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1. Introduction 
 

An object is exactly located at (or, more briefly, located at) a spacetime region just 
in case the object has (at a time) the same shape, size, and position as the region.1 In 
particular, I assume that an object has the same dimension as any spacetime region at 
which it is located. A number of philosophers have claimed that material objects are 
exactly located at more than one region of spacetime. See for example [van Inwagen, 
1990], [Hudson, 2001], [Sattig, 2006], and [Gibson and Pooley, 2006]. Philosophers who, 
though perhaps not advocating multi-location, at least treat it as a viable option include 
[Sider, 2001, 3.4], [Beebee and Rush, 2003], [Bittner and Donnelly, 2004], [McDaniel, 
2004], [Crisp and Smith, 2005], [Gilmore, 2006], [Balashov, 2008], and [Hawthorne, 
2008].2 While some philosophers ([Barker and Dowe, 2003, 2005], [Parsons, 2007]) 
claim not to understand multi-location, I take it that enough has been said to address their 
concerns elsewhere (particularly in [Beebee and Rush, 2003], [McDaniel, 2003], and 
[Sattig, 2006]) and proceed under the assumption that spatiotemporal multi-location 
counts at least as a serious possibility. 

Multi-location raises the question of how location interacts with parthood. Let us say 
that an object is ‘uniquely located’ just in case it has exactly one spatiotemporal location 
(and thus is not multiply located).  Over suitably delineated domains of uniquely located 
material objects3, the logical link between location and parthood should be 

                                                 
1 In this paper, I use ‘is (exactly) located at’ to mean what [Sattig, 2006] means by ‘occupies’, what 
[Hudson, 2001] and [Gilmore, 2006] mean by ‘exactly occupies’, and what [Hawthorne, 2008, p. 275-6] 
means by ‘is wholly located at’. I have borrowed my gloss on ‘exact location’ from Gilmore’s explanation 
of ‘exact occupation’: “This relation... is said to hold between a thing and a region just in case ... the thing 
exactly fits into the region, where this is meant to guarantee that the thing and the region have precisely the 
same shape, size, and position”[2006, p. 200].  
2 Most of the philosophers listed here treat multi-location as the default position for three-dimensionalists  
(or, endurantists) who are spacetime substantivalists. Given spacetime substantivalism, material objects 
must be located at spatiotemporal regions. If objects are three-dimensional, their locations must be three-
dimensional. But then a persisting three-dimensional object has multiple locations in spacetime, since, 
taken together, its locations cut a four-dimensional path across multiple times. 
3 The ‘suitably delineated’ qualification is intended to accommodate philosophers such as [Doepke, 1982] 
or [Lowe, 2003] who think that material objects x and y may be such that at least one of x’s locations is 
included in one of y’s locations even though x is never (or, at no region) a part of y. For example [Lowe, 
2003] claims that a statue and its structural parts (its arms, legs, etc) are never parts of the lump of bronze 
constituting the statue even though the lump of bronze and the statue are temporarily co-located. [Doepke, 
1982] makes similar claims concerning a ship and the wood constituting it.  I have a hard time making 
sense of this view. But I take it that even philosophers of the same mind as Doepke or Lowe would agree 
that on certain restricted object domains--e.g., domains limited to just artifacts or to just lumps of stuff--
parthood is completely determined by inclusion relations among objects’ locations.  
     See also [Saucedo, forthcoming] which assumes that parthood and location are wholly distinct relations 
and argues that it is possible that i) there are material objects x and y such that x’s location is included in y’s 
location but x is not (ever) part of y; and ii) there are material objects x and y such that x is part of y but x’s 
location is not included in y’s location. I have a hard time seeing why anyone would think that parthood 
and location are wholly distinct relations. (In particular, I cannot imagine why anyone would think that (ii) 
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straightforward: object x is part of object y if and only if x’s unique location is included in 
y’s unique location. But if material objects are multiply located, things are more 
complicated. For then some, but not all, of x’s locations may be included in some, but not 
all, of y’s locations. We would in this case appear to have multiple possibilities for 
aligning a binary parthood relation with the location relation. 

In fact, though, the most common move among proponents of multi-location is to 
abandon a simple binary parthood relation in favor of a more complex parthood relation 
that somehow narrows down the range of locations under consideration. [Hudson, 2001] 
[Bittner and Donnelly, 2004], [McDaniel, 2004], [Crisp and Smith, 2005], [Gilmore, 
2006], and [Balashov, 2008] all make use of ternary region-relative parthood relations. 
These relations are intended to capture a sense in which x may be part of y at some 
spacetime regions but not at other spacetime regions. However, although most authors 
leave the details of their region-relative parthood relations underspecified, it is clear 
enough from what is said that the different authors assume different region-relative 
parthood relations. For example, one obvious source of variation among these relations is 
in different restrictions on the regions to which parthood is relativized. [Balashov, 2008] 
restricts the region argument of his parthood relation to achronal regions—regions which 
exclude spacetime points that are absolutely temporally separated. By contrast, 
[McDaniel, 2004] suggests that the region argument of his parthood relation should range 
only over maximally continuous three-dimensional slices of spacetime.4 And neither 
[Hudson, 2001] nor [Crisp and Smith, 2005] place any global restrictions at all on the 
range of the region argument for their parthood relations. 

This paper is an attempt to work out in detail some of the more promising options for 
interpreting and axiomatizing region-relative parthood relations. A particular objective of 
this paper is to evaluate different region-relative parthood relations in terms of, on the 
one hand, classical mereological principles and, on the other hand, ordinary assumptions 
about parthood. Here, we should not expect an exact match on either count. Whereas 
classical mereology assumes a binary parthood relation, all region-relative parthood 
relations considered in this paper are ternary. Still, we will see that the region-relative 
parthood relations considered below satisfy ternary counterparts of some classical 
principles. Also, although parthood is never explicitly relativized to spacetime regions in 
ordinary discourse, we do often relativize parthood to times. It is not unreasonable to 
expect that the ordinary time-indexed approach to parthood can be cashed out in the 
spacetime context in terms of a relation that links parthood to special regions—frame-
relative time-slices or other achronal regions—that roughly correspond to ordinary times. 

My line of approach in this paper is to first introduce specific parthood relations over 
classes of mathematical models and to then assess the properties of these relations, using 
classical mereology as a reference point.  Because of the complexity of this task, I will, 
perhaps somewhat arbitrarily, narrow the scope of this study in the following ways. First, 
I assume that parthood relations among material objects are, in one way or another, 

                                                 
is possible.) But even Saucedo concedes that some possible worlds (including perhaps the actual world) are 
such that: for any objects x and y, x is part of y if and only if x’s location is included in y’s location. 
4 Note that whereas an achronal region could include just one point, a three-dimensional slice of spacetime 
must include a three-dimensional space. On the other hand, there are maximally continuous three-
dimensional slices of spacetime that include absolutely temporally separated spacetime points and thus are 
not achronal. 



 3 

entirely determined by inclusion relations among their locations. Without this 
assumption—and in the absence of any general principle detailing what exactly, besides 
some form of location inclusion, is required for parthood relations to hold—we could at 
best attribute only extremely weak logical properties to the relations introduced here.5, 6 
Second, for the most part, I will say little about summation (or, fusion) relations in this 
paper.  In particular, I will not consider any version of a universal summation principle 
guaranteeing the existence of arbitrary sums of objects. I limit my discussion of 
summation relations because, though important, they bring along with them cumbersome 
baggage that would require too much digression from the main thread of this paper.7 
(However, I do note below some cases in which the introduction of an appropriate 
summation relation presents special difficulties for the parthood relation under 
consideration.) Third, although I allow (but do not require) that objects have multiple 
spacetime locations, I will throughout this paper place certain other restrictions on the 
way objects may be located in spacetime. Most controversially, except where noted 
otherwise, I assume that no more than one object is exactly located at any spacetime 
region. This and two other (more modest) restrictions are designed to lead to a fairly 
close match between the region-relative parthood relations and ternary counterparts of 
classical mereological principles. Though there is no reason to assume that any 
acceptable parthood relation must satisfy all classical mereological principles, many 
philosophers do assume that parthood behaves something like the classical mereological 
relation. It is thus worthwhile to see how close the region-relative parthood relations can 
come to supporting a classical mereological structure. But it is easy to see how, for those 
who want it, material coincidence can be accommodated (by discarding the prohibition 
on co-location) with only a localized adjustment in the formal axiomatization. I will 
discuss this alternative briefly in Section 4. 

The remainder of this paper proceeds as follows. In Section 2, I introduce a general 
class of location models (L Models) as well as the four classical mereological principles 
that I use as a starting point for assessing the parthood relations. In Section 3, I consider 
possibilities for binary parthood relations on L Models. In Section 4, I suggest two 
alternatives for a (time-)slice-relative parthood relation. In Section 5, I focus on the very 
different region-relative parthood relation proposed in [Hudson, 2001]. 

 
2. Location, Regional Inclusion, and Classical Mereological Principles  

                                                 
5 This point is easy to illustrate in the simple case of unique location. Even if all objects had unique 
locations, we still could not infer, e.g., that parthood is transitive from just the assumption that, whenever x 
is part of y, x’s unique location is included in y’s unique location. If, on the other hand, we assume that 
location-inclusion is necessary and sufficient for parthood, then the transitivity of parthood follows 
immediately from the transitivity of the inclusion relation over the domain of spacetime regions.  
6 As stated in Note 3, I assume that even philosophers like Doepke and Lowe, who think that something 
more than location-inclusion is required for parthood, will allow that on suitably restricted domains of 
objects, parthood is entirely determined by inclusion relations among locations. If this is right, then these 
philosophers can take the results of this paper as valid at least on these proper sub-domains of material 
objects. (And [Saucedo, forthcoming] can take my results as valid at least in some possible worlds.) Even 
with these restrictions, the considerations raised in this paper still establish that there are important 
differences between the various region-relative relations proposed in recent literature.  
7 Baggage in the form of: i) additional machinery in the formal mereology for quantifying over sets, 
plurals, or something else along these lines and ii) controversy over universal summation principles.  
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I initially assume little more than that spacetime is a non-empty set of points, that 

regions are the non-empty subsets of spacetime, that every object is (exactly) located at 
some—but possibly at more than one—region, and that there is no region at which two 
objects are located. These assumptions are represented in the most general class of 
models introduced in this paper—Location (L) Models. L Models are ordered quadruples 
<ST, R, OB, L> where8 

1. ST (spacetime) is any non-empty set of points;  
2. R (the region domain) is the set of non-empty subsets of ST (i.e. R 

=℘(ST)\{∅})9; 
3. OB (the object domain) is any non-empty set disjoint from R; 
4. L (the location relation) is any set of ordered pairs <x, r> with x ∈ OB and r ∈ R 

such that  
i) for each x ∈ OB, <x, r> ∈ L for at least one r ∈ R (i.e., OB is the domain of 
L);  
ii) if <x, r>, <y, r> ∈ L, then x = y;  
iii) if  <x, rx >, <y, ry > ∈ L and rx\ry ≠ ∅, then there is some <z, rz> ∈ L such that 
rz ⊆ rx\ry;  
iv) if <x, rx >, <y, ry > ∈ L and rx ∩ ry ≠ ∅, then there is some <z, rz> ∈ L such 
that rz ⊆ rx ∩ ry . 

