
Private Collaborative Forecasting and Benchmarking∗

Mikhail Atallah Marina Bykova Jiangtao Li Keith Frikken Mercan Topkara
Computer Sciences Department and CERIAS

Purdue University
{mja,mbykova,jtli,kbf,mkarahan}@cs.purdue.edu

ABSTRACT
Suppose a number of hospitals in a geographic area want to
learn how their own heart-surgery unit is doing compared
with the others in terms of mortality rates, subsequent com-
plications, or any other quality metric. Similarly, a number
of small businesses might want to use their recent point-
of-sales data to cooperatively forecast future demand and
thus make more informed decisions about inventory, capac-
ity, employment, etc. These are simple examples of coopera-
tive benchmarking and (respectively) forecasting that would
benefit all participants as well as the public at large, as they
would make it possible for participants to avail themselves of
more precise and reliable data collected from many sources,
to assess their own local performance in comparison to global
trends, and to avoid many of the inefficiencies that cur-
rently arise because of having less information available for
their decision-making. And yet, in spite of all these advan-
tages, cooperative benchmarking and forecasting typically
do not take place, because of the participants’ unwillingness
to share their information with others. Their reluctance
to share is quite rational, and is due to fears of embarrass-
ment, lawsuits, weakening their negotiating position (e.g., in
case of over-capacity), revealing corporate performance and
strategies, etc. The development and deployment of private
benchmarking and forecasting technologies would allow such
collaborations to take place without revealing any partici-
pant’s data to the others, reaping the benefits of collabora-
tion while avoiding the drawbacks. Moreover, this kind of
technology would empower smaller organizations who could
then cooperatively base their decisions on a much broader
information base, in a way that is today restricted to only
the largest corporations. This paper is a step towards this

∗Portions of this work were supported by Grants IIS-
0325345, IIS-0219560, IIS-0312357, and IIS-0242421 from
the National Science Foundation, Contract N00014-02-1-
0364 from the Office of Naval Research, by sponsors of
the Center for Education and Research in Information As-
surance and Security, and by Purdue Discovery Park’s e-
enterprise Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’04, October 28, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-968-3/04/0010 ...$5.00.

goal, as it gives protocols for forecasting and benchmarking
that reveal to the participants the desired answers yet do
not reveal to any participant any other participant’s private
data. We consider several forecasting methods, including
linear regression and time series techniques such as moving
average and exponential smoothing. One of the novel parts
of this work, that further distinguishes it from previous work
in secure multi-party computation, is that it involves float-
ing point arithmetic, in particular it provides protocols to
securely and efficiently perform division.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—
security ; F.2.m [Analysis of Algorithm and Problem

Complexity]: Miscellaneous

General Terms
Design, Security

Keywords
Privacy, secure multi-party computation, forecasting, bench-
marking, e-commerce, secure protocol

1. INTRODUCTION
One drawback that smaller entities (e.g., individuals,

charities, small businesses, etc.) have in competing with
large entities (giant corporations and multi-nationals) is that
the latter’s size and resources enable them to make deci-
sions using more accurate information (e.g., about future de-
mand). This better forecasting ability can, over time, drive
the smaller players out and leave the field under the con-
trol of the largest entities. Privacy-preserving cooperative
computation, which is of obvious benefit to the privacy of in-
dividuals, is also a valuable technology for enabling smaller
entities to cooperate and make as high-quality decisions as
larger entities (decisions about planning, production, qual-
ity control, etc.). This paper’s focus is on the two specific
areas of forecasting of customer demand and secure bench-
marking, which are described below. Before we do so, we
remind the reader that the broad framework for this work is
the usual privacy-preserving computation model, in which
two or more parties engage in a collaborative computation
in order to produce results that are significant to both par-
ties without revealing the private information of any of the
parties, even though the jointly-computed results depend on
the information of all the parties.

The first problem we are exploring is secure and private
collaborative forecasting, in which a number of retailers join
their efforts to generate more accurate forecasts of customer
demand. We assume that each of the participants has its
own proprietary data gathered over some period of time in
the past and can produce a local forecast. They decide to
participate in joint computation to obtain more reliable re-
sults. Consider the following business scenarios:

• A number of small retailers in the area which sell simi-
lar products cannot compete with giant stores in their
forecasting capabilities. Thus they decide to collabo-
rate with each other in order to better estimate future
consumer demand. Revealing data about the past vol-
umes of sales is unacceptable to any of them, as they
are competing in the same market. The retailers, how-
ever, are willing to share the data in a secure fashion if
all that any party learns from the collaboration is the
general trend in the customer demand (i.e., increase
or decrease in sales and by what amount). After par-
ticipating in the protocol, each retailer can compare
its own locally generated forecast with the large-scale
trend, draw conclusions about the accuracy of the lo-
cal forecast and differences, if any, in the behavior of
the sales function at the local and global scopes.

• Another setting where similar collaboration is useful
is situations when no single retailer can accurately es-
timate future demand. Consider a product that has
been introduced to the market recently such that no
single (even very large) retailer can accurately predict
consumer demand for it. This happens when different
retailers target differing groups of customers, for which
shopping patterns and adaptability to new products
vary. Then it is beneficial to all such stores to engage
into joint forecasting, while still preserving the privacy
of the data on which the forecast is built.

• We can also model a scenario where there is one sup-
plier and many retailers, and the cycle of production
is very long. For example, in order for an overseas
company to manufacture clothes, it may need to start
production 7 months in advance including shipping
time. The supplier wants to know the customer de-
mands, i.e., the size of the market. Each retailer is
reluctant to provide its own historical data. However,
it may benefit the whole supply chain, if the retailers
together can collaboratively provide a forecast on cus-
tomer demands to the supplier. Or, as an alternative,
the supplier might provide a discount to all retailers
who participate in the joint computation of customer
demand, and uses the results for manufacturing more
precise quantities.

