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Abstract

We describe a new Bayesian estimation algorithm for fitting a binary treatment,
ordered outcome selection model in a potential outcomes framework. We show how
recent advances in simulation methods, namely data augmentation, the Gibbs sampler
and the Metropolis-Hastings algorithm can be used to fit this model efficiently, and
also introduce a reparameterization to help accelerate the convergence of our poste-
rior simulator. Several computational strategies which allow for non-Normality are
also discussed. Conventional “treatment effects” such as the Average Treatment Effect
(ATE), the effect of treatment on the treated (TT) and the Local Average Treatment
Effect (LATE) are adapted for this specific model, and Bayesian strategies for calculat-
ing these treatment effects are introduced. Finally, we review how one can potentially
learn (or at least bound) the non-identified cross-regime correlation parameter and use
this learning to calculate (or bound) parameters of interest beyond mean treatment
effects.
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1 Introduction

As evidenced by the vast literature dedicated to the issue, the problem of identifying and

estimating the effects of “treatment” from observational data is of central importance to

economics and the social sciences. As suggested by the articles appearing in this volume,

there are many estimation strategies commonly employed in this literature, and the assump-

tions made in and issues emphasized by these various approaches can be quite distinct. For

instance, some studies employ fully parametric models to conduct their analyses, arguing

that the use of such models permits the estimation of a wide range of policy-relevant pa-

rameters,1 while others seek a more agnostic approach and thus pursue nonparametric or

semiparametric techniques.2 Many empirical studies in this area argue that the most con-

vincing way to surmount the problem of treatment endogeneity is to make use of cleverly

chosen natural experiments or instrumental variables,3 while others are content to pursue

more structural equation approaches where the role of the exclusion restriction is decidedly

less important and the discussion surrounding the instrument is muted.4 Finally, as in econo-

metrics generally, there are both Bayesian and Classical approaches for handling these types

of models.

In this paper we focus primarily on this last distinction and take up the case of Bayesian

estimation of a particular type of treatment-response model. While Bayesian work on the

analysis of treatment or causal effects has become more common in the econometrics lit-

erature [e.g., Vijverberg (1993), Koop and Poirier (1997), Li (1998), Chib and Hamilton

(2000, 2002), Poirier and Tobias (2003) and Li, Poirier and Tobias (2004)], the use of such

techniques continues to remain rare relative to Classical approaches. We do not aim to re-

duce this disparity by proselytizing at length in this paper about the merits of the Bayesian

approach relative to Classical methods. Instead, our goal is to review how a Bayesian might

handle specifications, similar to the Roy (1951) model, which are commonly encountered in

the treatment effect literature, to review some computational advances which should appeal

1Heckman, Tobias and Vytlacil (2003), for example, discuss parametric approaches for estimating a variety
of popular treatment effects under various distributional assumptions.

2Manski’s (1990, 1994) nonparametric bounding is a leading example.
3See Angrist and Krueger (2001) for a review.
4Gould (2002,2005), for example, argues that having strong predictors for treatment status is more

important for practical identification purposes than requiring that some set of covariates are excluded from
the outcome equation. In applied Bayesian work [e.g., Poirier and Tobias (2003), Munkin and Trivedi (2003)
and Li, Poirier and Tobias (2004)], the instrument tends to receive decidedly less discussion. In empirical
practice, however, such exclusion restrictions should be, and typically are used when available.
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to all researchers when faced with estimation of these types of models, to introduce an issue

that is somewhat unique to the Bayesian literature on this topic, and to provide new results

on Bayesian estimation of a specific type of treatment effect model.

We take up the particular case of a treatment-response model where treatment status is bi-

nary and the outcome of interest is ordered. To our knowledge, a discussion of this particular

model is new to the Bayesian literature, though highly related models, including those of the

binary treatment / continuous outcome and ordered treatment / binary outcome varieties

have appeared in Chib and Hamilton (2000). We present our model in a potential outcomes

framework and thus model both the observed outcome of the agent given her treatment

choice as well as the potential or counterfactual outcome for that agent had she made a

different treatment decision.

We show how data augmentation [e.g., Tanner and Wong (1987), Albert and Chib (1993)]

in conjunction with the Gibbs sampler and Metropolis-Hastings algorithm [e.g., Casella and

George (1992), Tierney (1994), Chib and Greenberg (1995)] can be used to fit this particular

model efficiently, and also introduce a reparameterization to help accelerate the convergence

of our posterior simulator. Several computational strategies which allow for non-Normality

are also discussed, though not employed. Treatment effects similar in spirit to the Average

Treatment Effect (ATE), the effect of treatment on the treated (TT) and the Local Average

Treatment Effect (LATE)5 are adapted for the case of our ordered response, and Bayesian

strategies for calculating these treatment effects are described. Finally, we discuss how one

can potentially learn about (or at least bound) the non-identified cross-regime correlation

parameter6 and use this learning to calculate (or bound) parameters of interest beyond mean

treatment effects.

The outline of this paper is as follows. Section 2 presents the basic potential outcomes

model and section 3 discusses our Bayesian estimation algorithm. Often-reported treatment

parameters such as ATE, TT and LATE are derived for our model in section 4 and procedures

for calculating these effects are described. A generated data experiment which illustrates

the performance of our algorithm is provided in section 5, and the paper concludes with a

5See, for example, Imbens and Angrist (1994) for a discussion of LATE and Heckman and Vytlacil (1999,
2000) for detailed discussions of these and other treatment effects.

6For related discussions on this topic, see Vijverberg (1993), Koop and Poirier (1997), Poirier (1998),
Poirier and Tobias (2003) and Li, Poirier and Tobias (2004).
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summary in section 6.

2 The Model

What we have in mind is the development of a parametric model that will enable researchers

to investigate the impact of a binary (and potentially endogenous) treatment variable, de-

noted D, where D = 1 implies receipt of treatment and D = 0 implies non-receipt, on an

ordered outcome of interest, denoted y ∈ {1, 2, · · · , J}. There are numerous examples where

such a model would be appropriate. For example, one might use this model to investigate,

say, the impact of enrolling in a supplemental learning center on attitudes toward education

(measured as a categorical response) or the quantity of education ultimately received by the

student. More generally, such a model is potentially of value in any situation where the

outcome of interest (e.g., earnings, education, expenditure) is recorded categorically rather

than continuously and the model also contains a dummy endogenous variable.7

We cast this evaluation problem in a potential outcomes framework and thus explicitly model

the counterfactual state - the ordered outcome that would have been observed had the agent

made a different treatment decision. We let y(1) denote the outcome received by the agent

in the treatment state and y(0) denote the outcome received without treatment. Only one

outcome, denoted yi, is ever observed for any agent, and thus

yi = Diy
(1)
i + (1−Di)y

(0)
i .

We suppose that the observed treatment decision D and the observed and potential ordered

outcomes y(1) and y(0) are generated by an underlying latent variable representation of the

model. Specifically, we write:8

D∗
i = wiβ

(D) + ui (1)

z
(1)
i = xiβ

(1) + ε
(1)
i (2)

7One can also conceive of situations where the modeling of count outcomes is desired (e.g. Munkin and
Trivedi 2003). Clearly, approaches to modeling ordered and count outcomes impose different parametric
assumptions on the response (e.g. ordered probit versus Poisson or negative binomial distribution), invoke
different interpretations of the outcomes of interest (ordinal versus cardinal), and involve different assessments
of the censoring feature of the outcomes (censored versus unbounded). Which approach is more appropriate
depends critically on the type of application that is considered.

8In this paper, we assume that the same set of covariates appear in the treated and untreated states. If
desired, this assumption could be relaxed and this extension incorporated into the derivations which follow.
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z
(0)
i = xiβ

(0) + ε
(0)
i . (3)

The binary treatment indicator Di is related to the latent D∗
i as follows:

Di = I(D∗
i > 0) = I[ui > −wiβ

(D)], (4)

with I(·) denoting the standard indicator function. Similarly, the ordered responses y
(1)
i and

y
(0)
i are related to the latent variables z

(1)
i and z

(0)
i as follows:

y
(k)
i = j iff α

(k)
j < z

(k)
i ≤ α

(k)
j+1, k = 0, 1, j = 1, 2, · · · , J. (5)

The {α(k)
j }, k = 0, 1, j = 1, 2, · · · , J are cutpoints in the model, mapping the latent indices in

both states into discrete values of our ordered response. We impose standard identification

conditions on these cutpoints, namely, α
(1)
1 = α

(0)
1 = −∞, α

(1)
2 = α

(0)
2 = 0 and α

(1)
J+1 =

α
(0)
J+1 = ∞. We also let

α(1) = [α
(1)
3 α

(1)
4 · · · α

(1)
J ]

denote the cutpoint vector for the treated state and define the 1×(J−2) vector α(0) similarly.

