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Abstract. Newton distinguishes between absolute and relative places.
Both types of places endure through time and may be occupied by
various objeds at various times. But unlike @solute plades, each rela-
tive place stands in fixed spatid relations with one or more reference
objeds. Relative places with independent reference objeds (e.g. a
ship and the earth) may move relative to one aother.

Relative places, not absolute places, are used to locate objects and
tradk their movements in common-sense reasoning and in disciplines
such as biology, engineering, and geology. The purpose of this paper
is to develop a forma theory for reasoning about relative places and
their changing relations to both ather places and to material objeds.



1 Introduction

In the Scholium to the Definitions of the Principia, Newton dstinguishes between absolute
and relative places. For Newton, both absolute places and relative places endure through
time and may be occupied by various material objects at various times. But absolute places
are parts of absolute space that are independent of material objeds and remain forever in an
unchanging arrangement?. A relative place by contrast, stands in fixed spatial relations with
one or more material objects, which | will call its reference objects. Newton gves as exam-
ples of relative places: places in and around a ship whose reference object is the ship, and
places in and around the eath whose reference object is the earth. Unlike dsolute places,
relative places may move relative to one another. This happens when the reference objects
for the places move relative to one another. For example, when a ship moves relative to the
earth, places with the ship as their reference object (e.g. the ship’s hold) move relative to
places with the earth as their reference object.

Because absolute places do not stand in fixed relations to dbjects, we cannot track
them over any time interval. Thus, absolute places are not of much use for locating things
in the world. Newton himself points out that we use relative places, never absolute places,
in ordinary spatial reasoning?.

| take it that, among ather things, relative places include:

« interiors of artifads guch as ovens, cups, rooms, buildings, ships, and subways
* neighborhoods, cities, countries, deserts, and other geographical entities, and
» "organic spaces' such as body cavities and the niches of organisms [15].

Relative places are used to locate objects and track their movements, not only in com-
mon-sense reasoning, but also in biology, engineering, meteorology, and other disciplines. In
the life sciences, relative places are particularly important since they function as the loci of
the specific types of environments which are necessary for organic processes. Relative places
are also important in legal contexts. Individuals and institutions may have (or lack) rights to
enter or perform specific types of adions within places such as military zones, air traffic cor-
ridors, parks, andinteriors of arplanes.

Natural language off ers impredse tools for describing spatial structure generally and,
in particular, for talking about relations involving places [10]3. The purpose of this paper is
to propacse a step in the direction of a more systematic understanding of relative places. |
develop here aformal theory for reasoning about relative places and their changing relations
to both other places and to material objeds. The theory is useful for reasoning about spatial
relations among places and the locaions and movements of material objeds, as well as for
distinguishing the different kinds of places (e.g. sealed body cavities vs. open geographic
places) which are asumed in various disciplines.

My work is in part inspired by the analyses of spatial relations presented in [4, 5]. Like
Casati and Varzi, | am interested in spatia structures that involve ettities of various types,
including objects, places?, and toles. But Casati and Varzi distinguish holes from places. For
them, both are immeterial but, unlike places, holes can move.> By contrast, | assume that all

1 Newton says, for example, that absolute places retain "from infinity to infinity,...the same given
position ore to another" and that it is posgble that there is no body which remains over any interval in the
same asolute place(Scholium, 1V).

2 For example, Newton says. "instead of absolute places and motions, we use relative ones; and that
without any inconveniencein common affairs’ (Scholium, 1V).

3 Herskovits points out, for example, that the preposition "in" is used in the same grammatica con-
structions to describe several different spatial relations, some of which involve spedfic kinds of relative
places.

4 [4, 5], aswell as[2, 3, 6, 7, 9], tend to use the term "region™ instead of "place”.

5 A similar approach istaken in [3].



places can move (relative to other places) and treat holes as geda kinds of places. My ap-
proach makes explicit the need for understanding changing relations among places. It also
allows for a more economicd spatia framework which treats places as the only kind of im-
materia entity and does justice to the common nature of the interior of a room and an air
traffic corridor. They are both places in which we can move ourselves and ather objeds, but
only thefirst isahole.

Formal theories intended for describing changing spatid relations among objects and
places are dso presented in [2, 6, 7]. Asin [3, 4, 5, 9], these treaments assume that rela-
tions among daces do not change. But unlike [3, 4, 5], holes are not included as specia
members of the domains. The result is that these theories give us no way of relating immate-
rial entities that move relative to one aother, such an organism's crania cavity (a hole) and
the geographic places through which the organism moves.

The remainder of this paper is organized as follows. 82 is an informal discusson of the
role of relative places in spatial reasoning. 83-85 present a formal theory, Basic Place The-
ory (BPT), in which we can describe changing relations among places, form sums of mutu-
aly fixed places, specify the reference object of a place, and tradk objects movements
through sums of mutually-fixed places. 83 presents the are time-dependent spatial relations
of BPT. 84 introduces a reation for linking places to their reference objects and time-
independent relations among places with the same reference objects. 85 develops ome for-
mal tools for locating objects and trading their movements. Finally, in 86, | demonstrate
how some important properties of places might be described in terms of their relations to
objeds.

2 Location-Complexes

Spatial relations between paces such as my chest cavity and the interior of my kitchen can
change sharply and unpredictably. This morning my chest cavity was inside the interior of
my kitchen. | have driven to Berlin during the &ternoon and the two places are now sepa-
rated by 200 kilometers. The distance between the places may increase or decrease tomor-
row depending on how far and in which drection | travel.

Fortunately, some places gand in much more stable relations than do my chest cavity
and the interior of my kitchen. My abdominal cavity remains next to my chest cavity
throughout my life. The interior of my bedroom will remain one meter from the interior of
my kitchen until my apartment is destroyed or remodeled.

In practical reasoning, we group together places, like the interior of my bedroom and
the interior of my kitchen or my chest cavity and my abdominal cavity, whose spatial rela-
tions remain fixed. Such places share a reference object. My apartment is a reference objed
for both the interior of my bedroom and the interior of my kitchen. My body is a reference
objea for both my chest cavity and my abdominal cavity. | will call a maxima collection of
places with the same reference object a location-complex. Examples of location-complexes
are: the colledion of cavities and pathways in a given body, the collection of places fixed
relative to a given ship, and the wllection of all places fixed relative to the erth.

| thus assume that reference objects include not only (more or lesg rigid objects such a
ship and the eath, but also non-rigid objects such as an organism’'s body. This assumption
fits the way in which body cavities and pathways are treaed in bio-medicd contexts—as en-
during immeaterial entities whose boundaries are fixed by the organism’'s material parts.
However, it would seem that the location-complexes determined by such non-rigid reference
objeds must have a different type of spatial structure than those determined by rigid objects.
For example, the interior of arigid box is divided into parts of determinate shapes and sizes
which remain at fixed distances from one another. By contrast, the places within an organ-
ism do not have predsely fixed metrical properties — their shapes, sizes, and distances from
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one another are in general merely constrained to given ranges. | will not, however, attempt
in this paper to charaderize such differences in the geometrica structure of location-
complexes. This is an important issue for future work. Throughout this paper, | focus on
only the topdogicd properties of location-complexes and | assume that each location-
complex (whether or not its reference objed isrigid) has fixed topdogica properties.