 
I will say that region r ‘is a location’ if and only if some object is located at r. Thus 

the class of all locations in an L Model <ST, R, OB, L > is the subclass of R which is the 
range of L.10 Conditions (4.iii) and (4.iv) ensure that there are enough locations to 
‘represent’ non-empty differences between locations and non-empty intersections of 
locations. Condition (4.iii) tells us that if the difference of location ry in location rx is non-
empty, then there is some location rz lying within this difference. Condition (4.iv) 
requires that if the intersection of location rx and location ry is non-empty, then some 
location rz lies within this intersection. Conditions (4.iii) and (4.iv) will, for suitably 
defined parthood relations, guarantee that the mereological structure of the object domain 
at least weakly corresponds to the mereological structure of the region domain—objects 

                                                 
8 I adopt the following notational conventions throughout this paper. I use UPPER CASE TIMES BOLD 
for the names of distinguished classes in the models (including relations—these are represented as sets of 
ordered pairs). I use lower case times italics for variables ranging over members of these classes. The 
mereological principles considered in this paper are presented in standard first-order predicate logic with 
identity. In the formal language, I use BOLD UPPER CASE ARIEL for predicates and lower case ariel 
for variables. The reader is strongly advised not to confuse the predicates of the formal language with the 
relations of the models—I will consider different model theoretic relations as alternative interpretations for 
the same predicate in the formal language.  
9 For any set X, ℘(X) is the power set of X; i.e., ℘(X) = {Z : Z ⊆ X}. For any sets X and Y, X\Y is the 
difference of Y in X; i.e., X\Y = {x : x ∈ X and x ∉ Y}. Thus, the region domain,℘(ST)\{∅}, is the set of 
all subsets of ST except, ∅ (the sole member of {∅}). 
10 Warning: I am using ‘location’ as a convenient technical term for a certain class of spatiotemporal 
regions—those spatiotemporal regions at which some object is exactly located. This usage is not intended 
to match the more common use of the term ‘location’ to pick out certain kinds of spatial regions through 
which objects might move.   
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need not have so many parts as their locations have subregions, but an object must have 
some part wherever its location is divided by intersecting locations.11 

Notice that L Models are fairly general in that they leave open not only the specific 
geometric structure of spacetime, but also several important questions concerning the 
ways in which objects are distributed to locations in spacetime. As intended, L Models 
allow, but do not require, that objects are multi-located. In other words, an object x may 
stand in the location relation L to multiple regions. Or, x may stand in L to exactly one 
region. Further, in cases where an object has multiple locations, L Models place no 
restrictions on the spatiotemporal relations holding between these locations. For example, 
there is no requirement that all of an object’s locations overlap as [Hudson, 2001] 
assumes.12 Neither do L Models require that an object’s locations are pairwise discrete, as 
they would be if they were distributed to discrete time-slices as is assumed in [Sattig, 
2006, 2.1]. Also, there is no requirement that an object’s locations are additive in the 
sense that x is located at both r and r* only if x is also located at r ∪ r*.13  

Following [Gilmore, 2006] and [Balashov, 2008], I use the location relation to define 
the path of an object x as that region which is the union of x’s locations. 

 
PATH(x) = ∪<x, r> ∈ L (r). 

 
Notice that since locations are not required to be additive, PATH(x) need not be one of 
x’s locations (or, for that matter, the location of any object).  

 
In the following sections, I introduce different parthood relations into L Models or 

extensions of L Models and use formal mereological principles as one way of 
highlighting important distinctions between these relations. The most familiar 
mereological principles are those used to axiomatize classical mereology. Though we will 
need more complex principles to evaluate the ternary region-relative relations, I take the 
following four formal principles for the binary parthood predicate P as a starting point 
from which to arrive at plausible ternary principles.14  
                                                 
11 Weaker or stronger options for regulating the distribution of locations are possible. Philosophers who 
think that objects are located only at three- (or four-) dimensional regions may opt for weaker versions of 
(4.iii)-(4.iv), requiring only that some object is located within all three- (or four-) dimensional intersections 
or differences of locations. At the other extreme, we might require that every subregion of a location is a 
location. Such a requirement would entail that all non-empty intersections of locations and all non-empty 
differences between locations are themselves locations (as are all of their proper subregions). For the most 
part, the particular choice of weaker or stronger versions of (4.iii) and (4.iv) is not relevant to our concerns.  
12 Regions r1 and r2 overlap if and only if r1 and r2 share some subregion. (Equivalently, r1 and r2 overlap 
if and only if r1 ∩ r2 ≠ ∅.) Regions r1 and r2  are discrete if and only if r1 and r2 do not overlap.  (And r1 
and r2 fail to overlap if and only if r1 ∩ r2 = ∅.) 
13 The additivity assumption plays a key role in [Barker and Dowe, 2003], where it is used to derive a 
contradiction from the claim that objects persist by having multiple three-dimensional locations in 
spacetime. The additivity assumption is explicitly rejected in [Sattig, 2006], [Gilmore, 2006], and [Gilmore, 
2007]. 
14 In fact, by a ‘classical mereology’ most philosophers mean a rather stronger theory which, in addition to 
counterparts of (CM1)-(CM4), also includes a universal summation axiom requiring that every collection 
of individuals has a mereological sum (or, fusion). (See [Simons, 1987] for a detailed comparison of 
different mereologies and a discussion of universal summation axioms.) As stated in the introduction, I do 
not consider universal summation principles in this paper. Also, I do not introduce proper parthood, 
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(CM1) Pxx   (every individual is part of itself) 
(CM2) Pxy & Pyz → Pxz (if x is part of y and y is part of z, then x is part of z) 
(CM3) ∼Pxy → ∃z (Pzx & ∼∃w(Pwz & Pwy)) (if x is not part of y, then x has a part that 
shares no parts with y) 
(CM4) Pxy & Pyx → x = y (if x is part of y and y is part of x, then x and y are identical) 
 

I will call the theory axiomatized by (CM1)-(CM4) in standard first-order predicate 
logic ‘CM’. Classical mereologies generally introduce several different defined 
mereological predicates. Within CM, I introduce, besides the primitive P, only the 
overlap predicate O. Definition (DO) is standard. 
 
(DO) Oxy (x overlaps y)  =def ∃z(Pzx & Pzy) (some individual is part of both x and y) 
 
Notice that supplementation axiom (CM3) is equivalent to the following more compact 
formula: 
 
∼Pxy → ∃z (Pzx & ∼Ozy) (if x is not part of y, then x has a part that does not overlap y). 
 

We already have one suitable interpretation for CM’s primitive P. It is easy to verify 
that when P is interpreted as the set inclusion relation ⊆ on the region domain R (i.e., as 
the set of ordered pairs ⊆R ={<r, r*> : r, r* ∈ R and r ⊆ r*}), each of (CM1)-(CM4) is 
satisfied.15 On this interpretation of P, the overlap predicate O is interpreted as the 
relation that holds between r, r* ∈ R if and only if r and r* overlap. More precisely, O is 
interpreted as OR ={<r, r*>: r, r* ∈ R and r ∩ r* ≠ ∅}. 

It should come as no surprise that the inclusion relation on R satisfies the axioms of 
classical mereology. Classical mereologies were designed with the set theoretic inclusion 
relation (or, what for our purposes amounts to the same thing, the partial ordering of a 
Boolean algebra) as an intended model theoretic interpretation for the parthood predicate 
(see, e.g., [Simons, 1987], [Tarski, 1956]). But unless objects can be put in 
correspondence with regions (or, at least, with the subclass of regions that includes all 
locations) in a way that exactly aligns a candidate parthood relation on the object domain 
with the inclusion relation on locations, it is not obvious that there is an appropriate 
parthood relation for objects that satisfies (CM1)-(CM4). And multi-location makes any 
such a correspondence between objects and their locations particularly unlikely. For, 
given multi-location, the way in which objects are arranged in spacetime must be 
radically different from the way in which regions are arranged in spacetime—regions 
definitely do not have multiple positions in spacetime. Thus, given multi-location, we 
cannot assume that there is a binary parthood relation on objects which ‘mirrors’ the 
                                                 
differences, or intersections into CM. For these reasons, CM should be considered a weak version of 
classical mereology. It is strong enough, however, to lead us to interesting comparisons between the 
parthood relations considered in this paper.  
15 The only one of CM’s axioms whose verification on this interpretation is not entirely trivial is (CM3). 
To see that (CM3) is satisfied, suppose that r, r*∈ R and r ⊄ r*. Then there is some s ∈ ST such that s ∈ r 
and s ∉ r*. {s} ⊆ r and (since ∅ is not a member of R) there is no region which is included in both {s} and 
r* (i.e., {s} and r* do not overlap). 
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inclusion relation on locations. We will see in the next section that none of most 
reasonable potential candidates for a binary parthood relation on the object domains of L 
Models satisfies (CM1)-(CM4). So multi-location seems to require some kind of revision 
of classical mereological principles.16 The ternary region-relative parthood relations that 
are the focus of this paper retain much of the strength of a classical binary relation by 
restricting parthood ascriptions to regions. 

 
3.  Binary Parthood Relations for Object Domains 
 

Just what is it about multi-location that drives us away from a more traditional binary 
parthood relation and motivates us to look for appropriate ways of relativizing parthood 
to times or to spacetime regions? In fact, even if we assume that objects have multiple 
locations in spacetime, there are a number of different ways we might reasonably attempt 
to introduce binary parthood relations over object domains. Here are the four most 
promising possibilities. 
 
(Occasional Parthood) <x, y> ∈ POC if and only if there are regions rx and ry such that 
<x, rx>, <y, ry> ∈ L and rx ⊆ ry. 
(Bound Parthood) <x, y> ∈ PBD if and only if, for any region rx such that <x, rx> ∈ L, 
there is some region ry such that <y, ry> ∈ L and rx ⊆ ry. 
(Constant Parthood) <x, y> ∈ PCT if and only if, for any region ry such that <y, ry> ∈ L, 
there is some region rx such that <x, rx> ∈ L and rx ⊆ ry. 
(Path Parthood) <x, y> ∈ PPT if and only if PATH(x) ⊆ PATH(y). 

 
The differences between these four binary parthood relations are most easily 

illustrated if we assume for the moment that spacetime is partitioned by a unique 
collection of instantaneous time-slices and that each ordinary object—each person, table, 
car, and so on—has a unique location within each time-slice through which it persists.17 
On this view, for example, Jane Austen (JA) is located only at subregions of three-
                                                 
16 A caveat: The fact that the binary relations considered in the next section fail to satisfy (CM1)-(CM4) 
over L Models depends on the restrictions i) – iv) on the location relation. As we will see at the end of the 
next section, one obvious way of forcing the binary relations to satisfy (CM1)-(CM4) is to eliminate multi-
location by requiring that each object stand in L to no more than one region. But, instead of prohibiting 
multi-location, we could reformulate conditions ii)-iv) so that that they are stated in terms of objects’ paths 
instead of their locations. I think such reformulated conditions seem less natural, but are not obviously 
untenable. With this change in the structure of L Models, the fourth of the binary relations considered in the 
next section, PPT (path parthood), would satisfy each of (CM1)-(CM4) even on models in which objects 
have multiple locations. But, even so, the path parthood relation would suffer the same inadequacy as the 
standard four-dimensionalist binary parthood relation—it does not preserve common-sense assumptions 
about which parts objects have. Thus, even if by introducing more complex restrictions on the way objects 
are located in spacetime, we can come up with a binary relation for multiply located domains which 
satisfies classical principles, we still have reasons (the same reasons four-dimensionalists have) for finding 
an alternative parthood relation that better fits common sense. 
17 Something like this view of objects’ locations in spacetime is presented in [van Inwagen, 1990] and in 
[Sattig, 2006, 2.1]. But whereas [van Inwagen, 1990] leaves open (but does not advocate) the possibility 
that an object is located both at subregions of instantaneous time-slices and at its four-dimensional path, I 
assume in these examples that ordinary objects are located only at three-dimensional subregions of 
instantaneous time-slices. 
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dimensional time-slices and has a unique three-dimensional location within each 
instantaneous time-slice between 1775 and 1817.  

