooks (Lancaster 2004: Chapter 8; Rossi, Allenby and

McCulloch 2005: Chapter 7; Koop, Poirier and Tobias 2007: Chapter 14) and even elsewhere

in this volume [e.g., (Rossi and Allenby 2010; Sims 2010)]. Furthermore, numerous applications
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have been tackled from a Bayesian point of view, often highlighting the ease with which MCMC

methods can be adapted to deal with endogeneity problems in many different kinds of models [e.g.,

(Li 1998; Geweke, Gowrisankaran and Town 2003; Munkin and Trivedi 2003; Deb, Munkin and

Trivedi 2006b; Kline and Tobias 2008; Chib et al. 2009)].

We frame our discussion of endogeneity within the context of a linear regression model, where one of

the right-hand side variables is endogenous. While this is somewhat restrictive, it is not terribly so,

as simple generalizations can accommodate higher dimension endogeneity problems. Moreover, a

recent study by (Chernozhukov and Hansen 2008) suggests that this is the modal model entertained

in the literature12 and thus serves as a natural starting point for our analysis.

Consider the model:

yi = α0 + α1xi +α2wi + εi (62)

xi = β0 + β1zi + ui, (63)

where [
εi
ui

] ∣∣∣∣W ,Z
iid∼ N

[(
0
0

)
,

(
σ2
ε σεu

σεu σ2
u

)]
≡ N (0,Σ).

The exogenous variables wi are covariates entering the y-outcome equation while zi enter the

reduced form equation for x. As shown below, there can be (and always is) overlap between these

two sets of variables, yet identification will require the appearance of at least one column of Z that

is not contained in W .

Letting θ denote all the parameters of the model, we can write

p(εi, ui|θ) = p(εi|ui,θ)p(ui|θ). (64)

Noting that the Jacobian of the transformation from (εi, ui) to (yi, xi) is unity, we obtain

p(yi, xi|θ) = φ

(
yi

∣∣∣∣α0 + α1xi +α2wi +
σεu
σ2
u

(xi − β0 − β1zi), σ
2
ε (1− ρ2

εu)
)

(65)

×φ(xi|β0 + β1zi, σ
2
u),

where ρεu ≡ σεu/[σεσu].
12(Chernozhukov and Hansen 2008) find 108 articles in AER/QJE/JPE over the period 1999-2004 that employ

linear IV, and 91 of these report results with one endogenous right-hand side variable.
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It is useful to pause and discuss identification in the context of this system of equations. To this

end, first consider the case where the set of exogenous covariates are common to both equations,

i.e., zi = wi. In this case, (65) becomes:

p(yi, xi|θ) = φ

(
yi

∣∣∣∣[α0 − β0
σεu
σ2
u

]
+
[
α1 +

σεu
σ2
u

]
xi +

[
α2 − β1

σεu
σ2
u

]
wi, σ

2
ε (1− ρ2

εu)
)

(66)

×φ(xi|β0 + β1zi, σ
2
u).

Some quick accounting, then, shows that the likelihood is a function of just 7 (blocks of) parameters:

β0, β1, σ
2
u, ψ0 = [α0−β0

σεu
σ2
u

], ψ1 = [α1+
σεu
σ2
u

], ψ2 = [α2−β1

σεu
σ2
u

] and ψ3 = σ2
ε (1−ρ2

εu), (67)

whereas we seek to recover the 8 “structural” parameters of θ:

α0, α1, α2, β0, β1, σ2
u, σ2

ε , and σεu. (68)

As a result, the quantities in (67) are identified by the likelihood whereas the full set of structural

parameters in (68) are not identifiable. Importantly, note that the “causal effect” α1 - the object

that garners most attention in practice - is among the parameters that are not identifiable when

the set of covariates appearing in (62) and (63) are the same.

While several assumptions regarding the model can be used to achieve identification in a specifica-

tion like (62)-(63),13 the most common one is to assume the presence of at least one element of Z

that is not contained in W . That is, a careful understanding of the problem at hand leads to the

determination of a set of variables (or “instruments”) in zi that are not contained in wi and can

be exploited for purposes of identification and estimation. Indeed, (65) shows how such exclusion

restrictions can be exploited for identification purposes: The parameter β1 is identifiable from the

marginal (reduced form) density of xi, and the coefficient on the elements of z not contained in w

in the conditional density y|x becomes −[σεu/σ2
u]β1. Together, these two pieces of information en-

able identification of the ratio σεu/σ2
u, which is attributable to the role of unobserved confounding.

13The “kitchen sink” approach represents such an alternative, where a host of covariates are included in (62), and
the rich set of employed observables is argued to be sufficient to render ε and x uncorrelated, or at least approximately
so. Common sense or an inspection of (65) reveals that (62) can then be estimated as a single equation when σεu = 0,
leading to a recursive system. [The implications of this assumption were first noted by the Cowles Commission,
with (Christ 1994) offering a nice overview of their early econometric contributions in this (and other) settings.
The restriction σεu = 0 and its implications remain relevant today, e.g., in identification of VAR models]. While
this identification strategy typically does not sit well with the majority of practitioners, who have come to view
IV as the solution to the identification problem and the device enabling the extraction of causal impacts, it does
occasionally find a sympathetic referee (or two or three). (Dearden, Ferri and Meghir 2006) is a prominent, well-
crafted example. Other alternatives for identification, even less widely used in practice, include the imposition of
cross-equation parameter restrictions.
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Once this ratio is known, the causal effect α1 as well as the remaining parameters of the model

clearly become identifiable, as is evident from (65). This simple argument illustrates the value of

instruments as vehicles for identification, and also suggests potential difficulties in separating α1

from σεu/σ
2
u when the instruments are poor (weak). We will revisit this issue in the analysis of

section 2.5.3.

2.5.1 Posterior Simulation

Stack the variables into vectors and matrices by writing:

[
yi
xi

]
=
[

1 xi wi 0 0
0 0 0 1 zi

]
α0

α1

α2

β0

β1

+
[
εi
ui

]
(69)

or

ỹi = X̃iβ + ε̃i, (70)

with ỹi, X̃i, β and ε̃i defined in the obvious ways. Furthermore, suppose we continue to employ

priors of the forms:

β ∼ N (µβ,Vβ) (71)

Σ−1 ∼ W
[
(κR)−1, κ

]
. (72)

With this done, posterior simulation in our linear model with an endogeneity problem follows in

a straightforward way. In particular, a simple two-block Gibbs algorithm can be employed that

iteratively samples from the following two conditional posterior distributions:

β|Σ,y,x ∼ N (Dβdβ,Dβ), (73)

where

Dβ =

(
V −1
β +

n∑
i=1

X̃i
′
Σ−1X̃i

)−1

, dβ = V −1
β µβ +

n∑
i=1

(
X̃i
′
Σ−1ỹi

)
(74)

and

Σ−1|β,y,x ∼W

[ n∑
i=1

ε̃iε̃i
′ + κR

]−1

, n+ κ

 . (75)
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A posterior simulator for this model proceeds by sampling from (73) and (75). The reader may note,

and perhaps be puzzled by, the connection of the above sampling scheme to what one would obtain

from a standard SUR analysis where no endogenous variables appear as right-hand side covariates.

That is, one may rightfully ask: why does the simulator for this model with an endogeneity problem

reduce to essentially the same simulator for a bivariate SUR without an endogeneity concern? The

connection here critically relies on the Jacobian of transformation being equal to one; such a result

would not be obtained for a purely simultaneous equations model that is not triangular.

2.5.2 Application: BMI Data

To illustrate how such methods are applied in practice, we consider a restricted application of the

model of (Kline and Tobias 2008), who employ data from the British Cohort study, a longitudinal

survey of the cohort of all people born in Great Britain between April 5 and April 11, 1970. The

data set contains the usual set of demographic variables and wage outcomes, along with heights and

weights of the survey participants. Furthermore, one of the survey waves also obtains information

on the heights and weights of the respondent’s parents. These variables enable us to calculate the

respondent’s Body Mass Index (BMI), defined as weight (in kilograms) divided by the square of

height (in meters), as well as the BMI of his/her parents.

We use hourly wages as our outcome of interest, which are observed when the respondents are ap-

proximately 29 years of age. Furthermore, we consider the analysis for males only. Our application

is designed with the primary intent to estimate the “causal” impact of BMI on (log) hourly wages,

a question that has received rather significant attention within the labor literature. As additional

controls, we include family income (when the respondent was 10 years of age), and whether or not

the respondent has a college degree. The constructed parental BMI variables, denoted MomBMI

and DadBMI are used as our instruments (exclusion restrictions) for child BMI. Our final sample

consists of n = 2, 561 observations.14

Coefficient posterior means and standard deviations are reported in Table 5 below, setting µβ = 0

Vβ = 10Ik, κ = 5, and R = I2 as our prior hyperparameters.

14This data set is, unfortunately, restricted access and therefore can not be made available on the website accom-
panying this chapter.
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Table 5: Parameter Posterior Means and
Standard Deviations from BMI Application

Log Wage Equation
Variable Post. Mean Post Std.
Constant 2.96 .215
BMI -.041 .008
FamInc .001 .0001
Degree .244 .024

BMI Equation
Variable Post. Mean Post Std.
Constant 15.10 .670
FamInc .0003 .001
Degree -.599 .172
MomBMI .176 .018
DadBMI .259 .020

Other Parameters
Variable Post. Mean Post Std.
σ2
ε .200 .011
σ2
u 11.22 .305
ρεu .342 .057

The results presented in Table 5 are generally consistent with the findings of (Kline and Tobias

2008). First, our instruments are important variables in explaining variation in BMI, clearly

suggesting that higher parental BMI leads to higher child BMI, as our simulations would show

Pr(β1,MomBMI > 0, β1,DadBMI > 0|y,x) = 1. Furthermore, the relationship between BMI and

wages is negative, as a one point increase in BMI leads to an approximate 4.1 percent reduction in

hourly wages. Finally, the role of unobservables is also important and strong evidence is provided

that ρεu > 0. (Kline and Tobias 2008) argue that this is consistent with a tradeoff between work ef-

fort and health - individuals unobservably dedicated to their job (thus, presumably, earning higher

wages) do so at the expense of investments in health (regular exercise, maintaining a well-balanced

diet, etc.), leading to a positive correlation between ε and u.

2.5.3 A Few Comments on Weak Instruments

As the reader may be aware, there has been a great deal of attention given recently to the problem of

weak / many instruments [an excellent recent treatment of this issue from the Bayesian perspective

is offered by (Hoogerheide, Kaashoek and van Dijk 2007)]. Much interest in this issue developed
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subsequent to (Bound, Jaeger and Baker’s 1995) critique of the study by (Angrist and Krueger

1991), the latter of which paved the way for a host of instrumental variable-based studies and

accounted for an increased emphasis on natural experiments in economics. While it is not our intent

to review the history of this literature, or to document any of the recent frequentist developments

within it, we do wish to note that Bayesian approaches are not immune to the weak instruments

“problem” and that the presence of such instruments has potentially important consequences for

posterior inference.

We demonstrate this point via two generated data experiments. Specifically we first generate

n = 1, 000 observations from a simplified version of (62)-(63):15

yi = α0 + α1xi + εi (76)

xi = β0 + β1zi + ui (77)

where zi
iid∼ N (0, 1), σε = σu = 1 and ρxy = .5 to introduce a reasonable degree of unobserved

confounding.16 We generate two different data sets under two different values of β1, setting β1 = .01

or β1 = 1, to investigate what happens to aspects of the joint posterior when the instrument is

“weak” or “strong,” respectively. To justify these labels, note that the population R-squared for

the reduced form (marginal density for x) equation in (77), given that Var(z) = 1 and σε = σu = 1,

is
β2

1

β2
1 + 1

. (78)

Thus, when the instrument is weak in this design, the population R-squared is (approximately)

.000117 while the strong instrument gives a population R-squared value of 1/2.

