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Abstract. Newton distinguishes between absolute and relative places. 
Both types of places endure through time and may be occupied by 
various objects at various times. But unlike absolute places, each rela-
tive place stands in fixed spatial relations with one or more reference 
objects. Relative places with independent reference objects (e.g. a 
ship and the earth) may move relative to one another.  

Relative places, not absolute places, are used to locate objects and 
track their movements in common-sense reasoning and in disciplines 
such as biology, engineering, and geology. The purpose of this paper 
is to develop a formal theory for reasoning about relative places and 
their changing relations to both other places and to material objects. 
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1 Introduction   

In the Scholium to the Definitions of the Principia, Newton distinguishes between absolute 
and relative places. For Newton, both absolute places and relative places endure through 
time and may be occupied by various material objects at various times. But absolute places 
are parts of absolute space that are independent of material objects and remain forever in an 
unchanging arrangement1. A relative place, by contrast, stands in fixed spatial relations with 
one or more material objects, which I will call its reference objects. Newton gives as exam-
ples of relative places: places in and around a ship whose reference object is the ship, and 
places in and around the earth whose reference object is the earth. Unlike absolute places, 
relative places may move relative to one another. This happens when the reference objects 
for the places move relative to one another. For example, when a ship moves relative to the 
earth, places with the ship as their reference object (e.g. the ship’s hold) move relative to 
places with the earth as their reference object.  

Because absolute places do not stand in fixed relations to objects, we cannot track 
them over any time interval. Thus, absolute places are not of much use for locating things 
in the world. Newton himself points out that we use relative places, never absolute places, 
in ordinary spatial reasoning2.  

I take it that, among other things, relative places include:  
• interiors of artifacts such as ovens, cups, rooms, buildings, ships, and subways 
• neighborhoods, cities, countries, deserts, and other geographical entities, and  
• "organic spaces" such as body cavities and the niches of organisms [15].  
Relative places are used to locate objects and track their movements, not only in com-

mon-sense reasoning, but also in biology, engineering, meteorology, and other disciplines. In 
the life sciences, relative places are particularly important since they function as the loci of 
the specific types of environments which are necessary for organic processes. Relative places 
are also important in legal contexts. Individuals and institutions may have (or lack) rights to 
enter or perform specific types of actions within places such as military zones, air traffic cor-
ridors, parks, and interiors of airplanes. 

Natural language offers imprecise tools for describing spatial structure generally and, 
in particular, for talking about relations involving places [10]3. The purpose of this paper is 
to propose a step in the direction of a more systematic understanding of relative places. I 
develop here a formal theory for reasoning about relative places and their changing relations 
to both other places and to material objects. The theory is useful for reasoning about spatial 
relations among places and the locations and movements of material objects, as well as for 
distinguishing the different kinds of places (e.g. sealed body cavities vs. open geographic 
places) which are assumed in various disciplines. 

My work is in part inspired by the analyses of spatial relations presented in [4, 5]. Like 
Casati and Varzi, I am interested in spatial structures that involve entities of various types, 
including objects, places4, and holes. But Casati and Varzi distinguish holes from places. For 
them, both are immaterial but, unlike places, holes can move.5  By contrast, I assume that all 

                                                
1 Newton says, for example, that absolute places retain "from infinity to infinity,...the same given 

position one to another" and that it is possible that there is no body which remains over any interval in the 
same absolute place (Scholium, IV).   

2 For example, Newton says:  "instead of absolute places and motions, we use relative ones; and that 
without any inconvenience in common affairs" (Scholium, IV). 

3 Herskovits points out, for example, that the preposition "in" is used in the same grammatical con-
structions to describe several different spatial relations, some of which involve specific kinds of relative 
places. 

4 [4, 5], as well as [2, 3, 6, 7, 9], tend to use the term "region" instead of "place".  
5  A similar approach is taken in [3].  
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places can move (relative to other places) and treat holes as special kinds of places. My ap-
proach makes explicit the need for understanding changing relations among places. It also 
allows for a more economical spatial framework which treats places as the only kind of im-
material entity and does justice to the common nature of the interior of a room and an air 
traffic corridor. They are both places in which we can move ourselves and other objects, but 
only the first is a hole. 

Formal theories intended for describing changing spatial relations among objects and 
places are also presented in [2, 6, 7]. As in [3, 4, 5, 9], these treatments assume that rela-
tions among places do not change. But unlike [3, 4, 5], holes are not included as special 
members of the domains. The result is that these theories give us no way of relating immate-
rial entities that move relative to one another, such an organism’s cranial cavity (a hole) and 
the geographic places through which the organism moves.  

 
The remainder of this paper is organized as follows. §2 is an informal discussion of the 

role of relative places in spatial reasoning. §3-§5 present a formal theory, Basic Place The-
ory (BPT), in which we can describe changing relations among places, form sums of mutu-
ally fixed places, specify the reference object of a place, and track objects’ movements 
through sums of mutually-fixed places. §3 presents the core time-dependent spatial relations 
of BPT. §4 introduces a relation for linking places to their reference objects and time-
independent relations among places with the same reference objects. §5 develops some for-
mal tools for locating objects and tracking their movements. Finally, in §6, I demonstrate 
how some important properties of places might be described in terms of their relations to 
objects.   

 
2 Location-Complexes 
 
Spatial relations between places such as my chest cavity and the interior of my kitchen can 
change sharply and unpredictably. This morning my chest cavity was inside the interior of 
my kitchen. I have driven to Berlin during the afternoon and the two places are now sepa-
rated by 200 kilometers. The distance between the places may increase or decrease tomor-
row depending on how far and in which direction I travel. 

Fortunately, some places stand in much more stable relations than do my chest cavity 
and the interior of my kitchen. My abdominal cavity remains next to my chest cavity 
throughout my life. The interior of my bedroom will remain one meter from the interior of 
my kitchen until my apartment is destroyed or remodeled.  

In practical reasoning, we group together places, like the interior of my bedroom and 
the interior of my kitchen or my chest cavity and my abdominal cavity, whose spatial rela-
tions remain fixed. Such places share a reference object. My apartment is a reference object 
for both the interior of my bedroom and the interior of my kitchen. My body is a reference 
object for both my chest cavity and my abdominal cavity. I will call a maximal collection of 
places with the same reference object a location-complex. Examples of location-complexes 
are: the collection of cavities and pathways in a given body, the collection of places fixed 
relative to a given ship, and the collection of all places fixed relative to the earth. 

I thus assume that reference objects include not only (more or less) rigid objects such a 
ship and the earth, but also non-rigid objects such as an organism’s body.  This assumption 
fits the way in which body cavities and pathways are treated in bio-medical contexts—as en-
during immaterial entities whose boundaries are fixed by the organism’s material parts. 
However, it would seem that the location-complexes determined by such non-rigid reference 
objects must have a different type of spatial structure than those determined by rigid objects. 
For example, the interior of a rigid box is divided into parts of determinate shapes and sizes 
which remain at fixed distances from one another. By contrast, the places within an organ-
ism do not have precisely fixed metrical properties — their shapes, sizes, and distances from 
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one another are in general merely constrained to given ranges. I will not, however, attempt 
in this paper to characterize such differences in the geometrical structure of location-
complexes. This is an important issue for future work. Throughout this paper, I focus on 
only the topological properties of location-complexes and I assume that each location-
complex (whether or not its reference object is rigid) has fixed topological properties.  