All of the above scenarios produce forecasts based on time
series. Another type of forecasting that we also explore in
this work is based on regression techniques. A motivating
business model can be as follows. A hospital performs a
certain type of surgeries that result in a rather high mortal-
ity rate compared to other types of surgeries. The hospital
would like to investigate the correlation of the mortality rate
to the age of the patients, their health conditions, and pos-
sibly other parameters, to be able to exclude the riskiest
category of patients from being considered for such surg-
eries. The hospital, however, does not have enough cases to

draw a reliable correlation between the mortality rate and
other parameters. The hospital also would like to know how
it performs on this kind of surgeries compared to other sim-
ilar institutions. Thus, the hospital would like to engage
in collaboration with other institutions to be able to draw
conclusions on the aggregate data, but for privacy reasons
cannot share its data with other participants. The solution
in this case is to use secure multi-party computation (SMC)
techniques that apply regression to aggregate data and dis-
tribute the results to all participating parties. Having the
results, the hospital then can learn the overall correlation
on the large scale, as well as make conclusions about its
performance compared to other hospitals.

To address these two problems, we consider forecasting
based on time series — moving average, weighted moving
average, and exponential smoothing — and regression-based
techniques — linear regression. Since the functions used
in the computation are linear, some companies might de-
cide that the output of the computation reveals information
about their inputs if the number of participants is low (e.g.,
two). Consequently, they might decide to participate in the
computation only if the number of participants is sufficiently
large. Therefore, we provide solutions to the problems for a
general case of m players.

In this work, we present efficient protocols for conduct-
ing secure collaborative forecasting and benchmarking for
all statistical methods listed above. Before providing our
final protocols, we give sub-protocols, or building blocks,
which make presentation of the final protocols crisper and
at the same time add flexibility to the protocols themselves
by allowing the participants to choose the most appropriate
building blocks. In cases when we give more than one pro-
tocol for performing the same task, the protocols differ in
their complexity, communication overhead, and robustness
against colluding players.

A novel part of this work is that we introduce floating
point computation in secure multi-party computation. We
present several division protocols that form the core of our
forecasting and benchmarking solutions, and to the best of
our knowledge are the first attempts to perform division
without building a generic circuit, as well as the first at-
tempts to operate on floating point numbers. Our division
protocols simplify privacy-preserving business forecasting,
and can also be applied to other forecasting methods as well
as other SMC applications.

A summary of our results is given in table 1. For each
protocol described in this work, we list its number of com-
munication rounds, total communication measured in mes-
sages exchanged between the players, and total computa-
tional complexity (summed over all players). Each message
for most protocols is of ` bits long, where ` is the length of
numbers we operate (with the m-key division protocol being
an exception). In the table, m refers to the number of play-
ers, k is a collusion threshold described in section 4.1 such
that 1 ≤ k ≤ m − 1, and n is a (constant) number of data
points used in the linear regression. All of these protocols
are later evaluated with respect to the main model of the
adversary used in this paper: That of colluding players, i.e.,
they exhibit the behavior of semi-honest players but can
also collude together in order to discover some additional
information about other players’ data (more on this later).
We analyze the collusion-resistance characteristics of each
protocol immediately following its description.

Protocol
Communication Total Total

Rounds Communication Computation
Split O(1) O(km) O(km)
Division with an Appointee O(1) O(km) O(km)
2-party Division with Scaling O(log `) O(log `) O(log `) encryptions
2-party 2-key Division O(1) O(1) O(1) encryptions
m-key Division O(1) O(m2) O(m2) encryptions
Moving Average same as division same as division same as division
Exponential Smoothing same as division same as division same as division
Linear Regression split + n divisions split + n divisions split + n divisions

Table 1: Summary of protocols: m is the number of players, k is a collusion threshold where 1 ≤ k ≤ m − 1, `
is the length of numbers in bits, and n is a number of data points in the linear regression.

The rest of this paper is organized as follows. Section 2
reviews related work. In section 3 we briefly provide back-
ground information such as different forecasting methods
and then provide a more precise definition of our protocols.
Section 4 describes building blocks that we developed to
aid in designing our main forecasting protocols. The build-
ing blocks include a secure algorithm for blinding individual
private inputs and — the most interesting and difficult —
secure division protocols. Sections 5 and 6 describe our main
protocols, where Section 5 covers forecasting based on time
series and Section 6 contains regression-based benchmark-
ing. Lastly, Section 7 concludes the paper and provides di-
rections for future work.

2. RELATED WORK
Forecasting is increasingly being applied to business de-

cision making. Many forecasting methods (for example,
see [14, 26]) have been developed, such as time-series tech-
niques and regression techniques. Collaborative forecasting
allows different entities to jointly perform business forecast-
ing where each entity contributes its own data. As pointed
out in [2], collaborative forecasting, in comparison to tradi-
tional forecasting, gives better productivity and profitability
throughout the supply chain. Collaborative forecasting has
been extensively studied by many companies [25, 19], or-
ganizations [10], and academia [15]. Most of the solutions
either assume existence of a central planner who has all the
information about the system, or assume that each partici-
pant of the computation shares all of her information with
other participants. These solutions, however, are problem-
atic when the data is sensitive and the participants are re-
luctant to share their private, proprietary information. Our
approach is to perform collaborative forecasting in a privacy-
preserving manner, therefore eliminates the above concern.

The problem of secure forecasting and benchmarking is
closely related to secure multi-party computation [27]. The
SMC problem was introduced by Yao [27] and extended by
Goldreich, Micali, Wigderson [17] and others ([23, 18], to
list a few). Goldreich states in [16] that although the gen-
eral secure multi-party computation problem is solvable in
theory, using the solutions derived by these general results
for special cases can be impractical. In other words, effi-
ciency dictates development of special solutions for special
cases. And as we can see, many other examples of coopera-
tive privacy-preserving computations have been considered
in the literature: electronic auctions [7], card playing [17],
digital certified mail, data mining [20], etc.

