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a b s t r a c t

We consider the problem of causal effect heterogeneity from a Bayesian point of view. This is
accomplished by introducing a three-equation system, similar in spirit to the work of Heckman and
Vytlacil (1998), describing the joint determination of a scalar outcome, an endogenous ‘‘treatment’’
variable, and an individual-specific causal return to that treatment. We describe a Bayesian posterior
simulator for fitting this model which recovers far more than the average causal effect in the population,
the object which has been the focus of most previous work. Parameter identification and generalized
methods for flexibly modeling the outcome and return heterogeneity distributions are also discussed.

Combining data sets from High School and Beyond (HSB) and the 1980 Census, we illustrate our
methods in practice and investigate heterogeneity in returns to education. Our analysis decomposes the
impact of key HSB covariates on log wages into three parts: a ‘‘direct’’ effect and two separate indirect
effects through educational attainment and returns to education. Our results strongly suggest that the
quantity of schooling attained is determined, at least in part, by the individual’s own return to education.
Specifically, a one percentage point increase in the return to schooling parameter is associated with the
receipt of (approximately) 0.14 more years of schooling. Furthermore, when we control for variation in
returns to education across individuals, we find no difference in predicted schooling levels for men and
women. However, women are predicted to attain approximately 1/4 of a year more schooling than men
on average as a result of higher rates of return to investments in education.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

A substantial volume of work in economics and statistics has
been devoted to the issue of identifying and estimating the causal
impact of an endogenous or ‘‘treatment’’ variable. The endogeneity
issue in these models arises when the level or intensity of
treatment is not randomly assigned, but, instead, is selected by
the individual. This self-selection problem is the defining feature
of observational data, as those agents observed to choose high
levels of treatment are likely to possess observed and unobserved
characteristics that differ from those choosing lower levels of
treatment. This aspect of the problem generates a well-known bias
and inconsistency in standard estimators that fail to account for the
endogeneity of treatment levels.1

∗ Corresponding author. Tel.: +1 716 645 2121; fax: +1 716 645 2127.
E-mail addresses:mli3@buffalo.edu (M. Li), jltobias@purdue.edu (J.L. Tobias).

1 In our paper, we continue to use the word ‘‘treatment’’ and use it in reference
to the endogenous right-hand side outcome variable. Inmost cases in the literature,
however, ‘‘treatment’’ refers to variables that are binary, or perhaps discrete, while
here we will consider a continuous treatment outcome. Furthermore, ‘‘treatment
effects’’ are typically defined in the context of a binary treatment outcome in
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Recent work has also emphasized the importance of addressing
causal effect heterogeneity – that individual agents may have
different returns to treatment – and providing the proper
interpretation of traditional estimators in the presence of such
heterogeneity. For example, the important work of Imbens
and Angrist (1994) shows that, under suitable conditions in a
binary treatment context, the standard instrumental variable (IV)
technique recovers the local average treatment effect (LATE),
a treatment impact for a subpopulation of ‘‘compliers’’ whose
behavior canbemanipulated by an instrument.Whether or not this
LATE parameter is inherently an object of interest is necessarily

a potential outcomes framework that explicitly models both the treated and
untreated states. We work in this paper with a simplified model of observed
outcomes only, which, arguably, is the most common model used in applied work.
Wewill refer to the individual-specific return to treatment as a causal effect, causal
impact, or ‘‘return’’, and derive procedures for characterizingmany properties of the
distribution of causal effects in the population. Conventional treatment effects, such
as ATE, TT, and LATE, are based upon a more general representation of the model
with a binary treatment, and thus are not directly comparable to those considered
here. Our framework, instead, is based upon the observed outcomes representation
as discussed in Wooldridge (1997), Heckman and Vytlacil (1998), and Wooldridge
(2003), among others.

http://dx.doi.org/10.1016/j.jeconom.2011.02.006
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an application and instrument-specific question, and, as such,
researchers sometimes focus on methods that enable recovery of
the average treatment effect (ATE), or average causal effect, in
the presence of treatment effect heterogeneity. Notable studies in
this regard, based upon observed outcomes models like the one
we consider here, include those of Wooldridge (1997), Heckman
and Vytlacil (1998), and Wooldridge (2003), who introduce
assumptions and procedures under which the average causal
effect can be consistently estimated when treatment returns are
heterogeneous and potentially correlated with treatment levels.
In a similar vein, Heckman and Vytlacil (1999, 2005) and others
describe the marginal treatment effect (MTE) (e.g., Björklund and
Moffitt, 1987, Heckman, 1997, and Heckman and Smith, 1999) as
a type of unifying parameter which, when properly integrated,
can be used to calculate all of the conventional mean binary
treatment effect parameters, including ATE, LATE, and the effect of
treatment on the treated (TT), thereby capturing important aspects
of treatment effect heterogeneity.

In this paper, we take up the issue of causal effect heterogeneity
in a similar spirit to the work mentioned above, but choose
to address this issue via a Bayesian approach. Specifically, we
consider Bayesian estimation in a variant of the correlated random
coefficient (CRC) model, similar to that considered by Wooldridge
(1997), Heckman and Vytlacil (1998) and Wooldridge (2003). To
be sure, our study is certainly not the first such effort, and, indeed,
a sizeable Bayesian literature has evolved for the estimation
of treatment–response models with observational data.2 Early
efforts in this regard primarily focused on the Markov chain
Monte Carlo (MCMC) implementation (e.g., Koop and Poirier, 1997
and Chib and Hamilton, 2000) and included some discussion of
recovering individual-level treatment impacts within a potential
outcomes framework.3 More recent work has focused on problems
associated with weak instruments generally, has discussed priors
that yield posteriors similar to sampling distributions for the
two-stage least squares (2SLS) and limited information maximum
likelihood (LIML) estimators (e.g., Kleibergen and Zivot, 2003), has
introduced a non-parametric modeling of outcomes via a Dirichlet
process prior (Conley et al., 2008), and has obtained new results
associatedwith the seminal Angrist and Krueger (1991) study (e.g.,
Hoogerheide et al., 2007).4

Our model of interest consists of a three-equation system
describing the joint determination of an observed scalar outcome
variable, an endogenous ‘‘treatment’’ variable, and an individual-
specific causal effect parameter. The novelty of our approach is
that we directly model the process generating the individual-
specific causal effect and thus can calculate any statistic of
interest (such as return percentiles or the probability of a
positive treatment impact) associated with the causal effect
heterogeneity distribution. Of course, our ability to do this
stems from particular parametric assumptions made regarding

2 Important examples of this work include Koop and Poirier (1997), Li (1998),
Chib and Hamilton (2000, 2002), Poirier and Tobias (2003), and Chib (2007). Li et al.
(2003), Munkin and Trivedi (2003), and Deb et al. (2006) provide applications of
these methods.
3 That is, these models explicitly consider outcomes in the treated and untreated

states togetherwith the treatment decision. Chib andHamilton (2002), for example,
point out the possibility of learning about individual-level treatment effects, while
Koop and Poirier (1997) and Poirier and Tobias (2003) discuss the potential
for learning about outcome gain distributions and the cross-regime correlation
parameter. In recentwork, Chib (2007) argues in favor of avoiding explicitmodeling
of the counterfactual, owing to concerns associated with modeling the non-
identifiable cross-regime correlation parameter. We follow in a similar spirit of
working with observed outcomes in the present paper.
4 The Bayesian approach to thismodel has also received considerable attention in

recent textbooks, including Lancaster (2004, Chapter 8), Rossi et al. (2005, Chapter
7), and Koop et al. (2007, pp. 223–236).
the heterogeneity distribution, and, to this end, we describe
methods that enable a flexible representation of this distribution.
In addition, and similar in spirit to the income maximization
presumption of the Roy (1951) model, agents can potentially
choose the amount of treatment based on their own knowledge
of the return to such treatment. Provided sufficient sources of
exogenous variation are available, we show that this presumption
becomes empirically testable.

Within the Bayesian literature, the structure of our three-
equation system seems rather similar in spirit to the innovative
work of Manchanda et al. (2004).5 In this paper, the authors are in-
terested in providing a joint description of ‘‘detailing’’ efforts made
by drug companies and the number of physician prescriptions, not-
ing that the decision to detail particular physicians may depend, at
least in part, on the responsiveness of that physician to the detail-
ing effort (i.e., how many more prescriptions he or she will write
as a consequence of being detailed). Our model seeks to address
a similar problem to that considered by Manchanda et al. (2004),
though in our case the standard treatment–response framework,
which must contend with problems such as confounding on unob-
servables, is generalized to allow treatment levels to be selected
based on the ‘‘returns’’ to treatment. Similarly, Conley et al. (2008,
section 2.5) discuss the possibility of employing a Dirichlet pro-
cess prior to simultaneously allow for a nonparametric distribu-
tion of outcomes andheterogeneous treatment impacts. Despite its
flexibility, this specification does not explicitly model the poten-
tial structural dependence of the endogenous treatment variable
on the return to treatment, and thus differs from the specification
considered here.

In some sense, one might regard our efforts in this endeavor
as a step back relative to the existing classical literature, in
light of the fact that we need to make specific distributional
assumptions whereas others (e.g., Wooldridge, 2003) only require
a few moment conditions to be satisfied. While our assumptions
are clearly stronger than those typically made in these types of
analysis, we argue that the benefits afforded by such assumptions
may warrant their adoption: we are able to identify all parameters
of our model (provided satisfactory exclusion restrictions exist)
and expand our focus to directly model the entire treatment effect
distribution.

We develop an efficient posterior simulator for fitting our
model and illustrate in generated data experiments that it mixes
well and performs adequately in recovering parameters of the
data-generating process. In addition, we carefully discuss the
conditions required for parameter identification and methods for
relaxing normality, thereby allowing for a more flexible modeling
of the outcome and return heterogeneity distributions. Finally, we
employ our methods in a real application and investigate the issue
of heterogeneity in the economic returns to education, following
the influential work of Card (2001). To this end, we combine
data sources from the sophomore cohort of the High School and
Beyond (1992) Survey and the 1980 Census. We show in our paper
that successful identification of our model’s parameters requires
the availability of some variable that has a structural impact on
individual-level returns to treatment, but remains conditionally
uncorrelated with our outcome variable and the level of treatment
received. In this regard we first use 1980 Census data to calculate
county-level average returns to education. The lagged county-
level returns to schooling are then used as exogenous sources of
variation which should correlate positively with the individual’s
(1991) private returns to education (andwe find strong evidence in
support of this), but are assumed to be conditionally uncorrelated
with educational attainment and log wage outcomes.