An occasional part of JA is any object having at least one location included within 
one or more of JA’s locations. For example, Jane’s teeth, hair, cells, head, and hands are 
all occasional parts of JA.  

To be not just an occasional part of JA, but also a bound part of JA, an object cannot 
have any location that is not included in one of JA’s locations. This condition is not 
satisfied by objects, such as JA’s head, hands, nose, and eyes, that we ordinarily think of 
as JA’s most salient parts. These objects all, however briefly, survive JA’s death. But 
some cells are bound parts of JA. For example, any red blood cell that remains within JA 
throughout its short life is a bound part of JA. (However, cells that survive removal from 
JA are not bound parts of JA.) 

On the other hand, JA’s head, hands, nose, and eyes are constant parts of JA. A 
constant part of JA has at least one location within each of JA’s locations and JA 
(fortunately) retained her head, hands, nose, and eyes throughout her life. By contrast, 
most cells did not remain with JA for all of her 41 years and thus are not constant parts of 
JA. Similarly, none of JA’s teeth or hairs is a constant part of JA. Nor are any of the 
molecules and atoms that passed in and out of JA during her lifetime. 

A path part of JA is any object whose path is included in JA’s path. It is easy to see 
that any bound part of JA must also be a path part of JA. Moreover, if ordinary objects 
such as hands, cells, and so on, are located only at disjoint three-dimensional subregions 
of time-slices (as we for the moment assume they are), then any one of these objects will 
be a path part of JA if and only if it is a bound part of JA (since in this case its path is 
included in JA’s path if and only if, within each time-slice through which it persists, its 
location is included in JA’s location). To see that path parthood need not always imply 
bound parthood (and thus that path parthood is strictly weaker than bound parthood), 
imagine that, besides objects located at multiple three-dimensional regions, there are 
other objects—call them ‘events’—each of which is located at a unique four-dimensional 
region. Then an event—a particular clenching of one of JA’s hands or a blinking of her 
eyes—may be a path part of JA even though it cannot be a bound part of JA, or even an 
occasional part of JA, since its four-dimensional location is not included in any of JA’s 
three-dimensional locations. 

 
One immediate dilemma in attempting to introduce a binary parthood relation over 

the object domains of L Models is that no one of these four binary relations clearly 
distinguishes itself as the parthood relation. There is no obvious reason for, say, 
preferring constant parthood over the three other relations.  

Further, taken individually, each of POC, PBD, PCT, and PPT has shortcomings that 
should motivate us to look for an alternative treatment of parthood (even if we concede, 
as I think we should, that each of the four binary relations is useful on its own terms). The 
most obvious problem with PBD, PCT, and PPT is that, at least on the three-dimensionalist 
interpretation adopted for the Jane Austen example, none of these relations preserve 
uncontroversial common-sense assumptions about the parts of objects like JA. We saw 
this above--Jane’s head does not stand in PBD or in PPT to JA, most of Jane’s cells do not 
stand in PCT to JA, and so on. Less obviously, POC also fails to match ordinary usage in 
that it provides no mechanism for specifying the different times at which objects have 
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specific parts. Objects that never comprise JA at the same time—her baby teeth and a 
mole that appears in her fortieth year—all count in the same way as occasional parts of 
JA. In ordinary usage, we can distinguish these objects as parts of JA at different times.  

A different sort of issue with POC, PBD, PCT, and PPT is that each of these relations is 
relatively weak, with POC (perhaps the least problematic from the point of view of 
common sense) being the weakest of the bunch. I take it that this is a separate concern 
from the failure of these relations to preserve intuitive assumptions about what parts 
objects have. In non-philosophical contexts, parthood relations are not usually put to 
work in complicated reasoning or organizational tasks. And I cannot see that non-
philosophers have intuitions about what logical properties a parthood relation is supposed 
to have. But many philosophers do use parthood relations to introduce structure into 
object domains.  Temporal parts, mereological sums (or fusions), and other key players in 
current philosophical debates are typically defined in terms of a parthood relation.18 
Moreover, philosophers do often use the assumption that mereological relations have 
certain fairly strong logical properties—in particular, that parthood is transitive and 
satisfies some version of a supplementation principle—to support controversial claims.19 
It would be an unfortunate thing for these philosophers if the only available parthood 
relation turned out to be much too weak to support interesting reasoning about the way 
objects are structured.  

I will try to make this point clearer by using the weakest of our binary relations as an 
example. Of CM’s four axioms, POC satisfies only (CM1) over all L Models—the 
occasional parthood relation is reflexive and not much else. In particular, POC is not 
transitive. For example (recurring to our three-dimensionalist picture of JA), a certain 
protein molecule may be an occasional part of a blood cell and the blood cell may, in 
turn, be an occasional part of JA, even though the protein molecule is not an occasional 
part of JA. This would be so if the blood cell acquired the protein molecule only after 
leaving JA (while it was, say, lying in a vial in her doctor’s laboratory). To see that POC 
does not generally satisfy the supplementation axiom, (CM3), imagine that a certain 
almond is never located within JA. But, after the almond is destroyed by being smashed 
into a marzipan paste, all of its component molecules are incorporated into JA’s body.20 
In this case, the almond is not an occasional part of JA, but all of its occasional parts 
share occasional parts with JA (so, substituting into (CM3), we get a conditional with a 
true antecedent and a false consequent). 

Because it is itself so very weak, the occasional parthood relation yields an 
extremely flimsy overlap relation. For x and y to overlap in the POC way, it is sufficient 
for some object z to be located within one of x’s locations and also within one of y’s 
locations. But z does not have to be located in the intersection of any location of x with a 
location of y. Thus, x and y may overlap in the POC sense even if all of their locations are 

                                                 
18 Temporal parthood relations are defined in terms of mereological relations in, e.g., [Sider, 2001, Ch 3]. 
[Sider, 2001] also includes mereological definitions of summation relations (as does, e.g., [Simons, 1987]). 
19 Recent examples of assumptions about the logical properties of (binary or ternary) parthood at work in 
an argument are found in: [Sider, 2001, p. 65], [Crisp and Smith, 2005, p. 335], and [Olson, 2006, p. 742]. 
In each of these cases it is a variant of the classical supplementation principle, (CM3), which is used as a 
premise in an argument. 
20 Let’s avoid complications by assuming that the almond never loses molecules or other microscopic 
parts. If necessary, it can be a very short-lived almond. 
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disjoint. In practical terms, JA may POC-overlap with a man she has never met if just one 
atom is at one time located in her body and later incorporated into his body. Another 
weakness in POC-overlap is that it is not transferred from parts to wholes as is the overlap 
relation of classical mereology. More precisely, z may POC-overlap an occasional part, x, 
of y even though z does not POC-overlap y. For example, JA’s red blood cell in the 
laboratory vial POC-overlaps a protein molecule which (we may presume) does not POC-
overlap JA. 

What kind of a summation relation would we have in such a murky mereology? 
Using plural quantification, the standard definition of (atemporal) summation runs 
something like this: 

 
x is a sum of the ys =def each of the ys is part of x and any object that is part of x 

overlaps at least one of the ys. 
 

Plugging the POC relations into this definition, we end up with sums that need not extend 
over the entirety of their summands. In particular, x may be a POC-sum of the ys even 
though some (or even all) of the ys have POC-parts that are not also POC-parts of x. For 
example, JA is a POC-sum of all of the molecules that ever make up her body. But any of 
these molecules may have POC-parts that are not POC-parts of JA—this could be so if, 
say, a particular water molecule is at one time incorporated in JA and acquires a new 
electron after leaving JA. Also, not only may one plurality have two or more POC-sums 
(so that, in general, there is no such thing as the POC-sum of a given plurality), but the 
different POC-sums of a fixed plurality need not even coincide. In fact, a given plurality 
may have POC-sums whose spacetime paths are completely disjoint. Suppose, for 
example, I build a shed from a bunch of sticks and later dismantle the shed to build a 
fence from the same sticks. Then the shed is a POC-sum of the sticks and the fence is also 
a POC-sum of the sticks, even though the shed and the fence are never in this world at the 
same time.  

And there is worse still. Nothing in our very weak mereology prevents a whole from 
being a POC-sum of just one of its proper POC-parts, where a proper POC-part of x is any 
occasional part of x other than x itself. Suppose there is some organism x which is so 
constructed that every microscopic particle ever entering its body is incorporated at some 
time into a special organ designed to arrange particles into a suitable form. (I have no 
idea whether there actually is such an organism. But surely it is possible.) Let z be x’s 
‘rearrangement’ organ. Then x is a POC-sum of the plurality consisting of just z—z is an 
occasional part of x and z POC-overlaps every occasional part of x.21 But this is really odd. 
Summands are supposed to, in some sense, make up all of the object to which they sum. 
But z is just one organ within x. We may assume that x includes other organs which are 
spatially separated from z. Insofar as z does not (ever) extend over these other organs, z 
does not seem to make up all of x. 

I hope the discussion above suffices to convince readers that, if such a weak relation 
as POC were what philosophers refer to when they make claims about parthood, overlap, 
                                                 
21 To see that z POC-overlaps every occasional part of x, suppose that y is an object which is at some time 
included within x. Then, while within x, y is made up of particles within x. By assumption, each of these 
particles is an occasional part of z (since each is located within z at some time). But then z and y POC-
overlap—each of these particles is an occasional part of both z and y. 
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summation, and so on, then much of what they say would be false or confused. We 
should hope that there is a reasonable parthood relation which is stronger than POC. Now, 
each of PBD, PCT, and PPT is slightly stronger than POC. But not much stronger. Given our 
restrictions on L Models, each of PBD, PCT, and PPT is (unlike POC) transitive. But 
besides being reflexive and transitive, I cannot see that PBD, PCT, and PPT have any other 
useful properties. In particular, none of these relations satisfies anything like CM’s 
supplementation principle, (CM3). And none satisfies the antisymmetry principle 
(CM4).22  Also, importantly, like POC, each of PBD, PCT, and PPT generates odd overlap 
and summation relations. For example, given that a certain stick is a constant part of both 
my shed and the fence that I built after dismantling the shed, the fence and the shed 
would PCT-overlap even though these two objects are never in the world at the same time.  

But even if PBD, PCT, or PPT had nicer logical properties, they would still conflict 
with important intuitive assumptions about parthood (that JA’s head and hands are part of 
JA) in the ways noted above. It is thus worthwhile investigating region-relative parthood 
relations in the hopes that some such alternative to the binary parthood relations will do 
better at preserving intuitive assumptions about parthood while maintaining a structural 
power comparable to that of classical mereology. 

 
Before proceeding to the investigation of region-relative parthood relations, it is 

worth noting that two of the major obstacles in the way of binary parthood—that no one 
binary relation distinguishes itself as the parthood relation and that the most obvious 
candidate relations have weak logical properties—disappear if multi-location is 
eliminated. I think that this helps account for the fact that nearly all four-dimensionalists 
(at least among those who deny multi-location) assume that parthood is fundamentally a 
binary relation.  