    
A location-complex functions as a stable array within which we can locate objects and 

across which we can track their movements. In many contexts, we limit possible places to 
those of a single location-complex. For example, when tracking the movements of an object 
on a ship, we normally consider only places on the ship. We might say that yesterday the 
harpoon was in the galley but today it is in the forehold. In certain circumstances (e.g. when 
we are nowhere near the ship), we may instead use geographic places. But we do not usually 
mix the two groups of places together. We would not describe the harpoon’s movements by 
saying that, yesterday it was in the galley, this morning it was fifty miles south of Hawaii, 
and now it is in the forehold.  

Time-independent relations usually suffice for describing the arrangement of places 
within a location-complex. To describe the layout of a ship, we say "the forehold is below 
the forecastle, the main hold is behind the forehold", and so on, not "the main hold is today 
at noon behind the forehold".  

Certain situations, however, require reasoning about changing relations among places 
with different reference objects. The purpose of a vehicle is that it provides a collection of 
human-inhabitable places that can move with respect to certain other places (usually places 
with the earth as a reference object). When we take a subway between two stations, we need 
to know not only the fixed positions of the stations in their location-complex (which includes 
other stations, neighborhoods, parks etc). We must also know that our subway car and the 
places within it will be at one time contained in the first station and at a later time will be 
contained in the second station. It is because of the changes in the spatial relations holding 
between places in the two location-complexes that we can remain in the same place on the 
subway car while moving from station to station. Reasoning about changing relations among 
places is also important when the places are the loci of specific types of environments. For 
example, the environmental features (temperature, air pressure, radiation levels) of the 
places through which an organism moves may affect the specialized environmental features 
of the places within the organism. 

 
We see then two foundational tasks for a theory of places. One is to provide a mecha-

nism for dividing places into separate location-complexes. Another is to introduce time-
dependent relations that may hold between places in different location-complexes. Both 
tasks are addressed in the formal theory, Basic Place Theory, presented in the next three sec-
tions.  

 
 
3 Basic Place Theory--Time-Dependent Relations  
 

Basic Place Theory should be seen as a first step toward a comprehensive theory of 
changing relations among places and objects over time. There are several issues which are 
not addressed in BPT but which may be treated in a more comprehensive theory. In particu-
lar, since my focus here is on places, objects are dealt with only insofar as they relate to 
places, either as their reference objects or as individuals which are located in or move 
through places. Thus, although I introduce mereological relations for places, I do not intro-
duce mereological relations for objects. This is in part so that I can leave open issues of 
whether distinct material objects may coincide or more generally whether, when two mate-
rial objects are partially co-located, they must share a part. However, questions of structural 
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relations among material objects will need to be addressed, e.g., for developing a more pre-
cise theory of reference objects.   

Basic Place Theory is also simplified by the assumption that neither objects nor places 
come into or go out of existence throughout the time interval under consideration. We are 
thus spared the complication of having to explicitly state whether a given object or place ex-
ists at a given time -- it is assumed that all objects and places in the domain of the theory en-
dure throughout all times in the domain of the theory. This assumption seems appropriate 
for most spatial reasoning contexts. We do not usually need to refer to objects or places that 
do not exist a given time when we are describing the spatial arrangements of objects or 
places that do exist at that time. A somewhat more complicated theory is required for the 
rare occasions in which the distinction between the durations of different places or objects 
plays a role in our reasoning6.  
 

The domains of Basic Place Theory are partitioned into four nonempty sorts: 
 
time instants, for which the variables s, t are used  
time intervals, for which the variables I, J are used and 
places, for which the variables w, x, y, z are used. 
material objects, for which the variables m, o are used. 
 
All quantification is restricted to a single sort. However, all axioms, definitions, and 

theorems given in this section for the time-dependent spatial relations apply to both places 
and objects. To simply the presentation of these formulae, I will use the Greek letters α, β, χ 
as meta-variables which can stand for either place variables or object variables. Restrictions 
on quantification will be understood from these conventions on (meta-)variable usage.  

I assume that BPT includes a temporal sub-theory, but I leave open the specific form of 
that sub-theory. In what follows, I make use of a partial ordering, «, on intervals and a bi-
nary relation, ∝, between instants and intervals where 

t ∝ I 
is interpreted as:  

instant t is in interval I. 
 

I assume that I is a subinterval of J if and only if all instants in I are also in J: 
I « J ↔ ∀t (t ∝ I → t ∝ J)7 

that every interval has some proper sub-interval: 
∃I(I « J & I ≠ J) 

and that there are no empty intervals: 
∃t t ∝ I. 

 
The time-dependent relations of BPT are introduced in terms of a single primitive -- the 

ternary relation MT, which holds between an instant and either two places, two objects, or a 
place and an object. On the intended interpretation,  

 
MTtαβ 

means 
α meets β at instant t  

 

                                                
6 One way of constructing such a theory is, roughly, to define that a place or object exists whenever it 

meets itself.  Appropriate existence-at-given-time assumptions should then be added to axioms and defini-
tions. 

7 Throughout this paper, initial universal quantifiers are suppressed. 
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Places or objects meet when the distance them is zero (where distance is understood as 
the greatest lower bound of the distance between any point of the first extended entity and 
any point of the second extended entity). For example, a subway car meets the interior of the 
station when it is partially or completely within the station or when it first reaches the sta-
tion. Also, my esophagus meets my stomach and the interior of my coffee cup meets the ex-
terior of my coffee cup. 

The first two axioms require that, at a fixed instant, MT is reflexive and symmetric. 
 
(A1)8 MTtαα            (any place or object meets itself at all times)    
(A2) MTtαβ  → MTtβα  (if α meets β at time t, then β meets α at time t)  

 
Relations defined in terms of MT include the following. 
 

(D1) COV tαβ =: ∀χ (MTtχα → MTtχβ)  (α is covered by β at t) 
(D2) ECOINtαβ =: ∀χ (MTtχα ↔ MTtχβ)  (α and β exactly coincide at t) 
(D3) PCOINtαβ =: ∃χ (COVtχα & COVtχβ)  (α and β partially coincide at t) 
(D4) ABUTtαβ =: MTtαβ & ~ PCOINtαβ  (α and β abut at t) 
 
It is assumed that all places and objects are three-dimensional, regular, and subdivided into 
arbitrarily small parts. Thus, the covering relation holds between α and β only when α is lo-
cated within β. For example, an organism's brain is covered by its cranial cavity and its left 
heart ventricle is covered by its heart. While the organism occupies a spaceship, the organ-
ism and all of its cavities and material parts are covered by the interior of the spaceship. For 
domains which include lower dimensional boundaries, atomic places, or atomic objects, a 
slightly different theory is required, since BPT would on these domains conflate the covering 
relation with the surrounds relation9. However, for reasons of simplicity, I do not consider 
such domains in this paper. 