Du and Atallah recently have developed efficient proto-
cols for many secure two-party computation problems [11],
including scientific computation [12], geometric computa-
tion [5], and statistics analysis [13]. Atallah et al. [6] have
proposed Secure Supply-Chain Collaboration (SSCC) prob-
lem, and developed SSCC protocols for simple e-Auction sce-
narios and simple capacity-allocation problem. Our secure
collaborative forecasting and benchmarking can be viewed
as a branch of the SSCC problem. In this paper, we pro-
pose novel protocols for computing a ratio in floating point
numbers securely, an important component used in many
forecasting techniques. To the best of our knowledge, no
one has studied this before.

3. PROBLEM DESCRIPTION

3.1 Background
Before presenting our results, we briefly review several

forecasting methods (see [14, 26]) that are the basis of our
protocols.

• Time-Series Techniques. A time series is a time-
ordered sequence of observations taken at regular in-
tervals over a period of time (daily, weekly, monthly,
annually, etc.). An example of such data is a monthly
estimate of customer demand. Let us here consider a
single user environment, where only a local forecast is
generated. We use i to denote ith time period, and di

to denote data in time period i. Let t be the current
time period. Using this notation, the three methods
that we consider are as follows:

1. Moving Average: Let n denote the number of pe-
riods used in calculation of the average. For time
period t ≥ n, the moving average forecast is:

Ft =
� n−1�

i=0

dt−i � /n

where Ft indicates the forecasted value for time
interval t + 1.

2. Weighted Moving Average: Let ~w =
{w0, w1, . . . , wn−1} be a weight vector such
that � n−1

i=0 wi = 1. For time period t ≥ n, the
weighted moving average forecast is:

Ft =

n−1�
i=0

widt−i

3. Exponential Smoothing: Let Fi be the forecasted
value in time period i, and α be a smoothing con-
stant. For time period t, the exponential smooth-
ing technique computes:

Ft = Ft−1 + α(dt−1 − Ft−1)

where Ft is also the predicted value for the next
time period.

• Regression Techniques. As mentioned above, our
regression solutions are built on the most widely used
regression method — linear regression: Given two vari-
ables with linear correlation, the goal is to compute a
linear function such that the sum of the deviations of
all the points from the function is minimized. Consider
a linear function y = ax+b where all data points x are
known. If there are historical data — n pairs of (x, y),
then after applying regression to them, we will be able
to estimate the coefficients a and b. The coefficients a
and b can be computed using the following equations:

a =
n(� xy) − (� x)(� y)

n(� x2) − (� x)2
, b =

� y − a � x

n
. (1)

3.2 Protocol Definition

Now we define the interfaces of our forecasting protocols.
In the definitions below and in the rest of the paper we use
the following notation. We assume that there are m players
P1, P2, . . ., Pm engaged in the computation, where m ≥ 2.

Notation 1. Any item superscripted with (j) is held by
and known only to player Pj . The same item without a
superscript mark corresponds to the sum of the items held
by all players, which is assumed to be additively split among
the players. For example, if we have that player Pj has x(j),
then x is equal to � m

j=1 x(j).

In the first two protocols, which are based on time se-
ries, it is undesirable to learn the absolute result: Ft (the
forecasted value) might be considered to be revealing too
much information because a player can learn his share of the
value and possibly some additional information about other
players’ data. Therefore, instead of providing its absolute
value, we output only the slope Ft−dt

dt
, i.e., the percentage

by which the value is expected to increase or decrease in the
next time interval. Definition 1 corresponds to forecasting
based on moving average techniques, and definition 2 is for
exponential smoothing forecasts. The detailed protocols are
given in section 5.

Definition 1. Secure Collaborative Forecasting Using
Moving Average Techniques

Input Player Pj, 1 ≤ j ≤ m, provides input data d
(j)
t−i

for n time intervals, where 0 ≤ i ≤ n − 1. In case
of computing the weighted moving average, the weight
vector ~w is public.

Output Player Pj, 1 ≤ j ≤ m, learns Ft−dt

dt
without any-

thing else, where Ft is computed using the moving av-
erage or the weighted moving average technique.

Definition 2. Secure Collaborative Forecasting Using
Smoothing Techniques

Input Player Pj, 1 ≤ j ≤ m, supplies d
(j)
t−1, d

(j)
t , and F

(j)
t−1,

where the value of Ft−1 from the previous time interval
computation is kept additively split among all players.
The value of α is public.

Output Player Pj, 1 ≤ j ≤ m, learns Ft−dt

dt
without any-

thing else, where Ft is computed using the exponential
smoothing technique.

For the linear regression protocols, we assume that the x-
axis is public, and the set of possible x values is finite.
We use x1, x2, . . . , xn to denote n possible x-values. In
our model, each player supplies the y-axis data and they
jointly compute the result in the normalized form. This
means that the data, for instance, is given as the average
number of accidents per customer in case of car insurance
data, or as the mortality rate for surgical cases. In this case
each data point yi is given as two integers ci and di where
yi = ci/di. The aggregate values for each data point com-
puted during the execution of the protocol is then found as

yi = � m

j=1 c
(j)
i / � m

j=1 d
(j)
i . The protocol that corresponds

to the definition below is provided in section 6.

Definition 3. Secure Collaborative Benchmarking Us-
ing Linear Regression Techniques

Input Player Pj , 1 ≤ j ≤ m, provides data points y
(j)
i ,

where 1 ≤ i ≤ n and each y
(j)
i is supplied in the form

of (c
(j)
i , d

(j)
i) with y

(j)
i = c

(j)
i /d

(j)
i . If Pj does not have

data for xi, then he sets both c
(j)
i and d

(j)
i to 0.