In this model we also assume the availability of an exclusion restriction - some covariate

which enters w that is not contained in x. To motivate the importance of this assumption,

consider a restricted version of (1)-(3) which consists of equation (1) and a latent variable

equation like (2), the latter of which includes the observed Di as an element of xi. This

restricted model would be of the form of a “standard” treatment or causal effect model that

only works with observed rather than potential outcomes. Maddala (1983, page 122), for

example, shows that the parameters of such a model are not identifiable unless the errors of

the equation system are uncorrelated or such an exclusion restriction is present. The former

condition often seems rather untenable in empirical practice, and thus we maintain that such

an exclusion restriction is available.

Finally, we fix ideas throughout the remainder of this discussion by assuming joint Normality

of the error terms:9


ui

ε
(1)
i

ε
(0)
i


 |xi, wi

iid∼ N







0
0
0


 ,




1 ρ(1) ρ(0)

ρ(1) 1 ρ(10)

ρ(0) ρ(10) 1





 ≡ N(0, Σ). (6)

Equations (1) - (6) then denote the complete specification of our ordered potential outcomes

model.
9We discuss how this requirement can be relaxed in section 3.4 of this paper. The variances of the errors

in all the equations have been normalized to unity for identification purposes.
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2.1 The likelihood

Given the assumed conditional independence across observations, we can write the likelihood

function for this model as:

p(y,D|Γ) ≡ L(Γ; y, D) = [
∏

i:Di=1

Pr(y
(1)
i = yi, Di = 1|Γ)][

∏

i:Di=0

Pr(y
(0)
i = yi, Di = 0|Γ)],

where Γ = [β(D) β(1) β(0) α(1) α(0) ρ(0) ρ(1) ρ(10)]. The joint probabilities required in calculating

this likelihood can be obtained from the bivariate Normal cdf. For example,

Pr(y
(1)
i = yi, Di = 1|Γ) = Pr(α(1)

yi
< z

(1)
i ≤ α

(1)
yi+1, ui > −wiβ

(D)|wi, xi, Γ) (7)

= Pr(α(1)
yi
− xiβ

(1) < ε
(1)
i ≤ α

(1)
yi+1 − xiβ

(1), ui > −wiβ
(D)|wi, xi, Γ).

(8)

Provided one uses a statistical package containing a routine for evaluating a bivariate Normal

cdf, standard MLE can be implemented. If no such routine is available on a particular

package, one could first reduce the probabilities above to univariate integration problems

and then employ standard numerical approximations such as Simpson’s rule or Gaussian

quadrature to approximate the requisite integrals. To see this more clearly, let P1,j ≡
Pr(Di = 1, y

(1)
i = j|Γ), and note from (8)

P1,j = Pr(α
(1)
j − xiβ

(1) < ε
(1)
i ≤ α

(1)
j+1 − xiβ

(1), ui > −wiβ
(D)|xi, wi, Γ)

=
∫ α

(1)
j+1−xiβ

(1)

α
(1)
j −xiβ(1)

∫ ∞

−wiβ(D)
p(ε

(1)
i , ui) dui dε

(1)
i

=
∫ α

(1)
j+1−xiβ

(1)

α
(1)
j −xiβ(1)

Φ


wiβ

(D) − ρ(1)ε
(1)
i√

1− ρ(1)2


 p(ε

(1)
i ) dε

(1)
i .

In this form a variety of approaches can be employed to approximate the required univariate

integrals. In our discussion of treatment effects in section 4, we will return to one approach

to this problem based on Monte Carlo integration using truncated Normal sampling. Impor-

tantly, we also recognize that our estimation strategy via data augmentation, as described

in the following section, avoids the need for any numerical integration of the above form,

and therefore provides an attractive alternative to the implementation of standard MLE.
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3 Bayesian Estimation

To perform a Bayesian analysis, a researcher first starts off as a classical econometrician might

by specifying the likelihood function for this model, as implied from (1) - (6) and described

in the preceding section. To this likelihood, the researcher adds a prior density, say p(Γ),

with Γ denoting the parameters of the model. This prior is chosen to reflect her subjective

beliefs about values of the parameters, and in most cases is chosen to be sufficiently “vague”

or “flat” so that information contained in the data will dominate information insinuated

through the prior. The prior density p(Γ) combined with the likelihood p(y,D|Γ) yields

the joint posterior density p(Γ|y,D) up to proportionality via Bayes theorem. This joint

posterior completely summarizes the “output” of a Bayesian procedure - from it, one can

obtain point and interval estimates, marginal posterior densities, posterior quantiles, or other

quantities of interest.

While in theory this simple exercise outlines the machinery involved in Bayesian posterior

calculations, in practice, extracting useful information from a given posterior p(Γ|y,D) can

be difficult. Direct calculation of a posterior mean of an element of Γ, for example, first

requires that the normalizing constant of the joint posterior is known (while often it is not),

and even if the normalizing constant were known, the mean calculation would still require

solving a high-dimensional integration problem. In models of moderate complexity, these

integration problems usually have no analytic solutions.

Instead of direct evaluation of this posterior, modern Bayesian empirical work makes use

of recent advances in simulation methods to carry out a posterior analysis. Two simulation

devices in particular, called the Gibbs sampler and Metropolis-Hastings algorithm, are widely

used and have become indispensable instruments in an applied Bayesian’s toolkit. Both of

these algorithms solve the problem of calculation of posterior moments, quantiles, marginal

densities or other quantities of interest by first obtaining a set of draws from the posterior

p(Γ|y, D). Typically, one can not draw directly from this density, but instead, one can gener-

ate a sequence of draws (by appropriately following the steps of the algorithms) that converge

to this distribution. Once convergence has been “achieved,” the subsequent set of simulated

parameter values can be used to calculate the desired quantities (e.g., posterior means). In

the Gibbs sampler, a Markov Chain whose limiting distribution is p(Γ|y, D) is produced

by iteratively sampling form the complete posterior conditionals of the model. In many
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cases, typically in models with conditionally conjugate priors, these posterior conditionals

have well-known forms and can be easily sampled. The Metropolis-Hastings algorithm is

a generalization of the Gibbs sampler and is a multivariate accept-reject algorithm. The

algorithm is, again, constructed so that the limiting distribution of the Markov chain is the

target density, p(Γ|y,D).10

In terms of the model described in this paper, Bayesian estimation of the specification in

(1) - (6) would likely make use of data augmentation [e.g. Tanner and Wong (1987), Albert

and Chib (1993)] in conjunction with the algorithms above. When data augmentation is

used, the posterior is first expanded (or, as the name suggests, augmented) to include not

only the parameter vector Γ, but also the latent data s = [D∗ z(1) z(0)]. Although this

would seem to complicate the estimation exercise, use of data augmentation often simplifies

the required posterior calculations. This is particularly true when data augmentation is

used in conjunction with the Gibbs sampler since, conditioned on the latent data, inference

regarding the regression parameters proceeds as a linear regression model would, and given

the regression parameters, it is often straight-forward to obtain draws from the posterior

conditional for the latent data.