An object o exactly coincides with place x when o exactly occupies x. Also, two places 
can exactly coincide -- when a subway car stops in a station, the interior of the subway car 
exactly coincides with a part of the interior of the station.  

α and β partially coincide when α and β are partially co-located. My esophagus partially 
coincides with my chest cavity, but also partially coincides with the space of the anterior 
compartment of my neck. As another example, the right half of my car partially coincides 
with the front half of my car.  

α and β abut when they meet but do not partially coincide. The interior of my hallway 
abuts the interior of my kitchen. The right half of my car abuts the left half of my car. 

At a fixed instant, COV is reflexive and transitive, ECOIN is an equivalence relation, 
PCOIN is symmetric and reflexive, and ABUT is symmetric and irreflexive. 

 
We can define interval versions of all instant-indexed relations. I will use bold text for 

all interval versions of the relations above. For example: 
 

(D5) MTIαβ =: ∀t(t ∝ I → MTtαβ)   (α and β meet throughout interval I) 
(D6) COVIαβ =: ∀t(t ∝ I → COVtαβ)  (β covers α throughout interval I) 

  

                                                
8 To be precise, (A1) should be read as an abbreviation for two distinct axioms: MTtxx (every place 

meets itself) and MTtoo (every object meets itself). But I will treat (A1) throughout this paper as a single 
axiom.  Similar points apply to the other expressions formulated in terms of the meta-variables.  

9One way of handling these kinds of domains would be to treat MT and COV as separate primitives. 
See Chapter 4 of [5] and [12] for discussions of these issues.  
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The following axiom tells us that when α is not covered by β at t, there is a place or ob-
ject χ that is covered by α at t, but does not partially coincide with β at t. 

 
(A3) ~COVtαβ → ∃χ(COVtχα & ~PCOINtχβ)10 

 
For example, when the interior of the subway car is not yet fully covered by the interior of 
the train station, there is some place (e.g. the space in the back of the car) that is covered by 
the interior of the subway car, but does not partially coincide with the interior of the station. 

COV and MT behave much like time-dependent versions of the mereotopological 
parthood  (P) and connection (C) relations axiomatized in [1, 5, 6] in the sense that, at a 
fixed instant, COV and MT have many of the same logical properties as the parthood and 
connection relations of these theories.11  However, the following time-dependent analogue 
of the antisymmetry axiom for the parthood relation is NOT appropriate for COV:  

 
COVtαβ & COVtβα → α = β 

 
We want to allow distinct places or objects to exactly coincide at an instant. An object may, 
at a given time, exactly coincide with a given place, but the object is never identical to the 
place. Also, distinct places can exactly coincide. The interior of the subway car exactly coin-
cides with a part of the interior of the station when the car stops in the station, but these 
places cannot be identical since they have different reference objects. On the other hand, one 
might plausibly hold that distinct material objects cannot exactly coincide12. If so, BPT could 
be strengthened through the addition of an axiom requiring that if object o covers object m 
at time t and m also covers o at t, then o and m are identical.  

Note that, more generally, BPT allows a place x to cover either other places or objects 
which are not part of x. For example, an organism’s brain is covered by its cranial cavity, but 
the brain is not part of the cranial cavity. While the organism is within a spaceship, the or-
ganism, its cranial cavity, and its brain are all covered by the interior of the spaceship, but 
none of these are parts of the interior of the spaceship. Also, objects or places may partially 
coincide without sharing parts. My esophagus partially coincides with my chest cavity, but 
nothing is part of both my esophagus and my chest cavity. In the terminology of [8], MT, 
COV, ECOIN, PCOIN, and ABUT are intended as time-dependent relative location rela-
tions -- relations which depend only on the spatial entities’ locations, not on their mereoto-
pological structure. In BPT, the stronger mereotopological relations (parthood, connection, 
and so on) are introduced only for places and hold only between places with the same refer-
ence object (see Section 4.2).  
 
4 Basic Place Theory--Time-Independent Relations 
 
4.1 Relatively Fixed Places  
 

To divide places into separate location-complexes, I introduce the binary relation RO 
which holds between an object and a place, where on the intended interpretation  

ROox 
means 

object o is a reference object for place x.  
Though the focus of this paper is on relative places, I do not require that every place has a 
reference object. I thus leave open the possibility that a domain of BPT includes some abso-

                                                
10 Compare (A3) to the Strong Supplementation Principle of [14]. 
11 See also Simons’ treatment of temporary parts in [14]. 
12 But see, for example [16], for an argument that distinct material objects may exactly coincide. 
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lute places. I also do not require that every object is a reference object for some place.  For 
example, completely amorphous objects (e.g. a lump of jelly) are perhaps not reference ob-
jects for places.  I do require that at least some place has a reference object (A4) and that if 
any two places share a reference object, then they share all reference objects (A5). 
 
(A4) ∃o∃xROox    
(A5) ROox & ROoy → ∀m(ROmx ↔ ROmy) 
 

Places x and y are relatively fixed if and only if either x and y have a common reference 
object or neither x nor y has a reference object. 
 
(D7) RFxy =: ∃o(ROox & ROoy) ∨ ∀o(~ROox & ~ROoy)  
(place x and place y are relatively fixed) 
 
Thus, the forehold and main hold of a ship are relatively fixed -- both places have the ship as 
a reference object. Also, my chest cavity and abdominal cavity are relatively fixed (both have 
my body as their reference object), Hawaii and Acapulco are relatively fixed (both have the 
earth as their reference object), and, if there are absolute places, any two absolute places are 
relatively fixed (since neither has a reference object). 
 

It follows from (A5) that RF is an equivalence relation on the sub-domain of places. 
 

(T1) RFxx   (every place is fixed relative to itself) 
(T2) RFxy →  RFyx (if x is fixed relative to y then y is fixed relative to x)    
(T3) RFxy & RFyz → RFxz    
(if x is fixed relative to y and y is fixed relative to z, then x is fixed relative to z) 

 
Each RF equivalence class corresponds to a location-complex. One of these classes 

might include all places with a particular ship as their reference object and another might 
contain all places with the earth as their reference object. 

The next axioms tie RO and RF to the spatial relations defined in the previous subsec-
tion.  
 
(A6) ROox → ∃y(RFxy & ∀t ECOINtoy)  (if o is a reference object for x, then there is 
some place y such that x and y are relatively fixed and o exactly coincides with y at all in-
stants) 
 
(A7) COV tαy → ∃z(RFzy & ECOINtzα) (if place y covers α at t, then there is some 
place z such that z and y are relatively fixed and z exactly coincides with α at t) 
 
(A8) RFxy → (∃t MTtxy →∀t MTtxy) (if x and y are relatively fixed, then x and y meet at 
some instant only if x and y meet at all instants) 
  
(A9) RFxy → (∃t COVtxy →∀t COVtxy) (if x and y are relatively fixed, then y covers x at 
some instant only if y covers x at all i nstants) 
 

(A6) requires that the reference object for place y always occupies a fixed place in y’s 
location-complex. For example, the location-complex of places with a ship as their refer-
ence object includes the place which the ship itself always occupies. 