A location-complex functions as a stable array within which we can locate objeds and
acrosswhich we can track their movements. In many contexts, we limit possble places to
those of a singe locaion-complex. For example, when tracing the movements of an object
on a ship, we normally consider only places on the ship. We might say that yesterday the
harpoon was in the galey but today it isin the forehold. In certain circumstances (e.g. when
we are nowhere near the ship), we may instead use geographic places. But we do not usually
mix the two groups of places together. We would not describe the harpoon’s movements by
saying that, yesterday it was in the galey, this morning it was fifty miles south of Hawaii,
and now it isin the forehold.

Time-independent relations usualy suffice for describing the arrangement of places
within a location-complex. To describe the layout of a ship, we say "the forehold is below
the forecastle, the main hold is behind the forehold”, and so on, not "the main hold is today
at noon behind the forehold".

Certain situations, however, require reasoning about changing relations among places
with dfferent reference objects. The purpose of a vehicle is that it provides a collection of
human-inhabitable places that can move with resped to certain other places (usualy places
with the earth as a reference object). When we take asubway between two stations, we need
to know not only the fixed positions of the stations in their location-complex (which includes
other stations, neighborhoods, parks etc). We must also know that our subway car and the
places within it will be at one time contained in the first station and at a later time will be
contained in the second station. It is because of the dhanges in the spatial relations holding
between paces in the two location-complexes that we can remain in the same place on the
subway car while moving from station to station. Reasoning about changing relations among
places is aso important when the places are the loci of spedfic types of environments. For
example, the environmental feaures (temperature, air presare, radiation levels) of the
places through which an organism moves may affect the specialized environmental fegures
of the places within the organism.

We see then two foundational tasks for a theory of places. One is to provide amecha
nism for dividing places into separate locaion-complexes. Another is to introduce time-
dependent relations that may hold between places in different location-complexes. Both
tasks are addres=d in the formal theory, Basic Place Theory, presented in the next three sec-
tions.

3 BasdcPlace Theory--Time-Dependent Relations

Basic Place Theory should be seen as a first step toward a comprehensive theory of
changing relations among daces and objeds over time. There are several issues which are
not addressed in BPT but which may be treaed in a more cmprehensive theory. In particu-
lar, since my focus here is on places, objeds are dedt with only insofar as they relate to
places, either as their reference objeds or as individuals which are locaed in or move
through daces. Thus, athough I introduce mereological relations for places, | do not intro-
duce mereologicd relations for objeds. This is in part so that | can leave open issues of
whether distinct material objeds may coincide or more generally whether, when two mate-
rial objects are partially co-located, they must share apart. However, questions of structural

4



relations among materia objects will need to be addressed, e.g., for developing a more pre-
cise theory of reference objects.

Basic Place Theory is dso simplified by the asumption that neither objects nor places
come into or go out of existence throughout the time interval under consideration. We are
thus gared the complication of having to explicitly state whether a given objed or placeex-
ists at a given time -- it is assumed that al objeds and places in the domain of the theory en-
dure throughout all times in the domain of the theory. This assumption seans appropriate
for most spatial reasoning contexts. We do not usually need to refer to objeds or places that
do not exist a given time when we are describing the spatial arrangements of objeds or
places that do exist at that time. A somewhat more complicated theory is required for the
rare occasions in which the distinction between the durations of different places or objeds
playsarolein our reasoningf.

The domains of Basic Place Theory are partitioned into four nonempty sorts:

time instants, for which the variables s t are used
time intervals, for which the variables |, J are used and
places, for which the variablesw, X, y, z ae used.
meateria objects, for which the variables m, o are used.

All quantification is restricted to a singe sort. However, al axioms, definitions, and
theorems given in this sction for the time-dependent spatial relations apply to both paces
and objeds. To smply the presentation of these formulag | will use the Greek letters a, 3, X
as meta-variables which can stand for either place variables or objed variables. Restrictions
on quantification will be understood from these conventions on (meta-)variable usage.

| assume that BPT includes a temporal sub-theory, but | leave open the spedfic form of
that sub-theory. In what follows, | make use of a partial ordering, «, on intervals and a bi-
nary relation, [J, between ingtants and intervals where

tol
isinterpreted as:
instant tisininterval 1.

| assume that | isa subinterval of Jif and only if all instantsin| are dso in J:
l«Jo Ot@EOl - tOJY7
that every interval has ome proper sub-interval:
O «J& 1 #J)
and that there ae no empty intervals:
retil.

The time-dependent relations of BPT are introduced in terms of a single primitive -- the
ternary relation MT, which holds between an instant and either two places, two objeds, or a
place ad an object. On the intended interpretation,

MT. o3
means
o meets 3 at instant t

6 One way of constructing such a theory is, roughly, to define that a placeor objed exists whenever it
meds itself. Appropriate eistence-at-given-time asumptions soud then be alded to axioms and defini-
tions.

7 Throughout this paper, initial universal quantifiers are suppresged.



Places or objeds meet when the distance them is zero (where distance is understood as
the greatest lower bound of the distance between any point of the first extended entity and
any point of the second extended entity). For example, a subway ca meets the interior of the
station when it is partially or completely within the station or when it first reaches the sta-
tion. Also, my esophagus mees my stomach and the interior of my coffee wp meets the ex-
terior of my coffee ap.

The first two axioms require that, at a fixed instant, M T is reflexive and symmetric.

(A1) MT o (any place or object medsitself at al times)
(A2) MTwaB - MTHa (if o meets B at timet, then 3 meets a at time t)

Relations defined in terms of MT include the following.

(D1) COVwp =: Ox (MTxa - MTxPB) (aiscovered by B at t)

(D2) ECOINwf3 =: Ox (MTxa « MTxPB) (a and 3 exadly coincide & t)

(D3) PCOINap =: [k (COVixa & COVxB) (a and 3 partidly coincide & t)
(D4) ABUTap =: MTaP & ~ PCOINap (a and P abut at t)

It is assumed that al places and objects are three-dimensional, regular, and subdvided into
arbitrarily small parts. Thus, the covering relation holds between a and 3 only when a is lo-
cated within 3. For example, an organism's brain is covered by its cranial cavity and its left
heart ventricle is covered by its heart. While the organism occupies a spaceship, the organ-
ism and all of its cavities and material parts are @vered by the interior of the spaceship. For
domains which include lower dimensional boundaries, atomic places, or atomic objects, a
dightly different theory is required, since BPT would on these domains conflate the covering
relation with the surrounds relation®. However, for reasons of simplicity, | do not consider
such domains in this paper.