For our model, this augmented posterior is of the form:

p(D∗, z(1), z(0), Γ|y, D) ∝ p(y, D, D∗, z(1), z(0), Γ) (9)

= p(y, D|D∗, z(1), z(0), Γ)p(D∗, z(1), z(0)|Γ)p(Γ), (10)

with p(Γ) denoting the prior for the parameters of our model. The middle term in the above

expression is immediately known as a trivariate Normal density, given the joint Normality

assumption in (6) combined with the model in (1)-(3). The last term simply denotes the

prior for our model parameters. For the first term, conditioned on the latent variables and

model parameters, the observed responses D and y are known with certainty and thus the

joint (conditional) distribution for y and D is degenerate. Putting these pieces together,

and exploiting the assumed conditional independence across observations, we can write the

10A detailed review of these simulation methods is beyond the scope of this paper; the interested reader
is invited to see Casella and George (1992), Tierney (1994), Chib and Greenberg (1995), Gilks et al (1998),
Geweke (1999), Chen, Shao and Ibrahim (2000), Carlin and Louis (2000), Geweke and Keane (2001), Chib
(2001), Koop (2003), Lancaster (2004), Gelman et al (2004), Poirier and Tobias (2006) and Koop, Poirier
and Tobias (2006) (among others) for detailed and comprehensive descriptions of these and other methods.
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augmented posterior as follows:

p(D∗, z(1), z(0), Γ|D, y) ∝ p(Γ)
n∏

i=1

φ3(si; riβ, Σ)× (11)

[
I(Di = 1)I(D∗

i > 0)I(α(1)
yi

< z
(1)
i ≤ α

(1)
yi+1) + I(Di = 0)I(D∗

i ≤ 0)I(α(0)
yi

< z
(0)
i ≤ α

(0)
yi+1)

]
.

In the above, we have defined

si =




D∗
i

z
(1)
i

z
(0)
i


 , ri =




wi 0 0
0 xi 0
0 0 xi


 , β =




β(D)

β(1)

β(0)


 , (12)

and φ3(x; µ, Ω) denotes a trivariate Normal density with mean µ and covariance matrix Ω.

Finally, Σ is defined in (6). The indicator functions added to (11) serve to capture the

degenerate joint distribution of y and D given the latent data and model parameters.

3.1 A Useful Reparameterization

In theory, one could directly apply standard computational tools (namely the Gibbs Sampler

coupled with a few Metropolis-within-Gibbs steps) to fit the model in (11). However, it has

been shown in related work [e.g., Cowles (1996), Nandram and Chen (1996) and Li and

Tobias (2005)], that use of the standard Gibbs sampler in models with ordered responses

suffers from slow mixing due to high correlation between the simulated cutpoints and latent

data. As discussed in the previous section, the parameter draws obtained from our estima-

tion algorithm form a Markov chain, and when the chain mixes slowly, we observe only very

small local movements from iteration to iteration. As a result, it may take a very long time

for our simulator to traverse the entire parameter space. When the lagged autocorrelations

between the simulated parameters are very high, estimates of posterior features may be quite

inaccurate, and numerical standard errors associated with those estimates will be unaccept-

ably large. To mitigate this slow mixing problem, and move closer to a situation where we

can obtain iid samples from the posterior, we suggest below an alternate parameterization

of the model, building of the suggestion of Nandram and Chen (1996).

To shed some insight on this reparameterization, first separate out the largest cutpoints from

the treated state, (α
(1)
J ), and untreated state, (α

(0)
J ), and define the transformations:

σ1 = 1/[α
(1)
J ]2 and σ0 = 1/[α

(0)
J ]2.
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In addition, for any variable Qi let Q̃
(1)
i ≡ √

σ1Q
(1)
i and define Q̃

(0)
i ≡ √

σ0Q
(0)
i similarly.

The model in (1) - (3) is then observationally equivalent to

D∗
i = wiβ

(D) + ui (13)

z̃
(1)
i = xiβ̃

(1) + ε̃
(1)
i (14)

z̃
(0)
i = xiβ̃

(0) + ε̃
(0)
i . (15)

where

y
(k)
i = j iff α̃

(k)
j < z̃

(k)
i ≤ α̃

(k)
j+1, k = 0, 1. (16)

In other words, the likelihood function for the observed data is unchanged when multiplying

(2) and (3) by
√

σ1 and
√

σ0, respectively, and appropriately adjusting the rule in (16) which

maps the latent data into the observed responses. The error variance for the transformed

disturbances now takes the following form:



ui

ε̃
(1)
i

ε̃
(0)
i


 |xi, wi

iid∼ N







0
0
0


 ,




1 σ̃1D σ̃0D

σ̃1D σ1 σ̃10

σ̃0D σ̃10 σ0





 ≡ N(0, Σ̃), (17)

where σ̃1D ≡ √
σ1ρ

(1), σ̃0D ≡ √
σ0ρ

(0) and σ̃10 =
√

σ1
√

σ0ρ
(10). The correlation parameters

ρ(1), ρ(0) and ρ(10) are defined in (6).

When the model is written as in (13) - (17), it suggests that we can work with an aug-

mented posterior distribution containing the latent variables D∗, z̃(1), z̃(0) and parameters

Γ̃ = [β̃ σ̃1D σ̃0D σ̃10 σ1 σ0 α̃(1) α̃(0)] instead of D∗, z(1), z(0) and Γ as in (11). The trans-

formed cutpoint and coefficient vectors contained in Γ̃ are defined as follows:11

α̃(1) = [α̃
(1)
3 α̃

(1)
4 · · · α̃(1)

J−1], α̃(0) = [α̃
(0)
3 α̃

(0)
4 · · · α̃(0)

J−1], and β̃ = [β(D) β̃(1) β̃(0)].

Following similar derivations to those leading to (11), we obtain the augmented joint posterior

distribution for the transformed parameters:

p(D∗, z̃(1), z̃(0), Γ̃|D, y) ∝ p(Γ̃)
n∏

i=1

φ3(s̃i; riβ̃, Σ̃)× (18)

[
I(Di = 1)I(D∗

i > 0)I(α̃(1)
yi

< z̃
(1)
i ≤ α̃

(1)
yi+1) + I(Di = 0)I(D∗

i ≤ 0)I(α̃(0)
yi

< z̃
(0)
i ≤ α̃

(0)
yi+1)

]

where s̃i ≡ [D∗
i z̃

(1)
i z̃

(0)
i ]′ and Σ̃ is defined in (17).

11Note that the largest cutpoints have been taken out of each cutpoint vector and these largest cutpoints
are replaced by σ1 and σ0 in this alternate parameterization.
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When working with this model, we employ independent priors for the parameters of Γ̃:

p(Γ̃) = p(β̃)p(α̃(1))p(α̃(0))p(Σ̃).

We center the regression parameters around a prior mean of zero and specify them to be

independently distributed with large prior variances: β̃ ∼ N(b0 = 0k×1, Vβ̃ = 1000Ik). The

prior probability density function of α̃(1) and α̃(0) is assumed to be proportional to some

constant: p(α̃
(1)
3 , · · · , α̃(1)

J−1, α̃
(0)
3 , · · · , α̃(0)

J−1) ∝ c, and finally, an inverse Wishart prior of the

form Σ̃ ∼ IW (ρ,R) with ρ = 6, R = I3 is employed subject to the restriction that the (1, 1)

element of Σ̃ is equal to one.

3.2 Benefits and Costs of Reparameterization

To this point we have offered no compelling arguments why one should work with the repa-

rameterized model instead of working directly with the original “structural” representation

of the model. The first argument in support of the reparameterization, as noted in Nandram

and Chen (1996), and further shown in Li and Tobias (2005), is that the rescaling helps to

significantly reduce the autocorrelation among the posterior simulations, thus accelerating

the convergence of the algorithm. In other words, given an equal number of posterior draws,

the numerical standard errors obtained when working with the reparameterized model will

be significantly smaller than those obtained when using the original parameterization of the

model. Second, and quite importantly from a computational point of view, this transforma-

tion effectively “restores” the conjugacy required to simulate the parameters of the covariance

matrix. That is, in the original parameterization of the model in (6), there are restrictions

on all three diagonal elements of the covariance matrix. This precludes drawing the elements

of the inverse covariance matrix from a Wishart distribution, (as is typically the case when

conjugate priors are employed), since the posterior conditional is no longer Wishart given the

diagonal restrictions. On the other hand, in our reparameterized version of the model, the

covariance matrix in (17) contains only one diagonal restriction, and using Algorithm 3 of

Nobile (2000), one can generate draws from this restricted Wishart density. Thus, working

with the reparameterized model facilitates simulating parameters of the covariance matrix,

and no Metropolis-Hastings steps are required for this portion of the posterior simulator.