(A7) ensures that places are divided into smaller places within a location-complex in a 
way that matches the divisions imposed by objects or by places outside of the location-
complex. It tells us, for example, that if a subway car is within a station at t, then there is a 
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part of the interior of the station which exactly coincides with the subway car at t and also a 
part of the interior of the station which exactly coincides with the interior of the subway car 
at t.   

(A8) and (A9) require that MT and COV relations among members of the same loca-
tion-complex never change. For example, the interior of my kitchen will never move away 
from the interior of the hallway which it meets (though it is possible to destroy one or both 
of these places and create new places in the apartment which are some distance apart). 
Also, the left half of the interior of my kitchen is always be covered by the interior of my 
kitchen. 

 
Using (A8) and (A9), we can derive the following theorems, requiring that ECOIN, 

PCOIN, and ABUT relations among places in the same location-complex never change. 
 

(T4) RFxy → (∃t ECOIN
t
xy →∀t ECOIN

t
xy) (if x and y are relatively fixed, then if x and 

y exactly coincide at some instant, x and y exactly coincide at all i nstants) 
  
(T5) RFxy → (∃t PCOIN

t
xy →∀t PCOIN

t
xy) (if x and y are relatively fixed, then if x and 

y partially coincide at some instant, x and y partially coincide at all instants)  
 
(T6) RFxy → (∃t ABUTtxy →∀t ABUTtxy) (if x and y are relatively fixed, then if x and y 
abut at some instant, x and y abut at all i nstants) 

 
4.2 Mereotopological Relations among Places  
 

The converses of (A8)-(A9) and (T4)-(T6) do not in general hold. My cranial cavity 
may always be covered by, but not fixed relative to, a geographic place such as Europe. In 
this case, I never leave Europe, though I may move around extensively within it. A much 
stronger relation holds between a geographic place and another geographic place that it cov-
ers. Unlike my cranial cavity, Scandinavia is a part of Europe. 

Mereotopological relations among places are in BPT defined in terms of RF and the 
time-dependent spatial relations. Note that these mereotopological relations are time-
independent -- unlike objects, places do not gain and lose parts.  

  
(D8) Pxy =: RFxy & ∀t COVtxy  (place x is part of place y) 
(D9) Oxy =: RFxy & ∀t PCOINtxy  (place x overlaps place y) 
(D10) Cxy =: RFxy & ∀t MTtxy  (place x and place y are connected) 
(D11) ECxy =: RFxy & ∀t ABUTtxy  (place x and place y are externally connected) 

 
The relations defined in (D8) - (D11) behave very much like the mereotopological rela-

tions of [8]. P is reflexive and transitive, O and C are reflexive and symmetric, and EC is ir-
reflexive and symmetric. We can also derive the following theorems, which are common to 
most mereotopologies. 

 
(T7) Oxy ↔ ∃z (Pzx & Pzy) (x and y overlap iff there is some place z that 

is part of both x and y) 
 

(T8) ECxy ↔ Cxy & ~Oxy (x and y are externally connected if and only 
if x and y are connected but do not overlap) 

 
(T9) Pxy → ∀z (Czx → Czy) (if x is part of y then every place connected to 

x is also connected to y)  
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(T10) ~Pxy → ∃z (Pzx & ~Ozy) (if x is not part of y, then there is a part z of x 
that does not overlap y) 

  
 
To obtain a stronger mereotopology, I add to BPT axiom (A10) and axiom schema 

(A11) (where φx represents any formula in which only x occurs free and φy is the same for-
mula with x replaced by y but with variable substitution performed as necessary so that y is 
free in φy exactly where x is free in φx). 

 
(A10) Pxy & Pyx → x = y  
(if x is part of y and y is part of x, then x and y are identical) 

 
(A11) ∃x φx & ∀x ∀y(φx & φy → RFxy) → ∃z ∀w(Owz ↔ ∃x (φx & Oxw)) 
(if some place satisfies φ and all places satisfying φ are mutually fixed, then there is a sum of 
all φ-ers) 

 
Using (A10) and (T10), we can prove that O is extensional:  
 

(T11) x = y ↔ ∀z (Ozx ↔ Ozy)  
 

Thus, whenever the antecedent of (A11) is satisfied, there is a unique sum of all φ-ers. For 
example, there is a unique (disconnected) place which is the sum of the interior of my 
kitchen and the interior of my bedroom.  

4.3 The Formal Definition of a Location-Complex 

Location-complexes are introduced in BPT as the sums of all places fixed relative to a given 
place. 
 
(D12) LCXxz =: ∀w(Owz ↔ ∃y (RFxy & Oyw))   (z is x’s location-complex)13 

 
The location-complex of a geographic place is the sum of all places with the earth as a 

reference object. The location-complex of a place on a ship is the sum of all places with the 
ship as a reference object. If there are any absolute places (i.e. places without a reference 
object), then the location-complex of any absolute place is the sum of all absolute places. 

It follows from (A11) and (T11) that every place has a unique location-complex. 
 

(T12) ∃z LCXxz 
(T13) LCXxy & LCXxz → y = z 

 
Thus, LCX is a function on the sub-domain of places. For convenience, I will introduce 

the function term lcx(x) to stand for place x’s location-complex.  
Additional theorems concerning location-complexes can be derived. 
 

(T14) RFxy ↔ lcx(x) = lcx(y) (place x and place y are relatively-fixed iff they have 
the same location-complex) 

(T15) RFxy ↔ P(x, lcx(y)) (place x and place y are relatively-fixed iff x is part of 
y’s location-complex) 

                                                
13 Compare with the definition of the layer-of relation in [8]. It is easy to verify that all axioms of 

Layered Mereology are theorems of BPT and that location-complexes are the layers of BPT. 
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(T16) RFxy ↔ ∃z (Pxz & Pyz) (place x and place y are relatively-fixed iff they are 
both parts of some place z) 

 
A location-complex is any place that is the location-complex for some place. 
 

(D13) LCz =: ∃x LCXxz  (z is a location-complex) 
 

All location-complexes are maximal places in the sense that they overlap only their own 
parts. 

 
(T17) LCz → ∀y(Oyz → Pyz)  (if z is a location-complex, then any place y overlaps z 

only if y is part of z) 
 

However, there is still a sense in which we might distinguish larger and smaller location-
complexes. For example, the location-complex of geographic places should always cover the 
location-complex of places which have my body as a reference object, but it does not seem 
that the converse holds. We will call a place comprehensive if it always covers every place 
(and thus also every location-complex) and every object. 

 
(D14) CMPy =: ∀t∀α COVt αy (y is a comprehensive place) 

 
Any comprehensive place is a location-complex 

 
(T18) CMPy → LCy (if y is a comprehensive place, then y is a location-complex) 
  
Comprehensive location-complexes mirror the universe in the sense that, if y is comprehen-
sive, then for every instant t and every place or object α, there is a part of y that exactly co-
incides with α at t. 

 
(T19) CMPy → ∀t∀α∃z(Pzy & ECOINtαz)   

 
Comprehensive location-complexes are useful because they function as a background 

space in terms of which we can relate non-coincident objects or places. In many contexts, 
the location-complex of geographic places is assumed to be comprehensive. We can use it to 
relate places on two separate moving ships or within two separate organisms. Alternatively, 
if we allow any absolute places at all, then we would probably hold that the location-
complex of absolute places is comprehensive.  