An object o exaadly coincides with paae x when o exactly occupies x. Also, two places
can exadly coincide -- when a subway car stops in a station, the interior of the subway car
exactly coincides with a part of the interior of the station.

o and 3 partialy coincide when a and 3 are partially co-located. My esophagus partially
coincides with my chest cavity, but also pertidly coincides with the space of the anterior
compartment of my neck. As another example, the right half of my car partidly coincides
with the front half of my car.

o and (3 abut when they meet but do not partially coincide. The interior of my halway
abuts the interior of my kitchen. The right half of my car abuts the left half of my car.

At afixed instant, COV is reflexive and transitive, ECOIN is an equivalence relation,
PCOIN is ymmetric and reflexive, and ABUT is symmetric and irreflexive.

We @n define interva versions of all instant-indexed relations. | will use bold text for
al interva versions of the relations above. For example:

(D5 MTap=:0tt 01 - MTap) (o and B meet throughout interval 1)
(D6) COVap =0t d 1 - COVap) (B coversa throughout interval 1)

8 To be predse, (A1) should be rea as an abbreviation for two distinct axioms: MT xx (every place
meds itself) and MT,00 (every objed meets itself). But | will treat (A1) throughout this paper as a single
axiom. Similar points apply to the other expressions formulated in terms of the meta-variables.

90ne way of handling these kinds of domains would be to treat MT and COV as sparate primitives.
See Chapter 4 of [5] and [12] for discussons of these issues.



The following axiom tells us that when a is not covered by 3 at t, there is a place or ob-
jed x that is covered by a at t, but does not partialy coincide with 3 at t.

(A3) ~COVaf - Ox(COVixa & ~PCOINxB)Lo

For example, when the interior of the subway car is not yet fully covered by the interior of
the train station, there is sme place (e.g. the spacein the back of the @r) that is covered by
the interior of the subway car, but does not partially coincide with the interior of the station.

COV and MT behave much like time-dependent versions of the mereotopologicd
parthood (P) and connection (C) relations axiomatized in [1, 5, 6] in the sense that, at a
fixed instant, COV and MT have many of the same logicd properties as the parthood and
connedion relations of these theories.!l However, the following time-dependent analogue
of the antisymmetry axiom for the parthood relation is NOT appropriate for COV:

COViaB & COViPa — a =P

We want to allow distinct places or objects to exadly coincide & an instant. An object may,
at a given time, exadly coincide with a given pace, but the objed is never identical to the
place. Also, distinct places can exactly coincide. The interior of the subway car exadly coin-
cides with a part of the interior of the station when the ca stops in the station, but these
places cannot be identical since they have different reference objeds. On the other hand, one
might plausibly hold that distinct material objeds cannot exadly coincidel2. If so, BPT could
be strengthened through the aldition of an axiom requiring that if object o covers objed m
at timet and m also coverso at t, then o and m are identicd.

Note that, more generally, BPT alows a place x to cover either other places or objects
which are not part of x. For example, an organism’s brain is covered by its crania cavity, but
the brain is not part of the cranial cavity. While the organism is within a spaceship, the or-
ganism, its cranial cavity, and its brain are all covered by the interior of the spaceship, but
none of these ae parts of the interior of the spaceship. Also, objects or places may partially
coincide without sharing parts. My esophagus partialy coincides with my chest cavity, but
nothing is part of both my esophagus and my chest cavity. In the terminology of [8], MT,
COV, ECOIN, PCOIN, and ABUT are intended as time-dependent relative location rela
tions -- relations which depend only on the spatial entities' locations, not on their mereoto-
pologicd structure. In BPT, the stronger mereotopdogical relations (parthood, connection,
and so on) are introduced only for places and hold only between plaaes with the same refer-
enceobjed (see Section 4.2).

4  Basc Place Theory--Time-Independent Relations
4.1 Relatively Fixed Places

To divide places into separate location-complexes, | introduce the binary relation RO
which holds between an object and a place, where on the intended interpretation
ROox
means
objed o is areference objea for placex.
Though the focus of this paper is on relative places, | do not require that every placehas a
reference object. | thus leave open the posshility that a domain of BPT includes sosme &so-

10 Compare (A3) to the Strong Supplementation Principle of [14].
11 See 4so Simons' treatment of temporary partsin [14].
12 Byt seg for example [16], for an argument that distinct material objeds may exacdly coincide.



lute places. | also do not require that every object is areference object for some place. For
example, completely amorphous objects (e.g. alump of jelly) are perhaps not reference ob-
jedsfor places. | dorequirethat at least some place has a reference object (A4) and that if
any two places $are areference object, then they share dl reference objeds (A5).

(A4) [(b[XROoxX
(A5) ROox & ROoy - Om(ROmMx — ROmy)

Places x and y are relatively fixed if and only if either x and y have a common reference
objed or neither x nor y has a reference objed.

(D7) RFxy =: [b(ROo0x & ROoy) [ Oo(~ROo0x & ~ROay)
(placex and placey are relatively fixed)

Thus, the forehold and main hold of a ship are relatively fixed -- both places have the ship as
areference object. Also, my chest cavity and abdominal cavity are relatively fixed (both have
my body as their reference objed), Hawaii and Acgpulco are relatively fixed (both have the
earth as their reference object), and, if there are dsolute places, any two absolute places are
relatively fixed (since neither has a reference object).

It follows from (A5) that RF is an equivalence relation on the sub-domain of places.

(T1) RFxx (every placeisfixed relative to itself)

(T2) RFxy - RFyx (if x isfixed relative to y then y is fixed relative to x)
(T3) RFxy & RFyz — RFxz

(if x isfixed relativeto y and y is fixed relative to z, then x is fixed relative to 2)

Eadh RF equivalence dass corresponds to a location-complex. One of these classes
might include all places with a particular ship as their reference object and another might
contain al placeswith the earth as their reference object.

The next axioms tie RO and RF to the spatial relations defined in the previous subsec-
tion.