Output Player Pj, 1 ≤ j ≤ m, learns the coefficients a
and b, such that ~y = a~x + b where a and b are the
cooperatively computed linear regression parameters.

In terms of the hospital example, suppose m hospitals
want to jointly benchmark their mortality rates of surgery
operations on heart diseases. xi then could be the cate-
gorized health conditions of the patients, whereas yi is the
overall mortality rates for patients within catalog xi. We as-
sume there is a linear relation between x (health condition)
and y (mortality rate). For each xi, hospital Pj provides

its own mortality rate y
(j)
i = c

(j)
i /d

(j)
i , where c

(j)
i and d

(j)
i

are the number of deaths and the number of patients, re-
spectively. yi is the overall mortality rate for xi-conditioned
patients, therefore it is the sum of deaths divided by the

sum of patients in xi catalog, i.e., � m

j=1 c
(j)
i / � m

j=1 d
(j)
i .

All protocols presented in this work are evaluated in terms
of their computational and communication complexity, as
well as in the number of communication rounds they require.
For the purposes of our evaluation, a communication round
is defined as an exchange of messages between the players
during which a single player can (i) receive one or more
messages from other players, perform calculations, and send
one or more messages, or (ii) send one of more messages and
then receive one or more messages from other players. Every
player participates in a single round at most once, with the
total number of messages sent over the network during one
round being up to m2.

4. BUILDING BLOCKS
Giving the fully-developed protocols would make them too

long and rather hard to comprehend. This section aims at

making the later presentation of the protocols crisper by
presenting parts of our solutions ahead of time. The building
blocks that we describe in this section are an important part
of this work, because they lay the ground for solving the
forecasting problems in a secure fashion and provide a design
choice for the final protocols. This section presents split
and division protocols, where the later protocols operate on
floating point numbers and thus are new to SMC. We have
also developed secure summation and comparison protocols
that provide alternative solutions to forecasting based on
moving average and weighted moving average techniques.
They are not included in this paper due to space constraints
but can be found in [4].

We consider three different types of players with respect
to malicious behavior:

1. Semi-honest players: Semi-honest players (also known
as “honest but curious”) will follow the protocol as
prescribed, but might also attempt to discover more
information based on the data they receive at various
steps of the protocol.

2. Colluding players: Colluding players exhibit the be-
havior of semi-honest players but can also collude to-
gether in order to discover some additional information
about other players’ data.

3. Malicious players: Malicious players may arbitrarily
misbehave: they can collude against other players and
can deviate from the correct steps of the protocol. Dif-
ferent types of deviation from the protocol include sup-
plying incorrect data, modifying data at intermediate
steps of the protocol (possibly in collaboration with
other malicious players), prematurely quitting the pro-
tocol, or performing incorrect computations at certain
steps of the protocol.

In our solutions, we focus on the first two types of play-
ers. Considering only semi-honest players is not sufficient
because in our case the players might be competing busi-
nesses, which does not allow us to exclude colluding behav-
ior from consideration. We do not consider the third type of
misbehaving players on the grounds that all the players are
interested in the outcome of the computation and will not
attempt to disrupt it. Some of our solutions can be tuned
to provide a trade-off between complexity and robustness
against colluding behavior, and should be setup to account
for the expected behavior of the players with respect to col-
lusions. In other words, if during the computation it is not
expected that a significant number of players will collude,
the protocol can be made more efficient by setting the col-
lusion threshold low.

4.1 Secure split protocol
The first protocol that we present is a secure split pro-

tocol that is used as a building block in the final protocols
as well as in other building blocks. Prior to execution of
the split protocol all players additively share an item where
the individual shares are private information. The goal of
this protocol is to “blind” individual shares in such a way
that no share reveals private information, but the total sum
of all shares stays the same as before. At the end of the
protocol each player holds a large random number, and the

initial private input stays hidden. The details of this pro-
tocol are reminiscent of the techniques used in the dining
cryptographers [9].

Protocol 1. Secure Split Protocol

Input Player Pj, 1 ≤ j ≤ m, provides private input x(j).

Output Player Pj, 1 ≤ j ≤ m, obtains z(j) such that� m

j=1 x(j) = � m

j=1 z(j).

Protocol Steps: 1. All players jointly agree on a collu-
sion threshold k, such that 1 ≤ k ≤ m − 1.

2. Each player Pj splits x(j) between k + 1 players
in the following way: Player Pj generates k large

random values r
(j)
1 , . . . , r

(j)
k (both positive and

negative) and sends them to randomly chosen k
players from the remaining m−1 players. He sets

his share of x(j) to be r
(j)
0 = x(j)−r

(j)
1 − . . .−r

(j)
k .

3. After receiving k′ messages from other players (on

average k′ = k), each player Pj computes z(j) =

r
(j)
0 + �

i6=j
r
(i)
l such that player Pi sent r

(i)
l to Pj

for some 1 ≤ l ≤ k.

Analysis This method of hiding data is secure but not in an
information-theoretic sense. As can be seen from the
protocol, a single private input is distributed among
k + 1 players. When this protocol is used as a part of
another protocol, individual shares z(j)’s are revealed.
In order for an individual x(j) to be revealed, however,
all of the k players to whom player Pj sent messages in
step (2), and all players who sent messages to player
Pj in step (3), must collude. Assume that m′ < m is
the number of players that collude against player Pj.
Then the probability of compromising x(j) is 0 when
m′ < k. When m′ ≥ k, the probability of compromise
is less than:�

m′

m − 1
� k �

1 −
k

m − 1
� m−m′−1

which exponentially decreases as k increases. For in-
stance, when the number of colluders is less than m/2
and m is even, the probability of a successful compro-
mise is less than:

2−k
�
1 −

k

m − 1
� m

2

which is upper-bounded by 2−k. If we use k = c log m,
where c is a constant, the probability is upper-bounded
by m−c. This means that a sub-linear collusion thresh-
old k results in a performance that is probabilistically
collusion-resistant against a linear number of collud-
ers.