We can see how unique location makes a crucial difference in some of the issues 
raised above if we consider, not all L Models, but only those in which there is no multi-
location. A Unique Location (UL) Model is an L Model in which every object has a 
unique location. In other words, the UL Models are L Models in which the relation L is a 
function from OB into R. In UL Models, each object is located only at its path. 

POC, PBD, PCT, and PPT collapse into a single relation on UL Models. This is 
because, for any objects x and y in a UL Model, the following are equivalent: i) one of x’s 
locations is included in one y’s locations; ii) all of x’s locations are included in all of y’s 

                                                 
22 Given suitable ontological assumptions, plausible additional restrictions on how objects are located in 
spacetime might render one (or all) of PBD, PCT, or PPT antisymmetric. But I cannot think of any reasonable 
additional restrictions that would force PBD or PCT to satisfy a supplementation principle. And the 
supplementation principle is really the more important of CM’s axioms. Philosophers who endorse material 
coincidence may want to reject antisymmetry anyway (as does as, e.g., Simons in [1987, p. 177-187]). But 
philosophers of many different persuasions have assumed that a parthood relation must satisfy some 
version of a supplementation principle (see note 19 above).  
     To see that, e.g., PCT does not satisfy (CM3), suppose that, at different times, the same small particles 
make up two oxygen atoms, O1 and O2. Suppose further that O1 and O2 have each of the particles as 
constant parts—they are each made of the same particles throughout their lives. But their lives are confined 
to separate times. So neither of O1 or O2 is a constant part of the other. But every constant part of O1 shares 
a constant part (one of the particles) with O2. (And, likewise, each of O2’s constant parts PCT-overlaps O1). 
Plugging into (CM3), we have a conditional with a true antecedent and a false consequence. 
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locations; iii) x’s path is included in y’s path. Let PUL be the binary relation defined on 
UL Models as follows: 

 
(Unique Location Parthood) <x, y> ∈ PUL if and only if PATH(x) ⊆ PATH(y).23 
 

It is easy to verify that PUL satisfies (CM1), (CM2), (CM3), and (CM4) over all UL 
Models.24 Thus, the only obvious candidate for a binary parthood relation on UL Models 
turns out to have nice logical properties (or, in any case, the logical properties that 
philosophers whose thinking about parthood has been guided by classical mereology 
would expect it to have). 

Moreover, PUL serves as the basis for a plausible overlap relation. Plugging into 
CM’s definition (DO), we get the relation OUL that holds between objects x and y in UL 
Models just in case some object stands in PUL to both x and y. It follows from Condition 
(4.iv) on L Models that <x, y> ∈ OUL if and only if x and y are located at overlapping 
spatiotemporal regions (i.e., if and only if PATH(x) ∩PATH(y) ≠ ∅). Thus, we avoid the 
ugly cases of ‘overlapping’ objects located in disjoint regions of spacetime (like JA and 
the man who inherited her atom) that plague the POC and PCT versions of overlap. 25 

However, PUL suffers from the same sorts of clashes with intuition as do PBD and 
PPT. For, if ordinary objects have unique locations in spacetime, then each ordinary 
object must be located at a four-dimensional region which extends exactly as long as that 
object persists. On this view, Jane Austen is located not at multiple three-dimensional 
regions (as assumed earlier), but at a single four-dimensional region which extends from 
December 1775 to July 1817. But in this four-dimensionalist picture, JA’s hands, head, 
teeth, and so on, do not stand in the PUL relation to JA, since their unique locations all 
extend somewhat beyond July 1817. 26 Also, many artifacts—bicycles, computers, 
tables—would, on this view, lack what we ordinarily take to be their most salient parts. 
For example, the wheels, frame, and gears of my bicycle all pre-date my bicycle. Thus, 
on the four-dimensionalist account, none of these objects have locations that are included 
in my bicycle’s location and, as a result, none stands in PUL to my bicycle. 

                                                 
23 Notice that <x, y> ∈ PUL if and only if: i) for some <x, rx>, <y, ry> ∈ L and rx ⊆ ry ; ii) for any <x, rx> ∈ 

L, there is some <y, ry> ∈ L such that rx ⊆ ry; or iii) for any <y, ry> ∈ L, there is some <x, rx> ∈ L such that 
rx ⊆ ry. Thus, if instead of introducing PUL along the lines of PPT we had followed the format for the 
definitions of POC, PBD, or PCT, we would have ended up with the same relation. 
24 To see that PUL satisfies the supplementation principle (CM3), suppose that x and y are objects in a UL 
Model and that <x, y> ∉ PUL. Then PATH(x) is not included in PATH(y). Since PATH(x) and PATH(y) 
are locations (the unique locations of x and y), it follows from condition (4.iii) on L Models that some 
object z is located within the difference PATH(x)/PATH(y).  Since z’s unique location (its path) lies within 
PATH(x), <z, x> ∈ PUL. Also, since no object can have a path that is included in both PATH(x)/PATH(y) 
and PATH(y), no object can stand in PUL to both z and y. Thus, <x, y> ∉ PUL implies that some object 
standing in PUL to x shares no PUL-parts with y. 
25 More good news: It is easy to see that a reasonable summation relation can be introduced in terms of PUL 
and that a universal summation principle is satisfied over the subclass of UL Models in which the union of 
any collection of locations is also a location. Thus PUL satisfies all of the axioms of the strongest version of 
classical mereology on the expected subclass of UL Models.  
26 Notice that the ordinary objects which are PUL-parts of JA on this four-dimensionalist account are just 
those objects which are PBD-parts and PPT-parts of JA on the three-dimensionalist multi-location account 
assumed at the beginning of this section. 
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This mismatch between the four-dimensionalist’s binary parthood relation and our 
ordinary assumptions about parthood is noted elsewhere (in, e.g., [Thomson, 1983], 
[Sider, 2001], [Sattig, 2006]). In response, four-dimensionalists have introduced 
supplementary ternary parthood relations—usually linking parthood to times through 
temporal parts—that are much closer to the ordinary notion of parthood. Thus, even 
though an advocate of unique location may adopt a binary parthood relation with useful 
logical properties, he still has an interest in finding an alternative parthood relation that 
better fits ordinary usage. At the end of the next section, I suggest one region-relative 
parthood relation—a generalization of the time-relative parthood relation of [Sider, 2001, 
p. 53]—which, under appropriate conditions, can serve this purpose for four-
dimensionalists. 
 
4. Slice-Relative Parthood Relations 
 

There are two general types of strategies for introducing region-relative parthood 
relations. The first sort of approach—the focus of the current section—is to restrict the 
region argument of the ternary parthood relation to the members of a special subclass of 
regions. Examples of this approach are found in: [Bittner and Donnelly, 2004], which 
restricts the region argument to absolute time-slices27; [McDaniel, 2004], which 
(tentatively) restricts the region argument to maximal three-dimensional slices of 
spacetime; and [Balashov, 2008], which restricts the region argument to achronal regions. 
The second strategy, which will be considered in Section 5, places no global restrictions 
on the sorts of regions at which objects may have parts. Examples of the second approach 
to region-relative parthood are found in [Hudson, 2001] and [Crisp and Smith, 2006].  

The first strategy assumes that there are special kinds of regions—I will call them 
‘slices’—within which objects have a limited number of locations. As we will see, ideally 
this should be no more than one location per object per slice. In the ideal case, 
relativizing parthood to a slice amounts to limiting the scope of parthood claims to 
regions of spacetime in which objects have unique locations. Here, we should expect that 
at a fixed slice the logical properties of slice-relative parthood relations more or less 
match those of the unique location parthood relation PUL. And the primary slice-relative 
parthood relation introduced below does indeed satisfy natural ternary counterparts of 
CM’s axioms.  

The primary slice-relative parthood relation considered in this section, PS-3D, 
assumes that all locations are included in some slice. If we take slices to be three-
dimensional regions roughly corresponding to times (e.g., frame-relative hyperplanes of 
simultaneity or other achronal regions), then PS-3D is viable only on the assumption that 
all objects are located at regions of no more than three dimensions. But I will also briefly 
consider an alternative slice-relative parthood relation, PS-4D, which is compatible with 
some versions of four-dimensionalism or with mixed ontologies that include both three- 
and four-dimensional objects. 

                                                 
27 In [Bittner and Donnelly, 2004], it is assumed that spacetime is the sum of a unique set of non-
overlapping (instantaneous) time-slices. As it stands, this approach does not accommodate relativistic 
treatments of spacetime. But it could easily be generalized to allow that any region consisting of those 
points which are simultaneous relative to any frame counts as a time-slice. This requires only that we drop 
the assumption that time-slices are pairwise discrete. 
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A Slice3D Model (S3D Model)28 is an ordered quintuple <ST, R, OB, L, S> where 

<ST, R, OB, L> is an L Model (satisfying conditions 1-4 on L Models) and where, in 
addition, the following condition is satisfied: 
 
5.   S (the set of slices) is a subset of R such that i) for any <x, r> ∈ L, there is some s ∈ 
S such that r ⊆ s; ii) for any x ∈ OB and s ∈ S, if < x, r >, < x, r* > ∈ L and r, r* ⊆ s, 
then r = r*.   
 
Condition 5 tells us that i) every location is included in some slice and ii) no object has 
more than one location within any given slice. 

The ternary slice-relative parthood relation PS-3D is defined over S3D Models as 
follows: 
 

<x, y, s> ∈ PS-3D if and only if s ∈ S and for some rx , ry ∈ R,                                                              
<x, rx >, < y, ry > ∈ L and rx ⊆ ry ⊆ s. 

 
In other words, x is part of y at slice s if and only if both x and y have locations within s 
and x’s unique location in s is included in y’s unique location in s.  

We can introduce additional slice-relative relations on S3D Models. The exists at 
relation ES-3D holds between an object and a slice just in case the object has a location 
within the slice.  

 
<x, s> ∈ ES-3D if and only if s ∈ S and for some r ∈ R, <x, r > ∈ L and r ⊆ s. 

 
The overlaps relation OS-3D holds between objects x and y at slice s if and only if 

both x and y exist at s and x’s unique location in s overlaps y’s unique location in s. 
 

<x, y, s> ∈ OS-3D if and only if s ∈ S and for some rx , ry ∈ R,                                                   
<x, rx >, < y, ry > ∈ L, rx , ry ⊆ s, and rx ∩ ry ≠ ∅. 