Results from this experiment are provided in Figures 4-5. Before discussing these details, we first

note that inference regarding the “total effect” of x on y, obtained from the conditional density

y|x in (66) as α1 + σεu/σ
2
u, is not affected by the quality of the instrument. To illustrate, we note

that the posterior mean (and standard deviation) for this total effect parameter are 1.23 (.027) and

1.26 (.028) for the weak and strong instrument cases, respectively. Thus, with an equal sample
15The intention here is not to reproduce sampling properties of the procedure by generating numerous data sets

of the same size. The points we seek to make can be illustrated with one realization of data from this (adequately
large) sample.

16A complete description of the parameters used to generate the data is given in Table 6.
17Though this seems small, it is very similar to the R-squared obtained from a regression of educational attainment

on quarter of birth using the (Angrist and Krueger 1991) data.
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Figure 4: Joint Posterior, Strong Instrument

size, our ability to assess the overall or total impact of x on y is independent of the strength of the

instrument.

Figures 4 and 5 show how the strength of the instrument does, however, aid in separating the

“causal” effect α1 from the effect attributable to unobserved confounding, σεu/σ2
u. In Figure 4

results for the strong instrument case are presented. Importantly, note how this joint posterior has

nearly collapsed around the parameter values α1 = .75 [left-side axis] and σεu/σ
2
u = .5 [right-side

axis] that were used to generate the data.

Figure 5 presents a similar set of results for the weak instruments case. First, we note the very

diffuse axes over which this posterior surface is plotted, which are vastly more spread out than those

of Figure 4. Second, we observe the ridge in the likelihood surface along the line (approximately)

given by α1+σεu/σ2
u = 1.25. In the presence of weak instruments, we fare equally well in identifying

the total effect of x on y, but our ability to separate this impact into a “causal” effect and an effect

arising from unobserved confounding suffers substantially.

Our final generated data experiment illustrates the role of the prior when weak instruments are

present. For this purpose we generate 2 different data sets, each with n = 200 observations. The
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Figure 5: Joint Posterior, Weak Instrument

process used to generate each data set follows the same design as the one previously employed in

this section, leading to separate data sets created for analysis of the “weak” and “strong” IV cases.

Unlike the previous analysis, however, we also consider two different priors and employ both in

the estimation of the weak IV and strong IV generated data sets. The hyperparameters κ = 3,

R = I2 and Vβ = I4 are constant in all experiments. However, for one prior (denoted P1), we

set the prior mean of β to be the zero vector: µβ = [0 0 0 0]′ and in the second (denoted P2), we

set µβ = [0 − 3 0 0]′. Thus, the two priors alter the mean of α1, with P1 centering the α1 prior

over zero, and P2 centering it over -3. Our goal is to examine how this change in prior impacts our

posterior results, and to assess its differential impact across the weak and strong IV data sets in

particular. The fact that the prior should matter when the IV is weak was already suggested by

Figure 5.
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Table 6: Posterior Means From Generated Data Experiment
True Value Strong, P1 Strong, P2 Weak, P1 Weak, P2

α0 2.00 2.02 2.00 1.59 .553
α1 .750 .728 .710 .338 -.725
β0 -1.00 -1.07 -1.07 -.984 -.982
β1 1.00 or .010 .968 .945 -.016 .004
σ2
ε 1.00 1.05 1.08 1.79 4.53
σ2
u 1.00 1.07 1.08 .912 .913
ρεu .500 .500 .514 .601 .886

As shown in Table 6, with strong instruments, parameter posterior means are quite close to the

values of the parameters used to generate the data. As expected, the shift in the prior mean of

α1 does lower the posterior mean of α1 when the instruments are strong, though not tremendously

so. On the other hand, when the instruments are weak, posterior means do not closely match the

values of the parameters used to generate the data and the prior has a sizeable impact on our

calculations, as the posterior mean of α1 even changes sign and remains far away from .75.

Although not shown in the tables above, the mixing of the posterior simulations is also strongly

affected by the quality of the instruments; in the strong IV case, inefficiency factors [see (Chib

2010) of this volume for additional information on these factors] were less than 4 for all parameters,

and approximately unity for some, suggesting that our Gibbs calculations are essentially of the

same quality as those that would be obtained under iid sampling from the posterior. Furthermore,

in the weak instrument case, inefficiency factors for regression and variance parameters of (76) as

well as ρεu were in excess of 1,000, suggesting that more than 1,000n Gibbs simulations would be

required to achieve the numerical accuracy afforded by n iid posterior draws.

3 Nonlinear Hierarchical Models

In this section we review posterior simulation in several univariate nonlinear models that are linear

in suitably defined latent data [(Geweke and Keane 2001; Geweke 2005) take up a wide range

of latent variable models and offer a similar type of unifying treatment]. The structure of and

resulting posterior simulators for many simple and popular models of this type can be united with

a hierarchical structure and we present such a general description here. Let θ = [β′ α′ σ2]′ and
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consider a representative univariate latent linear model, expressed as

p(θ) = p(α)p(β)p(σ2) (79)

zi|X,θ
ind∼ N (xiβ, σ2), i = 1, 2, . . . , n (80)

yi = g(zi,α), i = 1, 2, . . . , n. (81)

Equation (79) involves a prior for the model’s parameters θ, and throughout we specify prior

independence among these parameters. Equation (80) describes the generation of a latent variable,

only partially observed by the econometrician. To fix ideas we specify that this latent variable

is conditionally normally distributed throughout our discussion. The normality assumption can

be relaxed (and frequently is in practice), and below we will reference sources that generalize

this assumption in the context of particular models. Finally, yi represents the observed outcome,

connected to the latent data and parameters through the function g(zi,α).

With the use of data augmentation [e.g., (Tanner and Wong 1987; Albert and Chib 1993a)], pos-

terior simulation in these models typically proceeds by first characterizing the joint posterior dis-

tribution of latent data and parameters:

p(z,θ|y) ∝ p(θ)p(z|θ)p(y|z,θ) (82)

= p(θ)
n∏
i=1

φ(zi|xiβ, σ2)I
[
yi = g (zi,α)

]
, (83)

with z = [z1 z2 · · · zn]′, y = [y1 y2 · · · yn]′, I(·) = 1 if the statement in the parentheses is true

and I(·) = 0 otherwise. A posterior simulator produced via the Gibbs sampler, then, successively

draws from complete posterior conditionals for α, σ2, β and z. Assuming that the prior for β is

of the form: β ∼ N (µβ,Vβ), σ2 ∼ IG(a/2, b) and not making any further assumptions regarding

the prior for α, we obtain:

β|z, σ2,y ∼ N
([
X ′X/σ2 + V −1

β

]−1 [
X ′z/σ2 + V −1

β µβ

]
,
[
X ′X/σ2 + V −1

β

]−1
)

(84)

σ2|β, z,y ∼ IG

(
n+ a

2
,

[
b+

1
2

n∑
i=1

(zi − xiβ)2
])

(85)

p(zi|β,α,y) ∝ φ(zi|xiβ, σ2)I
[
zi ∈ {zi : yi = g(zi,α)}

]
(86)

p(α|z,y) ∝ p(α)
n∏
i=1

I
[
yi = g (zi,α)

]
. (87)
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The computational value of the latent data becomes apparent from expressions (84) and (85), as the

conditional posteriors for the parameters β and σ2 closely mimic those in section 2.1, given that the

model is essentially a linear regression model in the latent data z. The third posterior conditional is

also easily sampled, as it amounts to drawing each zi, independently from aN (xiβ, σ2) distribution,

truncated to a region (interval) defined by α and yi.

In the following sections we review how this structure unites Bayesian approaches to several popular

econometric models, including the probit model, the tobit model and the ordered probit. We begin

with models for binary choice.

3.1 Models for Binary Choice

For models of binary choice the equations of (79)-(81) apply with α being null (empty) and σ2

restricted to unity for identification purposes. Therefore, posterior simulation in binary choice

problems only involves sampling from (84) and (86). Furthermore, equation (81) specializes to:

yi = I(zi > 0), i = 1, 2, . . . , n. (88)

3.1.1 The Probit Model

The probit model emerges under the assumption of conditionally normally distributed latent data,

as in (80). Therefore, posterior simulation proceeds, as noted in (Albert and Chib 1993a), by first

drawing β from the normal posterior conditional in (84) (with σ2 = 1) and then independently

sampling the latent data as follows:

zi|y,β ∼
{
T N (0,∞)(xiβ, 1) if yi = 1
T N (−∞,0](xiβ, 1) if yi = 0

, i = 1, 2, . . . , n, (89)

where, notationally, x ∼ T N (a,b)(µ, σ2) denotes that x is a normally distributed random variable

with (untruncated) mean µ and (untruncated) variance σ2 which is then truncated to the interval

(a, b). This truncated density retains the shape of the normal density over (a, b), is zero outside this

interval, and is simply scaled up to be proper. While one can generate draws from the truncated

normal above by repeatedly drawing from a N (xiβ, 1) distribution and simply waiting for a draw
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that falls in the desired half-line, this process is quite inefficient, and sometimes prohibitively so.

Draws from the desired truncated normals in (89) can, however, be directly produced using the

method of inversion. To this end, let

u ∼ U(0, 1)

be a draw from the uniform distribution on the unit interval. We can then form the variable w,

where

w = µ+ σΦ−1

(
Φ
(
a− µ
σ

)
+ u

[
Φ
(
b− µ
σ

)
− Φ

(
a− µ
σ

)])
, (90)

and simple derivations show that w ∼ T N (a,b)(µ, σ2).

When applying this result for posterior simulation of latent data in the probit model, note when

yi = 1, a = 0 and b = ∞ and thus Φ([b − xiβ]/σ) = 1. Likewise, when yi = 0, a = −∞ and

b = 0 so that Φ([a−xiβ]/σ) = 0. In this way a Gibbs sampler for the probit proceeds in two steps:

multivariate normal sampling from the β posterior conditional and independent truncated normal

sampling for the posterior conditional for the latent data.18

3.1.2 The Logit Model

The model that is (arguably) most commonly employed with binary data is the logit model, which

specifies

Pr(yi = 1|xi,β) =
exp(xiβ)

1 + exp(xiβ)
. (91)

There are several Bayesian alternatives for estimating the logit model and we describe a few pos-

sibilities here.

For purposes of continuity, we should first review how the framework of (79) - (81) can be extended

to accommodate the logit. This can be done by, again, first setting σ2 = 1 and noting α is null

for the logit. Furthermore, we expand the parameter vector θ to θ = [β′ λ′].′ The new set of

parameters λ will be regarded as scale mixing variables, and the addition of such variables to the

error variance will aid in expanding the normal sampling model. To illustrate the role of these
18(Holmes and Held 2006) actually suggest using a blocking step, first marginalizing β out of the latent variable

equation, producing a multivariate normal for the latent data vector z. Each element of z must then be sampled from
a univariate truncated normal, whose mean depends on all other elements of z and must be updated each time a new
element of z is sampled. While this may afford some improved mixing properties, its use remains rather uncommon
in practice, as the simpler alternative in (84) and (89) displays adequate mixing performance.
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variables, we could consider the linear model

yi = xiβ + εi, εi|X,λ, σ2,
ind∼ N (0, λiσ2),

where

λi|λ0
iid∼ G(λ0)

for some prior distribution G and set of hyperparameters λ0. As demonstrated in previous work

[e.g., (Andrews and Mallows 1974; Carlin and Polson 1991; Geweke 1993; Koop, Poirier and Tobias

2007, chapter 15)], different choices of G give rise to sampling models (marginalzed over λ) other

than the normal. Specifically, assuming λi ∼ IG(ν/2, ν/2) produces a Student-t sampling model for

y|β, σ2 while assuming λi ∼ Exp(2) (an exponential distribution with mean 2) produces a double

exponential sampling model for y|β, σ2.