The protocol is even better with respect to collusive be-
havior than this probability analysis implies, because
the colluders have no way of knowing whether they suc-
ceeded or not. Even if the colluders knew from step (2)
that all of the k messages that player Pj sent went to
the colluding players, they still would not know whether
some non-colluding player in step (3) chose player Pj

to be a recipient of one of his messages. Thus the col-
luders have no “success indicator” to tell them whether
they succeeded in the compromise or not.

This protocol is performed in 1 round (assume all the
players execute the protocol simultaneously); the to-
tal communication is O(km) messages; and computa-
tional complexity at each player is O(k). When k takes
the highest value available k = m − 1, a collusion of
any number of players less than m − 1 has zero prob-
ability to succeed. Communication complexity in this
case reaches O(m2).

4.2 Secure division protocols
It is possible to use the general circuit simulation results

to carry out secure division, and we need to compare this ap-
proach to our approaches. The practical circuits for 2-party
`-bit division have size O(`2), and simulation of this circuit
requires O(`) 1-out-of-2 Oblivious Transfers and O(`2) eval-
uations of pseudorandom functions (such as AES). Although
there are asymptotic improvements to these circuits, they
come at the cost of huge constant factors; the asymptotically
best of them (and the worst in terms of having impractically
large constant factors) is a circuit of size O(` log ` log log `)
[8, 3] derived from the textbook Schoenhage-Strassen inte-
ger multiplication algorithm [24] (which is itself of mainly
theoretical interest, and not used in practice). Converting
a 2-party division protocol into a general m-party division
protocol adds an additional factor of O(m2).

The protocols we have developed to handle secure multi-
party division use a secure multiplication protocol in their
various steps, and each such multiplication protocol is easily
carried out using O(1) homomorphic encryption computa-
tions; we count the number of expensive cryptographic op-
erations (e.g., homomorphic encryption, oblivious transfer)
rather than bits communicated because, for both circuit sim-
ulations and our protocols, the latter can be obtained from
the former by multiplying by `, hence for relative compar-
isons we can determine which is better using the former.

The protocols we give differ in their constraints on the
number of players, communication and computational com-
plexity of the protocols, and their robustness against collud-
ing players. We present them in the order of their simplic-
ity (simplest first). The first protocol operates on floating
point numbers. The other three protocols utilize homomor-
phic encryption and operate on integers, but the result is
still computed as a floating point number.

Given two numbers x and y additively split among m
players, all of our protocols will output x/y if y 6= 0 and a
special symbol which indicates that division is not possible
when y = 0. This means that all players will learn whether
y = 0, which is unavoidable as it is an inherent part of the
answer (hence it is not an information leak).

The idea behind the first protocol is that one of the play-
ers is randomly selected to perform division on items that all
other players previously blind. This player performs func-
tionality similar to that of an untrusted server and returns
the result to all other players, who then unblind it. A ver-
sion of this protocol that uses an external untrusted server
can be found in [4].

Protocol 2. Secure Division Protocol DIV1

Input Player Pj, 1 ≤ j ≤ m, provides x(j) and y(j).

Output Player Pj , 1 ≤ j ≤ m, learns x
y
.

Protocol Steps: 1. All players randomly select one
player among all of them who will perform di-

vision. Without loss of generality, assume that
player Pm is chosen.

2. Player Pm splits his items x(m) and y(m) into m−

1 random numbers each, i.e., x(m) = � m−1
j=1 r

(j)
x

and y(m) = � m−1
j=1 r

(j)
y . Player Pm sends each

pair r
(j)
x and r

(j)
y to player Pj .

3. Player Pj , 1 ≤ j ≤ m − 1, receives r
(j)
x and r

(j)
y

from player Pm and sets x(j) = x(j) + r
(j)
x and

y(j) = y(j) + r
(j)
y .

4. Players P1 through Pm−1 engage in the secure
split protocol two times providing 0 as their in-
put. Player Pj stores the results of the protocol

invocations as ρ
(j)
1 and ρ

(j)
2 , respectively.

5. Players P1 through Pm−1 jointly agree on two ran-
dom floating point numbers α and β.

6. Player Pj , 1 ≤ j ≤ m − 1, computes a pair of

values 〈a(j) = α(x(j) + ρ
(j)
1), b(j) = β(y(j) + ρ

(j)
2)〉

and sends the pair to player Pm.

7. Player Pm receives m − 1 pairs 〈a(j), b(j)〉, and

computes a = � m−1
j=1 a(j), b = � m−1

j=1 b(j), and
then δ = a

b
. Player Pm sends δ to each of players

P1 through Pm−1.

8. Player Pj , 1 ≤ j ≤ m− 1, recovers the value of x
y

by computing β

α
δ. The value of x

y
is then sent to

player Pm.

Note: If it is desired to have the result split among all
parties at the end of the protocol, player Pm can split
δ into m − 1 random floating point numbers δ(j), i.e.,
δ = � m−1

j=1 δ(j) and send each δ(j) to the corresponding
player Pj. Player Pj , 1 ≤ j ≤ m − 1, then recovers
the result by computing β

α
δ(j), and splits it into two

parts, one of which is kept locally, while the second
one (purely random) is sent to player Pm. Player Pm

then collects these m−1 numbers and sets his share of
the result to be their sum.

Analysis This protocol works when the total number of
players m ≥ 3. It is resilient to collusions if the
player who performs division (Pm) does not collude
with other players, but if that player colludes with any
other player then the aggregate x and y can be revealed.
The probability of learning individual x(j) or y(j) de-
pends on the collusion threshold k used in the split pro-
tocol (see the analysis of protocol 1) and is further low-
ered by the fact that the player who performs division
must be among the colluding players.