Finally, for the specific case where there are three possible ordered outcomes (i.e., J = 3),

there are effectively no unknown cutpoints in the transformed representation of this model.
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For this case, the cutpoints are sampled through standard sampling of the elements of the

covariance matrix. For this particular model with 3 outcomes, posterior simulation using

the reparameterized model is quite fast, and no Metropolis-Hastings steps are required at

any point in the algorithm. For J > 3, however, additional Metropolis-Hastings steps are

required to simulate elements of the cutpoint vectors α̃1 and α̃0.

The main, and perhaps only, drawback to working with the reparameterized model is that

it requires us to place priors on the transformed parameters Γ̃. The priors we place on these

parameters may seem reasonable and suitably “default,” but upon closer investigation, they

may imply priors for the structural parameters that are unreasonable and are at odds with

our views about quantities for which we can more easily elicit our prior beliefs. For a two-

equation treatment-response model containing an ordered treatment variable and an ordered

response, Li and Tobias (2005) derive some connections between priors like those employed

in (18) and their consequences on the priors implied on the structural parameters in (11).

With suitably chosen hyperparameters, they argue that the implied priors on the structural

coefficients can be reasonable, and that any costs associated with this prior selection issue

are more than outweighed by the benefits afforded by the reparameterization. We take up a

more detailed view of this issue of prior selection for this particular model in our generated

data experiments of section 5.

3.3 The Posterior Simulator

We now introduce our posterior simulator for fitting our reparameterized treatment-response

model. In what follows, we adopt the notation Γ̃−x to denote all parameters other than x.

We first group the joint posterior into [D∗ z̃(1) z̃(0) α̃(1) α̃(0) β̃ Σ̃]. The latent data and

cutpoints will be sampled in blocking steps, while the regression parameters and covariance

matrix will be drawn from their complete posterior conditional.

Step 1: Draw β̃ from12

β̃|s̃, Γ̃−β̃, y,D ∼ N
(
Dβ̃dβ̃, Dβ̃

)

12It is useful to note that, conditional on the latent variables, our model is essentially a seemingly unrelated
regressions (SUR) model except for the restriction that one diagonal element of the covariance matrix is fixed
at one.
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where

Dβ̃ ≡
(

n∑

i=1

r′iΣ̃
−1ri + V −1

β̃

)−1

and dβ̃ ≡
n∑

i=1

r′iΣ̃
−1s̃i + V −1

β̃
b0.

Step 2: Draw Σ̃ from

Σ̃|s̃, Γ̃−Σ̃, y, D ∼ IW

(
n + ρ,

[
n∑

i=1

(s̃i − riβ̃)(s̃i − riβ̃)′ + ρR

])
I(Σ̃11 = 1).

Algorithm 3 in Nobile (2000) is used to generate variates from this inverted Wishart distri-

bution, conditioned on the value of the (1,1) element.

The remaining steps in the posterior simulator involve joint sampling of the latent data

s̃ = [D∗ z̃(1) z̃(0)] and cutpoint vectors α̃(1) and α̃(0). We attempt to mitigate autocorrelation

in our parameter chains by blocking or grouping the cutpoints from a given equation together

with the latent data appearing in that equation. Specifically, we proceed by sampling from

the following densities:

α̃(1), z̃(1)|z̃(0), D∗, Γ̃−α̃(1) , y,D (19)

α̃(0), z̃(0)|z̃(1), D∗, Γ̃−α̃(0) , y,D (20)

and

D∗|z̃(1), z̃(0), Γ̃, y, D. (21)

Taking a closer look at the first of these three densities, we find from (18)

α̃(1), z̃(1)|z̃(0), D∗, Γ̃−α̃(1) , y,D ∝ (22)
n∏

i=1

φ3(s̃i; riβ̃, Σ̃)[I(α̃(1)
yi

< z̃
(1)
i ≤ α̃

(1)
yi+1)I(Di = 1) + I(Di = 0)]

∝
n∏

i=1

φ(z̃
(1)
i ; µ̃c

i1, σ̃
c
1)[I(α̃(1)

yi
< z̃

(1)
i ≤ α̃

(1)
yi+1)I(Di = 1) + I(Di = 0)].

Note that the indicator functions involving D∗
i and z̃

(0)
i in (18) have disappeared completely

simply because we are now conditioning on these latent parameters. In the last line of (22),

we have broken the trivariate Normal density for s̃i into a conditional for z̃
(1)
i times the joint

for z̃
(0)
i and D∗

i . The latter joint density is then absorbed into the normalizing constant

of (22), as it does not involve α̃(1) or z̃(1). It follows that the conditional mean µ̃c
i1 and

conditional variance σ̃c
1 are defined as:

µ̃c
i1 ≡ xiβ̃

(1) + [σ̃1D σ̃10]

[
1 σ̃0D

σ̃0D σ0

]−1 [
D∗

i − wiβ
(D)

z̃
(0)
i − xiβ̃

(0)

]

12



and

σ̃c
1 ≡ σ1 − [σ̃1D σ̃10]

[
1 σ̃0D

σ̃0D σ0

]−1 [
σ̃1D

σ̃10

]
.

To obtain a draw from (19), we proceed in two steps and use the method of composition

[see, e.g., Chib (2001)]. First, we marginalize (19) over z̃(1) and describe a procedure for

drawing α̃(1) from this density. In the second step, we draw z̃(1) from z̃(1)|z̃(0), D∗, Γ̃, y,D.

The realized values of α̃(1) and z̃(1) then form a draw from (19).

After integrating (19) over z̃(1), we obtain:

α̃(1)|z̃(0), D∗, Γ̃−α̃(1) , y,D ∝ ∏

i:Di=1

Φ


 α̃

(1)
yi+1 − µ̃c

i1√
σ̃c

1


− Φ

(
α̃(1)

yi
− µ̃c

i1√
σ̃c

1

)
. (23)

Step 3: To sample from the density in (23), we follow the suggestion of Nandram and Chen

(1996), who suggest using a Dirichlet proposal density to sample differences13 between the

cutpoint values, q
(1)
j = α̃

(1)
j+1 − α̃

(1)
j , j = 3, · · · , J − 1. Given that the largest cutpoint takes

the value of unity, we can then solve back to obtain the values of the cutpoints themselves.

Specifically, we sample {q(1)
j }J−1

j=3 ∼ Dirichlet({δ(1)
j n

(1)
j + 1}J−1

j=3 ), where {δ(1)
j }J−1

j=3 = 0.1 are

tuning parameters, and n
(1)
j ≡ ∑n

i=1 I(yi = j)I(Di = 1), j = 3, · · · J − 1 are the numbers

of individuals falling into each category of the outcome variable in the treated state. The

probability of accepting the candidate draw is the standard Metropolis-Hastings probability,

min(R, 1), where

R = [
∏

i:Di=1

Φ([α̃
(1)
yi+1,can − µ̃c

i1]/
√

σ̃c
1)− Φ([α̃(1)

yi,can − µ̃c
i1]/
√

σ̃c
1)

Φ([α̃
(1)
yi+1,l−1 − µ̃c

i1]/
√

σ̃c
1)− Φ([α̃

(1)
yi,l−1 − µ̃c

i1]/
√

σ̃c
1)

][
J−1∏

j=3

(
q
(1)
j,l−1

q
(1)
j,can

)δ
(1)
j n

(1)
j ],

“l−1” denotes the current value of the algorithm and “can” denotes the candidate draw from

the Dirichlet proposal density.

Step 4: Sample z̃
(1)
i independently from the conditional

z̃
(1)
i |z̃(0), D∗, Γ̃, y, D

ind∼




TN
(α̃

(1)
yi

,α̃
(1)
yi+1)

(µ̃c
i1, σ̃

c
1) if Di = 1

N(µ̃c
i1, σ̃

c
1) if Di = 0

, i = 1, 2, · · · , n.

This is a Normal density with mean µ̃c
i1 and variance σ̃c

1, and is truncated to the interval

(α̃(1)
yi

, α̃
(1)
yi+1) if individual i is observed to be in the treatment group. When Di = 0, no

13Note that sampling the cutpoints in this way enforces the ordering restriction on the cutpoint values.
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restrictions arise regarding the latent data z
(1)
i , and thus the draw is obtained from the

untruncated Normal density.