A similar structure, with λi specified to follow the asymptotic distribution of the Kolmogorov

distance statistic, produces a logistic distribution for y|β, σ2. Applied to our latent variable repre-

sentation of the binary choice model, we write:

zi|β, λi
ind∼ N (xiβ, 4λ2

i ), i = 1, 2, . . . , n, (92)

where the λi are independently distributed, with priors that follow the asymptotic distribution of

the Kolmogorov distance statistic:

p(λi) = 8
∞∑
k=1

(−1)k+1k2λi exp(−2k2λ2
i ), λi > 0, i = 1, 2, . . . , n. (93)

We sketch in general detail why this strategy reproduces the logit model.19 We do so by obtaining

the density for the latent zi marginalized over the mixing variable λi. To this end note that,

provided it is permissible to interchange the order of integration and summation (and dropping the

subscript i in λi for notational ease):

p(zi|xi,β) =
∫ ∞

0
(2π4λ2)−1/2 exp

(
− 1

8λ2
(zi − xiβ)2

)
8
∞∑
k=1

(−1)k+1k2λ exp(−2k2λ2)dλ (94)

= 4(2π)−1/2
∞∑
k=1

(−1)k+1k2

∫ ∞
0

exp
[
−1

2

(
1
4

(zi − xiβ)2λ−2 + 4k2λ2

)]
dλ. (95)

The integral above can be simplified by observing [e.g. (Andrews and Mallows 1974: equation 2.2)]:∫ ∞
0

exp
(
−1

2
[a2u2 + b2u−2]

)
du =

( π

2a2

)1/2
exp(−|ab|). (96)

19See (Andrews and Mallows 1974; Stefanski 1991) for further details based on Laplace transforms.
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Making use of the formula above, and then simplifying (95) gives the alternating series representa-

tion:

p(zi|xi,β) =
∞∑
k=1

(−1)k+1k exp (−k|zi − xiβ|) . (97)

To evaluate this quantity, recall that (1 + x)−1 can be represented in series form as
∑∞

k=0(−1)kxk

for |x| < 1. Thus, by differentiation,

(1 + x)−2 =
∞∑
k=1

(−1)k+1kxk−1. (98)

Applying this result to our formula in (97) with x = exp(−|zi − xiβ|), we obtain:

p(zi|xi,β) =
exp(−|zi − xiβ|)

[1 + exp(−|zi − xiβ|)]2
=

exp[−(zi − xiβ)]
(1 + exp[−(zi − xiβ)])2

, (99)

producing a logistic density for the latent zi.

The above shows how the logistic distribution can be represented as a scale mixture of normals

and thus how MCMC methods can be employed to estimate the model using the general structure

of (79) - (81). While sampling from the β and z posterior conditionals proceeds similarly to the

probit model, calculations for the logit also require sampling from the conditional distribution of

the mixing variables λ. (Chen and Dey 1998) propose to use a Student-t approximation to the

logistic distribution and sample λ2
i , i = 1, 2, . . . , n from an optimally chosen inverse gamma proposal

density. Moreover, they discuss procedures for efficient calculation of the infinite sum in (93) that

is required in the M-H step. (Holmes and Held 2006) also pursue this approach for estimating

the logit, using rejection sampling with a generalized inverse Gaussian proposal density to sample

the mixing variables λ. In either approach, however, the calculations involved remain reasonably

non-trivial, and such techniques appear infrequently in practice.

A second approach for fitting the binary logit (as well as the multinomial logit) has been suggested

by (Frühwirth-Schnatter and Frühwirth 2007), with extensions for variable selection provided by

(Tüchler 2008). They begin by noting, as shown by (McFadden 1974), that the logit likelihood

can be derived from a latent variable framework based on type I extreme value assumptions on

the disturbances. Specifically, the utility afforded by the yi = 0 choice (denoted zi0) is assumed

to follow a type I extreme value distribution (with covariates omitted for identification purposes),

while the latent utility afforded by the yi = 1 option (which includes covariates) is given as

zi1 = xiβ + εi, p(εi) = exp [−εi − exp(−εi)] . (100)
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The idea of (Frühwirth-Schnatter and Frühwirth 2007), similar in spirit to that of (Chib et al.

2002), is to replace the computationally troublesome type I extreme value distribution in (100)

with a nearly identical - yet computationally more appealing - normal mixture approximation (see,

e.g. (Griffin, Quintana and Steel 2010) of this volume for more discussion of mixture models).

Specifically, they write

p(εi) ≈
10∑
r=1

wrφ(εi;mr, s
2
r) (101)

where the weights {wr}10
r=1, component means {mr}10

r=1 and component variances {s2r}10
r=1 are chosen

to minimize the Kullback-Leibler distance between the mixture approximation and the extreme

value distribution. The optimal values of these parameters are enumerated in Table 1 of (Frühwirth-

Schnatter and Frühwirth 2007: 3511) and are not repeated here for the sake of brevity.

Making this replacement, the (approximate) latent utility for the yi = 1 choice becomes

p(zi1|β) =
10∑
r=1

wrφ(zi1;xiβ +mr, s
2
r). (102)

When fitting mixture models like these, it is helpful to augment the mixture density with a set

of component indicator variables, {ri}ni=1 where ri = j denotes that zi1 is “drawn from” the jth

component of the mixture (with mean xiβ + mj and variance s2j ). In this case, j = 1, 2, . . . , 10

given the ten component approximation to the Type I extreme value distribution. Formally, we

write

zi1|β, ri
ind∼ N (xiβ +mri , s

2
ri), Pr(ri = j) = wj , j = 1, 2, . . . , 10.

The above pieces yield the following augmented posterior distribution for the logit

p(z1, z0,β, r|y) ∝ p(β, r)p(z1, z0|β, r)p(y|z1, z0,β, r) (103)

= p(β)
n∏
i=1

[ 10∑
j=1

I(ri = j)wj

φ(zi1;xiβ +mri , s
2
ri)p(zi0)

× [I(yi = 0)I(zi0 ≥ zi1) + I(yi = 1)I(zi0 < zi1)]
]
,

where p(zi0) is type I extreme value and represents the latent utility of the yi = 0 option. In

practice, this latent variable does not need to be simulated in the course of the sampler, though its

value does indirectly affect the sampling of z1.
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Under the normal prior β ∼ N (µβ,Vβ), the sampling of β from the (approximate) conditional

posterior follows immediately:

β|z1, z0, r,y ∼ N (Dβdβ,Dβ) (104)

where

Dβ =
(
X′Σ−1X + V −1

β

)−1
and dβ = X′Σ−1ỹ + V −1

β µβ,

with Σ ≡ diag{s2ri}, ỹ ≡ y −m, m ≡ [mr1 mr2 · · · mrn ]′.

In a similar way, the component indicator variables are sampled independently from their discrete

conditional posterior distributions,

Pr(ri = j|z1, z0,β,y) ∝ wj
sj
φ

(
zi1 − xiβ −mj

sj

)
, j = 1, 2, . . . , 10. (105)

For the latent data z1, Frühwirth-Schnatter and Frühwirth go back to the exact representation of

the logit and note, by a simple change of variables, exp(−zi0) ∼ Exp(1) and likewise, exp(−zi1) ∼
Exp(λi) where “Exp” denotes an exponential distribution, λi ≡ exp(xiβ) and exp(·) denotes the

exponential function.

When yi = 1, the observed outcome imposes the restriction zi0 < zi1 on the latent data or,

equivalently, exp(−zi0) > exp(−zi1). In this instance, therefore, exp(−zi1) can be sampled as the

minimum of two exponential random variables, which turns out to imply

exp(−zi1) ∼ Exp(1 + λi), when yi = 1. (106)

When yi = 0, we obtain the restriction exp(−zi0) ≤ exp(−zi1). Similar algebra can be employed to

verify that exp(−zi1) can be sampled as the sum of two exponential random variables in this case:

exp(−zi1) = x1i + x2i, x1i ∼ Exp(1 + λi), x2i ∼ Exp(λi), when yi = 0. (107)

Posterior simulation in the logit via auxiliary variable augmentation proceeds by sampling from

(104) and (105) and then using (106) and (107) to sample the latent utility vector z1. It is useful

to note that each of the steps only requires sampling from standard distributions, making this an

attractive algorithm for the practitioner.

Yet another approach for posterior simulation in the logit involves the M-H algorithm. To this end

we first note that the Hessian for the logit is obtained as

H = −X ′AX = −
n∑
i=1

x′iΛi(1− Λi)xi, (108)
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where X is the n× k matrix of stacked covariate data, Λi = exp(xiβ)/(1 + exp(xiβ)) and A is an

n× n diagonal matrix with Λi(1− Λi) assembled on the main diagonal. This Hessian can be used

to scale the proposal density in the M-H step. A random-walk M-H algorithm, for example, would

proceed by sampling

β∗ ∼ N
(
β(r),−c2H−1

)
(109)

where c2 is a tuning parameter chosen to minimize the relative inefficiency of the M-H procedure.

Given a current parameter vector β(r), and a β∗ sampled from (109), the chain will move from β(r)

to β∗ with probability

min{1, pr} (110)

where

pr = exp

[
log p(β∗)− log p(β(r)) +

n∑
i=1

(
yi log

[
Λ∗i

Λ(r)
i

]
+ (1− yi) log

[
1− Λ∗i

1− Λ(r)
i

])]
, (111)

and Λ∗i and Λ(r)
i denote the logit predicted probability for person i evaluated at the candidate and

current value of the chain, respectively, and the first two terms in pr denote the (log) difference in

prior ordinates.

Implementation of the M-H algorithm requires an initial estimate of the parameter vector β in

order to calculate A and thus the Hessian H. One possibility in this regard is to simply perform

MLE of the logit, which is cheaply obtained and widely available in most software packages, and

use the MLE estimate to calculate A and thus the Hessian.

An alternative that would not require MLE calculation is to simply to start with a guess for β,

perhaps setting β = 0, producing Λi = 1/2 ∀i, and run the M-H algorithm above. Once a desired

number of simulations have been produced, the algorithm can be terminated, a posterior mean

of β calculated, and the matrix A and Hessian H can then be updated. This process could be

repeated until the calculated posterior means have stabilized. We take this route in the example

provided in this section. Since the likelihood function of the logit model is strictly concave, the

above Metropolis-Hastings approach can work well, especially for samples sufficiently large.
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3.1.3 Other link functions

While the probit and logit are the most widely used among the binary choice models, they are not

the only possibilities, and indeed, can be inappropriately restrictive. The complementary log-log

link model, for example, specifying

Pr(yi = 1|xi,β) = 1− exp[− exp(xiβ)] (112)

offers an asymmetric link, and can be estimated using methods similar to our final M-H algorithm

for the logit. Other skewed link models, including skew-normal links, are described by (Chen, Dey

and Shao 1999) and further possibilities are explored by (Basu and Mukhopadhyay 2000). (Geweke

and Keane 2000) describe a binary choice model based on finite normal mixtures.

3.1.4 Application

Our application again makes use of the British Cohort Study data of section 2.5.2. In this case

our binary outcome of interest is whether or not the respondent is obese, whose clinical definition

is having a BMI in excess of 30. The covariates we employ include parental BMI and indicators

denoting whether or not the respondent is married, has a college degree, or exercises regularly. For

our priors, we choose β ∼ N (0, 100I6).