(A6) ROox — y(RFxy & Ut ECOIN:oy)  (if o is a reference object for x, then there is
some placey such that x and y are relatively fixed and o exactly coincides with y at all in-
stants)

(A7) COVay — [Z(RFzy & ECOINiza)  (if placey covers a a t, then there is ome
place zsuch that z and y arerelatively fixed and z exactly coincides with a at t)

(A8) RFxy — (0 MTxy — [t MTwxy) (if x and y are relatively fixed, then x and y meet at
some ingant only if x and y med at all instants)

(A9) RFxy — ([ COVxy — [t COVy) (if x and y are relatively fixed, theny covers x at
some ingtant only if y covers x at all i nstants)

(A6) requires that the reference object for place y always occupies afixed placein y's
location-complex. For example, the location-complex of places with a ship as their refer-
ence object includes the place which the ship itself always occupies.

(A7) ensures that places are divided into smaller places within alocation-complex in a
way that matches the divisons imposed by objects or by places outside of the location-
complex. It tells us, for example, that if a subway car iswithin a station at t, then thereis a

8



part of the interior of the station which exactly coincides with the subway car at t and also a
part of the interior of the station which exactly coincides with the interior of the subway car
at.

(A8) and (A9) require that MT and COV relations among members of the same loca-
tion-complex never change. For example, the interior of my kitchen will never move avay
from the interior of the hallway which it meets (though it is possble to destroy one or both
of these places and create new places in the gpartment which are some distance gart).
Also, the left half of the interior of my kitchen is aways be cvered by the interior of my
kitchen.

Using (A8) and (A9), we can derive the following theorems, requiring that ECOIN,
PCOIN, and ABUT relations among places in the same location-complex never change.

(T4) RFxy — (O ECOINxy - Ot ECOINXy) (if x and y are relatively fixed, then if x and
y exactly coincide & some ingtant, x and y exactly coincide & all i nstants)

(T5) RFxy — (O PCOINXxy - [t PCOINxy) (if x and y are relatively fixed, then if x and
y partially coincide & some instant, x and y partialy coincide & all instants)

(T6) RFxy — (000 ABUTxy — Ot ABUTXy) (if x and y are relatively fixed, then if x and y
abut at some instant, x and y abut at all i nstants)

4.2 M ereotopological Relations among Places

The converses of (A8)-(A9) and (T4)-(T6) do not in genera hold. My cranial cavity
may aways be wmvered by, but not fixed relative to, a geographic place such as Europe. In
this case, | never leave Europe, though | may move around extensively within it. A much
stronger relation holds between a geographic place and another geographic place that it cov-
ers. Unlike my cranial cavity, Scandinaviais a part of Europe.

Mereotopologica relations among daces are in BPT defined in terms of RF and the
time-dependent spatial relations. Note that these mereotopological relations are time-
independent -- unlike objeds, places do not gain and lose parts.

(D8) Pxy =: RFxy & [t COVxy (placex is part of placey)

(D9) Oxy =: RFxy & [0t PCOINxy (placex overlaps placey)

(D10) Cxy =: RFxy & [t MTwxy (placex and placey are mnneded)

(D11) ECxy =: RFxy & Ot ABUTxy (placex and placey are externally connected)

The relations defined in (D8) - (D11) behave very much like the mereotopologicd rela-
tions of [8]. P isreflexive and transitive, O and C are reflexive and symmetric, and EC isiir-
reflexive and symmetric. We @an also derive the following theorems, which are common to
most mereotopologies.

(T7) Oxy ~ [ (Pzx & Pzy) (x and y overlap iff there is sme placee z that
is part of both x and y)

(T8) ECxy « Cxy & ~Oxy (x and y are externaly connected if and only
if x and y are amnnected but do not overlap)

(T9) Pxy — 0z (Czx - Czy) (if x is part of y then every place mnnected to
X isaso connected to y)



(T10) ~Pxy — [ (Pzx & ~Ozy) (if x isnot part of y, then there is a part z of x
that does not overlap y)

To obtain a stronger mereotopdogy, | add to BPT axiom (A10) and axiom schema
(A11) (where @x represents any formulain which only x occurs free ad @y is the same for-
mula with x replaced by y but with variable substitution performed as necessary so thet vy is
freein gy exactly where x is freein @x).

(A10) Pxy & Pyx - x=y
(if x ispart of y and yispart of x, then x and y are identicd)

(A11) Ik @x & Ox Oy(ex & gy - RFxy) - [Z Ow(Owz « X (@x & Oxw))
(if some place satisfies @ and all places satisfying ¢ are mutually fixed, then there is a sum of
al @-ers)

Using (A10) and (T10), we @n prove that O is extensional:
(T1) x=y o 0z (Ozx ~ Ozy)

Thus, whenever the antecedent of (A1l) is stisfied, there is a unique sum of al @-ers. For
example, there is a unique (disconneded) place which is the sum of the interior of my
kitchen and the interior of my bedroom.

4.3 The Formal Definition of a L ocation-Complex

Location-complexes are introduced in BPT as the sums of all places fixed relative to a given
place

(D12) LCXxz =: Ow(Owz ~ [y (RFxy & Oyw)) (zisx’slocation-complex)3

The locaion-complex of a geographic place is the sum of all places with the earth as a
reference objed. The locaion-complex of a place on a ship is the sum of al places with the
ship as a reference objed. If there are ay absolute places (i.e. places without a reference
objea), then the location-complex of any absolute place is the sum of al absolute places.

It follows from (A11) and (T11) that every place has a unique location-compl ex.

(T12) [z LCXxz
(T13) LCXXy & LCXxz -y =2

Thus, LCX is a function on the sub-domain of places. For convenience, | will introduce
the function term Icx(x) to stand for place x’ s location-complex.
Additional theorems concerning locati on-complexes can be derived.

(T14) RFxy o lex(x) = lex(y) (place x and placey are relatively-fixed iff they have
the same location-compl ex)
(T15) RFxy « P(x, lcx(y)) (placex and placey are relatively-fixed iff x is part of

y’s location-complex)

13 Compare with the definition of the layer-of relation in [8]. It is easy to verify that all axioms of
Layered Mereology are theorems of BPT and that location-complexes are the layers of BPT.
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(T16) RFxy « [Z (Pxz & Pyz) (place x and place y are relatively-fixed iff they are
both parts of some place 2

A location-complex is any place that is the location-complex for some place
(D13) LCz =: [X LCXxz (z is alocation-complex)

All location-complexes are maximal places in the sense that they overlap only their own
parts.

(T17) LCz - Oy(Oyz — Pyz) (if z is a location-complex, then any place y overlaps z
only if y is part of z)

However, there is gill a sense in which we might distinguish larger and smaller location-
complexes. For example, the location-complex of geographic places ould always cover the
location-complex of places which have my body as a reference object, but it does not sean
that the converse holds. We will call a place comprehensive if it always covers every place
(and thus aso every location-complex) and every object.