5 This paper is also described in Rossi et al. (2005).
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Our results suggest strong evidence that the amount of school-
ing attained is determined, in part, by the individual’s own return
to education. Specifically, a one percentage point increase in the
return to schooling parameter is associated with the receipt of
(approximately) 0.14 more years of education. Further, we find
evidence of heterogeneity in returns to education, with females,
blacks and Hispanics possessing higher returns to schooling than
males and whites.

The outline of our paper is as follows. Section 2 briefly
introduces the model while Section 3 discusses identification,
strategies for posterior simulation, and how learning takes place
regarding the causal effect heterogeneity parameters. Section 4
conducts generated data experimentswhile Section 5describes the
data sets involved with our application. Results of that application
are presented in Section 6, and the paper concludes with a
summary in Section 7. The Appendix provides technical details
regarding identification.

2. The model

The model we consider is a three-equation system as described
below6:

yi = β0 + xiβ + siθi + ui (1)

si = δ0 + xiδ + ziγ + θiρ + vi (2)
θi = η0 + xiη + wiλ + ϵi. (3)

In Eq. (1), yi denotes the (continuous) outcome of interest and si
is a continuous and (potentially) endogenous treatment variable.
The covariates in xi are common to all equations, while we also
allow instrumental variables zi and wi to appear in (2) and (3),
respectively.7

Consistent with a majority of recent work in this area, we do
not wish to impose identical treatment returns for each agent,
and explicitly allow for heterogeneous causal impacts. The private
return to si in our model is denoted as θi, and the notation makes
clear that the return can differ across individuals. Eq. (3) then
relates the (unobserved) return θi to observables wi and xi. That
is, individual-specific returns to educationmay potentially depend
on things like the ability (i.e., test score) of the agent as well
as other demographic characteristics. Finally, in (2), we allow
the quantity of the endogenous variable si to depend, at least
in part, on the return to treatment θi. That is, economic agents
who may have knowledge of their private return to education, for
example,may potentially choose the amount of schooling based on
this knowledge. A related assumption appears frequently in close
variants of this model; the Roy (1951) model, for example, is based
on income maximization and posits that individuals select into
binary ‘‘treatment’’ based on their economic gain from doing so.

3. Identification and model generality

It may not be immediately clear that the parameters of
the system above are identifiable, or what conditions might be
required in order to achieve identification. To begin our discussion
of these issues, we first consider the likelihood p(y, s|Γ −θ)
under the assumption of jointly normal errors with unrestricted
covariance matrix Σ8:

6 Bold script is used to denote vectors and matrices, while capitals are used for
matrices.
7 We consider only a scalar treatment variable in this analysis, noting that others,

such as Wooldridge (2003), allow for multiple endogenous variables. Extension
to the multivariate case is possible and reasonably straightforward, but is not
considered here.
8 Here, Γ −θ denotes all parameters other than θ = [θ1 θ2 · · · θn] as the

heterogeneity terms are to be integrated out.
ui
vi
ϵi

 xi,wi, zi
i.i.d.
∼ N

00
0


,

σ 2
y σys σyθ

σys σ 2
s σsθ

σyθ σsθ σ 2
θ


≡ N (0, Σ). (4)

Details regarding parameter identification under this assumption
are described in the Appendix, yet it is worth noting here the main
results of this exercise. In a sense, the most important exclusion
restriction for identification purposes turns out to be the set of
variables w, as their presence enables full identification of the
model parameters. Specifically, if no ‘‘traditional’’ instrument z is
available (i.e., γ = 0), then the system in (1)–(3) is still identified,
provided that ρ ≠ 0 and w appears only in (3). If z is additionally
available in (2), as previously written in Eqs. (1)–(3), then the
variables w could actually be included in both (1) and (3), and the
model would remain fully identified. On the other hand, if λ = 0
so that z , the traditional instrument, is the only excluded variable,
then the model is no longer fully identified.

It may not be clear why w is so important for identification
purposes, and in what follows we seek to provide an intuitive
explanation for this. The presence of w in (3) enables exogenous
shifts in the distribution of θi which, in turn, permits the
identification of ρ in (2) and subsequently all of the remaining
structural parameters. In the more difficult case where γ = 0 so
that z is absent from the model, we obtain, upon integrating out
the heterogeneity terms,

yi = β0 + xiβ + siη0 + sixiη + siwiλ + (siϵi + ui)

si = (δ0 + ρη0) + xi(δ + ρη) + wiρλ + (ρϵi + vi).

Loosely (amore formal treatment is provided in the Appendix), the
coefficient on siwi enables us to recover an estimate of λ and the
reduced form expression for si enables us to estimate the product
ρλ, thus providing a means to recover ρ.9 When z is available, but
w is not present, the interaction siwi disappears and ρ is no longer
separately identifiable, although η0, interpretable as the average
causal impact in the population (when λ = 0 and x is standardized
to be mean zero), does remain estimable.

Of course, whether or not exclusion restrictions such as w
and z are available in practice is inevitably an application-specific
question, and the degree to which such restrictions can be credibly
maintained will depend, in part, on adequate conditioning data
and, to no small degree, on the persuasiveness of the researcher.
What emerges from ourmodel, however, is a primary requirement
that is somewhat different from the traditional instrumental
variables assumption: what is most necessary for identification
purposes is the existence of some variable affecting the return
to treatment that is also (conditionally) uncorrelated with the
outcomes of interest, and the endogenous treatment variable
in particular. In what follows, we illustrate application of this
model to a widely studied question in the labor economics
literature: estimating the return to education and characterizing
heterogeneity in schooling returns.

It is also worthwhile to pause and place our study in the
context of the previous literature. From the classical perspective,
numerous papers have addressed various aspects of causal effect
heterogeneity, and previous efforts that seemmost similar to ours

9 The first equation of this system is very similar to that described byWooldridge
(2003), who notes that IV/2SLS can be used to estimate the average causal effect
η0 using w and its interactions as instruments. What is required here is that the
conditional covariance between si and θi does not depend on w. This is true given
the assumptions of our model. Note, however, that if treatment effect homogeneity
were assumed, and standard IV were applied to (1) directly using z (or w) to
instrument for s, then one will not recover in general an estimate of the average
causal impact. Further details regarding this issue are available upon request.
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include those of Heckman and Vytlacil (1998) and Wooldridge
(1997, 2003). In the most recent of these, Wooldridge (2003)
introduces three assumptions that enable consistent estimation of
the average treatment effect. His representation of the model is
more general than ours, as multiple treatments are considered, no
specific distributional assumptions are employed, and no explicit
modeling of the treatment variable s is necessary. In this sense,
our model might seem to offer a step in the wrong direction, as
Eqs. (1)–(3) impose considerable structure beyond what has been
used in past work. In our view, however, the added structure may
be a worthy investment, as it enables us to expand our focus
beyond the average causal effect and learn about all aspects of the
heterogeneity distribution, including learning about individual-
level treatment impacts. With respect to distributional concerns,
these seemdecidedlymoreminor, aswewill now replace trivariate
normality with a finite mixture of Gaussian distributions,10 which
provides a very flexible way to model the joint distribution of the
outcome, endogenous variable, and causal effect parameter.

3.1. Posterior analysis

The normality assumption made in (4) is potentially inappro-
priate and often controversial, and, to this end, it is important to
recognize that it can be significantly generalized. We pursue such
a generalization in this and the following sections via a finite Gaus-
sian mixture representation. We begin by writing this model in a
somewhat non-traditional way as

yi = β0i + xiβi + siθi + ui (5)

si = δ0i + xiδi + ziγ i + ρiθi + vi (6)

θi = η0i + xiηi + wiλi + ϵi (7)

and

[ui vi ϵi]
′
|xi, zi,wi

ind
∼ N (0, Σi),

whence the density for yi, si, θi|· is readily available, as the
associated Jacobian of the transformation from the error vector to
[yi si θi]

′is unity.
The notation in (5)–(7) is quite general, as it allows for

individual-specific slope and intercept parameters. The finite
mixture formulation of the model adds structure to this by
proposing that there are, say, G distinct groups with identical
parameters within each group yet different parameters across
groups. Whether or not these ‘‘groups’’ have any intrinsic meaning
as a discrete partitioning of the population of interest is mostly
irrelevant, though, if such an interpretation can be convincingly
given in a particular application, the mixture components may
be afforded a specific interpretation. In most instances, mixture
models are commonly employed as a flexible computational
tool to allow for skew, multimodality, and heavy tails in the
outcome distributions, and no specific meaning need be ascribed
to the various mixture components.11 With an eye toward the
implementation of our posterior simulator, we first define the
parameter sets

φi = [β0i β′

i δ0i δ′

i γ i η0i η′

i λi]
′
∈ φ

= {φ1, φ2, . . . ,φG}

ρi ∈ ρ = {ρ1, ρ2, . . . , ρG}

10 A proof regarding parameter identification in the finite mixture framework is
omitted here, but is available upon request. The proof follows a similar strategy
to that given in the Appendix, where y|s, Γ −θ and s|Γ −θ are obtained and their
moments are characterized, revealing parameter identification. Such a strategy
dates back to at least Pearson (1894), who used a moment-based approach to
estimate the parameters of a two-component Gaussian mixture.
11 See, e.g., Geweke and Keane (2007) for use of a related methodology, the
smoothly mixing regression model.
and

Σi ∈ Σ = {Σ1, Σ2, . . . , ΣG}.