We estimate the probit model using the algorithm discussed in section 3.1.1 and also estimate

the logit and complementary log-log specifications for this data. For the logit, we start out with

β = 0, c2 = 2 and calculate the Hessian at β = 0. The posterior simulator is then run for

10, 000 iterations and posterior means are calculated based on the final 5,000 simulations. The

Hessian is then recalculated at the updated posterior mean, c is set to unity and the simulator is

run for an additional 25,000 iterations. This process is then repeated one final time, with final

posterior statistics calculated from the last 24,000 iterations of this third run. We approach the

complementary log-log model in the same way, sampling candidates from our proposal density as:

β∗ ∼ N
(
β(r), c2(X ′DX)−1

)
, (113)

where D is a diagonal matrix with(
yi

exp(− exp(xiβ)) exp(xiβ)
1− exp(− exp(xiβ))

− (1− yi)exp(xiβ)
)2

(114)
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as the (i, i) entry. Therefore, for the complementary log-log model, the covariance matrix of our

proposal density is chosen as a scaled Berndt, Hall, Hall and Hausman (BHHH) estimate (Berndt

et. al 1974) of the inverse information matrix.

In Table 7 below we provide posterior means and standard deviations associated with model-

specific marginal effects for each of these variables. When required, we evaluate these at the sample

average of the continuous parental BMI variables and set the marriage, college degree, and regular

exercise variables to unity. For binary covariates, marginal effects are calculated as the difference

in predicted probabilities upon setting the binary variable to zero, and the remaining covariates

fixed at means (or unity). To compare these models, we also calculate log marginal likelihoods. For

the probit model, these are calculated using the method of (Chib 1995) while marginal likelihoods

for the logit and complementary log-log models, which use the M-H algorithm, are calculated using

(Chib and Jeliazkov 2001).

Table 7: Marginal Effect Posterior Means and Posterior Standard Deviations
From Binary Choice Application

Variable Probit Logit Complementary-Log-Log
Post. Mean Post Std. Post Mean Post Std. Post Mean Post Std

MomBMI .010 .002 .009 .002 .008 .002
DadBMI .011 .002 .010 .002 .009 .002
Married .022 .012 .022 .011 .021 .010
Degree -.016 .016 -.017 .016 -.018 .016
ExerciseReg -.003 .016 -.004 .015 -.003 .014
Log ML -928.93 -936.55 -936.22

The results in the table are sensible and operate in the direction that we might expect. A one point

increase in either maternal or paternal BMI increases the likelihood of child obesity by about 1

percent; married individuals are about 2 percent more likely to be obese, and those with a college

degree are nearly 2 percent less likely to be obese. The results obtained are quite consistent across

models, and the data favors the probit specification among these three alternatives.

3.2 The Tobit Model

The tobit model is a widely used specification for censored data and (Chib 1992) marks the first

MCMC-based Bayesian procedure for inference in the tobit. The basic tobit specification, with a
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single censoring point at zero, can be mapped into the framework of (79) - (81) with α being null

and (81) specializing to:

yi = max{0, zi}. (115)

As such, a posterior simulator for the tobit is remarkably simple. The regression parameters β are

sampled directly from (84) and the variance parameter σ2 is drawn directly from (85). As for the

latent data, let Di = I(yi > 0). Equation (86) together with the rule in (115) then imply the latent

zi can be sampled by setting

zi = Diyi + (1−Di)wi, (116)

where

wi
ind∼ T N (−∞,0)(xiβ, σ

2), i = 1, 2, . . . , n. (117)

In other words, wi only needs to be simulated for the set of observations with yi = 0. Other

generalizations of the tobit, such as allowing for an unknown censoring point, or allowing for two-

sided censoring, offer straightforward extensions of this basic model.

3.3 Models for Ordinal Outcomes

The ordered probit represents another commonly encountered microeconometric model that fits

within the structure described by (79) - (81). For the ordered probit, σ2 = 1, and the parameters

α are threshold or cutpoint parameters to be estimated within the model. Specifically, we assume

yi ∈ {1, 2, . . . , J}, where the discrete outcomes have a natural ordinal interpretation, such as degrees

of agreement / disagreement with a given statement.

For the ordered probit, (81) becomes

yi = j if αj < zi ≤ αj+1, j = 1, 2, . . . , J. (118)

An intercept parameter is presumed to be in xi, and standard identification conditions are imposed

on the cutpoints, namely: α1 = −∞, α2 = 0 and αJ+1 =∞.

3.3.1 Posterior Simulation

In terms of posterior simulation, a standard Gibbs sampler can be applied, as in (Albert and Chib

1993a). The regression parameters β are simulated as in (84), with σ2 = 1, the latent data are

48



drawn from a truncated normal distribution implied by (86) and (118):

zi|β,α,y
ind∼ T N (αyi ,αyi+1](xiβ, 1), (119)

and the elements of the cutpoint vector αj , under an improper prior of the form p(α) ∝ c, can be

sampled from their conditional posterior distributions:

αj |α−j , z,y ∼ U
[
max

{
αj−1, {zi : yi = j − 1}

}
,min

{
αj+1, {zi : yi = j}

}]
. (120)

Unfortunately the algorithm above does not mix well in practice. (Cowles 1996) investigates this

issue and suggests sampling α and z in a blocking step by first integrating out the latent z (i.e.,

working directly with the ordered probit likelihood), sampling α, and then sampling from the

complete posterior conditional distribution for the latent data. This is done in an M-H step, where

a series of truncated normal densities are used to sample the cutpoints. (Nandram and Chen 1996)

also investigate this issue and discuss posterior simulation based on a rescaling transformation.

To motivate their reparameterization, suppose J = 3 to fix ideas (so that there is only one unknown

cutpoint, denoted as α) and let

δ =
β

α
, σ =

1
α
, and z̃i =

zi
α
. (121)

This reparameterization leads to an equivalent model:

z̃i = xiδ + νi, νi|X, σ
iid∼ N (0, σ2) (122)

with

yi =


1 if z̃i ≤ 0
2 if 0 < z̃i ≤ 1
3 if z̃i > 1

. (123)

If we additionally specify that a diffuse, improper prior on β,α is employed: p(β,α) ∝ c, we obtain

the following joint posterior for the reparameterized model:

p(δ, σ2, z̃|y) ∝ σ−n
n∏
i=1

exp
(
− 1

2σ2
[z̃i − xiδ]2

)
I(α̃yi < z̃i ≤ α̃yi+1) (124)

where all of the α̃yi are known upon reparameterization. The conditionals for β and z̃ are like

those in (84) and (86), with V −1
β = 0 and the conditional support in (86) defined by the intervals

I(α̃yi < z̃i
∗ ≤ α̃yi+1), all of which do not depend on unknown parameters. The (reparameterized)

variance parameter is sampled as:

σ2|δ, z̃,y ∼ IG
(
n

2
,

[
1
2

(z̃ −Xδ)′(z̃ −Xδ)
])

. (125)
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For each post-convergence iteration, the original parameters α and β can be calculated. When the

outcome variable takes on more than three possible values, (Nandram and Chen 1996) suggest the

use of a M-H algorithm to sample the unknown cutpoints where all parameters are drawn in a single

step based on a Dirichlet proposal density for differences in cutpoint values. Other contributions to

this literature include (Chen and Dey 2000; Albert and Chib 2001; Graves, Jeliazkov and Kutzbach

2008). The first and last of these references consider multivariate ordinal outcomes, departures

from normality and a series of related issues.

3.3.2 Ordered Probit: Application

To illustrate estimation of the ordered probit in practice, we revisit our data from the British

Cohort Study. In this case we refine our classification of weight categories into “normal” weight

(y = 1), “overweight” (y = 2) and “obese” (y = 3). The first of these is defined as a BMI less than

twenty five,20 the second represents a BMI between 25 and 30, and obesity denotes BMI in excess

of 30.

We employ the same set of covariates as those used in section 3.1.4 and make use of the reparam-

eterization technique described above, employing improper priors for β and α. The sampler is run

for 2,500 iterations, and the first 500 of these are discarded as the burn-in period.

Table 8: Posterior Statistics From Ordinal BMI Application
Parameter / Variable Probability Change: Parental BMI

Post. Mean Post. Std. Category Post Mean. Post. Std.
Constant -2.89 .220
MomBMI .051 .006 y = 1 .150 .011
DadBMI .067 .008
Married .214 .041 y = 2 -.097 .008
Degree -.169 .051
ExerciseReg. .026 .058 y = 3 -.053 .005
α 1.29 .034

In addition to coefficient posterior means and standard deviations, we also report posterior means

and posterior standard deviations for a particular effect of interest, as summarized in the rightmost
20While it is indeed possible to be “underweight,” we abstract from this issue, and note that approximately one

percent of our sample had a BMI less than 19.
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3 columns of Table 8. In particular, we consider how probabilities associated with each BMI

classification change in response to a one standard deviation decrease in parental BMI values.

Specifically, we first calculate the predicted probability of each BMI category at sample means of

MomBMI and DadBMI, with the remaining covariates fixed at unity. This process is repeated, but

this time the three probabilities are calculated upon setting the MomBMI and DadBMI values at

one standard deviation below their respective sample means (with the remaining covariates still

fixed at unity). Posterior means and standard deviations of the probability changes resulting from

these 1 standard deviation decreases in parental BMI are then reported in the final two columns

of Table 8. The results show that such a reduction in parental BMI leads to a 15 percent increase

in the probability that the child will be normal weight, a 9.7 percent decrease in the probability of

being overweight and a 5.3 percent decrease in the probability of obesity.

4 Multivariate Latent Models

We build upon the topics of the last section to now discuss multivariate latent variable models. We

proceed in a similar fashion by first introducing a general latent multivariate framework and then

discussing particular models that emerge from this specification. The basic model that we have in

mind is a straightforward multivariate generalization of (79) - (81), where θ = [β′ vec(Σ)′]′, and21

p(θ) = p(β)p(Σ−1) (126)

zi|X,θ
ind∼ N (Xiβ,Σ) , i = 1, 2, . . . , n (127)

yi|zi = g(zi), i = 1, 2, . . . , n. (128)

For our priors in (126), we continue to use a multivariate normal prior for β: β ∼ N (µβ,Vβ) and

a Wishart prior for Σ−1: Σ−1 ∼W ([κR]−1, κ).

With an eye toward implementation of the Gibbs sampler in a model of this form, we obtain the

following conditional posterior distributions:

β|Σ,Z,y ∼ N (Dβdβ,Dβ) (129)

21We do not discuss multivariate ordinal models here. See (Graves, Jeliazkov and Kutzbach 2008), for example,
for further discussion.
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where

Dβ ≡

[(
n∑
i=1

X ′iΣ
−1Xi

)
+ V −1

β

]−1

and dβ ≡

(
n∑
i=1

X ′iΣ
−1zi

)
+ V −1

β µβ, (130)

Σ−1|β,Z,y ∼W

[ n∑
i=1

(zi −Xiβ)(zi −Xiβ)′ + κR

]−1

, n+ κ

 (131)

and

p(zi|β,Σ,y) ∝ φ(zi|Xiβ,Σ)I[zi ∈ {zi : yi = g(zi)}], i = 1, 2, . . . , n. (132)

Rather trivially, we note that this framework also describes a Gibbs algorithm for sampling in

the Seemingly Unrelated Regressions (SUR) model. For the standard SUR specification, outcomes

are fully observed so that there is no latent data (i.e., yi = zi) and posterior simulation simply

involves the sampling of β from (129) and Σ−1 from (131). Though the SUR model is free of any

latent data, it is useful nonetheless to note that a limiting version of this framework also describes

posterior simulation within this system of linear equations.

As shown in the following discussion, the model above is also sufficiently general to include gen-

eralized tobit,22 the multinomial probit and the multivariate probit models as special cases. Each

of these important microeconometric models, however, will impose different restrictions on Σ for

identification purposes. Therefore, procedures for sampling Σ−1 (or its constituent elements) will

differ across the models. Furthermore, since the mapping in (128) will also change with the model,

procedures for sampling the latent zi will also differ among the specifications enumerated below.

The sampling of β from its posterior conditional, however, will proceed as described in (129) in all

cases, with the latent and covariate data suitably defined within the context of each model.