To generate draws from a univariate truncated Normal density, one can use standard inver-

sion methods. That is, to generate x ∼ TN(a,b)(µ, σ2), first draw U uniformly on (0, 1) and

then set

x = µ + σΦ−1

[
Φ

(
a− µ

σ

)
+ U

[
Φ

(
b− µ

σ

)
− Φ

(
a− µ

σ

)]]
.

Step 5: By similar arguments as those leading up to step 3, one can show that

α̃(0)|z̃(1), D∗, Γ̃−α̃(0) , y, D ∝ ∏

i:Di=0

Φ


 α̃

(0)
yi+1 − µ̃c

i0√
σ̃c

0


− Φ

(
α̃(0)

yi
− µ̃c

i0√
σ̃c

0

)
(24)

where

µ̃c
i0 ≡ xiβ̃

(0) + [σ̃0D σ̃10]

[
1 σ̃1D

σ̃1D σ1

]−1 [
D∗

i − wiβ
(D)

z̃
(1)
i − xiβ̃

(1)

]

and

σ̃c
0 ≡ σ0 − [σ̃0D σ̃10]

[
1 σ̃1D

σ̃1D σ1

]−1 [
σ̃0D

σ̃10

]
.

A strategy identical to that described in Step 3 can be used to simulate the cutpoints from

this proposal density.

Step 6: Sample z̃
(0)
i independently from the conditional

z̃
(0)
i |z̃(1), D∗, Γ̃, y, D

ind∼




TN
(α̃

(0)
yi

,α̃
(0)
yi+1)

(µ̃c
i0, σ̃

c
0) if Di = 0

N(µ̃c
i0, σ̃

c
0) if Di = 1

, i = 1, 2, · · · , n.

Step 7: Sample D∗
i independently from the conditional

D∗
i |z̃0, z̃(1), Γ̃, y,D

ind∼
{

TN(0,∞) (µ̃c
iD, σ̃c

D) if Di = 1
TN(−∞,0) (µ̃c

iD, σ̃c
D) if Di = 0

, i = 1, 2, · · · , n.

In the above, we have defined

µ̃c
iD ≡ wiβ

(D) + [σ̃1D σ̃0D]

[
σ1 σ̃10

σ̃10 σ0

]−1 [
z̃

(1)
i − xiβ̃

(1)

z̃
(0)
i − xiβ̃

(0)

]

and

σ̃c
D ≡ 1− [σ̃1D σ̃0D]

[
σ1 σ̃10

σ̃10 σ0

]−1 [
σ̃1D

σ̃0D

]
.

Iterating through steps 1-7 produces a draw from the augmented joint posterior distribution.

To recover the structural coefficients of interest, we simply “invert” the mappings described

above (13) and below (17).
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3.4 Extending the Model: Allowing for Non-Normality

A limitation of the model described thus far in this paper is its reliance on joint Normality.

For some applications, such as log wage outcomes [e.g., Heckman and Sedlacek (1985),

Heckman (2004)], the Normality assumption may be a reasonable approximation, and if the

model passes a selection of diagnostic tests14 no further refinements would be required. For

other models, researchers may worry about heavy tails, asymmetry or possibly bimodality in

the disturbance variance. Below we outline simple computational tricks for capturing these

features of the data and generalizing the Normality assumption.

The most straight-forward extension of the model is to expand to Student-t errors by simply

adding the appropriate mixing variables to the disturbance variance [see, e.g., Carlin and

Polson (1991), Geweke (1993), Albert and Chib (1993), Chib and Hamilton (2000) and Li,

Poirier and Tobias (2004)]. For example, if we generalize the Normality assumption in (6)

to 


ui

ε
(1)
i

ε
(0)
i


 |λi, xi, wi, Σ

ind∼ N (0, λiΣ) , where Σ ≡



1 ρ(1) ρ(0)

ρ(1) 1 ρ(10)

ρ(0) ρ(10) 1


 , (25)

and specify a prior for λi of the form15

λi
iid∼ IG(ν/2, 2/ν),

it follows that (marginalized over the prior for λi):



ui

ε
(1)
i

ε
(0)
i


 |xi, wi, Σ ∼ tν(0, Σ), (26)

a multivariate Student-t density with mean zero, scale matrix Σ and ν degrees of freedom.

This device is particularly useful for modeling symmetric error densities whose tails are heav-

ier than those implied by the Normal density. In addition, such an extension to the model

comes at little computational cost since, conditioned on {λi}, sampling the regression pa-

rameters and covariance matrix is straight-forward, and each λi can be drawn independently

from its complete posterior conditional, which is of an inverse Gamma form.

14For example, one can calculate posterior predictive p-values [Gelman et al (2004)], QQ plots and other
standard diagnostic criteria [e.g., Lancaster (2004), Koop, Poirier and Tobias (2006)] to evaluate the appro-
priateness of the Normality assumption. For more on the performance of related models under non-Normality,
see, for example Goldberger (1983) or Paarsch (1984).

15The inverted Gamma (IG) random variable is parameterized as follows: p(x) ∝ x−(a+1) exp[−1/(bx)].
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An analogous and potentially more flexible extension of the model is to suppose that the

errors were drawn from a mixture of Normal densities. Like (25), we might write




ui

ε
(1)
i

ε
(0)
i


 |λi, xi, wi, Σ

ind∼ λiN(0, Σ1) + (1− λi)N(0, Σ2). (27)

So, conditioned on λi (which is unobserved), each observation is ascribed to one component

of the mixture model with covariance matrix equal to either Σ1 or Σ2. Since the component

assignment is known given λi, it is, again, straight-forward to obtain draws from the re-

gression parameters and component-specific covariance matrices. The λi are then simulated

independently from a two-point distribution.16

Finally, one can generalize this mixture model even further by allowing the regression pa-

rameters to vary across the mixture components. To do this, we write

s∗i |λi, Γ
ind∼ λiN(riβ1, Σ1) + (1− λi)N(riβ2, Σ2),

where si and ri are as defined in (12), and βj, Σj represent the regression parameter vector

and covariance matrix from the jth component of the mixture. Generalization to more than

two components is a also straightforward, and the component indicators and component

probabilities can be simulated from multinomial and Dirichlet densities, respectively [see,

e.g., Li, Poirier and Tobias (2004)].

4 Treatment Effects

In this section we derive expressions for conventional “treatment effects” in our ordered

outcome treatment-response model. In particular, we adapt conventional treatment param-

eters including the Average Treatment Effect (ATE), the effect of Treatment on the Treated

(TT) and the Local Average Treatment Effect (LATE) to our ordered response model, and

describe how these can be calculated within this framework.

16See., e.g., McLachlan and Peel (2000). There is an important issue about local non-identifiability of the
mixture model parameters; the parameters are not identified up to a permutation of the mixture components.
To aid in identification, priors can be used that impose an ordering restriction on the variance parameters,
regression parameters or component probabilities. In some cases, there is little concern for “component
switching,” but in other cases, this issue may be a significant concern.
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4.1 The Average Treatment Effect

We begin with a discussion of the Average Treatment Effect (ATE). This parameter typically

quantifies the expected outcome gain for a randomly chosen individual. Since our response

is ordered, this parameter may not be of direct relevance, as it demands a cardinal represen-

tation of an ordinal variable.17 In light of this issue, we choose to adapt the ATE parameter

to describe across-regime changes in probabilities associated with various categories. To

fix ideas, then, we consider the impact of the treatment on increasing (or decreasing) the

probability that the outcome exceeds the “lowest” category:

ATE(x; Γ) ≡ Pr(y(1) ≥ 2|x, Γ)− Pr(y(0) ≥ 2|x, Γ) (28)

=
J∑

j=2

[
Pr(y(1) = j|x, Γ)− Pr(y(0) = j|x, Γ)

]
(29)

=
J∑

j=2

([
Φ(α

(1)
j+1 − xβ(1))− Φ(α

(1)
j − xβ(1))

]
−

[
Φ(α

(0)
j+1 − xβ(0))− Φ(α

(0)
j − xβ(0))

])
.