All parameters other than ρi, θi, and Σi are lumped into the vector
φi. The above equations imply that each of the individual-specific
parameters will be assigned a hierarchical prior where, once the
component of the mixture is known, the distribution for ρi, φi and
Σi is degenerate around one of the G values in the parameter sets
given above. The allocation of agents to the appropriate component
of the mixture is achieved via the addition of component indicator
variables. Specifically, we will let cig = 1 denote that individual
i ‘‘belongs to’’ the gth component of the mixture. Formally, we
let

ci = [ci1 ci2 · · · ciG]′

be the component label vector for individual i, and specify priors
of the form

p(φi, ρi, Σi|cig = 1, φ, ρ, Σ)

= I

φi = φg , ρi = ρg , Σi = Σg


(8)

ci
i.i.d.
∼ Mult(1, π) (9)

π ∼ Dirichlet(α), (10)

with

π = [π1 π2 · · · πG]
′, α = [α1 α2 · · · αG]

′,

I(·) denoting the standard indicator function, Mult(·) denoting the
multinomial distribution and Dirichlet(·) denoting the Dirichlet
distribution (see, e.g., Koop et al., 2007, pp. 340). Thus, given cig =

1 and the set of component-specific parameters and covariance
matrices, the parameter vector for individual i is known, and φi, ρi
and Σi merely serve as ‘‘place-holders’’ which are convenient for
simplifying the exposition. The multinomial prior on ci and the
corresponding Dirichlet prior on the component probability vector
π imply that, unconditionally,

p(φi, ρi, Σi|π, φ, ρ, Σ) =

G−
g=1

πg I

φi = φgρi = ρg , Σi = Σg


.

Likewise, the trivariate distribution for yi, si, θi (not conditioned on
ci) is

p(yi, si, θi|π, φ, Σ, ρ)

=

G−
g=1

πgp(yi, si, θi|φi = φg , ρi = ρg , Σi = Σg ),

where the distribution within each component of the mixture is
obtained by a change of variables from (5)–(7). This illustrates the
finite mixture representation of the likelihood.

We complete the specification of our model with the following
priors:

φg
i.i.d.
∼ N(φ0,Vφ), g = 1, 2, . . . ,G (11)

p(Σ1, Σ2, . . . , ΣG)

∝ I(Σ ss1 < Σ ss2 < · · · < Σ ssG)

G∏
g=1

pIW (Σg |p, pR) (12)

ρg
i.i.d.
∼ N(ρ0, Vρ) g = 1, 2, . . . ,G. (13)

The prior on the set of covariance matrices serves to identify the
mixture components, and it does so by providing an ordering
restriction on variances in the schooling equation (i.e., Eq. (2)). To
derive the joint posterior distribution for the unobservables in our
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model, we first define

y =


y1
y2
...
yn

 , s =


s1
s2
...
sn

 , θ =


θ1
θ2
...
θn

 , φ =


φ1
φ2
...

φn

 ,

ρ =


ρ1
ρ2
...

ρn

 , Σ =


Σ1
Σ2
...

Σn

 , and c =


c ′

1
c ′

2
...
c ′

n

 .

With this notation in hand, Bayes’ theoremgives the joint posterior
distribution up to proportionality:

p(θ, φ, ρ, Σ, φ, ρ, Σ, π, c|y, s) ∝ p(π)p(φ)p(ρ)p(Σ)

×

n∏
i=1

p(φi, ρi, Σi|ci, φ, ρ, Σ)p(ci|π)|Σi|
−

1
2

× exp


−
1
2
h′

iΣ
−1
i hi


, (14)

where

hi =

 yi − β0i − xiβi − siθi
si − δ0i − xiδi − ziγ i − ρiθi

θi − η0i − xiηi − wiλi


and p(φi, ρi, Σi|ci, φ, ρ, Σ) has been given in (8).

3.2. The Gibbs algorithm

In principle, a standard Gibbs sampler can be applied to fit
this model, drawing, in turn, from each of the complete posterior
conditionals as implied by (14). However, this standard Gibbs
sampler turns out to suffer from poor mixing properties. To this
end, we employ a blocking (grouping) step where the parameters
φ are drawn from their conditional distribution, marginalized over
the heterogeneity terms θ, and then the remaining parameters
are drawn from their complete conditional posterior distributions.
This blocking procedure samples φ and θ together in a single
step, which substantially improves the mixing of the posterior
simulations, as will be shown in the following section.

To implement this blocking procedure, it is useful to write
the augmented likelihood in a different, though equivalent, way.
Completing the square on θi in (14) enables us to express the
augmented joint posterior as

p(θ, φ, ρ, Σ, φ, ρ, Σ, π, c|y, s) ∝ p(π)p(φ)p(ρ)p(Σ)

×

n∏
i=1

[p(φi, ρi, Σi|ci, φ, ρ, Σ)p(ci|π)φN(θi; qq−1
i tqi, qq−1

i )|

× Σ|
−1/2

|qqi|−1/2 exp(−[1/2]tti)], (15)

where we have defined

ti ≡

 yi − β0i − xiβi
si − δ0i − xiδi − ziγ i
−η0i − xiηi − wiλi


, qi ≡

 si
ρi
−1


,

qqi ≡ q′

iΣ
−1
i qi,

(16)

tqi ≡ t ′

iΣ
−1
i qi, σqqi ≡ Σ−1

i − Σ−1
i qi[qqi]−1q′

iΣ
−1
i and

tti ≡ t ′

i [σqqi]ti.
(17)

To account for the ordering constraint Σ ss1 < Σ ss2 < · · · <
Σ ssG, we generate simulations by first ignoring the constraint and
making use of the ‘‘unconstrained’’ sampler described below, and
then permuting the labels at the end of the simulation period
as necessary to achieve agreement with the ordering restriction.
More discussion of this issue can be found in Frühwirth-Schnatter
(2001, particularly Sections 3.3 and 3.4) and Geweke (2007,
particularly Section 3). For the empirical application of Section 6,
we also emphasize that the parameters of interest reported and
the posterior predictive analyses conducted are not affected by the
labeling issue, and as such the need to permute the labels or impose
component identification through the prior is irrelevant for these
pursuits. The Gibbs sampler, apart from the label permutation,
then proceeds in six steps, which we enumerate below.

Step 1: φ, φ|·, y, s.
To sample the regression parametersφ andφmarginalized over

the random effects θ, first let

ri ≡ (yi si 0)′,

Xi ≡

1 xi 0 0 0 0 0 0
0 0 1 xi zi 0 0 0
0 0 0 0 0 1 xi wi


,

XXg ≡

−
{i:cig=1}

X ′

i [σqqi]Xi, and Xrg ≡

−
{i:cig=1}

X ′

i [σqqi]ri.

With some algebra, we obtain

p(φ, φ|·, y, s) ∝

G∏
g=1

φN [φg |(V
−1
φ

+XXg )
−1(V−1

φ φ0 + Xrg ), (V−1
φ

+XXg )
−1

]

∏
{i:cig=1}

I(φi = φg ),

where it is to be understood that ‘‘·’’ in the conditioning in this case
denotes all parameters other than φ, φ, and θ. This result implies
that φ and φ can be sampled by first drawing independently, for
g = 1, 2, . . . ,G, from

φg |·, y, s ∼ N [(V−1
φ + XXg )

−1(V−1
φ φ0 + Xrg ),

(V−1
φ + XXg )] (18)

and then setting, for i = 1, 2, . . . , n,

φi =

G−
g=1

cigφg . (19)

The ‘‘sampling’’ of φi in (19) reiterates that these quantities
are largely incidental to the problem, and merely simplify the
exposition of the model and the algorithm.

Step 2: θi|·, y, s.
The conditional posterior density for the heterogeneity terms θi

can be deduced directly from the form of the joint posterior in (15).
Specifically,

θi|·, y, s
ind
∼ N ([qqi]−1tqi, [qqi]−1), i = 1, 2, . . . , n, (20)

where the terms in this conditional have been defined just prior to
step (1).

Step 3: ρ, ρ|·, y, s.
To sample the parameters ρ, we again need to introduce some

additional notation. Let

fi =

 yi − β0i − xiβi − siθi
si − δ0i − xiδi − ziγ i
θi − η0i − xiηi − wiλi


and pi =

0
θi
0


.
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The conditional posterior distribution of ρ and ρ can be shown to
be, up to proportionality,

p(ρ, ρ|θ, φ, Σ, c, φ, Σ, π, y, s)

∝

G∏
g=1

φN

ρg |

V−1
ρ +

−
i:cig=1

p′

iΣ
−1
i pi

−1

×


V−1

ρ ρ0 +

−
i:cig=1

p′

iΣ
−1
i fi


,

V−1
ρ +

−
i:cig=1

p′

iΣ
−1
i pi

−1 ∏
{i:cig=1}

I(ρi = ρg).

This implies that the sampling of ρ and ρ can proceed by first
independently drawing, for g = 1, 2, . . . ,G, from

ρg |·, y, s
ind
∼ N

V−1
ρ +

−
i:cig=1

p′

iΣ
−1
i pi

−1

×


V−1

ρ ρ0 +

−
i:cig=1

p′

iΣ
−1
i fi


,

V−1
ρ +

−
i:cig=1

p′

iΣ
−1
i pi

−1 , (21)

and then setting, for i = 1, 2, . . . , n,

ρi =

G−
g=1

cigρg . (22)

Step 4: Σ, Σ|·, y, s.
From (14), the conditional posterior distribution of Σ and Σ is,

up to proportionality, given as

p(Σ, Σ|·, y, s) ∝ p(Σ)

n∏
i=1

p(Σi|Σ, ci)|Σi|
−

1
2 exp


−

1
2
h′

iΣ
−1
i hi



∝

G∏
g=1

pIW

Σg |p +

n−
i=1

cig , pR +

−
{i:cig=1}

hih′

i


×

∏
{i:cig=1}

I(Σi = Σg ).