This protocol can be performed in 5 rounds, with to-
tal communication of O(km), where k is the collu-
sion threshold for the split protocol. The computa-
tional complexity for the player who performs division
is O(m), and it is O(k) for every other player.

Instead of dedicating a single player for performing divi-
sion, all players can be divided into two groups where the
first group performs division for the second one and the sec-
ond group performs division for the first group; then result
is recovered jointly by both groups. Such protocol can be
further generalized to a larger number of groups. See [4] for
more details on the protocol.

As the previous protocol only works for m ≥ 3, next we
present solutions to two-party division. In the two-party di-
vision protocols and the one following them, all of which use
homomorphic encryption, we assume that all players prior
to protocol initiation agree on a range of possible values.
That is, they define MAXINT to be a large number, such
that all possible (aggregate) values of x and y will be less
than MAXINT , but some randomly generated numbers may
exceed MAXINT (in which case this is explicitly stated when
they are defined). Also, we consider 1/MAXIN T to be a
negligible error.

Another assumption that we make in these protocols is
that both x and y are non-negative numbers. This is an ac-
ceptable limitation because all the forecasting methods that
we solve operate on positive quantities. Lastly, all encryp-
tion arithmetic is integer-based. If players want to provide
their inputs as floating point numbers, they need to agree to
convert them to integer representation by ignoring decimal
points up to a certain precision.

We now give a two-party division a protocol that is prov-
ably secure and operates in O(log `) rounds for `-bit num-
bers, and requires O(log `) homomorphic encryptions and
O(log `) oblivious transfers. We summarize what it achieves
in the theorem that follows, where by “secure” we mean
provably secure in an information-theoretic sense.

Theorem 1. If two `-bit numbers x and y are given mod-
ularly additively split between two parties P1 and P2, then
it is possible for the two parties to securely compute the ra-
tio θ = x/y to within ` bits of precision in O(log `) rounds,
where each round is done with O(1) homomorphic encryp-
tions and one oblivious transfer.

Proof Sketch: If we could somehow compute the integer
z = b22`−1/yc in split fashion within the claimed bounds,
then it would be easy to compute x∗z in split fashion by do-
ing one additional split multiplication of x and z; recall that
such a split multiplication of two integers can be done in
O(1) rounds and using O(1) homomorphic encryption com-
putations. After this, the two parties would exchange their
halves of x ∗ z and thereby learn θ to within the desired
accuracy. So the main problem is how the two parties can
securely compute, in split fashion and to within ` bits of
accuracy, the integer z. (Note that z has to be computed
in split fashion, otherwise both parties can deduce y from
it.) Before turning our attention to this computation of z,
we observe that we can choose, without loss of security, the
modulus of the additive-splitting to be the same as the one
for the homomorphic encryption system. That is, if arith-
metic is modulo T for the homomorphic encryption, then
we can assume that P1 (resp., P2) initially has x(1) and

y(1) (x(2) and y(2)), such that x(1) + x(2) mod T = x, and

y(1) + y(2) mod T = y. For reasons that will become clear
later, we also assume that T is chosen such that T > 23`+1.

Because z is the reciprocal of y, the first thought that
comes to mind is to use the reciprocal-computation tech-
nique based on the centuries-old “Newton’s method” (as was
done in [1] and [3]). This, however, runs into a subtle diffi-
culty due to the fact that y is split, and the answer z (and
all intermediate answers of the iterative process) must also
be in split form: Each iteration, when used on integers and
producing an integer answer, involves “scaling” (division by
a quantity C known to both parties). But because the val-
ues to be divided by that C are additively split modulo T ,

the two parties cannot simply divide their respective shares
by this C as it may introduce an error due to the “modulo
T” wraparound. The protocol we give below overcomes this
difficulty. Before giving the protocol, we recall that the basic
idea of the iterative computation of z is to use a sequence of
approximations to z that are progressively more accurate:
Specifically, if zi approximates z to within α correct bits,
then:

zi+1 = 2zi − d(zi)
2y/22`−1e

approximates z to within 2α correct bits (the earlier-
mentioned scaling factor C is therefore 22`−1). It will so
happen (as will become clear in the split scaling protocol
below) that because we operate on split values our proto-
col’s zi+1 approximates zi to within 2α − 2 bits. Therefore,
as long as we start with a split z0 that approximates z to
within a few correct bits, each iteration approximately dou-
bles the number of correct bits in the approximation. This
implies that O(log `) iterations suffice (actually, log ` if z0

starts out with 3 correct bits). The above iterative formula
actually always converges as long as z0 ∈ {2, 2` − 1}: It just
converges faster if z0 starts out with at least a few (e.g., 3)
correct most significant bits. There are many ways of com-
puting a good enough initial z0, and these will be described
in the full version of the paper.

Each iteration requires carrying out two split multiplica-
tions (hence O(1) homomorphic encryptions) and one split
subtraction. Each iteration also requires scaling w = (zi)

2y
by the factor C to obtain w/C in split fashion, and the pro-
tocol for doing so is given below (we dropped the “ceiling”
notation in it to avoid unnecessarily cluttering the presen-
tation).

Protocol 3. Secure Two-Party Protocol for Scaling by
a Constant

Input Player P1 has m(1), P2 has m(2), such that m(1) +
m(2) mod T = w, and w < 23` (because w is the prod-
uct of three `-bit terms).

Output Player P1 receives updated m(1) and P2 receives
m(2), such that m(1) + m(2) mod T = w/C.

Protocol Steps: 1. P1 chooses a random r ∈ [0, T −

1] and updates m(1) by doing m(1) = −r +

m(1)/C mod T .

2. The two players engage in an oblivious transfer
protocol in which P1 prepares a pair (a0, a1) and
P2 obtains an x ∈ {a0, a1} where

• (a0, a1) = (r, r − T/C) if m(1) < 23`

• (a0, a1) = (r − T/C, r − T/C) if m(1) ≥ 23`

• x = a{m(2)≥23`}, i.e., x is a1 if m(2) ≥ 23`

and a0 otherwise.