The choice of the lowest category is without loss of generality; other probabilities can be

obtained in similar ways. We relate this quantity to ATE since it corresponds to a probability

increase (or decrease) for a randomly chosen individual.

A point estimate of this treatment impact is readily obtained using our simulated set of

parameters drawn from the joint posterior:

ˆATE(x) ≡ EΓ|y,D [ATE(x; Γ)] ≈ 1

M

M∑

m=1

ATE(x; Γm), (30)

where Γm ∼ p(Γ|y, D) and is obtained from the algorithm described in section 3.3.

4.2 The Effect of Treatment on the Treated

The effect of Treatment on the Treated (TT) is a conceptually different parameter and de-

scribes the outcome gain (or loss) from treatment for those actually selecting into treatment.

17In some cases, however, it may be. For example, one could use an ordered model to analyze, say, years
of schooling completed, and thus remain true to the integer-valued nature of the education data. In this
case, the ordered variable has a natural cardinal interpretation, and thus the conventional ATE parameter
would be of interest.
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Again, we examine the treatment effect on the probability that the outcome variable does

not fall into the lowest category:

TT (x,w, D(w) = 1; Γ) ≡ Pr(y(1) ≥ 2|x,w, D(w) = 1, Γ)− Pr(y(0) ≥ 2|x,w, D(w) = 1, Γ) (31)

=
J∑

j=2

[
Pr(y(1) = j|x,w,D(w) = 1, Γ)− Pr(y(0) = j|x,w,D(w) = 1, Γ)

]
.

To economize on notation, let us define

P TT
1,j (Γ) ≡ Pr(y(1) = j|x,w,D(w) = 1, Γ) and P TT

0,j (Γ) ≡ Pr(y(0) = j|x,w,D(w) = 1, Γ),

(32)

keeping the conditioning on x, w and D(w) = 1 implicit. Given these definitions, it follows

that TT (x,w,D(w) = 1; Γ) =
∑J

j=2[P
TT
1,j (Γ)− P TT

0,j (Γ)].

Recalling our description of the likelihood in section 2.1, we can write the probabilities in

(32) in more computationally convenient forms. For example,

P TT
1,j (Γ) ≡ Pr(α

(1)
j < z(1) ≤ α

(1)
j+1|u > −wβ(D))

= Pr(α
(1)
j − xβ(1) < ε(1) ≤ α

(1)
j+1 − xβ(1)|u > −wβ(D))

=
∫ α

(1)
j+1−xβ(1)

α
(1)
j −xβ(1)

p(ε(1)|u > −wβ(D))dε(1)

=
∫ α

(1)
j+1−xβ(1)

α
(1)
j −xβ(1)

∫ ∞

−wβ(D)

p(ε(1), u)

Pr(u > −wβ(D))
dudε(1)

=
∫ ∞

−wβ(D)

∫ α
(1)
j+1−xβ(1)

α
(1)
j −xβ(1)

p(ε(1)|u)dε(1) p(u)

Pr(u > −wβ(D))
du

=
∫ ∞

−wβ(D)


Φ


α

(1)
j+1 − xβ(1) − ρ(1)u√

1− ρ(1)2


− Φ


α

(1)
j − xβ(1) − ρ(1)u√

1− ρ(1)2





 p(u)

Pr(u > −wβ(D))
du.

The integral above is simply

Eu


Φ


α

(1)
j+1 − xβ(1) − ρ(1)u√

1− ρ(1)2


− Φ


α

(1)
j − xβ(1) − ρ(1)u√

1− ρ(1)2





 ,

where u ∼ TN(−wβ(D),∞)(0, 1). Thus, the strong law of large numbers guarantees that

P̂ TT
1,j (Γ) ≡ (1/L)

L∑

l=1

Φ


α

(1)
j+1 − xβ(1) − ρ(1)u(l)

√
1− ρ(1)2


− Φ


α

(1)
j − xβ(1) − ρ(1)u(l)

√
1− ρ(1)2


 p→ P TT

1,j (Γ),
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where {u(l)}L
l=1 denotes an iid sample from the standard Normal distribution truncated to

(−wβ(D),∞).18

Following similar arguments, one can show

P̂ TT
0,j (Γ) ≡ (1/L)

L∑

l=1

Φ


α

(0)
j+1 − xβ(0) − ρ(0)u(l)

√
1− ρ(0)2


− Φ


α

(0)
j − xβ(0) − ρ(0)u(l)

√
1− ρ(0)2


 p→ P TT

0,j (Γ).

Putting these results together, and, of course, exploiting the availability of draws from our

joint posterior, we can calculate the following point estimate of TT:

T̂ T (x,w,D(w) = 1) = EΓ|y,D[TT (x,w, D(w) = 1; Γ)]

≈ 1

M

M∑

m=1




J∑

j=2

(
P̂ TT

1,j (Γm)− P̂ TT
0,j (Γm)

)

 , (33)

with Γm ∼ p(Γ|y, D).

4.3 The Local Average Treatment Effect

The Local Average Treatment Effect can be interpreted as measuring the outcome gain (or

loss) from treatment for a group of “compliers.” This corresponds to the effect of treatment

on a subgroup of the population who would choose to receive treatment at a particular value

of the instrument, say w, but would not choose treatment at some w̃.19 Consistent with

our discussions in the previous subsections, our parameter of interest is the increased (or

decreased) likelihood that the outcome variable exceeds the lowest category:

LATE(x,w, w̃, D(w) = 1, D(w̃) = 0; Γ) = Pr(y(1) ≥ 2|x,w, w̃,D(w) = 1, D(w̃) = 0, Γ)

− Pr(y(0) ≥ 2|x,w, w̃,D(w) = 1, D(w̃) = 0, Γ)

=
J∑

j=2

(
PLATE

1,j (Γ)− PLATE
0,j (Γ)

)
,

where

PLATE
k,j (Γ) ≡ Pr(y(k) = j|x,w, w̃,D(w) = 1, D(w̃) = 0, Γ), k = 0, 1.

18In practice, these integrals can be approximated quite accurately (and quickly) using relatively few draws
from the truncated Normal distribution. A routine for drawing from such a distribution was provided in
Step 4 of section 3.3.

19Heckman, Tobias and Vytlacil (2003) provide a similar definition of LATE in a parametric latent variable
selection model.
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To calculate LATE, we follow a similar strategy to that outlined for calculating the TT

effect. It follows that

P̂LATE
1,j (Γ) ≡ (1/L)

L∑

l=1

Φ


α

(1)
j+1 − xβ(1) − ρ(1)u(l)

√
1− ρ(1)2


− Φ


α

(1)
j − xβ(1) − ρ(1)u(l)

√
1− ρ(1)2




p→ PLATE
1,j (Γ),

P̂LATE
0,j (Γ) ≡ (1/L)

L∑

l=1

Φ


α

(0)
j+1 − xβ(0) − ρ(0)u(l)

√
1− ρ(0)2


− Φ


α

(0)
j − xβ(0) − ρ(0)u(l)

√
1− ρ(0)2




p→ PLATE
0,j (Γ),

where u(l) iid∼ TN[−wβ(D),−w̃β(D)](0, 1). We can then proceed to obtain a point estimate of

LATE:

ˆLATE[x,w, w̃, D(w) = 1, D(w̃ = 0)] = EΓ|y,D[LATE(x,w, w̃,D(w) = 1, D(w̃) = 0; Γ)]

≈ 1

M

M∑

m=1




J∑

j=2

(
P̂LATE

1,j (Γm)− P̂LATE
0,j (Γm)

)

 ,

with Γm ∼ p(Γ|y, D).