It does not follow from the axioms given so far that there is any comprehensive place. If 
desired, this could be required by an additional axiom. 

 
4.4 Mathematical Models of BPT 
 

To show that BPT is consistent and to better ill ustrate the intended interpretations of 
BPT’s relations, I present in this subsection one class of models for BPT. However, I do not 
here attempt to construct a class of models whose generality matches that of BPT. It will be 
clear that all models described below share specific mathematical properties which are not 
required by BPT.  For example, all object and place movements in the models are continu-
ous. But nothing in BPT requires object or place movements to be continuous. Where ap-
propriate, more complex extensions of BPT can be constructed which capture these kinds of 
properties.  

But, in fact, the particular models presented here do exclude some types of location-
complexes that we would like to represent if we allow for flexible reference objects, such as 



 12 

organisms’ bodies. These location-complexes do not (like the location-complexes in the 
models presented here) preserve all of their geometrical properties over time, but may 
shrink, grow, and so on. Models which can adequately represent such location-complexes 
are more complicated than the models presented here, but can be developed along the same 
lines.   

For the presentation of the models, I will make use of ℜ (the real numbers) and ℜ3. I 
assume that both ℜ and ℜ3 are endowed with the usual Euclidean metric.  

Throughout this subsection, all variables are used only for the mathematical objects un-
der discussion and should not be confused with the variables belonging to the formal lan-
guage in which BPT is stated.   

The domains of the models are divided into four disjoint sets -- T, I, Pl, Ob -- where 
time instant variables of BPT are interpreted as elements of T, time interval variables are 
interpreted as elements of I, place variables are interpreted as elements of Pl, and object 
variables are interpreted as elements of Ob. 

T may be any non-degenerative interval of ℜ.14 In particular, T may be ℜ itself. Given 
T, I is fixed as the set of all non-degenerative intervals which are included in T. In other 
words, I =: { I : I is a non-degenerative interval of  ℜ and I ⊆ T} .  

The members of Pl and Ob are considerably more complicated than those of T and I. To 
construct them, I make use of functions from T × ℜ3 to ℜ3. I will also refer frequently to the 
set of all closed, regular, non-empty subsets of ℜ3 which I call CR. 

 
CR =: {X : ∅ ≠ X ⊆ ℜ3 and X is closed, regular}  

 
Let f: T × ℜ3 → ℜ3, let t ∈ T, and let X ⊆ ℜ3. Then by ft, I mean the function ft: ℜ3 → ℜ3 
such that for all x ∈ ℜ3,  

ft(x) = f(<t, x>). 
By fX, I mean the function fX: T → ℘(ℜ3) (where ℘(ℜ3) is the power set of ℜ3) such that 
for all t ∈ T,  

fX(t) = ft[X] = {y ∈ ℜ3 : for some x ∈ X, y = ft(x)} . 
 

Let  
F =: { f: T × ℜ3 → ℜ3: f is continuous and for all t ∈ T, ft: ℜ3 → ℜ3 is an isometry} . 

 
Notice that for any f ∈ F, t ∈ T, and X, Y ⊆ ℜ3: 

• fX(t) ∩ fY(t) ≠ ∅ if and only if X ∩Y ≠ ∅ 
• fX(t) ⊆ fY(t) if and only if X ⊆ Y 
• fX(t) ∈ CR if and only if X ∈ CR. 

 
Let LC be any non-empty set of ordered triples <X, f, 1>, with X ∈ CR and f ∈ F, satis-

fying the condition:   
if <X, f, 1>, <Y, g, 1> ∈ LC, and f = g, then X = Y. 

LC is the set of location-complexes in the model.  
Let Pl =:{< X, f, 1> : X ∈ CR and there is some <Y, f, 1> ∈ LC such that X ⊆ Y} . No-

tice that LC ⊆ Pl.   
Let Ob be any set of ordered triples < X, f, 0>, with X ∈ CR and f ∈ F, satisfying the 

following conditions: 
i) if <Y, f, 0> ∈ Ob, X ⊆ Y, and X ∈ CR, then <X, f, 0> ∈ Ob. 
ii) if <X, f, 0> ∈ Ob and  <Y, f, 1> ∈ LC, then X ⊆ Y. 

                                                
14 An interval I of ℜ is any subset of ℜ with the fol lowing property: if x, y  ∈ I and x < z < y, then z ∈ 

I. In other words, an interval of  ℜ is any convex subset of ℜ. A non-degenerative interval of ℜ is one that 
includes at least two (and thus uncountably many) real numbers. 
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iii) for all but at most one <Y, f, 1> ∈ LC, there is some X ∈ CR such that <X, f, 0> ∈ Ob 
and there is at least one <Y, f, 1> ∈ LC, such that <X, f, 0> ∈ Ob. 
 

As interpretations of the primitive relations in BPT, I introduce the following two rela-
tions. MT is a ternary relation on T × (Pl ∪ Ob) × (Pl ∪ Ob) and RO is a binary relation on 
Ob × Pl. 
 

(t, <X, f, i>, <Y, g, j>) ∈ MT if and only if fX(t) ∩ gY(t) ≠ ∅. 
 

(<X, f, 0>, <Y, g, 1>) ∈ RO if and only if f = g. 
 

It is straightforward to check that, given these interpretations of the BPT primitives MT and 
RO, BPT’s axioms are satisfied and defined relations have the following interpretations: 
 

• COV is interpreted as: COV on T × (Pl ∪ Ob) × (Pl ∪ Ob), where                               
(t, <X, f, i>, <Y, g, j>) ∈ COV iff fX(t) ⊆ gY(t). 

• ECOIN is interpreted as: ECOIN on T × (Pl ∪ Ob) × (Pl ∪ Ob), where                               
(t, <X, f, i>, <Y, g, j>) ∈ ECOIN iff fX(t) = gY(t). 

• PCOIN is interpreted as: PCOIN on T × (Pl ∪ Ob) × (Pl ∪ Ob), where                               
(t, <X, f, i>, <Y, g, j>) ∈ PCOIN iff there is some Z ∈CR such that Z ⊆ fX(t) ∩ 
gY(t). 

• ABUT is interpreted as: ABUT on T × (Pl ∪ Ob) × (Pl ∪ Ob), where                               
(t, <X, f, i>, <Y, g, j>) ∈ ABUT iff fX(t) ∩ gY(t) ≠ ∅ and there is no Z ∈CR such 
that Z ⊆ fX(t) ∩ gY(t). 