This implies that the sampling of Σ and Σ can proceed by first
drawing, independently, from

Σg |·, y, s
ind
∼ IW

p +

n−
i=1

cig , pR +

−
{i:cig=1}

hih′

i

 ,

g = 1, 2, . . . ,G (23)

and then setting, for i = 1, 2, . . . , n:

Σi =

G−
g=1

cigΣg . (24)

Step 5: ci|·, y, s.
To describe the sampling from the component label vector ci,

we first define terms similar to those defined just prior to step 1. In
this case, we make the dependence of the objects in (16) and (17)
on specific parameters explicit, to avoid possible confusion when
constructing the component probabilities. To this end, let

ti(φg ) ≡

 yi − β0g − xiβg
si − δ0g − xiδg − ziγg
−η0g − xiηg − wiλg

 , qi(ρg) ≡

 si
ρg
−1


,

qqi(ρg , Σg ) ≡ qi(ρg)
′Σ

−1
g qi(ρg),

σqqi(ρg , Σg ) ≡ Σ
−1
g − Σ

−1
g qi(ρg)[qqi(ρg , Σg )]

−1qi(ρg)
′Σ

−1
g ,

tti(φg , ρg , Σg ) ≡ ti(φg )
′σqqi(ρg , Σg )ti(φg ),

π̃ig ≡

πg |Σg |
−

1
2 |qqi(ρg , Σg )|

−
1
2 exp


−

1
2 tti(φg , ρg , Σg )


G∑

h=1
πh|Σh|

−
1
2 |qqi(ρh, Σh)|

−
1
2 exp


−

1
2 tti(φh, ρh, Σh)

 ,

and π̃i ≡ (π̃i1 π̃i2 · · · π̃iG)
′. Straightforward algebra

produces that

ci|·, y, s ∼ Mult(1, π̃i). (25)

Step 6: π|·, y, s.
Finally, let

α̃ =



α1 +

n−
i=1

ci1

α2 +

n−
i=1

ci2

...

αG +

n−
i=1

ciG


.

The conditional posterior distribution of π can be shown to be

π|·, y, s ∼ Dirichlet(α̃). (26)

A posterior simulator proceeds by sampling from (18)–(26).

3.3. Causal effect heterogeneity

Having discussed issues of model flexibility and methods for
posterior simulation, we now turn our attention to key parameters
of interest. Of course, a primary focus of our model concerns
the causal effect heterogeneity terms, θi. In particular, we would
like to make use of our analysis to answer questions such as the
following. What have we learned about the overall distribution of
such impacts in the population? How can we use our model to
make predictive statements regarding the effect of future, out-of-
sample treatments?

We separately consider the cases of in-sample and out-of-
sample prediction. To this end, we first note from (5)–(10) that,
marginally,

p(θi|·) ∼

G−
g=1

πgφ(θi; η0g + xiηg + wiλg , σ
2
θg),

where the subscript g denotes parameters associated with the gth
component of the mixture, the ‘‘·’’ in the conditioning explicitly
reflects that we are conditioning on the model’s parameters, and
φ(x; µ, σ 2) denotes a normal density for x with mean µ and
variance σ 2. Thus, our model assumes that the distribution of
treatment effect heterogeneity can be adequately represented as
a finite mixture of Gaussian distributions, which seems unlikely to
be a controversial assumption in practice.

If interest centers on summarizing the overall shape of
the heterogeneity distribution, or in making predictions about
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treatment returns for a future sample, such questions can be
addressed by deriving and calculating the appropriate posterior
predictive density. For example, adding a subscript f to denote
‘‘future’’ outcomes, and considering the case of a particular agent
with known characteristics xf and wf , the desired posterior
predictive distribution canbeobtained via ‘‘Rao–Blackwellization’’.
Specifically,

p(θf |xf ,wf , y, s) ≈
1
M

M−
m=1

G−
g=1

π (m)
g φ(θf ; η

(m)
0g

+ xf η(m)
g + wf λ

(m)
g , σ 2

θg
(m)

),

where M denotes the total number of post-convergence simula-
tions and m indexes these simulations. A single, ‘‘representative’’
posterior predictive density could be calculated by fixing xf and
wf to their sample means or rounded integer values, as appropri-
ate. Perhaps more desirably, an additional step can be added to
average these over the empirical distribution of the xf andwf char-
acteristics to effectively drop the conditioning on xf and wf .

In this out-of-sample exercise, we focus on the θf marginal
density since the future treatment level sf and future outcome yf
are not observed. Within the sample, however, this is not the case,
and the mechanism for learning about θi is slightly different. In
particular, the structure of our model suggests that the observed yi
and si convey information about θi beyondwhat is learned from (7)
only. To shed some light on this issue more formally, let Γ denote
all parameters other than θi, and note that

p(θi|y, s) =

∫
p(θi, Γ |y, s)dΓ

=

∫
p(θi|Γ , y, s)p(Γ |y, s)dΓ

=

∫
p(θi|Γ , yi, si)p(Γ |y, s)dΓ ,

where the last line follows from the fact that, given Γ , θi is
independent of outcomes other than yi and si.

To fix ideas and make progress in understanding how we
learn about specific within-sample treatment impacts, let us
consider the single-component Gaussian model.12 The conditional
posterior p(θi|Γ , yi, si), which is to be averaged over p(Γ |y, s) to
obtain p(θi|y, s), can be obtained from (1)–(3). Importantly, this
derivation shows that the conditional posterior distribution of θi
is not just the marginal density in (3), but, instead, the conditional
distribution θi|Γ , yi, si is normal with mean E(θi|Γ , yi, si), given
in Box I, where we have defined µθ i ≡ η0 + xiη + wiλ, ỹi ≡

yi − β0 − xiβ, s̃i ≡ si − δ0 − xiδ − ziγ , and σ ij denotes the (i, j)
element of Σ−1.13 This mean, of course, is different from µθ i, the
mean of (3) that is used for out-of-sample prediction purposes. The
law of iterated expectations then implies that

E(θi|y, s) = EΓ |y,s

E(θi|Γ , y, s)


= EΓ |y,s


E(θi|Γ , yi, si)


,

so that the posterior expected return to treatment for agent i is
the conditional posterior mean E(θi|Γ , yi, si) averaged over the
posterior distribution of Γ .

With a little rearranging, the conditional posterior mean
E(θi|Γ , yi, si) above can be represented as a type of weighted
average of three pieces: ỹi/si, s̃i/ρ, and µθ i. These three pieces
emerge quite naturally as ‘‘estimators’’ of θi from (1)–(3), as each
of these involves ‘‘solving’’ for θi in the respective equations. In the

12 Alternatively, what follows applies to a particular component of themixture, so
that this assumption is made essentially without loss of generality.
13 It is also worth mentioning that Var(θi|Γ , yi, si) is simply the inverse of the
denominator in the expression for E(θi|Γ , yi, si) above.
limiting case where Σ is diagonal, it is straightforward to show,
for example, (holding all else constant in each case) that θi|Γ , yi, si
collapses around ỹi/si as σy → 0, collapses around s̃i/ρ as σs → 0,
and collapses around µθ i as σθ → 0. Thus, in-sample predictions
regarding individual-level treatment impacts use information
from all three equations of our system, and therefore more precise
estimates of our outcome and treatment equations in (1) and (2)
can lead to better learning about individual-level causal effect
parameters.

4. Generated data experiments

We illustrate the performance of our algorithm via two
generated data experiments. In the first experiment, we simulate
a large sample size of n = 10,000 observations from a correctly
specified two-component mixture version of the model in (1)–(3).
For this case, the exogenous variables are generated as follows: x′

i
zi
wi


=

x1,i
x2,i
zi
wi



∼ N4


0
0
0
0

 ,

 1 0.1 −0.2 0.1
0.1 0.25 −0.2 0.05

−0.2 −0.2 4 −0.2
0.1 0.05 −0.2 1


 , (27)

and the following hyperparameters are selected: φ0 = 0k×1, Vφ =

106
× Ik, ρ0 = 0, Vρ = 106, p = 8, R = diag{1, 102, 0.12

}, α1 =

1, α2 = 1. These yield reasonably ‘‘diffuse’’ marginal prior
distributions, so the information contained in the prior is small
relative to the information contained in the data.

Table 1 reports the actual parameters of the data-generating
process as well as their posterior means and posterior standard
deviations from the experiment. The results of this table reveal that
our algorithm successfully recovers the parameters of the data-
generation process and that our code for fitting such models is
likely to be free of errors.14 Experiments with fewer observations
provided similar results, and, finally, experiments based upon
more than two mixture components also revealed that the code
and posterior simulator performed adequately.15

In Table 2, we illustrate the performance of our method in a
different way. The table presents inefficiency factors associated
with the sampling of three different parameters: β01, ρ1, and
Σyy1. The first column presents such factors using our posterior
simulator outlined in the previous section, while the second
column, for the sake of comparison, presents analogous results for
a sampler that fails to block φ and θ together. As the table clearly
illustrates, the gains to blocking are substantial, and,moreover, the
mixing of the simulations in our sampler is adequate, though still
falling somewhat short of the numerical efficiency obtained under
i.i.d. sampling.

A second generated data experiment was also conducted
to illustrate the performance of the mixture method under
misspecification. Since the return heterogeneity distribution is of

14 A more formal diagnosis of the code was obtained by performing some of the
checks suggested by Geweke (2004). Though not reported here, these tests did not
provide any evidence that a mistake had been made.
15 It is worth noting that the ability of our algorithm to accurately estimate the
true parameter values clearly depended on the quality of the instruments (i.e., the
magnitude of γ and λ) and the degree of confounding (i.e., ρys, ρyθ , ρsθ ). We do not
attempt to further characterize these relationships in the present study, as doing
so thoroughly will lead us well beyond the scope and goals of this paper. Whether
or not such issues are relevant for the applied researcher will inevitably depend on
the application at hand and the data available.
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E(θi|Γ , yi, si) =
σ 11ỹisi + σ 22s̃iρ + σ 33µθ i + σ 12

[sis̃i + ρỹi] − σ 13
[ỹi + siµθ i] − σ 23

[s̃i + ρµθ i]

σ 11s2i + σ 22ρ2 + σ 33 + 2σ 12siρ − 2σ 13si − 2σ 23ρ
.

Box I.
Table 1
Parameter posterior means, standard deviations, and true values.