(D14) CMPy =: [0t0a COV:ay (y isa comprehensive place)
Any comprehensive placeis alocation-complex
(T18) CMPy - LCy (if y isa comprehensive place, theny is alocaion-complex)

Comprehensive location-complexes mirror the universe in the sense that, if y is comprehen-
sive, then for every instant t and every place or object a, there is a part of y that exadly co-
incideswith a at t.

(T19) CMPy - Otda(Pzy & ECOIN0z)

Comprehensive location-complexes are useful because they function as a background
space in terms of which we can relate non-coincident objeds or places. In many contexts,
the location-complex of geographic places is assumed to be mmprehensive. We an useit to
relate places on two separate moving ships or within two separate organisms. Alternatively,
if we allow any absolute places at all, then we would probably hold that the location-
complex of absolute places is comprehensive.

It does not follow from the aioms given so far that there is any comprehensive place. If
desired, this could be required by an additiona axiom.

4.4 M athematical M odds of BPT

To show that BPT is consistent and to better ill ustrate the intended interpretations of
BPT’ srelations, | present in this sibsection one classof models for BPT. However, | do not
here @tempt to construct a dass of models whose generality matches that of BPT. It will be
clear that all models described below share specific mathematica properties which are not
required by BPT. For example, all objed and place movements in the models are @ntinu-
ous. But nothingin BPT requires object or place movements to be cntinuous. Where ap-
propriate, more cmplex extensions of BPT can be anstructed which cgpture these kinds of
properties.

But, in fact, the particular models presented here do exclude some types of location-
complexes that we would like to represent if we dlow for flexible reference objects, such as
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organisms’ bodies. These locaion-complexes do not (like the location-complexesin the
models presented here) preserve dl of their geometrical properties over time, but may
shrink, grow, and so on. Modes which can adequately represent such location-complexes
are more wmplicated than the models presented here, but can be developed along the same
lines.

For the presentation of the models, | will make use of O (the real numbers) and C°. |
assume that both O and O° are endowed with the usual Euclidean metric.

Throughout this sibsedion, all variables are used only for the mathematical objeds un-
der discusson and should not be @mnfused with the variables belonging to the formd lan-
guage in which BPT is gated.

The domains of the models are divided into four digoint sets-- T, I, PIl, Ob -- where
time instant variables of BPT are interpreted as elements of T, time interval variables are
interpreted as elements of |, place variables are interpreted as elements of PI, and object
variables are interpreted as elements of Ob.

T may be any non-degenerative interval of [1.24 In particular, T may be O itself. Given
T, | isfixed as the set of al non-degenerative intervals which areincluded in T. In other
words, | =: {I : | isanon-degenerative interval of O and | (I T}.

The members of Pl and Ob are considerably more complicaed thanthoseof Tand I. To
construct them, | make use of functions from T x 0° to 0°. | will aso refer frequently to the
set of al closed, regular, non-empty subsets of 0° which | call CR.

CR=:{X:0 #X 00O%and X isclosed, regular}

Letf: TxO° - 0% lett 0T, andlet X O O°. Then byf,, | mean the function f;: 0° . O°
such that for all x 0 O°,
£(x) = f(<t, x>).
By X, | mean the function f*: T — 0 (0°) (where O (O°) is the power set of 0°) such that
fordltOT,
(@) =f[X] ={y O O°: for somex O X, y = f(x)}.

Let
F={f: Tx0° - O0%fiscontinuousand for al t O T, f; 0° - O°isanisometry}.

Noticethat foranyf OF, t OT,andX, Y O 0%
e ) n ) £ 0 if and only if X nY # 00
« X0 O () if and onlyif X 0¥
. ft) O CRifand only if X [ CR.

Let LC be ay non-empty set of ordered triples <X, f, 1>, with X 0 CRand f O F, satis-

fying the mndition:
if <X, f,1>,<Y,q0,1>0LC,adf=g,then X =Y.

LC isthe set of locaion-complexes in the modd.

Let Pl ={< X, f, 1>: X 00 CRand thereis ome <Y, f, 1> 0 LC such that X 0 Y}. No-
ticethat LC O PI.

Let Ob be any set of ordered triples < X, f, 0>, with X [0 CRand f U F, satisfying the
following conditions:
) if<y,f,0>00b, X O0Y,andX OCR, then <X, f, 0> [ Ob.
i) if <X,f,0>00band <Y,f,1>0LC,thenX 0.

14 An interval | of O isany subset of O with the following property: if x,y Ol and x<z <y, thenz O
I. In other words, an interval of O isany convex subset of 0. A non-degenerative interval of O is one that
includes at least two (and thus uncountably many) real numbers.
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iii) for al but at most one <Y, f, 1> [0 LC, thereis asme X [0 CR such that <X, f, 0> [0 Ob
and thereis at least one <Y, f, 1> [0 LC, such that <X, f, 0> O Ob.

As interpretations of the primitive relations in BPT, | introduce the following two rela-
tions. MT isaternary relationon T x (Pl [ Ob) x (PI O Ob) and RO is abinary relation on
Ob x PI.

(t, <X, f,i>, <Y, g,j>) OMT if andonly if f(t) n g"(t) z O.
(<X, f,0>,<Y,qg,1> 0RO Iifand only if f = g.

It is straightforward to chedk that, given these interpretations of the BPT primitivesMT and
RO, BPT’ s axioms are satisfied and defined relations have the following interpretations:

* COVisinterpreted as: COV onT x (Pl I Ob) x (Pl [0 Ob), where
(t, <X, f,i>, <Y, g,j>) O COViff f(t) O g"(t).

* ECOIN isinterpreted as: ECOIN on T x (PI O Ob) x (Pl O Ob), where
(t, <X, f,i>, <Y, g,j>) OECOIN iff f*(t) = g"(t).

* PCOIN isinterpreted as PCOIN on T x (Pl [0 Ob) x (Pl [0 Ob), where
(t\; <X, f,i>, <Y, g, j>) O PCOIN iff thereis ssme Z OCR such that Z O f*(t) n
g'(t).

* ABUT isinterpreted as. ABUT onT x (Pl [0 Ob) x (Pl 0 Ob), where
(t, <X, f,i>, <Y, g, j>) OABUTiff f(t) n g"(t) # O and thereisno Z OCR such
that Z O F(t) n g"(t).

* RFisinterpreted as: RF on Pl x PI, where (<X, f, 1>, <Y, g, 1>) ORFifff = g.

* Pisinterpreted as. P on Pl x Pl, where
(=X, f,1>,<Y,g, 1>)O0Pifff =gand X O Y.

e Oisinterpreted as: O on Pl x P|, where
(<X, f,1>,<Y,qg,1>) 00Iifff =gandthereis meZ OCRsuchthaa ZO X n Y.