• RF is interpreted as: RF on Pl × Pl, where (<X, f, 1>, <Y, g, 1>) ∈ RF iff f = g. 
• P is interpreted as: P on Pl × Pl, where                                                                                      

(<X, f, 1>, <Y, g, 1>) ∈ P iff f = g and X ⊆ Y. 
• O is interpreted as: O on Pl × Pl, where                                                                                      

(<X, f, 1>, <Y, g, 1>) ∈ O iff f = g and there is some Z ∈CR such that Z ⊆ X ∩ Y.  
• C is interpreted as: C on Pl × Pl, where                                                                                      

(<X, f, 1>, <Y, g, 1>) ∈ C iff f = g and X ∩ Y ≠ ∅. 
• EC is interpreted as: EC on Pl × Pl, where (<X, f, 1>, <Y, g, 1>) ∈ EC iff f = g, X 

∩ Y ≠ ∅, and there is no Z ∈CR such that Z ⊆ X ∩ Y. 
• LCX is interpreted as: LCX on Pl × Pl, where (<X, f, 1>, <Y, g, 1>) ∈ LCX iff f = 

g and <Y, g, 1> ∈ LC. 
• LC is interpreted as: LC. 
• CMP is interpreted as: CMP ⊆ LC, where <X, f, 1> ∈ CMP iff for all t ∈ T and all 

<Y, g, 1> ∈ Pl, gY(t) ⊆ fX(t).                                                         
 

As an illustration of what one of these models might look like, I will give a very simple 
example. In presenting the example, I will make use of the notation  

Βr
xyz 

for the closed ball in ℜ3 centered at <x, y, z> with radius r. For example, Β1
000 is the closed 

ball centered at the origin (i.e., < 0, 0, 0>) with radius 1. 
In the example model, T = ℜ and I is the set of all non-empty intervals of ℜ. 
For Pl and Ob, I make use of the following functions from ℜ × ℜ3 to ℜ3: 

Id(<t, <x, y, z>>) = <x, y, z> 
f(<t, <x, y, z>>) = <x + t, y, z> 
g(<t, <x, y, z>>) = <x, y +t, z> 

Location-complexes, places, and objects are as follows: 
LC = {< ℜ3, Id, 1>, <Β2

000, f, 1>, <Β2
030, g, 1>}  
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Pl = {<X, Id, 1>: X ∈ CR} ∪ { <X, f, 1>: X ∈ CR and X ⊆ Β2
000} ∪ { <X, g, 1>: X ∈ CR 

and X ⊆ Β2
030}  

Ob = {<X, f, 0>: X ∈ CR and X ⊆ Β1
000} ∪ { <X, g, 0>: X ∈ CR and X ⊆ Β1

030}  
In this model, < ℜ3, Id, 1> is the only member of CMP. Note also that none of the 

members of { <X, Id, 1>: X ∈ CR} , including < ℜ3, Id, 1>, has a reference object. Thus, 
they represent absolute places. 

 
Examples of changing relations among members of the domain are: 

1. (0, <Β2
000, f, 1>, <Β1

030, g, 0>) ∈ ABUT, but for t > 0, (t, <Β2
000, f, 1>, <Β1

030, g, 0>) ∉ 
ABUT. (In fact, for t > 0, (t, <Β2

000, f, 1>, <Β1
030, g, 0>) ∉ MT.) 

 
2. (0, <Β2

000, f, 1>, <Β2
030, g, 1>) ∈ PCOIN, but (1, <Β2

000, f, 1>, <Β2
030, g, 1>) ∉ PCOIN. 

 
3. (0, <Β1

000, Id, 1>, <Β1
000, f, 0>), (1, <Β1

100, Id, 1>, <Β1
000, f, 0>), (2, <Β1

200, Id, 1>, 
<Β1

000, f, 0>) ∈ ECOIN. More generally, (t, <Βr
xyz, Id, 1>, <Β1

000, f, 0>) ∈ ECOIN if and 
only if r = 1, x = t, and y = 0 = z. 
 

Examples of unchanging relations among places are among places and objects are: 
 
4. (<Β1

000, f, 0>, <Β2
000, f, 1>),  (<Β1

030, g, 0>, <Β2
030, g, 1>)∈ RO.  

 
5. (<Β1

000, f, 1>, <Β2
000, f, 1>) ∈ P. 

 
6. (<Β1

-100, f, 1>, <Β1
100, f, 1>) ∈ EC.  

 
Figure 1 presents two-dimensional views of places and objects in the model at times 0 and 1. 

5    Locating and Tracking the Movements of Objects 

The purpose of this section is to demonstrate how BPT can be used to represent and reason 
about the locations of objects in places or the movements of objects through places. Though 
I focus here on object-place relations, all of the relations defined in this section can also be 
used to describe the movements of places through location-complexes. 

We locate an object within a location-complex by determining which places in the com-
plex cover the object. For example, a doctor may locate a parasite in a patient’s body by de-
termining which cavities or passageways it is contained in. Or, someone may locate my keys 
by determining which (appropriately small) parts of the interior of my apartment cover them.  

An object is exactly located at a place with which it exactly coincides. It follows from 
(A7) that an object is exactly located at more than one place when it is covered by more than 
one location-complex. When my train stops in a station, I exactly coincide with both a part 
of the interior of the train and a part of interior of the station.  

We can, however, prove that an object or place exactly coincides with at most one place 
at a time in a given location-complex. 

 
(T20) RFxy & ECOINtαx & ECOINtαy → x = y 
(if place x and place y are relatively fixed and α exactly coincides with both x and y at t, then 
x and y are identical) 
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An object need not occupy any place in a given location-complex. I do not coincide 
with any place in a location-complex that is limited to places within your body. But an object 
must at all times occupy a place in a comprehensive location-complex. 

 
(T21) CMPz → ∃x(Pxz & ECOINtαx) 
(if z is comprehensive, then there is some part x of z with which α exactly coincides at t) 
 

All movement is relative to a location-complex. An object may at the same time move 
through one location-complex and rest within another location-complex. I move with re-
spect to the location-complex of geographic places while I stay in the same place on my 
train.  

 I will say that α moves in location-complex z during interval I if α is covered by z 
throughout I and α is exactly located at more than one place in z during I. (But note that this 
relation covers movement only in the sense of re-location. A slightly more complex relation 
is needed to capture also cases such as the rotation of a ball in a fixed place.) 

  
(D15) MOV-INIαz =: LCz & COVIαz & ∃s, t, x, y (s, t ∝ I & Pxz & Pyz & x ≠y & 
ECOINsαx & ECOINtαy)      (α moves within z during I) 
  

By contrast α rests within location-complex z throughout I if there is a part of z which 
exactly coincides with α throughout I.  

 
(D16) RT-INIαz =: LCz & ∃x (Pxz & ECOINIαx)              (α rests within z throughout I) 
 

For example, a harpoon rests within the complex of places on a ship throughout I when 
it occupies the same place on the ship throughout I. It moves in this complex during I when 
it remains on the ship throughout I but occupies different places on the ship during I (for 
example, the harpoon may be in the galley during one sub-interval of I and on the deck 
during another sub-interval of I) . 

Note that ~MOV-INIαz does not imply RT-INIαz. MOV-INIαz may fail to hold either 
because z is not a location-complex or because α is not covered by z throughout I. In both 
of these cases, RT-INIαz also fails to hold. But we can prove: 

 
(T22) LCz & COVIαz & ~ MOV-INIαz → RT-INIαz 
(if z is a location-complex that covers α throughout I and α does not move within z during 
I, then α rests within z throughout I) 
 

Note also that it follows from (A6) that any reference object for a place rests within that 
place’s location-complex throughout every interval (T23). In particular, if z is a location-
complex and o is a reference object for z, then o rests within z throughout every interval 
(T24). 
 