4.1 The Hurdle / Sample Selection Model

The simple tobit specification of section 3.2 is often criticized for its inability to simultaneously

account for the incidence of zeros and the density of non-zero outcomes. Such concerns can be

mitigated, and the performance of the model generally improved, when elaborating the structure
22(Amemiya 1985) enumerates 5 different types of generalized tobit models and discusses classical estimation and

inference for each. In what follows we discuss posterior simulation in Amemiya’s Type 2 (hurdle model) and Type
5 (potential outcomes model) specifications, noting that similar methods apply to the estimation of all 5 generalized
tobit variants.
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with a separate process for modeling the zero outcome. The following specification, commonly

termed the hurdle or sample selection model, studied at length from a Bayesian perspective by (van

Hasselt 2008), adds this level of generality:

zi1 = riα+ ui1 (133)

zi2 = wiδ + ui2 (134)

where

ui =
[
ui1
ui2

] ∣∣∣∣R,W ,Σ iid∼ N
(

0,
[

1 σ12

σ12 σ2
2

])
≡ N (0,Σ) (135)

and

yi = exp[zi2]I(zi1 > 0). (136)

The above specification contains two latent variable equations, unlike the single equation of the

tobit model. Equation (136) establishes the connection between the latent and observed data and

clarifies the roles of each latent variable in the hurdle model. Specifically, zi1 in (133) models

the yi = 0 or yi 6= 0 event. If the latent zi1 is positive, then the observed non-zero outcome is

presumed to be generated from (134) and is given as exp[zi2].23 Similar to the standard tobit, if zi1
is non-positive, then the observed yi is set to zero.

The model above fits exactly within the multivariate framework described in (126) - (128) with

zi = [zi1 zi2]′, β = [α′ δ′]′ and

Xi =
[
ri 0
0 wi

]
. (137)

A Gibbs sampling algorithm, then, follows from (129) - (132), with the sampling of Σ−1 and zi
tailored to the hurdle model. As for the regression parameters, posterior simulation of β proceeds

exactly as in (129), given our definitions of the covariate and latent data. As for the sampling of

Σ−1, a slight complication is introduced, given a restriction on the (1,1) element of Σ; the posterior

conditional for Σ−1 conditioned on this prior restriction is no longer Wishart.

One alternative to the sampling of Σ−1 in this instance (and, in fact, to the sampling of the

covariance matrix in all models is this section), is to ignore this restriction, implement a sampler

that traverses through a non-identified parameter space, and simply post-process the posterior

simulations to focus on the identifiable quantities of interest: α/Σ(1,1), δ, ρ12 and σ2
2 (where ρ12

23The exponential term is introduced to guarantee that the observed outcome is positive, and is also consistent
with a majority of applied work, where the potential outcome zi2 in (134) is modeled log-linearly.
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denotes the correlation between u1 and u2). This approach has been advocated by (McCulloch

and Rossi 1994; Rossi, Allenby and McColluch 2005), who argue that navigating through the non-

identified parameter space simplifies the posterior computations and also improves mixing of the

posterior simulations. Under this approach, sampling of Σ−1 proceeds identically to (131).

An alternate approach, which works directly with the identified parameters, is to first express ui2
conditionally on ui1 as:

ui2 = σ12ui1 + νi, νi ∼ N (0, σ2
ν), (138)

where σ2
ν = σ2

2 − σ2
12 and νi and u1i are independent. Thus, we can re-write our model as

zi1 = riα+ ui1 (139)

zi2 = wiδ + σ12ui1 + νi. (140)

Aside from the latent data z, (the sampling of which has not yet been addressed in either the iden-

tified or non-identified approaches), posterior simulation in the model with this parameterization

cycles through three blocks of parameters: β, σ12 and σ2
ν . To this end, we adopt the following

priors for these quantities: σ2
ν ∼ IG(a/2, b), σ12 ∼ N (µ12, V12), and β ∼ N (µβ,Vβ). The first two

of these effectively “replace” the Wishart prior for Σ−1 in (126). Finally, note that the inverse

gamma prior on σ2
ν imposes σ2

ν > 0 and thus Σ is restricted to be positive definite.

As stated previously, the regression parameters β are sampled as in (129). The covariance and

variance parameters are then sampled by drawing:

σ2
ν |β, z, σ12,y ∼ IG

(
n+ a

2
,

[
b+

1
2

n∑
i=1

(zi2 −wiδ − σ12ui1)2
])

(141)

and

σ12|β, z, σ2
ν ,y ∼ N (D12d12, D12), (142)

where

D12 =
(
u′1u1/σ

2
ν + V −1

12

)−1 and d12 = u′1u2/σ
2
ν + V −1

12 µ12. (143)

In the expression above, uj = [u1j u2j · · · unj ]′, j = 1, 2, denote the error vectors which are known

given z and β.

It remains to discuss the sampling of the latent data zi, and the following describes how this is

accomplished under either sampling scheme. First, suppose that yi > 0. This observed outcome
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implies the restrictions zi1 > 0, z2i = log(yi). In this case, the sampling of z2i is trivial (as its

posterior is degenerate given y) , and z1i can be drawn from the univariate truncated normal:

zi1|β,Σ,y ∼ T N (0,∞)

[
riα+

σ12

σ2
ν + σ2

12

(log yi −wiδ),
(

1− σ2
12

σ2
ν + σ2

12

)]
, i ∈ {i : yi > 0}. (144)

On the other hand, consider the case when yi = 0. This produces the restriction zi1 ≤ 0, while no

restriction is placed upon the potential (log) outcome zi2. In this case we can sample directly from

the bivariate conditional posterior distribution of the latent data zi = [zi1 zi2]′ by first drawing zi1
from its truncated normal conditional posterior:

zi1|β,Σ,y ∼ T N (−∞,0]

(
riα, 1

)
, i ∈ {i : yi = 0}, (145)

and then drawing zi2 from its conditional normal posterior distribution:

zi2|β,Σ,y ∼ N
[
wiδ + σ12(zi1 − riα), σ2

2 − σ2
12

]
, i ∈ {i : yi = 0}. (146)

Posterior simulation in the hurdle model proceeds by sampling from (129), (144) - (146), and

either (131) or (141)- (142), depending on whether one chooses to work in the identified or non-

identified space. In this case, relatively little is lost in terms of the complexity of the algorithm,

or its mixing properties, by working directly with identified parameters. Finally we note that

posterior simulations from the joint posterior of the hurdle model can be used to easily calculate

policy-relevant parameters and therefore move beyond the narrow goal of parameter estimation.

For example, these simulations can be used to summarize how hypothetical changes in the value of

a covariate or set of covariates impact the probability that yi is zero, or how such changes impact

the entire distribution of y. Such calculations, as they involve nonlinear functions of the model

parameters, are, in our view, comparably difficult to carry out from the classical perspective,

perhaps allaying concerns that Bayesian approaches are “harder” [see, e.g., (Sims 2010) of this

volume]. It is worth noting, though potentially underemphasized in this chapter, that this point

applies to all of the nonlinear models previously discussed as well as the multivariate nonlinear

models that follow.

4.2 Endogeneity in Nonlinear Models

The analysis of section 2.5 considered the endogeneity of a right-hand side variable in a contin-

uous (linear) framework. In practice, of course, endogeneity concerns are not limited to models
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with continuous variables and indeed, this problem often arises with discrete, censored, or ordinal

outcome data.24 In practice, unfortunately, researchers analyzing such data sometimes abandon

nonlinear specifications in favor of linear models, shunning appropriate econometrics in favor of the

familiarity and ease of linear methods such as IV or 2SLS.

In this section we review posterior simulation in a particular nonlinear model with an endogenous

right-hand side variable. As the reader will see, the posterior simulator for this model is only

slightly more complicated than the one described in section 2.5 for linear outcomes. As such, the

techniques described here are really no more involved than those employed with linear models.

4.2.1 Posterior Simulation with an Endogenous Binary Variable

Though there are many different possibilities to consider here, let us fix ideas on a specific model,

noting that the methods to follow clearly generalize to cases where the outcome is also latent or

the endogenous variable is censored or ordered. Below, we consider a standard representation of a

dummy endogenous variable model:

zi1 = riα+ ui1 (147)

yi = α0 + α1Di + siα2 + ui2 (148)

where

Di = I(zi1 > 0). (149)

The observed responses consist of a continuous outcome yi and a binary “treatment” variable Di,

and the latter of these is specified to be generated by the latent variable in (147). In practice,

α1 is commonly the object of interest as the “causal” impact of the binary variable Di on yi [see

(Chamberlain 2010) of this volume for more on Bayesian estimation of treatment impacts]. However,

with observational data, determining this causal impact is not a trivial exercise, as individuals self-

select into treatment regimes, thereby producing a correlation between u1 and u2. In frequentist

parlance, the presence of this correlation leads to biased and inconsistent OLS-based estimation of

α1 using (148) only. Such theoretical concerns, as well as our understanding of the problem being

studied, require that we allow for correlation among the unobservables. Therefore, we continue

to make a bivariate normality assumption as in (135), with σ12 capturing the role of unobserved

confounding in the model.
24See, for example, (Li 1998; Geweke et al. 2003; Chib 2003) for Bayesian examples.
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In terms of posterior simulation, the model in (147) - (149) is nearly identical to that for the hurdle

model presented in the previous section. To make the connection between the two models explicit,

simply define wi = [1 Di si] and δ = [α0 α1 α2]′. The link between the latent and observed data,

as in (128) for this model, reduces to:

yi = zi2, Di = I(zi1 > 0). (150)

Posterior sampling of β then proceeds as in (129). For a sampler that navigates through the

identified parameter space, elements of the (reparameterized) Σ can be sampled as in (141) - (142).

The latent variables zi1 are sampled independently, i = 1, 2, . . . , n from:

zi1|β,Σ,y,D ∼


T N (0,∞)

(
riα+ σ12

σ2
ν+σ

2
12

[yi − α0 − α1 − siα2], 1− ρ2
12

)
if Di = 1

T N (−∞,0]

(
riα+ σ12

σ2
ν+σ

2
12

[yi − α0 − α1 − siα2], 1− ρ2
12

)
if Di = 0

. (151)

A posterior simulator for the dummy variable treatment effects model is given by (129), (141) -

(142) and (151).

4.2.2 Application: A Count Data Model with Endogeneity

In practice, many models with endogeneity problems fit conveniently within the framework de-

scribed by (126) - (128). One notable exception is in the analysis of count outcomes which,

heretofore, has been ignored within this chapter, yet is an important specification in the analy-

sis of microeconometric data. For this reason we pause to provide an application involving count

data and choose to do so within the framework of a count outcome with an endogenous explana-

tory variable. Posterior simulation in such a case, unfortunately, does not proceed just by standard

Gibbs steps, but instead makes use of several Metropolis-Hastings substeps to conduct the necessary

sampling.

Our example comes from the study of (Lakdawalla et al. 2006).25 These authors study how the

receipt of Highly Active AntiRetroviral Therapy (HAART) for HIV-positive patients impacts the

subsequent number of sexual partners. The authors note that the presence of such treatment

generally improves the health and longevity of its recipients, which might then, in turn, potentially

impact the sexual behavior of the treated. Furthermore, if sexual activity increases significantly in
25We kindly thank the authors for supplying us with their data.
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response to treatment, the availability of HAART could even reduce social welfare, as the increased

level of sexual activity upon receiving the health-improving treatment may leave the HIV-negative

community at increased risk for infection.