4.4 Beyond Mean Treatment Parameters: Learning about ρ(10)

The treatment parameters discussed in the previous subsections are typical of the mean

treatment effects considered in the literature. To see this, note that an equivalent expression

of the parameter of interest Pr(y(1) ≥ 2|x)− Pr(y(0) ≥ 2|x) is E[I(y(1) ≥ 2)− I(y(0) ≥ 2)|x],

where I(·) denotes the indicator function. Part of the appeal of these mean treatment

parameters is that they enable researchers to quantify a feature of the treatment impact

- the average gains or losses under various conditioning scenarios - even though y(0) and

y(1) are not jointly observed. Unlike the mean treatment effects described in the previous

subsections, however, other quantities of significant policy relevance, such as the probability

of a positive treatment effect

Pr(y(1) − y(0) > 0|x)

will depend on the correlation parameter ρ(10). This correlation parameter does not enter

the likelihood for the observed data (see, e.g., section 2.1) and thus is not identifiable. This
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fact has, perhaps, limited the scope of most research to the estimation of mean treatment

impacts.20

For the Bayesian, this non-identifiability issue raises the question of what can and should

be done about our treatment of the correlation parameter ρ(10).21 One approach, which was

used by Chib and Hamilton (2000), is to simply set ρ(10) = 0, fit the model subject to this

restriction and then impose that the restricted covariance matrix (subject to ρ(10) = 0) is

positive definite. While in most cases this will be an innocuous restriction, in some cases,

this approach may have unanticipated consequences. For example, if we set ρ10 = 0 in (6),

it follows that Σ is positive definite if and only if

[ρ(1)]2 + [ρ(0)]2 ≤ 1.

This restriction thus forces the identified correlation parameters ρ(1) and ρ(0) to lie within the

unit circle rather than the unit square. To illustrate what this restriction means, suppose

that we performed a generated data experiment and set ρ(1) = ρ(0) = .8. If we proceeded

to fit this model subject to ρ(10) = 0, and enforced that the restricted covariance matrix

was positive definite, then our posterior mode must be inconsistent - the joint posterior

ρ(1), ρ(0)|y,D could never place any mass over the actual values used to generate the data

regardless of the size of the generated data set. This problem manifests itself for rather

extreme cases of correlation among the unobservables; if the correlations are more moderate,

then this is not likely to be a significant issue.22

An alternate approach, which we have advocated in previous work [e.g., Koop and Poirier

(1997), Poirier and Tobias (2003), Li, Poirier and Tobias (2004)] is to simply work with

the “full” covariance matrix, as described in section 3.3, without restricting ρ(10) a priori.

As shown in Poirier and Tobias (2003), this does not induce an inconsistency regarding the

identified model parameters, and moreover, one can potentially learn about the non-identified

correlation parameter. Intuitively, information arising through the likelihood function will

enable us to pin down all of the correlation parameters in (6) that are identifiable, leaving

20Related work has sought to expand the focus beyond mean effects and identify outcome gain distributions.
See, for example, Heckman and Honoré (1990), Heckman, Smith and Clements (1997), Heckman and Smith
(1998) and Carneiro, Hansen and Heckman (2003).

21See Poirier (1998) for more on learning about non-identifiable parameters through prior information.
Poirier and Tobias (2000) contain related material describing the implications of prior restrictions on ρ(10).

22This is particularly true, as Chib and Hamilton (2000) point out, in, say, panel models where most of the
variation is captured through fixed or random effects, and one would suspect that any remaining correlation
among the unobservables was minimal.
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only ρ(10) unknown. An additional source of information then arises from the fact that Σ

must be positive definite. In particular, the p.d. restriction imposes that ρ(10) must have the

following conditional support:

ρ(1)ρ(0) −
√

(1− [ρ(1)]2)(1− [ρ(0)]2) ≤ ρ(10) ≤ ρ(1)ρ(0) +
√

(1− [ρ(1)]2)(1− [ρ(0)]2). (34)

This equation provides identifiable bounds on ρ(10) as a function of the identified correlation

parameters ρ(1) and ρ(0). Somewhat surprisingly, these bounds also suggest that selection bias

may, in a particular sense, be a good thing. When ρ(1) and ρ(0) are large, the bounds given

in (34) become increasingly informative. Intuitively, the presence of selection bias provides

a vehicle for learning about ρ(10) - if the errors in the outcome equations are correlated

sufficiently with the error in the treatment equation, then to some extent, they must also be

correlated with one another.

Equation (34) shows that beliefs regarding ρ(10) will generally be revised from the data - as

we learn about ρ(1) and ρ(0), this information spills over and restricts the conditional support

of ρ(10). This is, unfortunately, as far as the data will take us - the shape of the marginal

posterior density of ρ(10) within the bounds in (34) is not updated from the data. Poirier

and Tobias (2003) show that in sufficiently large samples where ρ(1) and ρ(0) are estimated

precisely and are approximately equal to, say, ρ(1,∗) and ρ(0,∗):

p(ρ(10)|y, D) ≈ p(ρ(10)|ρ(1) = ρ(1,∗), ρ(0) = ρ(0,∗)). (35)

That is, the marginal posterior for the non-identified correlation parameter is approximately

equal to the conditional prior for that correlation parameter evaluated at the given values

ρ(1,∗) and ρ(0,∗) . The support bounds in (34) are updated from the data, but within the

bounds, the shape of the posterior is completely determined by the shape of the conditional

prior. For the Bayesian, this is a natural result; in the absence of information arising from

the data, one resorts to the use of prior information.23

The results of these studies suggest that there is, in one sense, a limited opportunity for

expanding the focus of research beyond mean effects. One could at least bound ρ(10) and

then use these bounds to bound other parameters of interest. If one is comfortable with

23Heckman, Smith and Clements (1997), for example, informally discuss plausible prior beliefs for ρ(10).
They write (page 510) “In considering outcomes like employment and earnings, many plausible models of
program participation suggest that outcomes in the treatment state are “positively related” to outcomes in
the non-treatment state...There is a widely-held belief that good persons are good at whatever they do.”
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insinuating prior information, however, one could obtain point estimates of any parameter

of interest under a particular prior. “Default” priors yielding marginal posteriors that are

uniform over the conditional support bounds may appeal to many researchers when carrying

out these calculations. Use of such priors, however, typically makes the problem more

challenging from a computational point of view as they often break the inherent conjugacy

of the model.

5 A Generated Data Experiment

In this section we conduct a generated data experiment to demonstrate the performance of

our posterior simulator and address a potential concern regarding choice of prior. A sample

of 5,000 observations is generated from the following ordered potential outcome model:

D∗
i = β

(D)
0 + wiβ

(D)
1 + ui

z
(1)
i = β(1) + ε

(1)
i

z
(0)
i = β(0) + ε

(0)
i ,

where wi is drawn independently from a N(0, 1) distribution and the error terms [ui ε
(1)
i ε

(0)
i ]′

are drawn jointly from the trivariate Normal distribution:



ui

ε
(1)
i

ε
(0)
i


 |wi

iid∼ N







0
0
0


 ,




1 0.9 0.7
0.9 1 0.6
0.7 0.6 1





 .

We consider this specific design with a high degree of unobservable correlation to reveal how

our algorithm performs when selection bias is a significant problem.24 The non-identified

correlation ρ(10) is set to .6, and thus from (34) the covariance matrix is positive definite.

Finally, the regression parameters β
(D)
0 , β

(D)
1 , β(1) and β(0) and cutpoint values α

(k)
j , j =

3, 4, 5, k = 0, 1 are enumerated in the first column of Table 1, and the observables Di, y
(1)
i

and y
(0)
i are generated as follows:

Di = I(D∗
i > 0),

y
(1)
i = j if α

(1)
j < z

(1)
i ≤ α

(1)
j+1, j = 1, 2, 3, 4, 5,

y
(0)
i = j if α

(0)
j < z

(0)
i ≤ α

(0)
j+1, j = 1, 2, 3, 4, 5.

24We do not address the “weak instruments” problem here, but to fix ideas, we consider the case where
the instrument plays a significant role in the treatment decision.
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With this experimental design, the number of treated versus untreated observations is well-

balanced, as 51% of the sample points are assigned to the treatment group. Of those sample

points that are assigned to the treatment group, 5%, 5%, 8%, 10% and 71% are associated

with ordered outcomes of y(1) = 1, 2, 3, 4 and 5, respectively. Likewise, for those observations

that do not receive treatment, 46%, 14%, 13%, 10% and 16% of them fall into the categories

of y(0) = 1, 2, 3, 4 and 5, respectively. We consider this design to be reasonably typical of

actual empirical situations, where the outcome variables are not uniformly distributed over

the set of possible choices.