(T23) ROox → RT-INI(o, lcx(x)) 
(T24) ROoz & LCz → RT-INIoz 

 
If desired, other types of moving or resting relations can be introduced. For example, 

we could say that α moves within location-complex z throughout I if and only if α moves 
within z during every sub-interval of I. Also, with a parthood relation on objects, we could 
define a weaker movement relation which holds between α and z on I if and only if some 
part of α moves within z during I. The corresponding stronger rest relation would hold be-
tween α and z if and only if all parts of α rest within z throughout I. 
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In many contexts, it is useful to know the path that an object has followed through a 
given location-complex. For example, a doctor may want to know the path that a parasite 
has followed through a patient’s body or an ecologist may want to know the path that an 
organism has taken between two geographic places. We can define the path y of α through 
location-complex z over interval I as the sum of all places in z with which α exactly coin-
cides at some instant in I. 

 
(D17) PATHIαzy =: LCz & ∀w(Owy ↔ ∃x ∃t (Pxz & t ∝ I & ECOINtαx & Owx)) 
(y is the path of α through location-complex z over interval I) 

 
When it exists, the path of α through z over I is a unique place in z.  

α does not have any path through location-complex z over I if α is not covered by z at 
any instant in I. But every object or place has a path through a comprehensive location-
complex over every interval. 

 
(T25) CMPz → ∃y PATHIαzy 

 
We can use paths to give alternative characterizations of the rests within and moves 

within relations. α rests within location-complex z throughout I if and only if α has a path y 
in z over I and α exactly coincides with y throughout I. 

  
(T26)  RT-INIαz ↔ ∃y(PATHIαzy & ECOINIαy) 
 

α moves within location-complex z during I if and only if α has a path y in z over I 
and y covers α throughout I but does not exactly coincide with α throughout I. 
 
(T27)  MV-INIαz ↔ ∃y(PATHIαzy & COVIαy & ~ECOINIαy) 

6  Properties of Places 

Leibniz’ objection to Newton’s theory of absolute space was based in part on the assump-
tion that “space being uniform, there can be neither any external nor internal reason by 
which to distinguish its parts and make any choice among them”[11]. But clearly relative 
places can have important properties that make them more or less appropriate targets for 
our actions. I go into my bedroom (not onto the street) when I want to sleep. I put milk in 
my refrigerator (not in my oven) so that it will keep.  

Obviously the purely geometrical properties of a place, such as its size and shape, are 
important in decisions about where we should locate ourselves or other objects. I cannot 
put my sewing machine inside my trunk if its diameter is larger than that of the trunk’s in-
terior. Other important properties of places depend on relations between places and objects. 
The purpose of this section is to briefly indicate how a few of these properties might be 
defined in BPT or an extension of BPT. 

We can say that place x is fil led throughout interval I if there is some object that cov-
ers x throughout I. 

 
(D18) fill ed

I
(x) =: ∃o COV

I
xo  (x is fill ed throughout interval I) 

 
If we assume that distinct objects cannot occupy the same place at the same time, then no 
object (other than a part of the fil ler) can move into or out of a fill ed place while it is fill ed. 
For example, I cannot move my desk into a place occupied by my sofa while my sofa re-
mains in this place.  
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It follows immediately from (D18), that if x is fil led throughout I, then every part of x 
is fil led throughout every subinterval of I . 
 
(T28) Pyx & fill ed

I
(x) & J « I → fil led

J
(x) 

 
But we cannot infer from fill ed

I
(x) that any part of x is fill ed on intervals before or after I. 

Although a given part of the interior of my living room is currently covered by my sofa, I 
can always move the sofa to a different place. However, in the special case of a place 
which is covered by one of its reference objects, we cannot move the fil ler away since the 
place stands always in a fixed relation to its reference objects. For example, I cannot move 
my house away from the fixed place it occupies relative to its interior. 

We can introduce a stronger predicate for places that are fill ed by their reference ob-
jects. 
 
(D19) N-fill ed(x) =: ∃o∃t(ROox & ECOIN

t
ox)   (x is necessarily fill ed) 

 
It follows from the axioms of BPT that if x is a necessarily fi lled place, then x is fill ed on 
every interval. 
 
(T29) N-fill ed(x) → fil ledI(x) 
  

 If desired, additional fi lli ng relations can be defined. For example, we can say that x is 
partly fill ed throughout I if and only if some part of x is fil led throughout I or that x is 
fil led during I if and only if x is fill ed throughout some subinterval of I .  

Place x is free throughout I if no part of x is fi lled throughout any subinterval of I .  
   

(D20) free
I
(x) =: ∀J ∀y(J « I & Pyx  → ~ fil led

J
(y))   (x is free throughout I) 

 
Objects might move into or through any part of a free place. The interior of a room is free 
while it contains no furniture or other stationary objects. Note that x may be free through-
out I, but never empty. The interior of the room always contains air, but the air moves con-
tinuously through it. On the other hand, if the interior of the room contains an object, such 
as a sofa, which rests within it on any subinterval of I , then the interior of the room is not 
free throughout I. It may, however, be free on subintervals of I (shorter periods when all of 
its contents are moved or removed) and it will almost certainly have proper parts (e.g. the 
space above, in front of, or underneath the sofa) that are free throughout I.  

Additional relations can be defined. We can say that x is partly free throughout I if and 
only if some part of x is free throughout I, that x is free during I if and only if x is free 
throughout some subinterval of I , or that x is empty at instant t if and only if no object par-
tially coincides with x at t15. 
 

Further properties of places can be distinguished in an extension of BPT which in-
cludes more complex spatial relations. A convex place x is one which covers any line seg-
ment connecting two parts of x. For example, a ball-shaped place is convex and a dough-
nut-shaped place is not convex. The convex hull  of a place x is the smallest convex place 
including x. For example, the convex hull of a doughnut-shaped place x includes both x 
and the space in the middle of x. 

                                                
15Also, with additional predicates distinguishing different kinds of objects (organisms, portions of toxic 
substances, vehicles, etc), we could define relations that distinguish places which contain no objects of a 
given type over a given interval. 
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A convex hull operator has been added to a formal theory somewhat similar to BPT in 
[6, 7]16. I will not here attempt to add such an operator to BPT, but wil l briefly describe 
some of the properties of places that could be defined in a stronger theory which includes 
this operator. Some formal definitions along these lines (but without time-dependent rela-
tions, a distinction between places and objects, or a distinction between places in separate 
location-complexes) are given in [7]. 

In the appropriate extension of BPT, the convex hull operator is restricted to places 
and I assume for now that every location-complex is convex and every place has a convex 
hull . For any place, x, ConHull(x) is interpreted as the smallest convex part of x’s location-
complex which covers x. (In fact though, it is not clear exactly how we should handle a 
convex hull operator in the case of places such as an abdominal cavity or stomach cavity 
whose shape can change significantly. I will not consider these issues here, but leave open 
the possibilit y that the convex hull operator may be restricted to a sub-domain of places 
with appropriately rigid reference objects.) 