* Cisinterpreted as. C on Pl x Pl, where
(<X, f,1>,<Y,g,1>)0Cifff =gandX n Y £ [.

 ECisinterpreted as: EC on Pl x PI, where (<X, f, 1>, <Y, g, 1>) OEC ifff =g, X
nY # [, andthereisno Z OCRsuchthat ZO0X n Y.

 LCXisinterpreted as. LCX on Pl x P, where (<X, f, 1>, <Y, g, 1>) OLCX ifff =
gand<Y,g,1>0LC.

* LCisinterpreted as: LC.

 CMPisinterpreted as: CMP [0 LC, where<X, f, 1> O CMP iff for dl t O T and all
<Y, g, 1> 0PI, g"(t) O ().

Asanillustration of what one of these models might look like, | will give avery smple
example. In presenting the example, | will make use of the notation
BInyz
for the dosed ball in O° centered at <x, y, z> with radius r. For example, B'ooois the dosed
ball centered at the origin (i.e., <0, 0, 0>) with radius 1.
In the example model, T = [0 and | isthe set of all non-empty intervals of .
For Pl and Ob, | make use of the following functions from O x 0° to O*:
ld(<t, <x, y, z>>) = <X, y, z>
f(<t,<x,y,z>>) =<x+t,y, 2>
o(<t, <x,y, z>) =<x,y +, z>
Location-complexes, places, and objeds are asfollows.
LC= {< |:|3, Id, 1>, <Bzooo, f, 1>, <Bzogo, g, 1>}
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Pl ={<X, Id, 1>: X OCR} O {<X,f, 1>: X O CRand X O B0 0 {<X, g, 1> X OCR
and X 0 B%sq}
Ob ={<X, f, 0> X OCRand X 0 B'yq¢ O {<X, g, 0> X O CRand X O B'osqg

In this moddl, < 0%, 1d, 1> is the only member of CMP. Note also that none of the
members of {<X, Id, 1>: X O CR}, including < 0%, 1d, 1>, has areference objedt. Thus,
they represent absolute places.

Examples of changing relations among members of the domain are:
1. (0, <B%00, f, 1>, <B'os0, g, 0>) O ABUT, but for t > 0, (t, <B%00, f, 1>, <B'us0, g, 0>) O
ABUT. (Infad, for t > 0, (t, <B%u00, f, 1>, <B4s0, g, 0>) O MT.)

2. (0, <B%00, f, 1>, <B%030, g, 1>) 0 PCOIN, but (1, <B%u00, f, 1>, <B%30, g, 1>) 0 PCOIN.

3. (0, <Blooo, Id, 1>, <Blooo, f, 0>), (1, <Blloo, Id, 1>, <Blooo, f, 0>), (2, <Blzoo, Id, 1>,
<B'o00 f, 0>) 0 ECOIN. More generaly, (t, <B'yy, Id, 1>, <B4 f, 0>) O ECOIN if and
onlyifr=1,x=t,andy=0=2z.

Examples of unchanging relations among places are anong places and dbjeds are:
4. (<B'o00, f, 0>, <B%000, T, 1>), (<Bo30, 9, 0>, <B%30, g, 1>)0 RO.
5. (<B%o00, f, 1>, <B%000, f, 1>) O P.
6. (<B'.100, , 1>, <B'100, f, 1>) O EC.

Figure 1 presents two-dimensional views of places and objects in the modd at times 0 and 1.

5 Locating and Tracking the Movements of Objects

The purpose of this £dion is to demonstrate how BPT can be used to represent and reason
about the locations of objeds in places or the movements of objects through places. Though
| focus here on object-place relations, al of the relations defined in this section can also be
used to describe the movements of places through location-complexes.

We locate an object within alocaion-complex by determining which pacesin the com-
plex cover the objed. For example, a doctor may locate aparasite in a patient’s body by de-
termining which cavities or passageways it is contained in. Or, someone may locate my keys
by determining which (appropriately small) parts of the interior of my apartment cover them.

An object is exactly located at a place with which it exactly coincides. It follows from
(A7) that an object is exadly located at more than one place when it is covered by more than
one locaion-complex. When my train stops in a station, | exadly coincide with both a part
of the interior of the train and a part of interior of the station.

We can, however, prove that an objed or place eactly coincides with at most one place
at atime in a given location-complex.

(T20) RFxy & ECOINax & ECOINay —» X =y

(if place x and placey are relatively fixed and o exadly coincides with both xand y at t, then
x and y are identical)
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An object need not occupy any place in a given location-complex. | do not coincide
with any placein a location-complex that is limited to places within your body. But an objed
must at all times occupy a place in a amprehensive location-complex.

(T21) CMPz - [x(Pxz & ECOIN;ax)
(if zis comprehensive, then there is ©me part x of z with which a exadly coincides at t)

All movement is relative to a location-complex. An object may at the same time move
through one location-complex and rest within another location-complex. I move with re-
sped to the location-complex of geographic places while | stay in the same place on my
train.

| will say that a moves in location-complex z during interval | if a is covered by z
throughout | and o is exactly located at more than one place in z during I. (But note that this
relation covers movement only in the sense of re-location. A slightly more complex relation
is needed to capture dso cases sich as the rotation of aball in afixed pace.)

(D15) MOV-INj0z=:LCz& COV,0z& [B, t, X,y (st 01 & Pxz& Pyz & x 2y &
ECOINsax & ECOIN:ay) (a moves within z during 1)

By contrast a rests within location-complex z throughout | if there is a part of z which
exadly coincides with a throughout 1.

(D16) RT-INjaz =: LCz & [X (Pxz & ECOIN,ax) (a rests within z throughout 1)

For example, a harpoon rests within the complex of places on a ship throughout | when
it occupies the same place on the ship throughout I. It movesin this complex during | when
it remains on the ship throughout | but occupies diff erent places on the ship during | (for
example, the harpoon may be in the galley during one sub-interval of | and on the dedk
during another sub-interval of I).

Note that ~MOV-IN,az does not imply RT-IN,az. MOV-IN,az may fail to hold either
because z is not alocation-complex or because a is not covered by z throughout 1. In both
of these cases, RT-IN,0z dso fails to hold. But we @n prove:

(T22) LCz & COV,0z & ~MOV-IN,az - RT-INaz
(if z is a location-complex that covers a throughout | and a does not move within z during
[, then a rests within z throughout 1)

Note dso that it follows from (A6) that any reference object for a place rests within that
plac€s locaion-complex throughout every interval (T23). In particular, if z is a location-
complex and o is a reference objed for z, then o rests within z throughout every interva
(T24).