 
Though less common than formal treatments of binary parthood, axiomatizations of 

ternary parthood predicates have been proposed in several works including [Thomson, 
1983], [Sider, 2001], and [Bittner and Donnelly, 2004].29 SM (Slice Mereology) is 
                                                 
28 The indices ‘S-3D’ and ‘S-4D’ distinguish between the slice-relative parthood relation which is intended 
for a three-dimensionalist ontology and the slice-relative parthood relation which is intended for mixed or 
four-dimensionalist ontologies. The corresponding indices (‘3D’ and ‘4D’) distinguish between the 
different classes of models into which these parthood relations are introduced. However, nothing in the 
abstract conditions on S3D Models or S4D Models requires that slices are three-dimensional regions. (This 
should be obvious, since I do not in this paper introduce any device for distinguishing the dimension of a 
region. Within the models, I do not even assume that regions are the sorts of things that can have 
dimensions.) But, as I will emphasize below, in the sorts of S3D Models or S4D Models which offer plausible 
counterparts of ordinary temporalized parthood, the slices are roughly three-dimensional subregions of a 
four-dimensional spacetime. 
29 See also the Mereology of Continuants in [Simons, 1987, 5.2]. Instead of using a ternary parthood 
predicate, Simons introduces a multitude of binary parthood predicates, each of which is indexed to a 
distinct time. 
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similar to these mereologies, but is somewhat stronger in that it assumes a ternary version 
of CM’s antisymmetry axiom. We will see that PS-3D satisfies this principle over all S3D 
Models. This is not necessarily a good thing. Three-dimensionalists who endorse material 
coincidence (including [Thomson, 1983] and [Simons, 1987]) tend to reject the ternary 
version of the antisymmetry axiom and will find PS-3D too strong. I will say something 
later about how S3D Models can easily be modified to accommodate material coincidence. 
But it is worthwhile first seeing how close we can come to preserving the full power of 
CM in a slice-relative setting. 

 SM is developed in a standard sorted first-order predicate logic. Its domain of 
quantification is partitioned into two sorts: objects (over which the variables w, x, y, z 
range) and regions (over which the variables s, r range). All quantification in SM is 
restricted to a single sort. In the presentation below, quantifier restrictions are conveyed 
implicitly through the conventions on variable usage. SM’s only non-logical primitive is 
the ternary predicate P (parthood) which takes two object variables and one region 
variable as its arguments.30 Two additional predicates are defined in terms of P.  

 
(DSE)  Exs (x exists at s) =def Pxxs (x is part of itself at s) 

 
(DSO) Oxys (x overlaps y at s) =def ∃z (Pzxs & Pzys) (some object is part of both x and 
y at s) 
 
The following five axioms govern SM’s mereological predicates. 
 
(SM0) ∃s Exs  (every object exists at some region) 
 
(SM1) Pxys → Exs & Eys (if x is part of y at s, then both x and y exist at s) 
 
(SM2) Pxys & Pyzs → Pxzs (if x is part of y at s and y is part of z at s, then x is part of 
z at s) 
 
(SM3) Exs & ∼Pxys → ∃z(Pzxs & ∼Ozys) (if x exists at s and is not part of y at s, then 
some object is part of x at s but does not overlap y at s) 
 
(SM4) Pxys & Pyxs → x = y   (if x is part of y at s and y is part of x at s, then x and y 
are identical) 

 
When the ternary predicate P is interpreted in S3D Models as the ternary relation PS-

3D, the defined predicate E is interpreted as ES-3D
31

, the defined predicate O is interpreted 
as OS-3D

32, and SM’s axioms (SM0)-(SM4) are satisfied over all S3D Models33.  
                                                 
30 Of course SM’s ternary parthood predicate is not to be confused with CM’s binary parthood predicate. I 
might have introduced a new symbol for the ternary parthood predicate (and yet another symbol for SM’s 
ternary overlap predicate), but I do not see that this extra bit of notational complication is necessary 
because in what follows we will work within only one mereological theory at a time.  
31 To see this: 
(⇒) If  <x, s> ∈ ES-3D, then for some r ∈ R, <x, r> ∈ L and r ⊆ s. In this case, <x, r>, <x, r> ∈ L, r ⊆ r ⊆ 
s, and <x, x, s> ∈ PS-3D. (⇐) Conversely, if <x, x, s> ∈ PS-3D, then for some r, r* ∈ R, <x, r >, <x, r* > ∈ L, 
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The principles (SM0) – (SM4) are, taken together, natural ternary counterparts of the 
axioms of CM in that any parthood relation satisfying these axioms behaves as a classical 
binary parthood relation within a fixed slice. More precisely, let <OB, S, P> be any model 
for SM, where OB is the object domain, S is a subset of the region domain, and P is an 
interpretation of P over OB × OB × S satisfying (SM0)-(SM4). For example, given any 
S3D Model <ST, R, OB, L, S>, <OB, S, P> may be <OB, S, PS-3D >. Now let s be any 
member of S and define the binary relation Ps as: 

 
<x, y> ∈ Ps if and only if <x, y, s> ∈ P. 

 
Let OBs = {x ∈ OB: <x, x, s > ∈ P} (i.e., OBs is the subset of OB consisting of those 
objects existing at s). Then <OBs, Ps > is a model of CM. In particular, for any slice s in 
an S3D Model <ST, R, OB, L, S>, the binary slice-indexed parthood relation (PS-3D)s 
satisfies each of (CM1)-(CM4) over OBs.34 

To this extent, we should be satisfied that, relative to a fixed slice, PS-3D replicates 
the structure of classical mereology. But, as mentioned above, three-dimensionalists who 
favor material coincidence will think that SM is too strong. For, it is a theorem of SM 
that no two objects can be composed of the same parts at the same slice. Taking slices as 
time-slices, this would prohibit a statue from temporarily coinciding with, while 
remaining distinct from, the lump of clay from which it is formed. But pro-coincidence 
three-dimensionalists claim that the statue and lump are distinct objects which share a 
location and parts (at least their molecular parts) for as long as the lump constitutes the 
statue. 

 The issue here is, at bottom, with the structure of the models. Condition (4.ii)  on L 
Models and S3D Models prohibits distinct objects from standing in the exact location 
relation L to the same spacetime region. But proponents of material coincidence (at least 
those who endorse spacetime substantivalism) hold that distinct objects may be exactly 
located at the same spatio-temporal region. These philosophers will think that S3D Models 

                                                 
and r* ⊆ r ⊆ s. It follows immediately that <x, s> ∈ ES-3D. (⇔) Thus, <x, s> ∈ ES-3D if and only if <x, x, s> 
∈ PS-3D.  
32 To see this: 
(⇒) Suppose <x, y, s> ∈ OS-3D. Then x and y have, respectively, locations rx and ry in slice s where rx ∩ ry ≠ 
∅. By Condition (4.iv) on L Models, there is a location r ⊆ rx ∩ ry. Let z be the object that is located at r. 
Since r ⊆ rx ⊆ s and r ⊆ ry ⊆ s, <z, x, s> ∈ PS-3D and <z, y, s> ∈ PS-3D. (⇐) Suppose <z, x, s> ∈ PS-3D and 
<z, y, s> ∈ PS-3D. Let r, rx, and ry be, respectively, z’s, x’s, and y’s unique locations within s. Then since r ⊆ 
rx and r ⊆ ry, rx ∩ ry ≠ ∅. (⇔) Thus, <x, y, s> ∈ OS-3D if and only if there is some object z such that <z, x, 
s> ∈ PS-3D and <z, y, s> ∈ PS-3D. 
33  To see that PS-3D satisfies (SM3), suppose that <x, s> ∈ ES-3D and <x, y, s> ∉ PS-3D. Let rx be x’s unique 
location in s. (Case 1) y does not have a location within s. Then y does not overlap any object at s. Thus, <x, 
x, s> ∈ PS-3D and <x, y, s> ∉ OS-3D . (Case 2) y has a location ry ⊆ s. Since <x, y, s> ∉ PS-3D, rx ⊄ ry and rx\ry 
≠ ∅. By Condition (4.iii), some location r is included in rx\ry. Let z be the object located at r. Then since r 
⊆ rx ⊆ s, <z, x, s> ∈ PS-3D. Since r ∩ ry = ∅, <z, y, s> ∉ OS-3D.  
       In both cases, the supposition that <x, s> ∈ ES-3D and <x, y, s> ∉ PS-3D, implies that some part of x at s 
does not overlap y at s. 
34 Furthermore, (SM1)-(SM4) are clearly also necessary for establishing that each of the reduced ‘single-
slice’ domains is a model of CM. The additional axiom (SM0) just ensures that every member of the 
original object domain shows up in at least one of the single-slice domains. 
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misrepresent the way objects are located in spacetime since the models prohibit spatio-
temporal coincidence. But the models can be easily modified to accommodate 
coincidence. Let us introduce the term ‘S3D* Model’ for any ordered quintuple <ST, R, 
OB, L, S> which satisfies all of the requirements of an S3D Model except Condition 
(4.ii). Let SM* be that mereology which is just like SM except that SM* omits axiom 
(SM4). SM* is equivalent to the time-relative mereology introduced at [Sider, 2001, p. 
58] and is quite similar to the time-relative mereologies of [Thomson, 1983] and 
[Simons, 1987, 5.2].35 It is trivial to verify that the S3D* counterpart of PS-3D satisfies all 
axioms of SM*, but does not satisfy SM’s (SM4). 

Whether we make room for coincident objects or not, P3D-S is fairly robust, at least 
from a logical point of view. Relative to a slice, it is reflexive and transitive and satisfies 
a supplementation principle. Thus, P3D-S supports much of the reasoning philosophers 
would like to do with a parthood relation, as long as they are willing to relativize 
parthood claims appropriately. Moreover, whether or not we leave room for coincident 
objects, P3D-S generates a plausible overlap relation—objects x and y share a P3D-S-part at 
slice s if and only if x’s unique location within s overlaps y’s unique location within s. 
With P3D-S-overlap, we cannot have ‘overlapping’ objects that are separated in space and 
time (as are JA and the POC-overlapping man who inherits her atom). Also, P3D-S serves 
as the basis for a reasonable summation relation. We can introduce slice-relative sums as 

 
x is a sum of the ys at s =def each of the ys is part of x at s and any object that is part 

of x at s overlaps at least one of the ys at s. 36 
 

It then turns out that P3D-S-sums must extend exactly so far as their summands within the 
slice in question. More precisely, if x is a sum of the ys at s, then x’s unique location 
within s is the union of the locations of the ys within s. With P3D-S-summation in a fixed 
slice, we cannot have summands that trail off past their sum (as the molecules that POC-
sum to JA extend past JA) and or sums that bulge out beyond their summands (as our 
possible organism from Section 3 extends beyond the single organ of which it is a POC-
sum). 

In these formal and structural respects, P3D-S works out better than the binary 
relations PBD, PCT, PPT, and (especially) POC. But what about our other important 
criterion—how well can a relation like P3D-S preserve intuitive assumptions about the 
parts of ordinary objects like JA? Obviously we do not normally think of ourselves as 
relativizing parthood to regions of spacetime. But we do explicitly link parthood to time 
(a certain cell is part of JA at some times but not others and the wheel that is now part of 
my bike was not part of it last year). I think P3D- S can be made to fit common sense 
thinking about parthood quite well if (and only if) there is a slice set consisting of regions 
that correspond roughly to times—slices that extend over only those spacetime points that 

                                                 
35 Thomson’s time-relative mereology is somewhat stronger than SM* in that it prohibits distinct objects 
from being parts of one another at all times at which at least one of them exists (see her axiom (CCL1) 
[1983, p. 216]). Besides being formulated in a free logic (instead of standard predicate logic as is SM*), 
Simons’ time-relative mereology uses multiple time-indexed binary parthood relations and a weaker 
supplementation principle than (SM3) (see his CTA10 [1987, p. 179]). 
36 Except for its use of plurals instead of sets of summands, this matches the time-relative summation 
relation introduced at [Sider, 2001, p. 58]. 
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might (at least from an appropriate frame-relative perspective) count as simultaneous.  
For such time-slices, the set of all objects existing at a slice includes all objects existing 
at the corresponding (frame-relative) time and the parthood relation holds between 
objects x and y at a slice just in case x is included in y at the corresponding time. So, for 
example, there will be some slice at which all of my current cells are part of me, another 
slice at which all of my cells from five years ago are part of me, another slice at which all 
of my cells from ten years ago are part of me, and so on.  