We fit our model using the posterior simulator described in section 3.3, run the algorithm

for 3,000 iterations, and discard the first 600 draws as the burn-in period. To illustrate the

performance of the algorithm, we plot in Figure 1 the lagged autocorrelations up to order 100

for several selected parameters: β
(D)
0 , β(1), α

(0)
3 and ρ(1). The lagged autocorrelation plots are

a useful way to assess the mixing of the parameter chains - if the lagged autocorrelations

remain close to unity, for example, then the posterior simulator only makes small local

movements from iteration to iteration, resulting in inaccurate posterior estimates. As shown

in Figure 1, the lagged autocorrelations drop away reasonably quickly for all the selected

parameters, suggesting that posterior quantities can be approximated reasonably accurately

with only a moderate number of posterior simulations.

? Figure 1 about here ?

As discussed in section 3.2, one potential concern about working with the reparameterized

model is that we need to impose priors directly on the transformed parameters instead of

the structural parameters. This is an important issue because priors that look suitable

for the transformed parameters may turn out to imply rather unreasonable (and possibly

quite informative) priors for the structural parameters. For this generated data experiment,

we employ the priors described in Section 3.1. We can calculate the implied priors for

the structural parameters by first sampling from the priors for the transformed parameters,

inverting to obtain the values of the structural parameters, and then smoothing the collection

of structural parameter values to obtain their approximate marginal prior densities. To

demonstrate this process, we plot in Figure 2 the marginal priors and posteriors for the

selected parameters β
(D)
0 , β(1), α

(0)
3 and ρ(1). As can be seen clearly from the graphs, the

prior densities for all the parameters are almost completely “flat” over the regions where the
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posterior densities have substantial mass; it is almost impossible for us to visually distinguish

between the prior densities and horizontal axes when they are plotted together against the

posterior densities. This evidence clearly suggests that the data has provided sufficient

information for us to substantially revise our prior beliefs, and that the implied priors for

the structural coefficients are sufficiently vague to warrant working with the reparameterized

model specification.

? Figure 2 about here ?

In Table 1, we report posterior estimates of all the parameters along with their true generated

data values. As is evident from the table, all the parameters have been estimated with

reasonable accuracy and posterior estimates are quite close to their actual values. As for the

non-identified correlation parameter ρ(10), its marginal posterior places considerable mass

over the actual value that was used to generate the data, .6. We interpret this finding with

substantial caution, however, as our point estimate (e.g., posterior mode) of this parameter

is not consistent; there is absolutely no way that we can recover the “true” value of this

parameter even in the largest data sets. What is true, however, is that as we learn about

the identified ρ(1) and ρ(0) correlation parameters, (34) restricts the conditional support of

ρ(10). For this experimental design, the conditional support bounds for ρ(10) are 0.32 and

0.94, suggesting that there is significant potential for learning about ρ(10). This learning

is manifested in the marginal posterior for ρ(10), as the posterior simulations automatically

incorporate this support restriction. The fact that most of our posterior mass is centered

around the approximate midpoint of this region (.6) is not informative, and is simply a

consequence of the shape of our particular prior density. All the data can do is to reveal

the support bounds; beyond this, the prior takes over and affects the shape of the posterior

within the support bounds.

? Table 1 about here ?

To examine if our results are sensitive to alternate prior specifications for the non-identified

correlation parameter, we re-estimated our model by specifying a different value of R used in

the inverted Wishart prior for the covariance matrix Σ̃. Specifically, to reflect the potential
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prior preference for positive ρ(10), we changed the (2, 3) and (3, 2) elements of R to 0.5 (which

were formerly zero). Interestingly, and as expected from a theoretical point of view, with

this many observations, the identified correlation parameters are not affected by this change

in prior, and thus the bounds described in (34) continue to be pinned down rather precisely.

The shape of the prior within these bounds does change, however, as the shift toward positive

values increases the marginal posterior mean to 0.742 instead of 0.635, as described in the

previous table.

In the second part of Table 1 we also list the true values and posterior estimates of the

mean treatment effects ATE, TT and LATE. As discussed in Section 4, these quantities

summarize the impact of the treatment in increasing (or decreasing) the probability that the

outcome exceeds the lowest category. When calculating TT and LATE (which are functions

of covariates in the treatment decision), we set w = 0 for TT, and for LATE, set w = 0 and

w̃ = −1. In the bottom portion of Table 1 we also illustrate how parameters beyond mean

effects, such as the probabilities of positive, negative or zero treatment impacts for various

subpopulations, can be calculated. The fact that the conventional mean treatment parame-

ters are pinned down quite accurately in Table 1 is not surprising - these effects are purely

functions of identified model parameters which are precisely estimated by our simulation

algorithm. For the treatment parameters involving the probabilities of positive, negative

or zero treatment impacts, we are able to derive reasonably tight bounds around ρ(10), and

therefore are able to obtain reasonably accurate estimates of the non-identified quantities of

interest. We continue to stress, however, that it is not possible to consistently estimate these

quantities, though one could potentially bound them, or as done in this section, one can use

prior information to fill the gaps created by the absence of data information.

6 Conclusion

In this paper we introduced a new Bayesian estimation algorithm for fitting a binary treat-

ment, ordered outcome selection model in a potential outcomes framework. Our particular

algorithm made use of a reparameterization, building of the suggestion of Nandram and

Chen (1996), to accelerate the convergence of our posterior simulator and mitigate prob-

lems of slow-mixing. Several computational strategies which allowed for non-Normality were

also discussed and conventional “treatment effects” such as the Average Treatment Effect
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(ATE), the effect of Treatment on the Treated (TT) and the Local Average Treatment Ef-

fect (LATE) were derived for this specific model. We also reviewed how a Bayesian might

attempt to expand the focus of her research beyond mean treatment impacts by exploiting a

limited degree of learning that takes place about the non-identified cross regime correlation

parameter.
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Figure 1: Lagged autocorrelations of simulated posterior draws for β
(D)
0 , β(1), α

(0)
3 and ρ(1)
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Figure 2: Marginal prior (dashed lines) and posterior (solid lines) density functions for

β
(D)
0 , β(1), α

(0)
3 and ρ(1)
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Table 1: True values and posterior estimates of the parameters

True Posterior Estimates
Values E(·|D) Std(·|D) P(· > 0|D)

Regression Parameters

β
(D)
0 0 0.0039 0.02 0.576

β
(D)
1 1 1 0.0252 1

β(1) 0.913 0.951 0.0375 1
β(0) 0.477 0.468 0.0284 1

Cutpoint Values

α
(1)
3 0.304 0.315 0.0226 1

α
(1)
4 0.609 0.626 0.0267 1

α
(1)
5 0.913 0.924 0.0298 1

α
(0)
3 0.318 0.33 0.0172 1

α
(0)
4 0.636 0.666 0.0242 1

α
(0)
5 0.953 0.987 0.0308 1

Correlation Parameters
ρ(1) 0.9 0.863 0.0143 1
ρ(0) 0.7 0.668 0.0314 1
ρ(10) 0.6 0.635 0.0665 1

Mean Treatment Effectsa

ATE 0.136 0.149 0.0131 1
TT 0.102 0.113 0.0166 1
LATE 0.141 0.152 0.0193 1

Probabilities of Positive Treatment Effects
Pr(y(1) > y(0)) 0.428 0.452 0.0164 1
Pr(y(1) > y(0)|D(w) = 1) 0.439 0.461 0.0283 1
Pr(y(1) > y(0)|D(w) = 1, D(w̃) = 0) 0.535 0.552 0.0236 1

Probabilities of Zero Treatment Effects
Pr(y(1) = y(0)) 0.42 0.418 0.0248 1
Pr(y(1) = y(0)|D(w) = 1) 0.492 0.479 0.0272 1
Pr(y(1) = y(0)|D(w) = 1, D(w̃) = 0) 0.364 0.363 0.0253 1

Probabilities of Negative Treatment Effects
Pr(y(1) < y(0)) 0.152 0.13 0.0171 1
Pr(y(1) < y(0)|D(w) = 1) 0.0694 0.0601 0.0145 1
Pr(y(1) < y(0)|D(w) = 1, D(w̃) = 0) 0.102 0.0856 0.0204 1

aThe mean treatment effects are those defined in Section 4 and capture the treatment impacts on the
probability that the outcome variable exceeds the lowest category.
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