We propose the following Bayesian framework, which is slightly different from the specification of

Lakdawalla et al:

yi|β, εi
ind∼ Po[exp(diβ0 + x̃iβ1 + εi)] (152)

zi = wiγ + ui (153)

di = I(zi > 0) (154)(
εi
ui

) ∣∣∣∣X,W
iid∼ N

[(
0
0

)
,

(
σ2
ε σεu

σεu σ2
u = 1

)]
≡ N (0,Σ). (155)

The model we employ specifies that, conditional on individual i’s idiosyncratic term εi, the number

of sexual partners yi follows a Poisson distribution with mean exp(xiβ + εi), xi = [di x̃i], β =

[β0 β
′
1]′. The covariates xi help to explain variation in the number of sexual partners across

individuals, and contains the binary di denoting the decision to receive the HAART regimen, which

is regarded as potentially endogenous. To motivate this potential endogeneity concern, it may be

the case that people in failing or poor health will be more likely to seek out and receive the therapy

but less likely to participate in risky sexual activities. This possibility is handled by permitting

correlation among u and ε through σεu. Furthermore, we note that the addition of εi relaxes the

restrictive assumption of the Poisson that the variance and mean are the same, and thus we permit

overdispersion through the adoption of a Poisson-lognormal mixture.

Since the receipt of the HAART treatment is a binary outcome, we augment the likelihood func-

tion by introducing a latent variable zi such that zi > 0 if di = 1 and zi ≤ 0 otherwise. Al-

though most of the covariates affecting the decision to receive the therapy also affect the count

outcome, we, following (Lakdawalla et al. 2006), exploit state-level variation in the availability

/ generosity of public insurance for HIV positive individuals. This includes accounting for two

variables capturing the “medically needy threshold” set by the state, expressed as a percentage of

the federal poverty line, and an indicator variable denoting whether the state’s income eligibility

threshold for Medicare through Supplemental Social Security Income (SSI) was less than 10 per-

centage points lower than the federal guideline. These two variables are included in wi but omitted

from xi. To complete the Bayesian analysis, we specify that β ∼ N (µβ,Vβ), γ ∼ N (µγ ,Vγ) and

p(Σ−1) ∝ fW (Σ−1|[κR]−1, κ)I(σ2
u = 1) where the indicator function notes that the (2, 2) element
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of Σ is restricted to unity for identification purposes.

Following (Chib et al. 1998; Munkin and Trivedi 2003), we simulate from the joint posterior

distribution of εi, β, zi, γ and Σ−1 by sampling these parameters iteratively from a Gibbs sampler,

with Metropolis substeps used as needed. The conditional posterior density of εi is proportional to

p(εi|Ξ−εi ,y,d) ∝ exp[− exp(xiβ + εi)][exp(εi)]yi exp{− 1
2(σ2

ε − σ2
εu)

[εi − σεu(zi −wiγ)]2}, (156)

where Ξ−x denotes the parameters other than x. Although εi cannot be sampled directly, as the

form of (156) is uncommon, an M-H step can be employed. Specifically, a candidate draw can be

sampled from a t distribution centered around the mode of ln p(εi|Ξ−εi ,y,d), with scale parameter

and degrees of freedom parameter equal to (νωVε̂i)
−1 and ν, respectively. In practice, we choose

Vε̂i as the negative inverse Hessian of ln p(εi|Ξ−εi ,y,d) evaluated at the mode and both ν and ω

are tuning parameters. The candidate draw ε∗i is then accepted with the probability

min

{
p(ε∗i |Ξ−εi ,y,d)q(ε(t−1)

i )

p(ε(t−1)
i |Ξ−εi ,y,d)q(ε∗i )

, 1

}
,

where the (t− 1) superscript denotes the current value of the chain and q(·) denotes the proposal

density. We use a similar Metropolis step to sample the parameter vector β whose conditional

posterior is proportional to

p(β|Ξ−β,y,d) ∝ exp[−1
2

(β − µβ)′V −1
β (β − µβ)]

n∏
i=1

exp[− exp(xiβ + εi)][exp(xiβ + εi)]yi . (157)

The proposal density used in the sampling of β is a multivariate t distribution with location

parameter β̂ = arg max ln p(β|Ξ−β,y,d), scale parameter of (µτVβ̂)−1 and degrees of freedom

parameter µ. Again, we select Vβ̂ as the negative inverse Hessian of ln p(β|Ξ−β,y,d) evaluated at

the mode and both τ and µ are tuning parameters.

The latent data z are sampled independently from

zi|Ξ−zi ,y,d ∼


T N (−∞,0]

(
wiγ + σεuσ

−2
ε εi, 1− σ2

εuσ
−2
ε

)
if di = 0

T N (0,∞)

(
wiγ + σεuσ

−2
ε εi, 1− σ2

εuσ
−2
ε

)
if di = 1

. (158)

The conditional posterior of the parameter vector γ is normal:

γ|Ξ−γ ,y,d ∼ N (Dγdγ ,Dγ) , (159)
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where

Dγ = [W ′W (1− σ2
εuσ
−2
ε )−1 + V −1

γ ]−1, (160)

dγ = [W ′(z − σεuσ−2
ε ε)(1− σ2

εuσ
−2
ε )−1 + V −1

γ µγ ] (161)

and W , z and ε have been stacked over i in the obvious way.

In terms of the sampling of Σ−1 we could, again, employ the reparameterization as described in

(141)-(142). In this instance, however, we use the algorithm of (Nobile 2000), who provides a

method for directly sampling from an inverse Wishart, conditional on a fixed diagonal element of

Σ. We express this as

p(Σ−1|Ξ−Σ,y,d) ∝ fW
(

Σ−1
∣∣∣[κR+ [ ε z −Wγ ]′[ ε z −Wγ ]

]−1
, n+ κ

)
I(σ2

u = 1).

(162)

Estimation results using this algorithm are listed in Table 9. Non-whites, females and less educated

persons are less likely to receive the therapy and have fewer sexual partners. The HAART regimen

is found to have a positive and strong impact on sexual behavior. Specifically, the results suggest

that the receipt of the regimen increases the mean number of sexual partners by about [exp(1.31)−
1] × 100% = 271%. Since the mean number of partners in the sample is 2.16, the marginal

effect suggests that treated individuals have 5.85 additional partners. Among the two instrumental

variables employed, the “medically needy threshold” proves to be empirically important, and the

associated coefficient has a probability of being positive near one, indicating that individuals who

are eligible for Medicaid through a medically needy program are more likely to receive the therapy.

Finally, the variance of the error term εi is about 1.74, indicating some overdispersion for the

conditionally Poisson-distributed number of partners outcome. The covariance estimate between

εi and ui also shows that unobservables affecting the number of partners and the treatment are

negatively correlated, consistent with the notion that people who are less healthy are less involved

in risky sexual behavior but more active in seeking the treatment. These results are qualitatively

quite similar to those reported in (Lakdawalla et al. 2006), although our model and approach differ

slightly from theirs.
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Table 9: Posterior means, standard deviations and probabilities of being positive of the parameters
Variable E(β|D) Std(β|D) Pr(β > 0|D)
Partners equation

Age -0.0464 0.00549 0
Non-white -0.133 0.1 0.0913
Female -0.584 0.107 0
Less than HS degree -0.608 0.154 0.00015
High school degree -0.676 0.14 0
Some college or AA degree -0.4 0.139 0.00321
State per capita income 0.063 0.035 0.965
Percent living in urban areas -0.0225 0.0129 0.0411
Abortion rate 0.0228 0.00954 0.991
Percent thinking homosexuality wrong -5.05 1.44 0.000513
Percent praying several times a week 7.03 1.96 1
HAART 1.31 0.313 0.999

HAART equation
Age 0.000701 0.00413 0.567
Non-white -0.212 0.0745 0.00206
Female -0.15 0.0766 0.025
Less than HS degree -0.263 0.119 0.0128
High school degree -0.136 0.112 0.113
Some college or AA degree -0.126 0.111 0.128
State per capita income -0.0534 0.027 0.0234
Percent living in urban areas 0.0267 0.0098 0.997
Abortion rate -0.0172 0.00731 0.00925
Percent thinking homosexuality wrong 2.64 1.4 0.969
Percent praying several times a week -2.95 1.84 0.0546
Medically needy threshold 0.00416 0.00173 0.992
SSI threshold > 65% of FPL 0.115 0.156 0.772

Covariance matrix
Variance σ2

ε 1.74 0.228 1
Covariance σεu -0.912 0.19 0

4.3 Treatment Effects Models

A generalization of the model in the previous section is to explicitly consider the counterfactual or

potential outcome. This represents the outcome the agent would have experienced had he / she

made a different treatment decision than the one actually made. Consistent with the specification
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in (126) - (128), we write this model as a system of three latent variable equations:26

zi2 = wiθ + ui2 (163)

zi1 = xiβ1 + ui1 (164)

zi0 = xiβ0 + ui0 (165)

where

Di = I(zi2 > 0) (166)

yi = Dizi1 + (1−Di)zi0 (167)

and  ui2
ui1
ui0

∣∣∣∣∣∣X,W ,Σ ∼ N

 0
0
0

 ,
 1 σ21 σ20

σ21 σ2
1 σ10

σ20 σ10 σ2
2

 ≡ N (0,Σ). (168)

Equations (166) and (167) represent the mapping between the observed and latent data in the po-

tential outcomes model. Equation (163) describes the treatment decision, whose marginal analysis

is identical to the probit analysis of section 3.1.1. Equations (164) and (165) describe the outcome

(or potential outcome) in each treatment regime. For example, if Di = 1, then the treated outcome

zi1 is observed, while the untreated outcome zi0 is not. Conversely, when Di = 0, the untreated

outcome zi0 is observed while the treated outcome is not.

This model, just like the previous models of this section, can be stacked into vector/matrix form

for each individual, letting zi = [zi2 zi1 zi0]′, β = [θ′ β′1 β
′
0]′ and

Xi =

 wi 0 0
0 xi 0
0 0 xi

 . (169)

Therefore, we find ourselves in a familiar situation when faced with the task of posterior simulation

in the potential outcomes model. The parameter vector β will be sampled from (129) and the

inverse covariance matrix Σ−1 can be sampled from (131) using the method of (Nobile 2000) if

the (1,1) element of Σ is set to unity. Alternatively, we can choose to work in the non-identified

parameter space and post-process the draws to restrict our focus on identifiable parameters. In

terms of the latent data, two latent quantities must be drawn for each individual: First, latent

values of zi2 will be drawn for each individual from a univariate truncated normal, with conditional
26Covariates can also change with the regime, though we do not consider this in the notation below.
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support restricted by the observed value of Di. Second, the potential (missing) outcome will also be

sampled for each individual from the corresponding conditional normal defined by (127). We omit

the details of this procedure here, as it follows similarly to those described earlier, and complete

details can be found in (Koop, Poirier and Tobias 2007: 225-229).

In the potential outcomes framework, parameters of interest often center around the outcome gain

(or loss) from receipt of treatment: zi1 − zi0. Parameters that garner the most attention in this

literature include the Average Treatment Effect (ATE):

ATE(β,x) = x(β1 − β0) (170)

the effect of Treatment on the Treated (TT ):

TT (β,x, z, D(z) = 1) = x(β1 − β0) + (ρ21σ1 − ρ20σ0)
φ(zθ)
Φ(zθ)

(171)

and the Local Average Treatment Effect (LATE):

LATE(β,x, z, z̃, D(z) = 0, D(z̃) = 1) = x(β1 − β0) + (ρ21σ1 − ρ20σ0)
(
φ(z̃θ)− φ(zθ)
Φ(z̃θ)− Φ(zθ)

)
, (172)

where ρjk denotes the correlation parameter between uj and uk.