(T23) ROox — RT-IN(o, lcx(x))
(T24) RO0z & LCz - RT-IN,0z

If desired, other types of moving or resting relations can be introduced. For example,
we uld say that o moves within location-complex z throughout | if and only if a moves
within z during every sub-interval of I. Also, with a parthood relation on objects, we could
define a weger movement relation which holds between a and z on | if and only if some
part of a moves within z during |I. The corresponding stronger rest relation would hold be-
tween a and z if and only if all parts of a rest within z throughout 1.
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In many contexts, it is useful to know the path that an object has followed through a
given location-complex. For example, a doctor may want to know the path that a parasite
has followed through a patient’s body or an ecologist may want to know the path that an
organism has taken between two geographic places. We can define the path y of a through
location-complex z over interval | as the sum of all places in z with which a exadly coin-
cides at someinstant in |.

(D17) PATHazy =: LCz & Ow(Owy  [X [ (Pxz& t 01 & ECOINax & Owx))
(y isthe path of a through location-complex z over interval |)

When it exists, the path of a through z over | isaunique placein z.

o does not have any path through location-complex z over | if a is not covered by z &
any instant in 1. But every object or place has a path through a comprehensive location-
complex over every interval.

(T25) CMPz - Oy PATH,azy

We can use paths to give aternative characterizations of the rests within and moves
within relations. a rests within location-complex z throughout | if and only if a has a pathy
inz over | and a exadly coincides with y throughout 1.

(T26) RT-INjaz « Oy(PATHozy & ECOIN,ay)

o moves within location-complex z during | if and only if a has a path y in z over |
and y covers a throughout I but does not exadly coincide with a throughout I.

(T27) MV-INjoz - [y(PATH,azy & COV,ay & ~ECOIN,ay)

6 Propertiesof Places

Leibniz’ objection to Newton’s theory of absolute spaae was based in part on the asump-
tion that “space being uniform, there can be neither any externa nor internal reason by
which to distinguish its parts and make any choice anong them”[11]. But clearly relative
places can have important properties that make them more or less appropriate targets for
our actions. | go into my bedroom (not onto the street) when | want to sleep. | put milk in
my refrigerator (not in my oven) so that it will keep.

Obviously the purely geometrical properties of a place, such asits sze and shape, are
important in dedsions about where we should locate ourselves or other objects. | cannot
put my sewing machine inside my trunk if its diameter is larger than that of the trunk’sin-
terior. Other important properties of places depend on relations between places and objects.
The purpose of this sdion is to briefly indicate how a few of these properties might be
defined in BPT or an extension of BPT.

We @n say that place x isfilled throughout interval | if there is some objed that cov-
ersx throughout I.

(D18) filled (x) =: (o COV xo (x isfill ed throughout interval I)
If we assume that distinct objects cannot occupy the same placeat the same time, then no
objed (other than a part of thefiller) can move into or out of afill ed place whileit isfill ed.

For example, | cannot move my desk into a place occupied by my sofa while my sofa re-
mainsin this place
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It follows immediately from (D18), that if x isfilled throughout I, then every part of x
isfilled throughout every subinterval of |.

(T28) Pyx & filled(x) & J« |1 — filled(x)

But we cannot infer from fill ed (x) that any part of x isfill ed on intervals before or after |.
Although a given part of the interior of my living room is currently covered by my sofa, |
can dways move the sofa to a different place. However, in the specid case of a place
which is covered by one of its reference objects, we cainot move the filler away since the
place stands always in a fixed relation to its reference objects. For example, | cannot move
my house avay from the fixed paceit occupiesreative to itsinterior.

We @n introduce a stronger predicate for places that are filled by their reference ob-
jeds.

(D19) N-fill ed(x) =: [b1(ROox & ECOIN0x) (x isnecessarily fill ed)

It follows from the axioms of BPT that if x is a necessarily filled place, then xisfilled on
every interval.

(T29) N-fill ed(x) — filled (x)

If desired, additional filli ng relations can be defined. For example, we can say that x is
partly filled throughout | if and only if some part of x is filled throughout | or that x is
filled during | if and only if x isfill ed throughout some subinterval of I.

Placex isfreethroughout | if no part of x isfilled throughout any subinterval of I.

(D20) freg(x) = 0JOy(J« 1 & Pyx — ~filled(y)) (xisfreethroughout I)

Objects might move into or through any part of a free place The interior of a room isfree
while it contains no furniture or other stationary objects. Note that x may be free through-
out |, but never empty. The interior of the room always contains air, but the air moves con-
tinuously through it. On the other hand, if the interior of the room contains an doject, such
as a sofa, which rests within it on any subinterval of I, then the interior of the room is not
free throughout I. It may, however, be free on subintervals of | (shorter periods when all of
its contents are moved or removed) and it will ailmost certainly have proper parts (e.g. the
space @ove, in front of, or underneah the sofa) that are free throughout 1.

Additional relations can be defined. We @an say that x is partly free throughout | if and
only if some part of x is freethroughout I, that x is free during | if and only if x is free
throughout some subinterval of |, or that x isempty at instant t if and only if no objed par-
tially coincides with x at t15.

Further properties of places can be distinguished in an extension of BPT which in-
cludes more complex spatial relations. A convex place x is one which covers any line seg-
ment conneding two parts of x. For example, a ball-shaped place is convex and a dough-
nut-shaped place is not convex. The convex hull of a place x is the smallest convex place
including x. For example, the convex hull of a doughnut-shaped place x includes both x
and the space in the middle of x.

15A1s0, with additional predicates distinguishing dfferent kinds of objeds (organisms, portions of toxic
substances, vehicles, etc), we oould define relations that distinguish places which contain no oljeds of a
given type over agiven interval .
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A convex hull operator has been added to a formal theory somewhat similar to BPT in
[6, 7]16. 1 will not here attempt to add such an operator to BPT, but will briefly describe
some of the properties of places that could be defined in a stronger theory which includes
this operator. Some formal definitions along these lines (but without time-dependent rela-
tions, a distinction between places and objects, or a distinction between places in separate
location-complexes) are givenin [7].

In the gopropriate extension o BPT, the convex hull operator is restricted to places
and | asume for now that every location-complex is convex and every place has a convex
hull. For any place, x, ConHull(x) isinterpreted as the smallest convex part of x’s location-
complex which covers x. (In fact though, it is not clear exadly how we should handle a
convex hull operator in the case of places such as an abdomina cavity or stomach cavity
whose shape can change significantly. | will not consider these isaues here, but |eave open
the possibility that the convex hull operator may be restricted to a sub-domain of places
with appropriately rigid reference objeds.)