Parameter Component 1 Component 2
True value E(β|D) Std(β|D) True value E(β|D) Std(β|D)

Component probability
π1 0.7 0.689 0.006 0.3 0.311 0.006
Equation for y
β0 0.5 0.523 0.033 1 1.07 0.084
β1 −3 −2.94 0.039 −1.5 −1.4 0.111
β2 −1 −1.06 0.054 −3 −3.0 0.161
Equation for s
δ0 1.5 1.45 0.044 0.5 0.351 0.075
δ1 −2 −1.89 0.051 2 2.07 0.081
δ2 1 0.943 0.056 −1 −1.14 0.135
γ −1.5 −1.49 0.014 1.5 1.51 0.031
ρ 2.5 2.47 0.013 1.5 1.48 0.021
Equation for θ

η0 −2.5 −2.52 0.008 −2 −1.96 0.025
η1 3 3 0.007 2.5 2.48 0.021
η2 −0.5 −0.495 0.015 −2.5 −2.54 0.044
λ 2 2 0.007 3.0 3.0 0.021
Covariance matrix
σ y 1 0.975 0.027 2 1.98 0.071
σ s 2 2 0.022 3 3.03 0.046
σ θ 0.5 0.495 0.006 1 0.98 0.017
ρys 0.2 0.16 0.030 0.1 0.08 0.044
ρyθ −0.1 −0.136 0.030 −0.2 −0.15 0.042
ρsθ 0.1 0.0941 0.016 0.2 0.24 0.024
Table 2
Inefficiency factors for a selection of three parameters.

Parameter Blocking φ and θ together Without blocking φ and θ together

β01 2.72 929
ρ1 22.84 3554
Σyy1 34.99 388

primary interest in our study, we introduced a departure from
normality in the generation of these returns by first sampling ϵi
from a lognormal distribution with reasonable skew, recentered to
have mean zero:

ϵi
i.i.d.
∼ lognormal


0, 0.25


− exp(0.125).

The joint distribution of ui and vi was then sampled as a
(conditionally) bivariate normal:
ui
vi

 ϵi ind
∼ N

[
−0.2 log[ϵi + exp(0.125)]
0.4 log[ϵi + exp(0.125)]


,


0.99 0.42
0.42 3.96

]
,

and the parameter values and process for generating the covariates
were then identical to those employed for the first component of
the first generated data experiment. Unconditionalmoments of the
joint distribution of u, v, and ϵ can be derived for this experiment,
but we omit these details here for the sake of brevity. Instead,
we focus on the most important issue of assessing how well our
mixture model fares at picking up this departure from normality
when it is present.16

We fit a variety of different mixture models to this data, fo-
cusing on models with 2–5 different mixture components. For
the sake of parsimony, we only allow the intercepts and covari-
ance matrices of the mixture components to differ and restrict all

16 The slope coefficients and remaining model parameters were also well
estimated in this exercise. Details of these results are available upon request.
Table 3
Bayes factors supporting the four-component model from the second generated
data experiment.

Bayes factor j = 2 j = 3 j = 4 j = 5

p(y, s|M4)/p(y, s|Mj) 2.62 × 10814 1.05 × 10155 1 1.60

the slope coefficients to be the same across components. A sum-
mary of the different model performances in terms of the return
distribution is presented graphically in Fig. 1. To fix ideas, we used
the simulations produced from the algorithm of Section 3.2 to ob-
tain a posterior predictive return heterogeneity distribution for an
individual of average characteristics (i.e., setting all covariates to
zero). We repeated this exercise four different times, considering
models with 2–5 mixture components.17 We then compared the
posterior predictive densities for these cases to the actual hetero-
geneity distribution for this ‘‘average’’ individual.

As is evident from Fig. 1, the mixture models perform well.
Even the two-component model is able to capture themost salient
features of the lognormal heterogeneity distribution, while the
four-component and five-component models are able to capture
its shape almost exactly. Table 3 shows the calculated Bayes
factors18 for the competing mixture models, using the notation
Mj to denote the specification employing j mixture components.
The results in the table are reported as Bayes factors in support
of the four-component model. These clearly reveal that the four-
component specification is favored relative to those with two or
three components, and also reveals near indifference between the

17 The one-component Gaussian model produced a symmetric predictive return
distribution and was clearly inferior to those with more mixture components.
18 These were computed using the method described in Gelfand and Dey (1994)
and Geweke (1999).
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Fig. 1. True return heterogeneity distribution for an individual of average characteristics (solid lines) compared to posterior predictive densities estimated from models
with 2–5 mixture components (dashed lines).
use of four and five mixture components. As Fig. 2 suggested,
both the four-component and five-component models performed
well in terms of capturing features of the return heterogeneity
distribution, and our marginal likelihood calculations weakly
support the more parsimonious four-component model over the
five-component alternative.

The results of this exercise are encouraging, and they suggest
that the mixture models can fare well in picking up departures
from normality. Of course, this exercise has not investigated
other sources of misspecification, such as measurement error
or incorrect specification of the conditional mean functions. We
should not expect ourmethod to be immune to such problems, and
indeed it will not be; what we have documented here is simply a
degree of robustness to distributional assumptions in the absence
of other confounding problems.

5. The data

For our empirical application, we make use of data from two
distinct sources. The first and primary data set, which has been
widely employed in the applied literature, is the High School and
Beyond (HSB) survey. HSB is a survey conducted on behalf of the
National Center for Education Statistics (NCES), and itwas designed
with the intent of yielding a sample of students representative of
American high school students. HSB is a biennial survey starting
in 1980, and we focus attention on the sophomore subsample of
the HSB data. For our earnings outcome measure, we employ the
most recent data available to us, the 1992 survey, fromwhich 1991
earnings can be obtained. In practice, we restrict the HSB sample
Table 4
Descriptive statistics.

Variable Mean Std. Dev.

Log monthly earnings 7.51 0.465
Schooling 13.6 2.06
Father’s education 12.5 3.28
Mother’s education 12.3 2.81
Base year family income ($10,000) 2.09 0.999
Base year test score 0 1
Number of siblings 2.92 1.61
Female 0.463 0.499
Age as of 1 January 1991 26.8 0.536
Hispanic 0.154 0.361
Native American 0.0191 0.137
Asian/Pacific 0.0316 0.175
Black 0.123 0.328
Other/Missing race 0.00371 0.0608
1980 county grp. avg. log hourly wage 1.53 0.109
1980 county grp. avg. schooling 12.7 0.434
1980 county grp. avg. return to schooling 0.0785 0.012

to individuals who have worked for at least nine months during
1991, andwhosemonthly earningswere between $500 and $6000.
Finally, it isworthmentioning that theHSBdata set employedhere,
like several other widely used micro data sets, contains a wealth
of demographic information on the sample respondents, such
as family background characteristics and individual test scores,
making it an attractive data source for our application. Descriptive
statistics associated with key variables in the model are provided
in Table 4.

As discussed earlier in the paper, for identification purposes, we
require an instrument or set of instruments. The most important
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of these is some characteristic or set of characteristics that are
conditionally correlatedwith individual-level returns to schooling,
but can be excluded from the earnings and schooling equations. As
shown in the Appendix, themodel parameters are fully identifiable
with such an exclusion restriction, provided that ρ ≠ 0. Our
choice in this regard is to obtain a county-level return to schooling
estimate based on 1980 Census data and use this lagged return as
a right-hand side variable in Eq. (3).

The lagged county-level returns are constructed using data
from the public use 5% sample of the 1980 Census. We restrict
the Census sample to those individuals who are between 16
and 28 years of age19 working for at least 40 hours a week in
1979 with an hourly wage between $1 and $100. For each race
and gender cell within a given county group, we calculate the
corresponding county-level average loghourlywage, highest grade
completed, and return to schooling.20 This county-level return to
schooling is obtained by running a regression of individual log
hourly wages in the given county on highest grade completed,
potential labor market experience (age minus schooling minus
6), and potential experience squared. We consider the schooling
coefficient estimated from this regression as the 1980 county-level
average return to schooling for that group.21

The lagged county-level average returns are thenmatchedwith
the HSB data. This, of course, requires county identifiers for the
HSB sample. However, this matching is not trivially performed,
as there are no directly available county-level indicators in HSB,
and the NCES does not publicize this information. To this end, we
follow and expand upon the approach of Hanushek and Taylor
(1990), Rivkin (1991), Ganderton (1992), Grogger (1996a,b), and
Li (2006, 2007), who are able to match individuals to states of
residence via other information provided in HSB. Specifically, a
school survey component of the HSB data provides a variety of
information on local labor market conditions associated with each
school represented in the survey. In practice, we implement our
identification strategy in two steps. First, we utilize the available
state-level geographically relatedHSB variables andmatch them to
publicly available state-level data to uncover the state associated
with each HSB individual. In the second step, once the state has
been identified, we repeat the same procedure at the county level
by making use of available county-level labor market conditions
to identify the county of residence for each HSB participant during
their high school years. In this way, we are able to match lagged
county-level returns to schooling to each individual in the HSB
sample.22

The validity of lagged returns to schooling as an instrumental
variable rests on two assumptions. First, we must assume that
lagged county-level returns to education are correlated with the
(contemporaneous) private return to education for the given

19 The HSB sophomores were around 16 in 1980 and 28 in 1992. Therefore, labor
market outcomes and educational attainments of individuals from the Census aged
between 16 and 28 can be considered most relevant to our HSB sample.
20 In the 1980 Census, county groups are typically defined as contiguous areas
with an aggregate population of at least 100,000. Theymay be actual county groups
or single counties. In some cases, a county is split up into several ‘‘county groups’’.
In such situations, we create a larger county group by encompassing all ‘‘county
groups’’ belonging to the same county.
21 In some cases, a subgroup (i.e., a particular race and gender category within a
particular county group) is found to have fewer than 15,000 observations. In such
cases, we first enlarge the sample by including all persons who are from the same
county group and of the same sex, regardless of their ethnic background, and add
a set of race dummies to the log hourly wage regression. If the resulting pooled
sample size is still below 15,000 observations, we combine all people from the
same county group, irrespective of their gender and ethnic origin, and then include
dummies for gender and race in the log hourly wage regression.
22 Specific (and tedious) details regarding how this is done are available upon
request.
individual. Recognizing that many individuals will choose to work
in the same county group as their high school was located, this
correlation may result from a type of autoregressive process in
county-level returns to education. Unlike traditional IV analyses,
this first identification assumption, however, is not ‘‘directly’’
empirically testable, as θi in (3) is not observed.23

The second (and surely more controversial) assumption is
that the lagged county-level returns can be excluded from, most
importantly, the schooling equation in (2) and, to a lesser extent,
the log wage equation in (1). That is, conditioned on a variety of
individual-level controls, 1980 average returns to education in a
county are uncorrelated with unobservables affecting wages and
educational attainment observed in 1991.