ATE summarizes the average gain (or loss) from treatment, TT represents the expected gain (or

loss) from treatment for those actually taking the treatment (at a given set of characteristics z),

and LATE denotes the expected gain (or loss) from treatment for those that would receive the

treatment at z̃ but would not receive the treatment at z. (Imbens and Angrist 1994) introduce the

LATE parameter and interpret it as a treatment effect for a subgroup of “compliers” - individuals

whose treatment behavior can be manipulated through the presence (or absence) of the instru-

ment. For example, in the (Angrist 1990) study of the Vietnam-era draft, LATE will recover the

average earnings gain (or loss) from military service for those who are induced to join the military

because of a low draft lottery number, but otherwise would not serve. When treatment effects

differ across individuals, different instruments define different LATE parameters - in the Angrist

example, the results would not speak to the impact of military service on the post-service earn-

ings of those who joined the military voluntarily. (Heckman, Tobias and Vytlacil 2001; Heckman,

Tobias and Vytlacil 2003) provide further results, discuss mean treatment effect parameters that

are not covariate-dependent and provide asymptotic derivations under a variety of distributional

assumptions. (Chamberlain 2010) of this volume also discusses more details relating to Bayesian

approaches to treatment effect modeling.
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The expressions above can be evaluated at particular values of x and z and the posterior simulations

of β and Σ used to estimate and characterize the posterior uncertainty regarding these average

treatment impacts. Alternatively, one can average over the covariates’ values to eliminate the

dependence of these expressions on x and z [e.g., (Chib and Jacobi 2007)].

The mean effects listed above are certainly interesting, but also rather limiting: they summarize

various mean treatment impacts for different subpopulations. Other quantities, such as Var(z1−z0)

or quantiles of z1 − z0 are also of interest, but receive minimal attention in this literature.

The reason motivating this restricted focus lies with the cross-regime covariance parameter σ10.

When we consider the likelihood function for this model,

L(β,Σ;y,D) =
∏

{i:Di=1}

p(Di = 1, y(1)
i )

∏
{i:Di=0}

p(Di = 0, y(0)
i ), (173)

with y(j)
i = zij , it is clear that this parameter does not enter the likelihood and thus is not identified.

That is, observations will either belong to regime 0 or regime 1, but never both. As such, the

likelihood does not directly inform us about σ10. However, many features of the outcome gain

z1−z0 will depend on the cross-regime covariance σ10, leaving the researcher wanting to do and say

more, but typically resigning herself to focus on identifiable quantities like the mean effects listed

above.

When conducting simulation-based posterior inference using the model described above, however,

posterior simulations regrading σ10 are produced, potentially enabling an expanded focus beyond

conventional treatment effect parameters. (Vijverberg 1993) first noticed the possibility of learning

about σ10. These ideas were refined and a Gibbs sampling algorithm for the normal model produced

by (Koop and Poirier 1997). (Chib and Hamilton 2000) address this issue by setting the cross-

regime parameter to zero, and derive and apply posterior simulators for a variety of non-normal

sampling models under this restriction. (Poirier and Tobias 2003; Li, Poirier and Tobias 2004)

further describe the nature of learning that takes place regarding σ10. Since Σ must be positive

definite, they show that the conditional support of the non-identified correlation ρ10 is the interval:

ρ10|ρ21, ρ20 ∈
(
ρ21ρ20 − [(1− ρ2

21)(1− ρ2
20)]1/2, ρ21ρ20 + [(1− ρ2

21)(1− ρ2
20)]1/2

)
. (174)

Thus, as the data pins down the values of the identified correlations ρ21 and ρ20, learning about ρ10

takes place given the support restrictions above. The extent of this learning, however, is seriously
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limited, as the shape of the posterior within the bounds above is simply the conditional prior for the

non-identified correlation. Nonetheless, the bounds above can be informative, particularly when

unobserved confounding is large, and can serve to update our prior beliefs about the cross-regime

correlation, potentially enabling the researcher to characterize something beyond mean treatment

parameters. In the most recent statement on this issue, (Chib 2007) suggests working with the

likelihood for the observed data rather than the potential outcomes, noting that such an approach

improves the mixing of the posterior simulations and also frees the researcher from dealing with

the non-identified correlation parameter.

4.4 The Multinomial Probit Model

The multinomial probit (MNP) model (see, e.g., (Geweke, Keane and Runkle 1994,1997) or (Train

2003, chapter 5) and the references cited therein) also maps directly into the framework given

by (126)- (128). In the MNP model, an agent makes a single choice among J alternatives. We

let yi represent the observed choice made by agent i, and enumerate the alternatives so that

yi ∈ {0, 1, . . . , J − 1}.

The MNP model is derived from a random utility framework where a multivariate latent variable,

generated as in (127), is specified to describe the utility afforded by each alternative. In practice,

of course, utility needs to be normalized both for level and scale, as the observed choices made

by agents would be unaffected by the addition of a common constant to each utility level or by

multiplication of utility by a constant. The issue of level normalization is typically accomplished

by considering differences in utility relative to some base alternative, which, here, we treat as

alternative zero. This focus on utility differences reduces the dimension of the model to J − 1

rather than J , and we assume (126) - (128) applies to the analysis of such differences in utility.

(Rossi and Allenby 2010) of this volume provide more details on analysis of the MNP models

as well as the multivariate probit model considered in the next section. Relatedly, multimomial

logit (MNL) and mixed logit models are commonly used to analyze this type of data. We do not

consider these models here, unfortunately, but refer the reader to (Rossi, Allenby and McCulloch

2005: sections 3.11 and chapter 5; Train 2003) for more details.

As for scale normalization in the MNP model, we again have several possibilities, which already

have been discussed. First, we can normalize a diagonal element of the (J − 1)× (J − 1) covariance
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matrix Σ. The posterior conditional distribution of Σ−1 is then a Wishart, with a diagonal

entry restricted to unity. (McCulloch, Polson and Rossi 2000) discuss a reparameterization of the

restricted covariance matrix that enables sampling of the elements of Σ based on simple Gibbs

steps. (Nobile 2000) also provides an algorithm that enables direct sampling from a Wishart given

such a diagonal restriction. Either of these approaches can be applied to form a sampler that

navigates through the identified parameter space.

Alternatively, the restriction can be ignored, a standard Wishart prior employed for Σ−1, leading to

a standard posterior conditional for Σ−1. Identified functions of parameters can then be calculated

from such a sampler. In this approach, “off-the-shelf” routines can be used to perform the sampling,

yielding computational simplicity and improved mixing properties.

It remains to discuss the sampling of the latent data within the MNP model. To this end, let

zi = [zi1 zi2 · · · ziJ−1]′ represent the latent differenced utility vector in (127). The link in (128)

for the multinomial probit reduces to:

yi =
{

0 if max{zil}J−1
l=1 ≤ 0

j if max{zil}J−1
l=1 = zij

. (175)

Therefore, the posterior conditional distributions of each zi are independent across individuals, and

the posterior conditional density for each latent vector zi is a normal distribution, truncated to a

“cone” defined by the restrictions above.

While it is not possible to draw directly from this multivariate truncated distribution, (Geweke

1991) provides an alternative, specialized for use in the MNP model by (McCulloch and Rossi

1994). They note that the posterior conditional distributions for each zij are univariate truncated

normal, with conditional supports defined through the restrictions in (175). As such, we can apply

methods like those described for the probit model to generate a series of univariate truncated

normal draws for each element of the latent variable vector zi. For example, if alternative 0 is

chosen by agent i, then each of the zij are restricted to be non-positive. Similarly, if j 6= 0 is chosen

by agent i, then zij is restricted to be positive and at least as large as all of the other zil. Thus,

sampling of the latent data involves first calculating the conditional mean and variance of each zij
from the J − 1 dimensional multivariate normal in (127), determining the support restrictions on

zij given the observed choice made by agent i, and then sampling from the resulting univariate

truncated normal. This process is repeated for each element of zi (and then for all i), noting

that the most recent simulations of the zil are used when calculating the conditional mean and
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variance for successive elements of zi Finally, apart from the sampling mechanism for the MNP

model discussed so far, it is worthwhile to note from (Keane 1992) that identification of the MNP

model can be quite fragile.

4.5 The Multivariate Probit Model

The multivariate probit (MVP) model [e.g., (Chib and Greenberg 1998)] is quite similar in structure

to the multinomial probit of the previous section and shares the hierarchical, latent representation

that unites the models in this section. In the MVP, agents continue to face a choice among J

different alternatives, yet are not restricted to choose a single element among the set. Further-

more, factors not observed by the econometrician may generate correlation among these choices,

motivating the desire to consider outcomes jointly rather than individually.

For analysis of the MVP model, we let yi = [yi1 yi2 · · · yiJ ]′, yij ∈ {0, 1} ∀ i, j and

Xi =


xi1 0 · · · 0
0 xi2 · · · 0
...

...
. . .

...
0 0 · · · xiJ

 , β =


β1

β2
...
βJ

 . (176)

In the above notation we specify that the covariates vary both with the agent and the alternative,

and we also allow for alternative-specific slope parameters. The former of these assumptions may or

may not be true in practice, though such data differences do not significantly affect the development

of the model or posterior simulator. The restrictions in (128) for the MVP model reduce to a series

of probit-like restrictions:

yij = I(zij > 0), j = 1, 2, . . . , J. (177)

The identification problem in the MVP model is slightly different from that in the MNP model,

given the nature of the observed responses in (177). In particular, if we were to multiply the latent

equation in (127) by a diagonal matrix C, then one can show that

Pr(Y i = yi|β = β0,Σ = Σ0) = Pr
(
Y i = yi|β = β̃,Σ = CΣ0C

′), (178)

where β̃ is constructed by multiplying each β0j by the (j, j) element of C. In other words, each

latent variable equation can be rescaled yet leave the likelihood function for the observed data

unchanged.
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(Chib and Greenberg 1998) present a Bayesian analysis of the MVP model, working with the covari-

ance matrix Σ in restricted correlation form (and thus work directly with identifiable parameters)

and propose a tailored Metropolis-Hastings step for sampling this restricted correlation matrix.

Alternatively, (Edwards and Allenby 2003; Rossi, Allenby and McCulloch 2005) advocate working

in the non-identified parameter space and adopting a sampler that only requires simulation from

standard distributions. Specifically, they suggest working with an unrestricted Σ. The regression

parameters β are sampled from (129), the inverse covariance matrix is sampled from (131) and

each latent vector zi is again multivariate truncated normal, with conditional support restrictions

given by (177). As such, the algorithm of (Geweke 1991) can be applied, and each component

zij , j = 1, 2, . . . , J drawn from a univariate truncated normal.

To deal with the identification problem in the (Edwards and Allenby 2003) approach, the posterior

simulations are post-processed to report identifiable quantities. In the general case, this requires

setting C to be a J × J diagonal matrix with diagonal entries {σ−1/2
j,j } and calculating Cβ and

CΣC ′ as the identifiable regression parameters and covariance matrix, respectively. This approach

to posterior simulation of the MVP model is attractive in that it only requires sampling from

standard distributions and offers improved mixing properties in practice.

5 Duration Models

Microeconometric applications often involve the analysis of duration data, with Bayesian applica-

tions including the investigation of unemployment duration (Lancaster 1979; Li 2006), employment

duration (Campolieti 1997), and time spent in bankruptcy (Li 1999), among others. A particularly

salient feature of economic applications is the possibility (or probability) that such variables exhibit

state dependence, meaning that the probability of exiting a spell may depend on the length of time

the person has remained within that spell.

One approach to duration modeling specifies that the duration random variable of interest, T

is continuous, with probability density function denoted as f(t). In this case, the cumulative

distribution function, denoted F (t) is obtained as F (t) = Prob(T < t) =
∫ t
0 f(u)du, while the

survivor function (or the probability that T continues at time t), is simply one minus the cumulative
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distribution function:

S(t) = Prob(T ≥ t) = 1− Prob(T < t) = 1− F (t).

In many applications of duration modeling, interests center around the hazard function (Cox 1972),

λ(t) = f(t)/S(t). This is the instantaneous probability of T ending exactly at t, conditional on the

event that it has last until t. The special interest in the hazard often leads researchers to embrace

it as the “primitive” and from it the implied survivor and density functions are derived. Letting

Λ(t) =
∫ t
0 λ(u)du denote the integrated hazard, it can be easily shown that S(t) = exp[−Λ(t)] and

f(t) = exp[−Λ(t)]λ(t).