3. P2 updates m(2) by doing m(2) = x + m(2)/C.

Correctness of the split scaling protocol follows from the
two possible cases for m(1) + m(2) prior to the update done
by the protocol:

• If, before the protocol’s updates, m(1) + m(2) < 23`

then both m(1) and m(2) are < 23`, and the protocol
updates by setting m(1) = −r + m(1)/C and m(2) =

r + m(2)/C, which is correct because the new values

m(1) and m(2) result in m(1) + m(2) mod T = w/C, as
required.

• If, before the protocol’s updates, m(1) + m(2) ≥ 23k

then, because w = m(1) + m(2) mod T = w < 23`, it
must be the case that m(1) + m(2) ∈ [T, T + 23`]. This

means that dividing each of m(1) and m(2) by C in this
case would introduce an additive T/C error that must
be subtracted out by the protocol. To see that it is
subtracted out, note that in this case at least one of
{m(1), m(2)} is ≥ 23`, and therefore P2 is guaranteed
to obtain x = r−T/C and the −T/C term in x cancels
out the above-mentioned additive error of +T/C.

This completes the proof. 2

The following is a high-level summary of the protocol de-
scribed in the above proof.

Protocol 4. Secure Two-party Division Protocol DIV2

Input Player P1 provides x(1) and y(1), and player P2 pro-
vides x(2) and y(2). Every one of x(1), y(1), x(2), y(2)

is in [0, T) where T is the modulus of the homomorphic

encryption system used. Both x = x(1) + x(2) mod T
and y = y(1) + y(2) mod T are assumed to be ` bits
long, hence smaller than 2`. T is chosen such that
T > 23`+1.

Output Players P1 and P2 learn x
y

to within ` significant
bits.

Protocol Steps: 1. Starting with split z0, for i =
1, 2, . . . , 2 log `, P1 and P2 securely compute zi in
split fashion according to the iteration equation:

zi+1 = 2zi − d(zi)
2y/22`−1e

by using secure split multiplication twice, and us-
ing once the split scaling protocol described in the
proof of Theorem 1. A known technique for per-
forming secure two-party multiplication is given
in Appendix A. As noted earlier, z = z2 log ` is an
` bit integer that equals b22`−1/yc.

2. P1 and P2 securely multiply z by x in split fashion.
The resulting x ∗ z is x/y “scaled up” so it is in
integer form. They exchange their shares of x ∗ z
and learn x/y to within ` significant bits.

Analysis See the proof of Theorem 1 for computational
and round complexity. Communication overhead for
each user is O(1) messages per round, and therefore
O(log `) messages total.

Although the above protocol is much better than a circuit
simulation approach to solving the secure division problem,
it is still expensive. Because the quantities used in fore-
casting are often private only in an approximate sense, it is
worthwhile to consider protocols that “leak” some informa-
tion but are more efficient (for example, one may not mind if
others know the sales figures increased by between 5 and 10
percent, as long as they do not know the exacts percentage).

Protocol 5. Secure Two-party Division Protocol DIV3

Input Player P1 provides x(1) and y(1), and player P2 pro-
vides x(2) and y(2).

Output Both players learn x
y
, where x = x(1) + x(2) and

y = y(1) + y(2).

Protocol Steps: 1. Player P1 generates a (public, pri-
vate) key pair in a homomorphic semantically se-
cure encryption system [21, 22] where arithmetic
is modulo N , with N ≥ 2 · MAXIN T 2 (Recall
that in such a system E(a) ·E(b) = E(a+ b), and
nothing can be learned about c from E(c).)

2. Player P1 computes E(x(1)) and E(y(1)), and
sends them to P2 along with the public key of the
homomorphic encryption system.

3. Player P2 computes E(x) = E(x(1)) ·E(x(2)) and

E(y) = E(y(1)) · E(y(2)).

4. Player P2 chooses four randoms α1, α2, β1, β2

from a range [u, MAXINT − u] where u is known
to P2 but not to P1, and then computes:

p1 = E(x)α1 mod N = E(α1 · x)
q1 = E(y)β1 mod N = E(β1 · y)
p2 = E(x)α2 mod N = E(α2 · x)
q2 = E(y)β2 mod N = E(β2 · y)

Player P2 then computes v = p1 · q1 = E(α1x +
β1y) and w = p2 · q2 = E(α2x + β2y) and
sends them to player P1. Note that what is in-
side the encryption is less than N so there is no
“wraparound” due to the modulo N arithmetic.

5. Player P1 decrypts v and w and gets D(v) =
α1x + β1y and D(w) = α2x + β2y. He then
computes their (floating point) ratio δ = (α1x +
β1y)/(α2x + β2y) and sends it to P2.

6. Player P2 computes the ratio x
y

as (β1−δ ·β2)/(δ ·

α2 − α1) and forwards the answer to P1.

Analysis This protocol has a limitation: when x = 0, the
protocol reveals β1y and β2y to player P1. Player P1

then can determine possible values of y (using a gcd
computation, etc.). Thus, this protocol should not be
used when x can take the value of 0, or, alternatively,
the coefficients β1 and β2 could be constructed in a way
to minimize the probability of a successful attack when
x = 0 (see [4] for more information). As this protocol
is designed for two-party computation, there is no need
to consider collusion.

The protocol consists of 2 rounds. Each player needs
to perform two encryptions in modular arithmetic.
Player P1 additionally creates a key pair and performs
two decrypt operations. Player P2 also performs a
small (constant) number of multiplication and expo-
nentiation operations in modular arithmetic. Thus the
overall computational and communication complexity
is O(1).

Lastly, we give a protocol that is secure against collusions of
up to m − 1 players. In what follows, the multiplicative co-
efficients α and β are implicitly constructed as a product of
individual αj ’s and βj ’s, i.e., α = � m

j=1 αj and β = � m

j=1 βj

where αj and βj are known only to player Pj .