There are certainly a few reasons to think that this assumption
is suspect. For example, educational attainment decisions may
be based, in part, on the contemporaneous return to schooling
observed by the agent. That is, sophomores in 1980 (who generally
become seniors in 1982) may make decisions about college entry
based on currently available information regarding the return
to a college degree. If this is the case, then lagged returns
may have some non-ignorable role in explaining 1991 schooling
outcomes, which would undermine our identification strategy.
Our assumption in this regard, however, is that the agent makes
educational attainment decisions based on his or her own return
to education parameter θi, and conditioned on this parameter
(and other characteristics), lagged county-level information is
superfluous. Again, this assumption is probably not without
controversy, but wemaintain it in the current analysis. As a way to
partially mitigate some of these effects, we also include in the log
earnings equation the 1980 average log earnings for that county
group, and likewise, in the schooling equation, we include the
1980 average level of schooling for that particular county group.
Thus our argument is that, conditioned on the individual return to
schooling parameter as well as lagged average levels of schooling
and earnings, lagged county-level returns to education do not play
an independent structural role in schooling decisions and earnings
determination.

Finally, in addition to the instruments described above, we also
control for parental education and income, family size, sophomore
year test scores,24 age, gender, and a variety of racial indicator
variables. This produced an HSB sample of 8886 individuals from
471 county groups (or 536 counties).

6. Empirical results

Before discussing results from any particular model, we first
consider the general issue of model selection. To this end, we
estimate the single-component normal model along with two-
component and three-component normal mixture models as
competing specifications. For each case, we run our posterior
simulator for 200,000 iterations and discard the first 20% (40,000)
as the burn-in period. For the mixture models, we restrict all
slope coefficients to be the same across components, yet allow
the intercepts for each equation and covariance matrices to differ.
These slope restrictions were imposed in order to minimize added
parameterization while still being able to accommodate skew,
heavy tails, or other departures from normality.

23 We do, however, find strong evidence supporting a role for the lagged returns
in (3), as documented in the following section.
24 In 1980, the sophomores who participated in the HSB survey also took a
battery of seven tests that were designed to measure the cognitive abilities of these
individuals. We add together the number of questions answered correctly in the
seven tests and rescale this variable so that it has a mean of 0 and a standard
deviation of 1.
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Under the same priors employed for the generated data
experiments of Section 4 (and equal prior probabilities over each
of these three models), we find evidence against normality for
our application. Specifically, the two-component specification is
favored over the ‘‘textbook’’ Gaussian model by an overwhelming
factor of 2.58 × 1015 and it is also favored over the more general
three-component model by a factor of 1043. This support for the
more parameter rich two-component model over the Gaussian
specification occurs despite the fact that our priors, though proper,
are still quite uninformative.25 Given these results, we focus
in the remainder of this discussion on results obtained from
the two-component mixture model, as it is strongly preferred
over these competitors, and model-averaged posteriors would
essentially reduce to those same posteriors obtained under the
two-component specification.

We first consider the log monthly earnings equation from the
two-component model, as reported in Table 5.26 From this first
portion of the table it is evident that, holding all else constant,
males earn more, on average, than women, as do workers who
come from smaller families (in terms of fewer siblings) with
high annual incomes.27 In addition, whites, the excluded category,
generally earn more than other racial/ethnic groups, and the
lagged county-level average log wage also has an important role
in describing current monthly earnings.28

Our second equation explains the variation in the quantity of
schooling attained by individuals in our sample. There is over-
whelming evidence from Table 5 supporting the assertions that,
holding all else constant, the quantity of education attained in-
creases with student-level test scores and also increases with
parental education and income, as no posterior simulations asso-
ciated with these parameters were negative. Similarly, children of
larger families attain less schooling, on average, than those from
smaller families, while those of Asian/Pacific descent attain about
one more year of education than whites.

We also find an important role for the individual-level return
to schooling parameter θi in the schooling equation. Specifically,
a one percentage point increase in the return to education will
lead the individual to acquire 0.135 more years of schooling,
on average. If we consider a one-standard-deviation increase in
the conditional distribution of the return to education parameter
(which corresponds, approximately, to increasing θi by 0.05), this
leads to an expected increase in the number of years of educa-
tion equal to 2/3 of a year. These results suggest both statistical
and economic significance of the return to education variable in

25 Bartlett’s paradox, for example, illustrates that the adoption of such priors
results in the Bayes factor lending support for the restricted model.
26 Although not reported in this set of tables, calculations of the coefficient prior
means and prior standard deviations reveal that a substantial amount of learning
has taken place regarding all slope, intercept, and covariance matrix parameters.
The priors used are the same as those employed in Section 4. For the sake of space,
we do not report in the table posterior statistics for the intercept and covariance
matrix parameters, although these are available upon request. The results do,
however, show a strong, positive correlation between schooling and log earnings
unobservables, and strong negative correlations between these unobservables and
those associated with returns to education. A similar pattern is found in terms of
observed characteristics, a point we discuss later in this section.
27 Values of the third column are reported as one (zero) when all (none) of the
posterior simulations were positive.
28 In the HSB data information on family income, parental education, number of
siblings, and base year test score are often missing. We do not, in this paper, take
up the issue of how best to model the missing data, or whether these observations
are missing at random, or not missing randomly. Instead, in the case where these
variables are absent, we set the corresponding variables equal to their samplemean
values and add a dummy variable to the regression equation denoting whether or
not the given covariate is missing or observed in the sample. The posterior means
and standard deviations of the parameters associated with the missing indicators
are included in the analysis but not reported in the tables for the sake of brevity.
the schooling equation, as the associatedmarginal effect described
above is clearly meaningfully large, and more than 99% of the pos-
terior simulations associated with this coefficient were positive.
The results here are quite interesting, as they clearly reveal that
agents with higher returns to education do, in fact, acquire more
schooling.

The final equation of our system, with estimates reported
in Table 6, explains the individual-level variation in returns to
education. In terms of coefficient point estimates, the results
of the table generally suggest that those family background
characteristics leading individuals to acquire more schooling and
receive higher earnings, such as parental education and family
income, also tend to lower an individual’s return to an added year
of education.29 This interesting result makes some intuitive sense,
since we can certainly imagine that a college degree, for example,
may significantly alter the earnings profile for someone coming
from a low-income family. At the same time, a college degree for
an individual from a high-income family will also be valued in
the labor market, but it is seemingly likely that the high-income
child, owing to family connections or other social networks, would
fare better in the absence of the college degree than the low-
income individual. Finally, we also note that returns to schooling
do not seem to vary in any systematic way with test scores, as the
posterior probability that this parameter was positive was 0.68.
This is not to say that test scores do notmatter in the production of
wages and education—indeed previous portions of the table clearly
point to an important role for test scores in the production of both
variables. Instead, we find little evidence that returns to education
vary in a systematic way with cognitive ability; Koop and Tobias
(2004) also document a similar result, albeit with a very different
model and data set.

In addition, we find modest evidence supporting the notion
that minority groups – blacks in particular and Hispanics to a
lesser extent – have higher returns to education than whites, and
that females have higher returns to education than men.30 Lagged
county-level returns to education were also clearly important in
explaining the individual-level variation in returns to schooling,
which is critical for identification purposes. Specifically, a one
percentage point increase in the 1980 return to education in the
county is associated with a 0.16 percentage point increase in
the individual’s 1991 private return, and no posterior simulations
associated with this parameter were negative.

6.1. Decomposing a covariate’s effect on log wages

The foregoing discussion clearly illustrates that a covariate in
our model has many channels through which it impacts log wage
outcomes. Our previous discussion of results has, in fact, focused
primarily on directional impacts and brief discussions akin to the
‘‘significance’’ of particular variables in light of the multifaceted
nature of their influences. Variables such as family income and
parental education, for example, have direct effects on schooling
levels and returns to schooling, and each of these filter through

29 As the reader can see, there is considerable uncertainty associated with many
of the parameters at this stage of themodel. Formal Bayes factors, computed via the
Savage–Dickey density ratio, were found to support the inclusion of only the black,
female, and lagged county-level returns to education variables in Eq. (3), although
there is rather considerable support based on the marginal posterior distributions
for retaining themother’s education and family income aswell. Of course, the priors
employed for these parameters were quite flat, lending substantial prior support
to the restricted variants of the model (e.g., Bartlett’s paradox). The results of the
table are clearly suggestive that females and blacks have higher returns to education
while individuals from wealthy families have lower returns to schooling.
30 Henderson et al. (2009) recently document a similar result, as have previous
studies in the literature.
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Table 5
Posterior means, standard deviations, probabilities of being positive, and numerical standard error (NSE) values from the two-component mixture model.

Variable E(β|D) Std(β|D) Pr(β > 0|D) NSE

Log monthly earnings equation
Father’s education 0.00828 0.0116 0.761 4.17e−005
Mother’s education 0.0208 0.013 0.945 5.43e−005
Base year family income ($10,000) 0.15 0.033 1 9.7e−005
Base year test score 0.0185 0.0372 0.691 0.000606
Number of siblings −0.0214 0.0193 0.133 5.59e−005
Female −0.527 0.0624 0 0.000723
Age as of 1 January 1991 −0.0437 0.0589 0.21 0.00996
Hispanic −0.0634 0.0914 0.244 0.00026
Native American −0.299 0.266 0.13 0.000777
Asian/Pacific 0.0286 0.179 0.562 0.000543
Black −0.281 0.102 0.00286 0.000293
Other/Missing race −0.682 0.539 0.102 0.00148
1980 county group average log hourly wage 0.47 0.041 1 0.00194
Schooling equation
Father’s education 0.117 0.0142 1 0.00023
Mother’s education 0.0894 0.0171 1 0.000667
Base year family income ($10,000) 0.236 0.0595 1 0.00483
Base year test score 0.724 0.0437 1 0.00103
Number of siblings −0.0824 0.0242 0.000687 0.000442
Female −0.0807 0.148 0.307 0.0141
Age as of 1 January 1991 −0.379 0.0745 0 0.0119
Hispanic 0.218 0.121 0.952 0.00435
Native American −0.401 0.341 0.098 0.00618
Asian/Pacific 0.918 0.206 1 0.000617
Black 0.24 0.154 0.928 0.0101
Other/Missing race −0.509 0.738 0.248 0.0293
1980 county group average schooling 0.149 0.0425 1 0.00326
Return to schooling 13.5 5.2 0.997 0.569
Table 6
Posterior means, standard deviations, probabilities of being positive, and numerical standard error (NSE) values from the two-component mixture model.