We @n say that place y is sheltered throughout | if and only if there is some object o
and place x such that o exactly coincides with x throughout I, x is slf-conneded, and y is
covered throughout | by ConHull(x). Here, aplace zis self-conneaed (SC) if and only if it
is not the sum of two disconnected places. (This predicate can be defined in BPT.)

sheltered(y) =: [k (ECOIN,(0, X) & SCx & COV/(y, ConHull(x)))

For example, the interior of a house, a village in a valley, and the interior of a tunnel are
sheltered paces as long as the relevant objects surround them!?. Notice that al parts of
these places are also sheltered places.

A placeis open throughout | if and only if it is not sheltered on any sub-interval of I.

open(y) =: OX J«| — ~shelteredy))

For example, an air traffic corridor and a city on aplain are open places.

A placey is sealed throughout | if and only if there ae object o and place x such that
1) 0 exactly coincides with x throughout I, ii) y is covered throughout | by ConHull(x), iii)
y does not partialy coincide with o at any instant in |, and iv) any self-conneded place z
that partialy coincides during | both with y and the exterior of ConHull(x) also partialy
coincides with o.

sealed(y) =: bk (ECOIN(o, X) & COV (y, ConHull(x)) & Ot(t O I - ~PCOINyo &
0z(SCz & PCOIN,zy & PCOINzw & ~PCOINwConHull(x) — PCOIN, zo))

The purpose of conditionsiii) and iv) isto prohibit sealed places from coinciding with part
of the surrounding object o (condition iii) and to require that the only continuous paths
fromy out of ConHull(x) are through o (condition iv). Thus, sealed paces are places which
are ompletely surrounded (throughout a given interval) by afixed object. For example, the
interior of an unbroken eggshell i s seded and the interior of a spacecraft is saded whileits
doors are shut. Seded places are possble sites of controlled environments. Until the egg-
shell is broken, its interior is free of environmental substances which might interfere with

16 See &so [3] which defines a convexity predicate using a congruence relation.

17 Note that the interior of the house and the interior of the tunnel are surrounded by their reference
objeds. Thus, they are sheltered as long as they exist. The vill age, by contrast, might continue to exist even
if the mountains were leveled. If this happened, it would no longer be a sheltered place.
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the developing organism. While the doors of the spacecraft are shut, a spedfic temperature
and air pressure can be maintained in itsinterior.18

Additional properties of places can be introduced in terms of ConHull. For example,
[7] proposes a relation intended to distinguish what they call the "containable inside" of a
place. Very roughly, placey lies within the containable inside of place x if y is surrounded
by x on all but one side. If, in addition, x is the location of an object o then we will say that
y isacontainer place Notice that, if o isasolid objed, then y can contain liquids when the
openings in o are orientated away from the direction of gravity. Examples of container
places are the interior of a coffee cup and the interior of a bottle. Examples of sheltered
places which are NOT container places are the interior of atunnel, the interior of a clan-
der, and the space in between the base and the handle of a wff eecup.

Holes are special kinds of places. All holes are holes in some objed, caled in [4] the
host of the hole. My glassis the host of itsinterior. My skull i s the host of my cranial cav-
ity. Using a convex hull operator in an extension of BPT, we can requirei) that the host isa
reference objed for its holes and ii) that al holes are maxima self-conneded parts of what
is left over when we subtrad a place filled by the host from the anvex hull of that place
More precisely, let o be a reference objed and let x be the unique place which has o as a
reference objed and which exactly coincides with 0. o hasahole only if x is not convex. In
other words, o has a hole only if x # ConHull(x). In this case, there is sme place, Con-
Hull(x)/x, which is the difference of x in ConHull(x). Any hole in 0 is a maximal self-
conneded part of ConHull(x)/x.

However, as is pointed out in [4], not every such placeisaholein o (or in any other
objed). For example, the space surrounding the stem of a wine glass meets this criterion
but is not a hole in the wine glass The condition stated in the previous paragraph isonly a
necessary condition, not a sufficient condition, for place x being aholein object 0. To dis-
tinguish holes in an extension of BPT, it seems that we have to add a separate primitive
relation which states that place x is a hole in object o and which istied to the convex hull
operator and the relations of BPT by a condition such as that stated informally above. But
we can at least construe more predse criteria for certain types of holes by drawing upon
additional properties and relations. For example, we might require that a container-hole in
0 meets both the mndition stated in the previous paragraph and is surrounded on al but
one sde by o. This more specidized hole relation would hold between the wine glassand
itsinterior but not between the wine glassand the space surrounding its gem.

Other kinds of spatia relations can be introduced to distinguish properties of places
which are important in practical contexts. With qualitative distance relations, we wuld ds-
tinguish places as being closer to or further from a distinguished object, such as the eath,
the top of a person’s kull (for places in a body), or the front of a ship (for places on the
ship). With arientation relations determined by the intrinsic orientation of a reference ob-
jed, we could order geographic places in terms of the cadinal diredions or order placesin
an organism’ s body along axes determined by the body.

6 Conclusion

18 |t might be useful to introduce place-relative versions of some of the relations above. For example,
while the doors and windows of my apartment are shut, the space below my sofais a seded place But this
placeis not (like parts of the interior of my refrigerator) seded relative to the interior of my apartment.
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Other axiomatic theories of qualitative spatial relations, such as parthood and connection,
can befoundin[l, 2, 3,5, 6, 7, 8,9, 12]. In al of thiswork, the domains of the spatial theo-
ries include (and in [2, 3, 6, 9] are limited to) regions. However, the authors of these theo-
ries rarely say whether their regions are supposed to be dsolute places, relative places, or
something else. The distinction is important -- absolute places cannot be identified over time
and thus are not used in practicd reasoning. One would expect theories intended for practi-
cal applications to deal explicitly with relative places. But in the work cited above, no formal
tools are provided for describing changing relations among places and there is no indication
of how we might, within the theory, characterize places (as having a ertain reference object
or asfilled, free, open, etc) in terms of their relationsto objeds.

The goal of this paper has been to construct a theory for describing spatid relations be-
tween objeds and relative places. Basc Place Theory allows us to identify the reference ob-
jed of aplace, to relate places in dfferent location-complexes, and to describe some impor-
tant non-geometric properties of a place Basic PlaceTheory can be refined, for example, by
the addition of axioms requiring that al movement is continuous. It can also be expanded,
for example, through the addition of a mnvex hull operator or orientation relations deter-
mined by the intrinsic orientations of reference objeds.
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Figure 1: Two-dimensional views of the location-complexes < %}3, Id, 1>, <B%0, f, 1>,

and <2030, g, 1> and objects <1ooo, f, 0> and <1030, g, 0> at ti
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