To conduct a Bayesian duration analysis, we assume that we have n observations on the duration

random variable T that are (conditionally) independent from one another, and denote these as t1,

t2, · · · , tn. The likelihood function of the model is

p(y|Ξ) =
n∏
i=1

exp[−Λ(ti)]λ(ti),

where y = [t1 t2 · · · tn]′ denotes the data and Ξ all the parameters. If we specify that the

hazard function remains constant over time, i.e., λ(t) = λ, the integrated hazard function reduces

to Λ(t) = λt, and the likelihood function becomes p(y|Ξ) =
∏n
i=1 exp(−λti)λ. In this case only

one parameter, λ, appears in the likelihood function. Recognizing this as an exponential sampling

likelihood, the gamma prior:

p(λ) = fG(a, b) = b−aΓ(a)−1λa−1 exp(−λb−1),

is known to be conjugate. Specifically, if this prior is employed, we obtain:

p(λ|y) = fG(a+ n, (b−1 +
n∑
i=1

ti)−1).

The foregoing approach, based on the assumption of a constant hazard, is quite restrictive. A

more flexible alternative is to specify that the hazard is constant over suitably short intervals, but

potentially different across intervals. To this end we divide the time horizon into K shorter periods

and specify that the hazard function remains constant within each period, but varies across different

periods [e.g., (Holford 1976)]. In other words, λ = λ1 within the first period, λ = λ2 within the

second period, and so on.
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Correspondingly, we also divide duration ti into K parts, ti1, ti2, · · · , tiK , and use di1, di2, · · · ,
diK to indicate whether ti ends in a particular period. For example, if ti ends in the middle of the

fourth period, ti1 = ti2 = ti3 = 1, ti4 = 1
2 , ti5 = ti6 = · · · = tiK = 0, only di4 = 1 and all other

dik = 0. The likelihood function for the piecewise constant baseline hazard is

p(y|Ξ) =
n∏
i=1

exp(−
K∑
k=1

λktik)
K∏
k=1

λdikk .

As with the constant hazard case, we can specify a common gamma prior for the piecewise hazards:

λk
iid∼ G(a, b), k = 1, 2, . . . ,K,

producing

λk|y
ind∼ G(a+

n∑
i=1

dik, (b−1 +
n∑
i=1

tik)−1), k = 1, 2, . . . ,K.

5.1 Discrete Time Approaches

Sometimes we do not know when duration ti ends exactly, but know that it ends within one of

the K periods, e.g., k = 4. A discrete model can be used for this type of data (Campolieti 1997).

Denote Φ(γk) as the probability ti continues in period k, conditional on the fact that it lasts until

period k − 1, where Φ(·) stands for the standard normal cumulative distribution function and γk

is a period specific parameter, similar to λk in the continuous time model. Let si1, si2, · · · , siK
be indicator variables denoting whether a duration continues in period k. For instance, if duration

ti ends in the fourth period, si1 = si2 = si3 = 1 and si4 = si5 = · · · = siK = 0. The likelihood

function of the discrete model is

p(y|γ) =
n∏
i=1

K∏
k=1

Φ(γk)sik [1− Φ(γk)]dik ,

where, as defined in the continuous model, dik indicates whether duration ti ends in period k. A

normal prior such as φ(µγ , Vγ) is commonly used for the period-specific rate parameter γk.

Following (Albert and Chib 1993a; Albert and Chib 1993b; Campolieti 1997), one can use a Gibbs

sampler with data augmentation to simulate draws from the posterior distribution of the param-

eters. For each duration ti, and for each period k within which duration ti continues or ends, the
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likelihood function is augmented with a latent variable yik = γk + εik, where εik
iid∼ N (0, 1), such

that yik > 0 if ti continues in period k and yik ≤ 0 if it ends in period k.

The Gibbs sampler consists of two steps. In the first step, yik is drawn from a T N (0,∞)(γk, 1)

distribution if ti continues in period k and from T N (−∞,0](γk, 1) if it ends in period k. The second

step draws γk from N (Dkdk, Dk), where

Dk = [V −1
γ +

n∑
i=1

I(sik = 1 or dik = 1)]−1 and dk = V −1
γ µγ +

n∑
i=1

I(sik = 1 or dik = 1)yik.

5.2 Other Generalizations

Duration models can be extended in various directions to accommodate additional features. Some-

times it is reasonable to specify that the baseline hazards in neighboring periods are similar to each

other, and therefore it is natural to impose a smoothing prior on the piecewise constant baseline

hazards [see (Campolieti 2000) for an application in the discrete time model]. For example, we

can impose the following prior on the first difference in the baseline hazards of adjacent periods:

λk+1 − λk ∼ N (0, η). Smaller values of η place stronger prior information on the baseline hazards

and make the estimates of baseline hazards smoother. The smoothness of the baseline hazard esti-

mates also depends on the order of differencing, and it is possible to specify a prior using a higher

order of differencing among the baseline hazards.

Right censoring represents another common feature of duration data. Assume that the censoring

occurs at the end of period K so that we only observe duration ti up to that point. If ti ends in a

period beyond K, the timing of the termination will not be observed. Importantly, the likelihood

functions discussed previously automatically take into account this issue. Note that if duration

ti is censored at the end of period K and ti continues beyond that point, the indicator variables

di1, di2, · · · , diK will all be zero. For the continuous model, the likelihood function of ti reduces

to exp(−
∑K

k=1 λktik), corresponding to the probability of survival at the end of period K. In

the discrete model, the likelihood function becomes
∏K
k=1 Φ(γk)sik , which is also the probability of

surviving until period K.

Another well-established result in duration analysis is that the failure to account for the hetero-

geneity in hazards results in identification problems in duration dependence estimation. Variation
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in hazard rates across agents can be explained by observable characteristics that change over time.

Following the proportional hazard analysis framework (Cox 1972), we incorporate a 1 × j vector

of time-varying covariates xik into the duration model. In the continuous time model, the hazard

that ti ends in period k is proportional to the baseline hazard λk: λik = exp(xikβ)λk, where β is a

j × 1 vector representing the impacts of covariates xik on the hazard rate. The likelihood function

accommodating such time-varying covariates is

p(y|Ξ) =
n∏
i=1

exp[−
K∑
k=1

exp(xikβ)λktik]
K∏
k=1

[exp(xikβ)λk]dik .

In the discrete time model,time-varying covariates are incorporated by replacing Φ(γk) with Φ(γk+

xikβ) in the likelihood function.

The modeling of time-varying covariates is an attempt to deal with the above identification problem,

but it is unlikely that the heterogeneity in hazard can be captured entirely by observables. As such,

it is also important to model the unobserved heterogeneity in hazard across individuals. Consistent

with the proportional hazard specification, we add unobserved heterogeneity to the hazard function

in the same way as we introduced observed heterogeneity in the hazard. In the continuous model

we change the hazard function to λik = exp(xikβ)ηiλk, where ηi represents the individual level

unobserved heterogeneity.

Researchers [e.g., (Lancaster 1979)] often specify that ηi follows a Gamma distribution, ηi|v
iid∼

G(v, v−1), so that it has unit mean and variance equal to v−1. In the discrete model, we change

the continuation probability to Φ(γk + xikβ + αi) to reflect the influence of the individual specific

random effect on the hazard function. A standard, simple parametric assumption for the het-

erogeneity terms would be αi
iid∼ N (0, σ2). Alternatively, we could be more flexible and allow a

nonparametric specification of the unobserved heterogeneity through the use of a Dirichlet process

prior as in (Campolieti 2001). Finally, duration data sometimes appear in a hierarchical form

(Guo and Rodriguez 1992; Sastry 1997; Bolstad and Manda 2001; Li 2007). For example, we may

observe durations for individuals clustered within the same household, the same city, and so on.

In such cases, we can capture unobserved heterogeneity in the hazard at the various levels via the

proportional hazard approach. The following example provides an illustration.
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5.3 An Example

We modify the application in (Li 2007) who studies the timing of high school dropout decisions,

using data from the High School and Beyond Longitudinal survey. The full model estimated by

Li accounts for the heterogeneity in hazard rates at the individual, school and state levels. To

simplify our discussions, we consider here a simpler version and model only sources of individual

level heterogeneity, ignoring any possible correlations that may take place for individuals within

the same school or state. Adopting the continuous time model, we define the hazard of dropping

out of high school during month k for individual i as λik = exp(xikβ)ηiλk, where xik is a j × 1

vector of individual level covariates, ηi
iid∼ G(v, v−1) represents individual i’s random effect in the

hazard function, and λk corresponds to the piecewise constant baseline hazard in month k. The

likelihood function for the model is

p(y|Ξ) =
n∏
i=1

vvΓ(v)−1ηv−1
i exp(−ηiv) exp[−

K∑
k=1

exp(xikβ)ηiλktik]
K∏
k=1

[exp(xikβ)ηiλk]dik .

We specify the following priors: β ∼ N (µβ,Vβ), λk
iid∼ G(aλ, bλ), v ∼ G(av, bv), where β0 = 0,

Vβ = 1000Ij , aλ = av = 0.01 and bλ = bv = 100.

A Metropolis-within-Gibbs algorithm is used to generate samples from the joint posterior distri-

bution. The parameters {λk}Kk=1, {ηi}ni=1, are sampled using Gibbs steps by drawing, in order,

from:

λk|y, {ηi}ni=1,β) ind∼ G(aλ +
n∑
i=1

dik, [b−1
λ +

n∑
i=1

exp(xikβ)ηitik]−1),

and,

ηi|y, {λk}Kk=1, v,β
ind∼ G(v +

n∑
i=1

dik, [v +
n∑
i=1

exp(xikβ)λktik]−1).

The conditional posterior distributions of v and β are not of a known form and therefore cannot

be sampled directly. For these parameters, we employ M-H steps.
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Table 10: Posterior estimates and marginal effects of the coefficients
Variable/Parameter E(β|D) Std(β|D) P(β > 0|D) Marginal effect

Female -0.14 0.0709 0.0201 -12.8
Minority -0.186 0.0824 0.00962 -16.7

Family income ($10,000) -0.0524 0.0368 0.0674 -5.04
Base year test score -0.838 0.0446 0 -56.7

Father’s education (year) -0.0505 0.0107 0 -4.92
Mother’s education (year) -0.0771 0.0122 0 -7.41

Number of siblings 0.0947 0.0206 1 9.95
Dropout eligibility 0.654 0.112 1 93.6

Variance parameter (v−1) 0.929 0.13 1

In Table 10 we list summary posterior statistics and also calculate the marginal effect of a covariate

which corresponds to the percentage change in the dropout hazard due to a one-unit increase in the

covariate xj , or [exp(βj)− 1]× 100. Our results show that being eligible to drop out of high school

under compulsory schooling laws increases the dropout hazard of an individual by 93.6 percent.

An increase of $10,000 in parental income decreases the dropout hazard by 5.04 percent, while

variance parameter estimate v−1 indicates considerable unobserved variation across individuals in

the dropout hazard.

6 Conclusion

We have reviewed Bayesian approaches to estimation in many models commonly encountered in

microeconomics. While not exhaustive, the models considered in this chapter are among the most

widely-used in practice and can serve to accommodate many of the data types and some of the

econometric problems that the practitioner will face. While not completely flexible, as nearly all

the posterior simulators have been presented under conditionally normal sampling assumptions,

we have provided references to the literature for extensions of the basic framework, and noted the

“modularity” of MCMC methods. That is, existing computational techniques can be employed

to expand the sampling window to the class of scale mixtures or finite mixtures of normals, for

example, and implementation of these steps proceeds in largely the same way regardless of the

model employed (Geweke and Keane 2001). Finally, examples using real data for many different

models have been provided and code is made available to the interested practitioner for inspection,

refinement, or further modification.
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