Variable E(β|D) Std(β|D) Pr(β > 0|D) NSE

Return to schooling equation
Father’s education −0.00057 0.000831 0.247 2.41e−006
Mother’s education −0.00128 0.000945 0.0879 3.07e−006
Base year family income ($10,000) −0.00868 0.00236 0.00015 6.8e−006
Base year test score 0.00119 0.0026 0.678 3.77e−005
Number of siblings 0.00111 0.00141 0.785 4.09e−006
Female 0.0242 0.00452 1 5.45e−005
Age as of 1 January 1991 0.00137 0.00442 0.626 0.000784
Hispanic 0.00846 0.00678 0.894 1.93e−005
Native American 0.0155 0.0208 0.771 6.09e−005
Asian/Pacific 0.00121 0.0121 0.541 3.55e−005
Black 0.0174 0.00748 0.99 2.15e−005
Other/Missing race 0.0548 0.0419 0.906 0.000115
1980 county grp. avg. return to schooling 0.162 0.0261 1 0.000125
the model to define that variable’s ‘‘total’’ impact on earnings. In
attempt to identify this total impact as well as the component
pieces that define it, in this section we look into the posterior
predictive distribution, as discussed in Section 3.3.

Specifically, let yf , sf , and θf denote the log monthly earnings,
the level of schooling, and the return to schooling parameter for
somehypothetical or ‘‘future’’ individual f . The posterior predictive
distribution of these outcomes can be obtained as

p(yf , sf , θf |y, s, xf ,wf , zf )

=

∫
p(yf , sf , θf |Γ −θ, xf ,wf , zf )p(Γ −θ|y, s)dΓ −θ. (28)

Samples from this trivariate posterior predictive distribution can
therefore be drawn, given a set of simulations from the posterior
distribution p(Γ −θ|y, s), the maintained model in (1)–(3), and
values of the covariates xf , wf , and zf .

We generate a series of simulations from this posterior
predictive distribution and use these to summarize the effects
of various covariate changes on each outcome. Specifically, we
consider the effects of (a) attaining a BA degree of both parents
(as opposed to both being high school graduates only), (b)
increasing family income by $10,000 (which corresponds almost
exactly to a one-standard-deviation increase in family income),
(c) increasing the baseline achievement scores by one standard
deviation, (d) having two additional siblings, and (e) being female.

Table 7 shows the posterior mean and posterior standard
deviation of the impacts of such covariate changes on each of
the three outcomes of interest. In reading the table, recognize,
for example, that the ‘‘schooling’’ column summarizes the direct
impact of the covariate change on educational attainment (as
read directly from Table 6) plus any indirect effect that such a
change may also have on returns to education and, consequently,
schooling levels. The monthly earnings figure in the first column
of the table offers a complete summary of how the given covariate
change filters through all channels and affects earnings. To
evaluate all of these effects, we generate draws from the posterior
predictive distribution, as described in (28), with each exercise
requiring appropriate definitions of the covariates xf .

The rightmost column of Table 7, which describes the effect
of the stated change on returns to schooling, can simply be read
from Table 6. Again, these results reveal that females have a much
higher return to education (approximately 2.4 percentage points
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Table 7
Posterior means (and standard deviations) from posterior predictive exercises.

Monthly earnings ($) Schooling Return to education

Both parents have a BA 103.8 0.727 −0.007
(103.5) (0.031) (0.004)

Increase family income $10,000 81.7 0.119 −0.009
(47.1) (0.020) (0.002)

One-standard-deviation increase in test scores 160.4 0.740 0.001
(124.3) (0.020) (0.002)

Adding two siblings −41.5 −0.135 0.002
(28.13) (0.023) (0.003)

Female −360.2 0.245 0.024
(171.2) (0.047) (0.004)
higher) than men. Student achievement scores do not appear to
play a role in explaining variation in returns to schooling, while
parental education and family income lower returns to education.
Of these, family income plays the largest, though still reasonably
minor, role, as a one-standard-deviation increase in family income
lowers returns to schooling by less than 1 percentage point on
average.

The second column summarizes the impacts of the considered
covariate changes on the quantity of schooling attained. A one-
standard-deviation increase in student achievement scores, or
attaining a four-year degree of both parents, produces a large
change in the quantity of education attained, as both effects are
found to increase educational attainment by approximately 3/4 of
a year. Furthermore, these effects are estimated rather precisely, as
the posterior standard deviation of the schooling impact in either
case is very small relative to the mean. For these two particular
exercises, the schooling increase primarily arises from the ‘‘direct
effect’’, as revealed in Table 6, as increases in parental education
and test scores were not strongly linked to private rates of return
to education.

In contrast to this, Table 7 also shows that females acquire
more schooling on average than males. This result appears, at
first glance, at odds with Table 5, as the coefficient on the female
indicator in the schooling equation is actually negative, though
with considerable mass placed on both sides of zero. What Table 5
does not directly summarize, however, is the fact that females
have much higher returns to education, and given that ρ > 0,
tend to acquire more schooling on average as a result. Higher
levels of educational attainment for women is also a feature of
our data: women receive, on average, 0.33 years more education
than men in our HSB sample. Our model is able to reproduce this
feature of the data, as it predicts women to receive approximately
0.25 years more education than men, with the observed outcome
of 0.33 falling within two posterior standard deviations of this
point estimate. In our view, this result is quite interesting and,
perhaps, new to the literature: once the variation in rates of
return to education has been accounted for, there is no discernable
difference in the predicted quantity of schooling attained by men
and women. However, women attain more schooling, on average,
then men because of a comparably high rate of return on such an
investment.

The first column of Table 7 aggregates all of these channels
and provides overall estimates of the various impacts on monthly
earnings. In terms of posterior means, females earn approximately
$360 less per month than men, even though they tend to acquire
more schooling, on average. A one-standard-deviation increase
in student achievement scores increases monthly earnings by
about $160 on average, with the bulk of this increase explained
by increased levels of educational attainment for those of higher
ability. Similarly, graduation from college of both parents increases
the monthly (child) earnings by about $104, which, again, results
primarily from higher educational attainment by such children.
The impacts of family income and number of siblings also operate
in the directions we might expect, although the magnitude of
these changes is smaller: a one-standard-deviation increase in
parental income is associated with an average increase in (child)
monthly earnings equal to $81.2, while the addition of two siblings
tends to lower monthly earnings by about $42. At this stage of
the model, there are also reasonably large amounts of uncertainty
surrounding these mean impacts, as their estimation involves an
aggregation of effects at each level of the system.

In Fig. 2, we again use our posterior simulations to characterize
the differences in rates of return to education, educational attain-
ment, and monthly earnings, and this time, calculate such quan-
tities for a representative white male and a representative black
female. When performing these calculations, we fix the covariates
at group-specific sample averages rather than restricting the co-
variate vectors to be equal for both groups.

As shown in the leftmost columns of Fig. 2, the posterior
distribution of the return to education parameter for black
females is shifted to the right relative to that of a white male,
with the posterior mean of the former being 0.093 and the
latter approximately 0.05. Returns to education are, however,
rather variable and difficult to completely characterize through
observables, as summarized by the calculation: Pr(θbf > θwm|y, s)
≈ 0.73.31

Unlike the return to schooling distributions, the educational
attainment posterior predictive distributions are quite similar for
both groups. Higher rates of return for black females lead them to
acquire more education than white males, although this increase
is offset by the fact that black females tend to come from less
educated, larger and less wealthy families on average than those
of white males, and black females also have lower average test
scores in our data. These offsetting effects culminate in very
similar predictive distributions for educational attainment for both
groups.

The rightmost columns of Fig. 2 plot the posterior predictive
monthly earnings distributions for both representative individu-
als. The expected monthly earnings of a white male were approx-
imately $2300 and those of a black female were approximately
$1700.32 White males are far less likely to be characterized as low
income as, for example, Pr(MonthEarnwm > $1100|y, s) ≈ 0.95,
while Pr(MonthEarnbf > $1100|y, s) ≈ 0.80.33 Taken together,
these calculations illustrate how complete outcome summaries
can be obtained within the framework of our model while still
identifying the separate individual channels throughwhich partic-
ular covariates, or changes in them, filter to affect earnings.

31 Here, the subscript ‘‘bf’’ refers to black femalewhile the subscript ‘‘wm’’ denotes
white male.
32 Although these numbers might seem small, keep in mind that these are
1991 outcomes for a sample of young workers whose average age (and standard
deviation) is 26.8 (0.54).
33 The choice of $1100 as a threshold is simply to fix ideas, yet is partially guided
by policy. The 1991 HHS poverty threshold for a family of four, for example, was
$13,400, motivating the monthly figure of $1100 as a choice with some interest.
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Fig. 2. Posterior predictive outcome distributions for white males (top row) and black females (bottom row).
We conclude this discussion of our findings by offering a few
comments regarding how our results fit within the context of the
rather vast literature on this topic. To this end, we consider as a
benchmark what we term the ‘‘standard IV model’’. This model is
obtained by imposing homogeneity in causal impacts (i.e., setting
θi = θ in (1), and thus Eq. (3) becomes irrelevant) and dropping
the term θiρ from (2). The resulting two-equation system is then
fit using standard MCMC methods. When doing so, we obtain an
estimate (posterior mean) of the common schooling effect equal
to 0.059. This result is not terribly out of line with the findings of
previous IV-based studies, although the majority of such studies
tend to report larger impacts.34

In Table 8,we also report estimates of the overall average return
to education aswell as estimates of this effect that are brokendown
by racial and gender groups using our two-component version
of the correlated random coefficient model. On the whole, we
can see that our estimate of the average causal effect and that
from the homogeneous effect standard IVmodel are rather similar,
differing by about 0.7 percentage point, and with a fair degree
of overlap between the marginal posterior distributions of these
quantities. Point estimates of the average return to education
for most racial and gender groups exceed the common effect IV

34 Card (2001), for example, provides a review of a number of influential IV studies
on returns to education. Most of these report IV estimates substantially exceeding
their OLS estimates, and often in excess of 10%. Our homogenous ‘‘IV-type’’ estimate
tends to be closer to the consensus OLS estimate of these studies rather than their IV
counterparts. As a partial explanation for this difference, it is important to recognize
that we focus on a sample of young, reasonably well-educated workers in the HSB
data for whom returns to education are likely to be smaller, on average.
Table 8
Posterior estimates of average return to education across groups and models.