But there can be S3D Models in which the slices do not look anything at all like time-
slices—models in which the slices zig-zag randomly all over spacetime but happen to 
pick up no more than one location per object as they do so. Although the slice-relative 
parthood relation for this sort of model would still enjoy SM’s or SM*’s nice logical 
properties, it clearly would not fit ordinary usage. There is no ordinary sense in which, 
say, all of my current cells are part of me at the same time (or region, or anything else) at 
which all of your cells from ten years ago are part of you.   

I will assume that the ideal spatiotemporal correlates of times are maximal achronal 
regions—spacetime regions that are achronal (i.e. include no absolutely temporally 
separated spacetime points) and are not properly included in larger achronal regions.37  
For example, assuming Special Relativity, for each inertial frame F, there is a partition of 
spacetime consisting of the equivalence classes of spacetime points which are 
simultaneous relative to F. Each of these frame-relative time-slices is a maximal achronal 
region. When wondering whether PS-3D parthood corresponds appropriately to ordinary 
temporalized parthood, the main question we should be asking then is: 

(*) Is any set S of maximal achronal regions such that i) every object is located only 
at subregions of the members of S and ii) no object has more than one location within 
any member of S? 

 
It is easy to name circumstances in which the answer to (*) is definitely ‘no’. This 

will be so if some (or all) objects are located at four-dimensional regions or if objects 
travel through time in a way that locates at least one object in multiple positions within an 
achronal region. But even if we assume that objects have only three-dimensional achronal 
locations and cannot travel backwards in time, it is not clear that the answer to (*) is 
‘yes’. It might be, but then again it might not. It all depends on what exactly the three-
dimensionalist can say about where objects are located in a relativistic spacetime. 

In a Galilean spacetime, there is an absolute simultaneity relation on spacetime 
points and the only maximal achronal regions are absolute time-slices (where each 
absolute time-slice consists of all points absolutely simultaneous with a given point). 
Importantly, absolute time-slices are pair-wise discrete. On this picture of spacetime, it 
makes sense for three-dimensionalists who eschew time travel to hold that an object x is 
located at region r if and only if r is the intersection of x’s path with an absolute time-
                                                 
37 See [Gilmore, 2006] and [Balashov, 2008] for more detailed discussions of absolute temporal separation 
and maximal achronal regions. Notice that we need not assume that every maximal achronal region is a 
natural spacetime correlate of some time instant. For example, [Balashov, 2008] argues that, in the context 
of Special Relativity, only flat frame-relative time-slices (and not curved maximal achronal regions) play 
this role. Also, I think that spatiotemporal regions that are only roughly as spatially ‘long’ and temporally 
‘short’ as maximal achronal regions could also play the role of time-slices. But the points made below 
about maximal achronal regions apply equally well to regions that are almost, but not quite, maximal 
achronal regions.  
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slice.38, 39 Since absolute time-slices are pairwise discrete, no absolute time-slice could 
include more than one location per object. Since, in addition, each location is included in 
some absolute time-slice, the set of all absolute time-slices clearly satisfies the S3D 
criteria for slice sets.  

But in a relativistic spacetime, there are no absolute time-slices. There are at best 
only frame-relative time-slices. Importantly, regions that are time-slices relative to 
different inertial frames may have nonempty intersections. More generally, distinct 
maximal achronal regions in relativistic spacetimes may overlap. And, as Gilmore 
describes in his ‘corner slice’ example [Gilmore, 2006, p. 212-213], there may be an 
object x and overlapping frame-relative time-slices s1 and s2 such that PATH(x) ∩ s1 is 
properly included in PATH(x) ∩ s2. Here, s1 cuts through a small end ‘corner’ of x’s path 
while s2 cuts through a larger swatch of x’s path—one that includes both PATH(x) ∩ s1 
and PATH(x) ∩ s2. If, following the example of non-relativistic three-dimensionalism, 
we assume that every object is located at any non-empty intersection of its path with a 
maximal achronal region, we must conclude that both PATH(x) ∩ s1 and PATH(x) ∩ s2 
are locations of x. But then, since any region which includes PATH(x) ∩ s2 also includes 
PATH(x) ∩ s1, no set of regions would satisfy the S3D criteria for slice sets. 

Of course, one could always argue that in transferring three-dimensionalism to a 
relativistic framework, we should expect more complicated rules for locating objects 
within their paths. On behalf of the three-dimensionalist, Gilmore suggests that objects 
might be located only at all maximal achronal subregions of their paths (achronal 
subregions of their paths which are not properly included in larger achronal subregions of 
their paths) [Gilmore, 2006, p. 212-213]. On this modified location principle, maximal 
achronal regions cannot include more than one location per object. But it is not clear to 
me what reasons the three-dimensionalist has for thinking that objects are located only at 
maximal achronal subregions of their paths.40 Significantly, Gilmore himself ends up 
rejecting three-dimensionalism because he does not believe that the three-dimensionalist 
can provide any general criteria for determining which subregions of an object’s path are 
its locations. While I do not see the difficulty in formulating a general location principle 
as a reason for rejecting three-dimensionalism, I do agree that it is not obvious what the 
three-dimensionalist who takes relativity seriously should say about where objects are 
located in spacetime.41  In particular, I do not think that the three-dimensionalist can 
simply assume that there must be a set of regions satisfying the S3D criteria for slice sets 
whose members correspond appropriately to ordinary time instants.  

                                                 
38 This is the characterization of location in spacetime which I initially assumed for the extended Jane 
Austen example in Section 3. Again, see [van Inwagen, 1990] and [Sattig, 2006, 2.1] for this sort of take on 
location in spacetime.  
39 The three-dimensionalist who allows for time-travel will presumably want to say something different. 
Where x’s path crosses slice s twice, x has two separate locations within s and is not located at the 
intersection of its path with s (i.e., at the union of its two locations in s). 
40 See [Gibson and Pooley, 2006, p. 186] for doubts over the proposal that objects are located only at 
maximal achronal subregions of their paths. 
41 See also [Gibson and Pooley, 2006] where it is argued, against Gilmore and in favor of three-
dimensionalism, that there is no reason to expect that there is a general principle telling us where any object 
is located within its path. 
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How important is the requirement that the slices of S3D Models include no more than 
one location per object?  Taking our cue from Gilmore’s corner slice example, might we 
not weaken Condition (5.ii) of S3D models so that it requires only that, if x has any 
location in slice s, then x has a maximal location in slice s? This modified condition 
would allow the object x in the corner slice example to have both PATH(x) ∩ s1 and 
PATH(x) ∩ s2 as its locations, since both of these regions (as well as any other location x 
might have in s2) are included in PATH(x) ∩ s2. The corresponding slice-relative 
parthood relation would hold between objects x and y at slice s if and only if i) both x and 
y have locations in s and ii) x’s maximal location in s is included in y’s maximal location 
in s. However, unlike PS-3D, this modified slice-indexed parthood relation need not satisfy 
the supplementation principle (SM3).42 More generally, as far as I can tell, any 
weakening of (5.ii) results in a slice-relative parthood relation that does not satisfy all of 
SM*’s axioms and is thus significantly weaker than PS-3D. This sort of weakness does not 
necessarily disqualify a relation from serving as a parthood relation. But, as we saw in 
Section 3, it can make trouble for the kind of work philosophers have tried to do with 
mereological relations.  

 
I close this section by briefly sketching a different sort of variation on S3D Models 

and PS-3D parthood. Like S3D Models, S4D Models assume a distinguished set of slices and 
require that no object has more than one location in any slice. However, unlike S3D 
Models, S4D Models do not require that every location is included in some slice. Thus, 
even if slices are three-dimensional subregions of spacetime, some of the objects in S4D 
Models may have four-dimensional locations. The parthood relation PS-4D is a spacetime 
counterpart of the time-indexed parthood relation that four-dimensionalists have 
introduced in terms of temporal parts (see, e.g., [Sider, 2001, Ch 3]).43 Most four-
dimensionalists assume that objects are not multiply located and that there is a binary 
parthood relation along the lines of PUL satisfying the axioms of classical mereology over 
the object domain. But, as we noted in our examination of PUL, this sort of binary 
parthood relation does not preserve ordinary assumptions about parthood (e.g., that JA’s 
head is part of JA). The four-dimensionalist’s time-indexed parthood relation is 
introduced as a secondary parthood relation which is supposed to match ordinary 
temporalized parthood better than the binary parthood relation. If slices are spacetime 
regions that roughly correspond to time instants, then PS-4D should also fit ordinary 
assumptions better than the binary relation PUL. 

A Slice4D Model (S4D Model) is an ordered quintuple <ST, R, OB, L, S> where 
<ST, R, OB, L> is an L Model (satisfying conditions 1-4 on L Models) and where, in 
addition, the following condition is satisfied: 

 

                                                 
42 To see this, suppose that for some slice s, x is located at both rx1 and rx2 where rx1 ⊂ rx2 ⊆ s and rx2 is x’s 
maximal location in s. Suppose further that i) no object is located within any proper subregion of rx1 and ii) 
there is some object y such that rx2/rx1 is y’s maximal location in s. Then, for the proposed parthood 
relation, x would exist at s and would not be a part of y at s, but would have no part at s that fails to overlap 
y at s. 
43 See also [Balashov, 2008] for a slightly different spacetime adaptation of the four-dimensionalist’s time-
relative parthood relation. 
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5*.   S (the set of slices) is a subset of R such that i) if r ∈ R and there is some < x, r*> ∈ 
L such that r ⊆ r*, then there is some s ∈ S with r ∩ s ≠ ∅; ii) for any x ∈ OB and any s 
∈ S, if PATH(x) ∩ s ≠ ∅, then there is some z ∈ OB such that <z, PATH(x) ∩ s> ∈ L; 
iii) for any <x, r > ∈ L and any s ∈ S, if r ⊆ s, then r = PATH(x) ∩ s.  
 
Condition (5*.i) requires that, taken together, slices cover every subregion of every 
location. Notice that (5*.i) is automatically satisfied if the slices cover all of spacetime 
(i.e., if ∪S = ST). (5*.i) replaces the stronger requirement in S3D Models that every 
location is included in some slice. Condition (5*.ii) requires that there is some object 
located at any region that is the intersection of a slice and an object’s path. If slices 
correspond to times, the object which is located at the intersection of x’s path with a slice 
is, I will presume, a temporal part of x.44 Condition (5*.iii) requires that if object x has 
any location within slice s, that location must be the intersection of s and x’s path. It is an 
immediate consequence of (5*.iii) that no object has more than one location within any 
slice. But notice that for an arbitrary object x ∈ OB, none of (5*.i-iii) require that x has a 
location within any slice.  

The slice-relative parthood relation PS-4D is defined over S4D Models as follows: 
 

<x, y, s> ∈ PS-4D if and only if s ∈ S and ∅ ≠ PATH(x) ∩ s ⊆ PATH(y) ∩ s . 
 

In other words, x is part of y at slice s if and only if the intersection of x’s path with s is 
non-empty and is included in the intersection of y’s path with s. 