We can say that place y is sheltered throughout I if and only if there is some object o 
and place x such that o exactly coincides with x throughout I, x is self-connected, and y is 
covered throughout I by ConHull(x). Here, a place z is self-connected (SC) if and only if it 
is not the sum of two disconnected places. (This predicate can be defined in BPT.) 
 
shelteredI(y) =: ∃o∃x (ECOINI(o, x) &  SCx & COVI(y, ConHull(x)))  
 
For example, the interior of a house, a vill age in a valley, and the interior of a tunnel are 
sheltered places as long as the relevant objects surround them17. Notice that all parts of 
these places are also sheltered places. 

A place is open throughout I if and only if it is not sheltered on any sub-interval of I . 
 
open

I
(y) =: ∀J( J « I → ~sheltered

J
(y)) 

 
For example, an air traff ic corridor and a city on a plain are open places. 

A place y is sealed throughout I if and only if there are object o and place x such that 
i) o exactly coincides with x throughout I, ii ) y is covered throughout I by ConHull(x), iii ) 
y does not partially coincide with o at any instant in I, and iv) any self-connected place z 
that partially coincides during I both with y and the exterior of ConHull (x) also partially 
coincides with o.  
 
sealed

I
(y) =: ∃o∃x (ECOIN

I
(o, x) & COV

I
(y, ConHull (x)) & ∀t(t ∝ I → ~PCOIN

t
yo & 

∀z(SCz & PCOIN
t
zy & PCOIN

t
zw & ~PCOIN

t
wConHull(x) →PCOIN

t
zo)) 

 
The purpose of conditions ii i) and iv) is to prohibit sealed places from coinciding with part 
of the surrounding object o (condition iii ) and to require that the only continuous paths 
from y out of ConHull(x) are through o (condition iv). Thus, sealed places are places which 
are completely surrounded (throughout a given interval) by a fixed object. For example, the 
interior of an unbroken eggshell i s sealed and the interior of a spacecraft is sealed while its 
doors are shut. Sealed places are possible sites of controlled environments. Until the egg-
shell is broken, its interior is free of environmental substances which might interfere with 

                                                
16 See also [3] which defines a convexity predicate using a congruence relation. 
17 Note that the interior of the house and the interior of the tunnel are surrounded by their reference 

objects. Thus, they are sheltered as long as they exist. The vill age, by contrast, might continue to exist even 
if the mountains were leveled. If this happened, it would no longer be a sheltered place. 
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the developing organism. While the doors of the spacecraft are shut, a specific temperature 
and air pressure can be maintained in its interior.18  

Additional properties of places can be introduced in terms of ConHull . For example, 
[7] proposes a relation intended to distinguish what they call the "containable inside" of a 
place. Very roughly, place y lies within the containable inside of place x if y is surrounded 
by x on all but one side. If , in addition, x is the location of an object o then we wil l say that 
y is a container place. Notice that, if o is a solid object, then y can contain liquids when the 
openings in o are orientated away from the direction of gravity. Examples of container 
places are the interior of a coffee cup and the interior of a bottle. Examples of sheltered 
places which are NOT container places are the interior of a tunnel, the interior of a colan-
der, and the space in between the base and the handle of a coffee cup. 

 
Holes are special kinds of places. All holes are holes in some object, called in [4] the 

host of the hole. My glass is the host of its interior. My skull i s the host of my cranial cav-
ity. Using a convex hull operator in an extension of BPT, we can require i) that the host is a 
reference object for its holes and ii) that all holes are maximal self-connected parts of what 
is left over when we subtract a place fil led by the host from the convex hull of that place. 
More precisely, let o be a reference object and let x be the unique place which has o as a 
reference object and which exactly coincides with o. o has a hole only if x is not convex. In 
other words, o has a hole only if x ≠ ConHull(x). In this case, there is some place, Con-
Hull(x)/x, which is the difference of x in ConHull(x). Any hole in o is a maximal self-
connected part of ConHull(x)/x. 

However, as is pointed out in [4], not every such place is a hole in o (or in any other 
object). For example, the space surrounding the stem of a wine glass meets this criterion 
but is not a hole in the wine glass. The condition stated in the previous paragraph is only a 
necessary condition, not a suff icient condition, for place x being a hole in object o. To dis-
tinguish holes in an extension of BPT, it seems that we have to add a separate primitive 
relation which states that place x is a hole in object o and which is tied to the convex hull 
operator and the relations of BPT by a condition such as that stated informally above. But 
we can at least construe more precise criteria for certain types of holes by drawing upon 
additional properties and relations. For example, we might require that a container-hole in 
o meets both the condition stated in the previous paragraph and is surrounded on all but 
one side by o. This more specialized hole relation would hold between the wine glass and 
its interior but not between the wine glass and the space surrounding its stem. 

 
Other kinds of spatial relations can be introduced to distinguish properties of places 

which are important in practical contexts. With qualitative distance relations, we could dis-
tinguish places as being closer to or further from a distinguished object, such as the earth, 
the top of a person’s skull (for places in a body), or the front of a ship (for places on the 
ship). With orientation relations determined by the intrinsic orientation of a reference ob-
ject, we could order geographic places in terms of the cardinal directions or order places in 
an organism’s body along axes determined by the body. 

6 Conclusion 

                                                
18 It might be useful to introduce place-relative versions of some of the relations above. For example, 

while the doors and windows of my apartment are shut, the space below my sofa is a sealed place. But this 
place is not (li ke parts of the interior of my refrigerator) sealed relative to the interior of my apartment.    
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Other axiomatic theories of qualitative spatial relations, such as parthood and connection, 
can be found in [1, 2, 3, 5, 6, 7, 8, 9, 12]. In all of this work, the domains of the spatial theo-
ries include (and in [2, 3, 6, 9] are limited to) regions. However, the authors of these theo-
ries rarely say whether their regions are supposed to be absolute places, relative places, or 
something else. The distinction is important -- absolute places cannot be identified over time 
and thus are not used in practical reasoning. One would expect theories intended for practi-
cal applications to deal explicitly with relative places. But in the work cited above, no formal 
tools are provided for describing changing relations among places and there is no indication 
of how we might, within the theory, characterize places (as having a certain reference object 
or as fill ed, free, open, etc) in terms of their relations to objects.  

The goal of this paper has been to construct a theory for describing spatial relations be-
tween objects and relative places. Basic Place Theory allows us to identify the reference ob-
ject of a place, to relate places in different location-complexes, and to describe some impor-
tant non-geometric properties of a place. Basic Place Theory can be refined, for example, by 
the addition of axioms requiring that all movement is continuous. It can also be expanded, 
for example, through the addition of a convex hull operator or orientation relations deter-
mined by the intrinsic orientations of reference objects. 
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Figure 1: Two-dimensional views of the location-complexes < ℜℜ3, Id, 1>, <ΒΒ2
000, f, 1>, 

and  <ΒΒ2
030, g, 1> and objects <ΒΒ1

000, f, 0> and <ΒΒ1
030, g, 0> at times t = 0 and t = 1. 
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