Predictive return to schooling E(·|D) Std(·|D) Pr(· > 0|D)

Standard IV model
θ 0.0591 0.0148 1
CRC model
xη + wλ +

∑2
g=1 π gη0g 0.0663 0.0133 1

White male 0.0511 0.0136 1
White female 0.0753 0.0136 1
Black male 0.0686 0.0150 1
Black female 0.0927 0.0149 1

estimate, while the point estimate of returns to education for
white males is lower than the IV estimate. Despite the similarity of
results for the average causal effects from both models, it remains
important to note that we should not expect these two estimates
to converge to the same parameter; the standard IV procedure
will not consistently estimate the average causal effect in the
population in general when treatment effect heterogeneity, as
described by our model, is present.35 Our analysis can, however,
recover this causal effect andmuchmore, including characterizing
the distribution of heterogenous returns, describing if and to what
extent agents act upon knowledge of their private returns, and
clarifying the various channels throughwhich covariates influence
the outcomes of interest.

35 Further details on this issue are available on request, although most of these
will repeat the arguments of Wooldridge (2003), who establishes conditions under
which a properly implemented IV procedure will consistently recover the average
causal effect.
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7. Conclusion

In this paper, we have taken up the issue of Bayesian estimation
of a correlated random coefficients model. In the past, estimation
in these types of models has focused almost exclusively on
the estimation of the average causal effect in the population.
Our model, though decidedly more parameterized than these
previous studies, enables the estimation of far more parameters of
interest, including the variability and other features of the causal
effect distribution in addition to learning how individuals make
treatment decisions on the basis of their gain from receipt of that
treatment.

We applied our method in practice to a widely studied problem
in labor economics: estimation of the private return to education.
Using data combined from High School and Beyond and the 1980
Census, we find evidence of heterogeneity in returns to education.
Specifically, we find that some characteristics of agents typically
associated with higher levels of schooling (such as family income)
are, at the same time, associated with lower returns to schooling.
This finding supports the idea that those who benefit most from
education are not necessarily the oneswho are observed to acquire
themost education. In addition, individuals can be viewed tomake
their schooling decisions based, at least in part, on their return
to education. Specifically, a one percentage point increase in the
return to education is associated with an increase in schooling
quantity equal to approximately 0.135 years.

Appendix. Identification

To fix ideas, we focus on one observation’s contribution to the
likelihood, denoted as p(y, s|Γ −θ), where the subscript i is dropped
for simplicity andΓ −θ denotes all parameters other than the return
θ , which is to be integrated out of (1)–(3). In this regard, we first
note that the marginal density s|Γ −θ is obtained as

s = [δ0 + ρη0] + x(δ + ρη) + zγ + wρλ + ũs, (29)
where ũs ≡ ρϵ + v.

We now seek to derive the conditional density p(y|s, Γ −θ). To
this end, we note that

p(y|s, Γ −θ) =

∫
∞

−∞

p(y, θ |s, Γ −θ)dθ (30)

=

∫
∞

−∞

p(y|Γ , s)p(θ |Γ −θ, s)dθ, (31)

where Γ denotes all parameters in the model. The assumptions of
(1)–(3) imply that
y|Γ , s ∼ N(β0 + xβ + sθ + r1[s − δ0 − xδ − zγ − θρ]

+ r2[θ − η0 − xη − wλ], Vy), (32)
with

Vy ≡ σ 2
y − [σys σyθ ]

[
σ 2
s σsθ

σsθ σ 2
θ

]−1 [
σys
σyθ

]
and

r1 ≡
σ 2

θ σys − σyθσsθ

σ 2
θ σ 2

s − σ 2
sθ

, r2 ≡
σ 2
s σyθ − σsθσys

σ 2
θ σ 2

s − σ 2
sθ

. (33)

The integration in (31) also requires p(θ |Γ −θ, s). Given the
bivariate normality of (s, θ |Γ −θ) implied from (2) and (3), we
obtain

θ |Γ −θ, s ∼ N


η0 + xη + wλ +

b
c
(s − δ0 − xδ − zγ

− ρ[η0 + xη + wλ]), Vθ


, (34)
Table 9
Coefficients on terms in E(y|s, Γ −θ)with b ≡ σsθ +ρσ 2

θ and c ≡ σ 2
s +2ρσsθ +ρ2σ 2

θ .

Variable Coefficient

Constant β0 − c−1(δ0 + ρη0)

σys + ρσyθ


x β − c−1(δ + ρη)


σys + ρσyθ


w −λρc−1


σys + ρσyθ


s η0 + c−1


σys + ρσyθ


− [b/c](δ0 +

ρη0)

z −γ c−1

σys + ρσyθ


s2 bc−1

sx η − bc−1(δ + ηρ)

sw λ − bc−1ρλ

sz −γ bc−1

where

b ≡ σsθ + ρσ 2
θ , c ≡ σ 2

s + 2ρσsθ + ρ2σ 2
θ and

Vθ ≡ σ 2
θ − (b2/c).

(35)

Given (32) and (34), the integration involves completing the
square in θ , recognizing a portion of the integrand as the kernel of a
Gaussian distribution, and then accounting for all remaining terms.
The result of this calculation shows that y|s, Γ −θ is also normal;
its regression function contains a constant and additive terms
involving x, w, s, z, s2, sx, sw, and sz. The parameters multiplying
each of these terms in the regression function for y|s are given in
Table 9.

Similar algebra also reveals that

Var(y|s, Γ −θ) =


σ 2
y −

[σys + ρσyθ ]
2

c


+ 2si


σyθ −

(σys + ρσyθ )b
c


+ s2i


σ 2

θ −
b2

c


. (36)

Some quick accounting suggests that, without any further
restrictions placed on the model, there are 15 sets of unknowns
and 17 sets of equations from s|Γ −θ and y|s, Γ −θ that can be used
to recover these ‘‘structural’’ parameters. Henceforth, we restrict
ourselves to establishing identification in the more difficult (and
perhaps more realistic) case where γ = 0, ρ ≠ 0 and w is a
scalar. In other words, we have one exclusion restriction in (3), no
exclusion restrictions in (2), and make the assumption that ρ ≠ 0.
In this case, we have one less set of parameters (γ) to estimate, but
setting γ = 0 eliminates three of our estimating equations. Under
these restrictions, the parameter vector can be broken down into
eight sets of regression parameters

[β0 β δo δ ρ η0 η λ]

and six parameters of the covariance matrix:

[σ 2
y σ 2

s σ 2
θ σys σyθ σsθ ].

In terms of equations that can be used to identify the above values,
let aj

r denote the (estimable) coefficient on variable r in equation
j, j ∈ {s, y} and r ∈ {co, x, w, s, s2, sx, sw}. It is understood that
j = s refers to s|Γ −θ in Eq. (29), j = y refers to the equation
for y|s, Γ −θ in Table 5, and r = co denotes the constant term
in each equation. From the s marginal density, we estimate three
coefficients and a variance parameterwhich, in the above notation,
provides

[asco as
x asw ĉ].

Similarly, the y|s, Γ −θ equation gives

[ayco ay
x ayw ays ay

s2
ay
sx aysw V y

co V y
s V y

s2 ],
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where, for the final three terms, V y
r denotes the (estimable)

coefficient multiplying the variable r in the expression for
Var(y|s, Γ −θ) in (36). Thus, we have 14 sets of equations to use in
recovering the 14 sets of structural parameters.

Note that

asco = δ0 + ρηo (37)

as
x = δ + ρη (38)

asw = ρλ. (39)

The relationships in Table 5 can be stacked together to produce

1 0 −ascoĉ
−1 0 0 0 0

0 I −as
xĉ

−1 0 0 0 0
0 0 −asw ĉ

−1 0 0 0 0
0 0 ĉ−1 1 −ascoĉ

−1 0 0
0 0 0 0 ĉ−1 0 0
0 0 0 0 −as

xĉ
−1 I 0

0 0 0 0 −asw ĉ
−1 0 1





β̂0

β̂
σys + ρσyθ
η̂0

b̂
η̂

λ̂



=



ayco
ay
x

ayw
ays
ay
s2

ay
sx

aysw


or, succinctly,

HyΓ y = ay,

where I denotes an identity matrix with an appropriate size. The
matrix Hy is full rank; hence, the terms in Γ y are identified and
could be estimated as Γ y = H−1

y ay . The remaining parameters ρ,
δ, and δ0 can then be obtained from (37)–(39) as

ρ̂ = aswλ̂−1 (40)

δ̂ = as
x − ρ̂η̂ (41)

δ̂0 = asco − ρ̂η̂0. (42)

It remains to discuss the parameters of Σ. Note that ĉ, b̂,
[ σys + ρσyθ ], and (36) can be employed to recover their values.
Specifically,

ρ 0 0 0 1 0
ρ2 1 0 0 2ρ 0
0 0 0 ρ 0 1
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0




σ 2

θ

σ 2
s

σ 2
y

σyθ
σsθ
σys



=



b̂
ĉ

[σys + ρσyθ ]

V y
co + [σys + ρσyθ ]

2
ĉ−1

V y
s /2 + [σys + ρσyθ ]b̂ĉ−1

V y
s2 + b̂2ĉ−1

 ,

or, succinctly,

HσΓ σ = Vσ .

The matrix Hσ is, again, full rank; hence, the parameters of the
covariance matrix are identifiable and could be estimated as Γ σ =

H−1
σ Vσ .
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