 The supplementary exists at (ES-4D) and overlaps (OS-4D) relations are defined over 
S4D Models as follows: 
 

<x, s> ∈ ES-4D if and only if s ∈ S and ∅ ≠ PATH(x)∩ s; 
<x, y, s> ∈ OS-4D if and only if s ∈ S and PATH(x) ∩ PATH(y)∩ s  ≠ ∅. 

 
Object x exists at slice s just in case x’s path overlaps s. Object x overlaps object y at slice 
s just in case x’s path overlaps y’s path within s. 

When the ternary predicate P is interpreted over S4D Models as PS-4D, the defined 
predicates E and O are interpreted as, respectively, ES-4D and OS-4D and all of SM*’s 
axioms are satisfied.45 Notice, though, that SM’s antisymmetry axiom (SM4) is not 
satisfied. Even when we retain the original requirement that no more than one object is 
exactly located at any region, distinct objects may still have paths that cross a slice at 

                                                 
44 Whether this is so or not depends on exactly how temporal parts are defined. I do not wish to digress 
from the discussion of region-relative parthood to in order to compare different ways of introducing 
temporal parts. But, given an appropriate set of time-slices, I cannot see that we would run into any trouble 
in introducing temporal parts either in terms of location, as is done in [Heller, 1984], or in terms of a binary 
parthood relation as is done in [Sider, 2001]. 
45 To see that PS-4D satisfies (SM3) over all S4D Models, suppose PATH(x) ∩ s ≠ ∅ and PATH(x) ∩ s ⊄ 
PATH(y) ∩ s. Case 1: PATH(y) ∩ s = ∅. Then PATH(x) ∩ PATH(y) ∩ s = ∅ and ∅ ≠ PATH(x) ∩ s ⊆ 
PATH(x) ∩ s. Case 2: PATH(y) ∩ s ≠ ∅. By (5*.ii), both PATH(x) ∩ s and PATH(y) ∩ s are locations. 
By (4.iii), since (PATH(x) ∩ s)/ (PATH(y) ∩ s) ≠ ∅, there is some <z, rz> ∈ L such that rz ⊆ (PATH(x) ∩ 
s)/ (PATH(y) ∩ s). Since rz ⊆ s, by (5*.iii), rz = PATH(z) ∩ s. Thus, ∅ ≠ PATH(z) ∩ s ⊆ PATH(x) ∩ s 
and PATH(z) ∩ PATH(y) ∩ s = ∅. 
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exactly the same place. More precisely, for x ≠ y, there may be some slice s such that ∅ ≠ 
PATH(x) ∩ s =  PATH(y) ∩ s. In this case, x and y would each be PS-4D-parts of one 
another at s and the object located at PATH(x) ∩ s would be a shared PUL-part of x and y. 
But this fits the standard four-dimensionalist treatment of temporalized parthood, which 
allows that objects like a statue and the lump of clay from which it is formed may each be 
part of the other at time t in the sense that they share a temporal part at t (see, e.g., 
[Heller, 1984] or [Sider, 2001, Ch 5]).  

We noted above that, lacking a three-dimensionalist account of location in 
relativistic spacetimes, it is not obvious that PS-3D works out for slices that could be 
considered time-slices (at least, not if the slices over which PS-3D ranges are required to 
satisfy Conditions (5.i) and (5.ii) of S3D Models). Given four-dimensionalism and a 
relativistic spacetime, is the case for PS-4D parthood equally inconclusive? Not if the four-
dimensionalist assumes (a) that each object has a unique location in spacetime and (b) 
that any non-empty intersection of a location and a maximal achronal region is a location. 
(Note that (b) is entailed by the stronger, but not unreasonable, assumption that every 
subregion of a location is a location.)  Suppose that (a) and (b) hold and let MAX be the 
collection of all maximal achronal regions in the actual spacetime, ST. Since every point 
in ST is included in some maximal achronal region, ∪MAX = ST and MAX satisfies 
condition (5*.i) on S4D slice sets. It follows from assumption (b) that MAX also satisfies 
condition (5*.ii). To see that MAX satisfies the final condition, (5*.iii), suppose that 
object x is located within the maximal achronal region s. Then since x is uniquely located, 
PATH(x) ⊆ s and x’s location within s is just PATH(x) ∩ s = PATH(x).46  

 
5. Other Region-Relative Parthood Relations 
 

In the previous section, I proposed two general strategies for introducing ternary 
parthood relations that relativize parthood to special regions (slices). But some 
philosophers have made use of parthood-at-a-region relations whose third terms are not 
restricted to the members of a distinguished subclass of regions. The best-developed 
example of this approach is found in [Hudson, 2001, Ch. 2]. The main task of this section 
is to examine a version of Hudson’s relation in the context of L Models. I will also briefly 
consider the rather different region-relative parthood relation of [Crisp and Smith, 2005]. 

 
Hudson holds that ordinary objects such as people, chairs, and tables are located at 

multiple overlapping four-dimensional regions. However, Hudson allows that there are 
three-dimensional objects (instantaneous temporal parts of ordinary objects) that have 
multiple locations within fixed achronal regions.47 Thus, neither of the slice-relative 
parthood relations considered in the previous section works out for Hudson’s ontology if 
we take slices to be something along the lines of maximal achronal regions. Hudson’s 
                                                 
46 Given unique location, we obtain analogous results with the weaker assumption that, for some subset 
MAX* of MAX,  ∪MAX* = ST and any non-empty intersection of an object’s path with a member of 
MAX* is a location. In the context of Special Relativity, the slice set MAX* might be restricted to frame-
relative time-slices as is suggested in [Balashov, 2008, p. 28-37]. 
47 In fact, when Hudson first provisionally attempts to develop his position in a three-dimensionalist 
ontology, he assumes that an ordinary object may occupy distinct spatial regions at a fixed time [Hudson, 
2001, p. 52-53].  
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own region-relative parthood relation is, as we shall see shortly, quite different from 
either PS-3D or PS-4D. 

As was the case for the slice-relative parthood relations, we will want to introduce 
Hudson’s parthood relation on a class of L Models that satisfies special criteria. For 
Hudson Models (H Models), we do not need a class of slices as in S3D and S4D Models. 
But for the Hudson relation to behave nicely, we do need to strengthen the original 
restrictions on the location relation. As I indicate in the notes below, the stronger 
restrictions are assumptions that Hudson endorses in [2001].48 

H Models are L Models in which the location relation satisfies the following 
additional restrictions: 

 
4. v) if  <x, r > ∈ L and ∅ ≠ r* ⊆ r, there is some y ∈ OB such that <y, r*> ∈ L; vi) 
if <x, r > ∈ L and r* ⊂ r, <x, r* > ∉ L. 49 

 
(4.v) stipulates that every subregion of a location is a location, while (4.vi) prohibits an 
object from being located at two regions, one of which is a proper subregion of the 
other.50 

The Hudson parthood relation PH is defined on H Models as follows: 
 
<x, y, r> ∈ PH  if and only if for some rx, ry ∈ R, <x, rx >, <y, ry > ∈ L and rx ⊆ r ⊆ 

ry.51 
 

Object x is part of object y at region r just in case x and y have locations, rx and ry, that 
‘flank’ r in the sense that r includes rx and is included in ry. 

When we plug PH into the SM definitions (DSE) and (DSO), we get exists at and 
overlaps relations that are quite different from their counterparts in S3D and S4D Models. 
The exists at relation defined in terms of PH via (DSE) turns out to be just the location 
relation L. This is because <x, x, r> ∈ PH if and only if <x, r1>, <x, r2 > ∈ L and r1 ⊆ r ⊆ 
r2 . But it follows from condition (4.vi) that <x, r1>, <x, r2 > ∈ L and r1 ⊆ r ⊆ r2  if and 
only if r1 = r = r2 and <x, r > ∈ L. (Notice how different this interpretation of E is from 
its interpretation over S3D Models. An object x in an S3D Model exists at slice s just in 
                                                 
48 This is not to say, however, that the H Models capture all of Hudson’s assumptions about location. Most 
notably, nothing in the H Models requires that any object is located at a four-dimensional region or that 
ordinary objects are located at multiple overlapping regions. I do not attempt to capture the former 
assumption because mereology has nothing to say about dimension. I do not attempt to capture the latter 
assumption because I cannot see that it makes for an interesting difference in the logical properties of the 
parthood relation. 
49 Notice that (4.v) entails (4.iii) and (4.iv). Thus, taken together, (4.1)-(4.vi) are redundant. 
50 I take Hudson’s principles (SD) and (SDP) [2001, p. 65] as evidence that he endorses (4.v). (Note that in 
these principles, and throughout [2001, Ch. 2], Hudson uses the term ‘exactly occupies’ as I use ‘is located 
at’. His binary relation EO corresponds to my L.) As evidence that Hudson endorses (4.vi), see Hudson’s 
assumption that if an object x were located at regions r* and r where r* ⊂ r, then x would be of proper part 
of itself at r [2001, p.68-69].  But this is impossible, since it would imply that x ≠ x. 
51 Though Hudson lists several principles governing his parthood relation, he never gives an intended 
model theoretic interpretation for it. However, he does explain the relation in terms of some examples 
(especially at [2001, p. 66-70]). In proposing this model theoretic treatment of Hudson’s relation, I am 
guided primarily by his explanation of how the relation is supposed to apply in his examples.  
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case x has a location that is included in s—x need not have a location that is identical to s. 
Over S4D Models, E has an even broader interpretation. An object x in an S4D Model 
exists at slice s just in case x has a location that overlaps s—again, x need not have any 
location that is identical to s.) 

The overlaps relation for PH is the relation OH such that 
 
<x, y, r> ∈ OH if and only if there are <x, rx>, <y, ry >  ∈ L with ∅ ≠ r ⊆ rx, ry. 

 
Objects x and y OH-overlap at region r just in case both x and y have locations that 
include r. (By contrast, OS-3D holds between x and y at slice s just in case x and y have 
overlapping locations that are included in s.) To see that OH is the result of plugging PH 
into (DSO), suppose <z, x, r> ∈ PH and <z, y, r> ∈ PH. Then there are regions rz1, rz2, rx , 
and ry  such that <z, rz1 >, <z, rz2 >, <x, rx >, <y, ry> ∈ L, rz1 ⊆ r ⊆ rx , and rz2 ⊆ r ⊆ ry . It 
follows that r ⊆ rx, ry. Conversely, suppose that <x, rx>, <y, ry > ∈ L and there is some 
region r which is included in both rx and ry. By (4.v), some object z is located at r. Since r 
⊆ r ⊆ rx , and r  ⊆ r ⊆ ry , <z, x, r> ∈ PH and <z, y, r> ∈ PH. 

 
How do the logical properties of PH compare to those of the slice-relative relations 

P3D-S and P4D-S? PH satisfies SM’s (SM0), (SM2), (SM3), and (SM4) over all H 
Models.52 But PH does not satisfy the existence axiom (SM1) on any H Model which 
includes objects located at extended regions. To see why, suppose that y is an object in an 
H Model, that y is located at region ry , and that region ry has a proper subregion rx. By 
condition (4.v), some object x is located at rx. Since <x, rx >, <y, ry > ∈ L and rx ⊆ ry ⊆ ry, 
<x, y, ry> ∈ PH. But it follows from Condition (4.vi) that, since x is located at rx, x is not 
located at ry. Thus, <x, rx> ∉ L. (Similarly, <x, y, rx> ∈ PH and <y, rx> ∉ L.) Since E is 
interpreted over H Models as L, PH does not satisfy (SM1) on this model.  

In its failure to satisfy (SM1), PH is slightly weaker than the slice-relative parthood 
relations of the previous section. But the most remarkable difference between PH and the 
slice-relative relations is that PH satisfies some rather strong mereological principles that 
neither PS-3D nor PS-4D satisfies. For example, PH satisfies the following principle on all H 
Models. 
 
(HM1) Pxyr & Pwzr → Pxzr   
 
It is an immediate consequence of (HM1) that if y and z each has a part at r, then y and z 
have exactly the same parts at r. It is easy enough to see that neither PS-3D nor PS-4D 
generally satisfies (HM1). If x and y are objects in either an S3D Model or an S4D Model 
and x and y are located at disjoint subregions of slice s, then both x and y have parts at s, 
but x and y do not share any parts at s. 

To see that PH does indeed satisfy (HM1) over all H Models, suppose that <x, y, r>, 
<w, z, r> ∈ PH. Then for some rx, ry, rw, rz ∈ R, <x, rx >, <y, ry >, <w, rw >, <z, rz > ∈ L, rx 

                                                 
52 PH serves as an important example for philosophers who think that specifying a relation requires little 
more than listing some of that relation’s logical properties. PH and P3D-S both satisfy the standard ternary 
mereological principles (SM0), (SM2), (SM3) and (SM4), but are clearly very different proposals for a 
region-relative parthood relation. 
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⊆ r ⊆ ry, and rw ⊆ r ⊆ rz. It follows immediately that rx ⊆ r ⊆ rz and, consequently, <x, z, 
r> ∈ PH. 

I use the name ‘HM’ for the sorted first-order theory axiomatized by the following 
three formulas, where the predicates E and O are defined as in (DE) and (DO).53 
 
(HM0) ∃r Exr  (every object exists at some region) 
 
(HM1) Pxyr & Pwzr → Pxzr  (if x is part of y at r and w is part of z at r, then x is part of 
z at r) 
 
(HM2) Pxyr & Pyxr → x = y (if x is part of y at r and y is part of x at r, then x and y are 
identical) 
 

PH satisfies HM’s three axioms over all H Models. Theorems of HM include 
counterparts of SM’s (SM2) and (SM3). In addition, each of following formulas is a 
theorem of HM which is satisfied by neither PS-3D nor PS-4D. 
 
(HT1) Exr & Eyr → x = y  (if x exists at r and y exists at r, then x and y are identical) 
(HT2) Oxyr & Owzr → Oyzr (if x overlaps y at r and w overlaps z at r, then y overlaps z 
at r) 
(HT3) Oxyr & Oyzr → Oxzr  (if x overlaps y at r and y overlaps z at r, then x overlaps z 
at r) 
(HT4) Exr & Oxyr → Pxyr (if x exists at r and x overlaps y at r, then x is part of y at r) 
(HT5) Pxyr & Pzwr → Oywr (if x is part of y at r and z is part of w at r, then y overlaps 
w at r) 
 

How suitable is PH for philosophical tasks? On the one hand, PH certainly does 
satisfy (ternary versions of) principles that philosophers commonly invoke to describe 
parthood relations. In particular, PH satisfies SM’s transitivity axiom, (SM2), and SM’s 
supplementation principle, (SM3). But, on the other hand, there is a sense in which PH’s 
strong non-classical properties trivialize the familiar properties. For example, with only 
the weak assumption that y and z both have parts at r, (HM1) lets us transfer all of y’s 
parts at r to z (and vice versa). For PH, we do not need the extra assumption that y is part 
of z at r which is required by the antecedent of the transitivity principle (SM2). Also, it 
follows from (HT4) that if x exists at r, then x overlaps y at r if and only if x is part of y at 
r. Thus, if x exists at r and does not stand in PH to y at r, then x itself does not OH-overlap 
y at r—we do not need to invoke the supplementation principle to support the weaker 
conclusion that x has some PH-part at r which fails to OH-overlap y at r.  

                                                 
53 In his own presentation of the logical properties of his parthood relation, [Hudson, 2001] uses a region 
inclusion predicate. I think that this is definitely the right approach to take in a comprehensive treatment of 
Hudson’s relation. (If nothing else, we can only describe the distinctive ‘flanking’ of objects’ locations 
around the regions at which they stand in parthood relations if we can say something about region 
inclusion.) However, since my interest here is only in general differences between Hudson’s relation and 
the slice-relative parthood relations, I will not go into so much detail in my formal analysis of Hudson’s 
relation. 
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I think that in its strength PH does not, after all, fit traditional philosophical thinking 
about parthood relations—why would philosophers have bothered with a transitivity 
principle for parthood if so strong a principle as (HM1) were on offer? Although 
philosophers do not generally explicitly deny (HM1), the assumption must have been all 
along that parthood is not that strong. Note also that (HT3) tells us that the overlap 
relation OH satisfies a ternary transitivity principle. Again, although most philosophers do 
not explicitly deny that overlap is transitive, transitivity is usually explicitly attributed 
only to parthood and not to the overlap relation.  

But, unlike the very weak binary parthood relation POC of Section 3, PH does have 
useful formal properties and can serve as a basis for interesting relations among objects. 
It is only important that care be taken in recognizing that these relations may not behave 
as expected. We have already seen some surprising properties of PH and OH. It is also 
worth noting that Hudson adopts a more complicated definition of summation than the 
standard definition used in Section 4 above (see [2001, p. 65] for Hudson’s definition). 
Hudson’s own summation relations works out nicely. But it is easy to verify that, 
plugging PH and OH into the standard definition of summation, we end up with an ugly 
relation that makes any object the ‘sum’ of any one of its atomic PH-parts at the (point-
sized) region where the atomic part is located. 

 
Even if we can come to terms with its unexpected logical properties, PH is clearly at 

odds with ordinary thinking about parthood. PH holds between x and y at r only if the 
region r is included in one of y’s locations. Thus, if y is an ordinary object like a cat or a 
bicycle, the indexing region r must have a quite constricted spatiotemporal extent—it 
must be small enough to ‘fit inside’ of y. But we do not in ordinary discourse link 
parthood to anything like these small spacetime regions. (There is no time that 
corresponds in a natural way to any spatiotemporal region that fits inside my cat.) 
Moreover, we ordinarily assume that objects with widely separated locations—objects, 
like the Empire State Building and the Taj Mahal, which never occupy overlapping 
regions and never share parts—may have parts at the same time. By contrast, objects x 
and y can have PH-parts at the same region only if x and y have overlapping locations. In 
these respects, PH’s region-relativization of parthood takes a form quite different from the 
ordinary time-relativization of parthood.  

In addition, under Hudson’s assumptions concerning the dimension of objects’ 
locations in spacetime, PH would not preserve many of what we take to be the most 
obvious parthood linkages among objects. As stated earlier, Hudson claims that ordinary 
objects are located at multiple temporally-extended regions. Presumably then an object 
like Jane Austen is located at multiple regions, all of which extend from some time in 
1775 to some time on July 18, 1817. And Jane’s head (as well as Jane’s hands, Jane’s 
legs, and so on) occupy multiple regions, all of which extend somewhat past July 18, 
1817. In this four-dimensionalist picture, there is no region r which includes one of 
Jane’s head’s locations and is included in one of JA’s locations. In other words, there is 
no region r at which Jane’s head is a PH-part of JA. Similarly, there is no region at which 
Jane’s hands, legs, liver, and so on, are PH-parts of JA. This is the same sort of 
divergence from ordinary parthood ascriptions which we have already noted in the binary 
relation PUL. 
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Another region-relative parthood relation plays a central role in [Crisp and Smith, 
2005]. Like PH (and unlike PS-3D and PS-4D), Crisp and Smith’s ternary parthood 
relation—call it ‘PCS’—does not limit its third argument to the regions of any special 
collection such as a slice set. Although Crisp and Smith do not fill in many details 
concerning PCS, their explicit assumptions make it clear that this parthood relation is 
different from PH. It is only in this difference that I am interested here.  

Crisp and Smith stipulate that PCS must satisfy three principles [2005, p. 332-333]. I 
shall consider only the second of these principles.54 It is stated as follows: 

 
(*)   “...if x is wholly present at R and x is a part of y at R, then x is a part of y at every 
superregion and every subregion of R” [2005, p. 333]. 
 
I take it that by ‘is wholly present at R’, Crisp and Smith mean roughly what I do by ‘is 
located at R’.55 On this assumption PH, unlike PCS, does not generally satisfy (*). From 
condition (4.vi) on H Models, it follows that if x is a PH-part of itself at region r, then x is 
not a PH-part of itself at any proper subregion or proper superregion of r. Let <ST, R, 
OB, L> be any H Model in which ST includes more than one spacetime point. In any 
such model, every region has a proper subregion or a proper superregion. It follows that 
for any object x ∈ OB, there is some region r at which x is wholly-present (i.e., located) 
and a PH-part of itself, but where there is at least one subregion or superregion of r at 
which x is not at PH-part of itself. Thus, (*) fails for PH on all H Models in which there 
are at least two spacetime points. 

 
6. Concluding Remarks 
 

In this paper, I have used mathematical models to represent different types of binary 
and ternary parthood relations. I have shown that these model theoretic relations have 
significantly different logical properties and that some of these relations can capture 
ordinary assumptions about parthood better than others. My primary conclusions are as 
follows.  

• Philosophers have proposed several different region-relative parthood 
relations for domains of multiply-located objects. These relations have 
significantly different logical properties and rely on different kinds of 
assumptions about how objects are located in spacetime. 

• On a relativistic account of spacetime, it is not obvious whether there is any 
relation that both fits ordinary thinking about parthood and can play the 
central role in an analysis of relations among objects that some philosophers 
have tried to assign parthood. Given multi-location, I think that PS-3D is the 
best shot at a relation that can satisfy both criteria. But, as we have seen, it is 
not obvious that there is an appropriate slice set for the PS-3D relation. 

                                                 
54 For the record, the other two assumptions are 
-- in case PCS is “analyzable in terms of parthood simpliciter, the analysis is given by...   : 

x is part of y at R =def (i) x is a part simpliciter of y, and ii) x overlaps r”  [2005, p. 332]; 
-- “...if y is wholly present at R and x is part of y at R, then x is wholly present at a subregion of R” [2005, p. 
333]. 
55 This assumption has been confirmed by Crisp in email correspondence. 
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Of course I do not think that the sort of model theoretic investigation pursued in this 
paper can cover all issues relevant to parthood and location. There may be factors 
involved in parthood relations (e.g., relations of functional interdependence) that cannot 
be represented in a natural or illuminating way in terms of mathematical models. Also, 
there are important aspects of spatiotemporal location (the dimension of a location, the 
continuity of an object’s path) that can only be represented in more complex models than 
those used in this paper.  

But I do think that model theoretic representations are a good starting point for a 
discussion of parthood relations, especially if we leave open the possibility of multiply 
located objects. As we have seen, over multiply located domains, the only plausible 
binary parthood relations are either extremely weak or fail to preserve important common 
sense intuitions. A ternary region-relative parthood relation may be a more appropriate 
choice for these domains but different types of region-relative parthood relations are 
possible. A model theoretic representation can help determine which relation is intended, 
what logical properties this relation is supposed to have, and what general assumptions 
are made about the interaction between location and parthood. Too little is said about 
these important issues in philosophical work that makes use of region-relative (or time-
relative) parthood relations. As a result, the reader is sometimes given little indication of 
how he is to understand the author’s claims about region-relative parthood.56 
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