Protocol 6. Secure Division Protocol DIV4

Input Player Pj, 1 ≤ j ≤ m, provides x(j) and y(j).

Output Player Pj , 1 ≤ j ≤ m, learns x
y
.

Protocol Steps: 1. Each player Pj generates a (pub-
lic, private) key pair Ej and Dj in a homomor-
phic semantically secure system modulo Nj with
Nj ≥ MAXINT m+1. Pj sends to P1 the public key
Ej and the items pj = Ej(x

(j)) and qj = Ej(y
(j)).

Throughout what follows, even as they get up-
dated, pj and qj should be thought of as the en-
cryptions of the “current” (i.e., updated) x(j) and

(respectively) y(j).

2. For i = 1, . . ., m in turn, the following steps are
repeated:

(a) In this step player Pi updates the pj and qj

other than his own (i.e., with j 6= i) that
he received (in step 1 if i = 1, otherwise
from Pi−1 in the previous iteration of (a)–
(c)). He does so as follows. First, Pi creates
two random numbers αi and βi in the range
[MAXINT/2, MAXINT]. Next, player Pi gen-
erates m − 1 pairs of random numbers (one
pair ai,j, bi,j for each other Pj), where each
such random is less than MAXINT m+1. For
each pj and qj , j 6= i, Pi then computes:

pj = pαi

j · Ej(ai,j) = Ej(x
(j)αi) · Ej(ai,j)

= Ej(x
(j)αi + ai,j)

qj = qβi

j · Ej(bi,j) = Ej(y
(j)βi) · Ej(bi,j)

= Ej(y
(j)βi + bi,j)

which implicitly multiplies x(j) (resp., y(j))
by αi (βi) and then adds a random to it.

(b) Player Pi now updates his own pi and qi by
doing

pi = Ei(αi · Di(pi) − �
j 6=i

ai,j)

qi = Ei(βi · Di(qi) − � j 6=i bi,j)

which implicitly multiplies x(i) (resp., y(i)) by
αi (βi) and then subtracts from it a random
that “cancels out” the random numbers im-
plicitly added in (a) to the other x(j)’s (resp.,

y(j)’s).
Note: The above decryption and re-
encryption of pi and qi are not necessary, in
the sense that the computation in (b) could
have been performed on encrypted items just
like the computation of (a) was, but we chose
to do the arithmetic on un-encrypted values
for efficiency reasons.

(c) If i < m then player Pi sends all of the pj

and qj (including his own pi and qi), as well
as all encryption keys Ej, to Pi+1. Other-
wise i = m and Pm sends every pj , qj pair
to the corresponding player Pj who then de-
crypts them with his private key Dj and ob-
tains his final x(j), y(j), that is, x(j) = Dj(pj)

and y(j) = Dj(qj) for all j (including j = m).

At the end of the kth iteration of (a)–(e) the sum

of the m items x(j) is (α1 · · ·αkx) and the sum of

the m items y(j) is (β1 · · · βky). Therefore at the

end of step (1) the sum of the m resulting x(j) is

αx. Similarly, the sum of the m resulting y(j) is

βy. Note that no player knows (or will know) α
or β.

3. Every player Pj generates two random numbers

r
(j)
x and r

(j)
y less than (MAXINT m−1)/(2m−1m),

and sets x(j) = x(j) + r
(j)
x and y(j) = y(j) + r

(j)
y .

Now the sum of all x(j)’s will give αx+rx and the
sum of y(j)’s is βy + ry, where rx and ry are neg-
ligible compared to αx and βy (more discussion
of this follows).

4. All players engage in the secure split protocol
providing their y(j) as input and obtaining y′(j).
Then every player Pj publishes his share ρ(j).

5. After receiving all the ρ(i)’s, each player Pj com-
putes the sum of all the ρ(i)’s, which equals βy +
ry. Since everyone now knows βy+ry, each player
Pj can compute δ(j) = x(j)/(βy + ry).

6. Every player Pj reveals to all others the (floating
point) ratio tj = βj/αj .

7. Every player Pj computes δ(j)t1t2 · · · tm =
δ(j)β/α, which results in the approximation of x

y

in additively split form among the m players (with

Pj ’s share being δ(j)β/α). To recover the answer
as the sum of these shares, they run a secure split
protocol, then compute (and reveal to all) the sum
of all shares, which is x

y
with the necessary preci-

sion.

Analysis The aggregate random numbers rx and ry are
added to αx and βy to minimize the possibility of
factoring αx and βy. For instance, in step (3) all

players receive the sum of y(j)’s, and without protect-
ing βy with ry some players might attempt to factor
the value. While it is very computationally expensive
to factor this number and furthermore, given its fac-
tors, not possible to deterministically differentiate be-
tween factors of β and y, we still would like to lower
the possibility of success as much as possible. Thus,
we require that αj and βj are at least as large as
MA XIN T/2, which gives us αx/rx ≥ MA XIN T
and βy/ry ≥ MAXINT and is acceptable (recall that
we consider 1/MAXINT to be a negligible error). Fur-
thermore, we compute:

αx + rx

βy + ry

=
αx

βy

�
1 + rx/αx

1 + ry/βy � ≈
αx

βy

�
1 +

rx

αx
−

ry

βy �
which converges to αx/βy when rx � αx, ry � βy.
Now in order to successfully factor βy, an attacker
must try all possible ry, which is a prohibitively large
number on the order of MAXINT m−1.

This protocol does not scale well to large m’s because
the length of the numbers that players operate is linear
in the number of players. The protocol is conducted in
5 rounds, with the total communication of O(m2) items
(or O(m) messages). The computational complexity at
each player is bounded by key generation (which can be
precomputed) and O(m) encryptions.

The above protocol provides a high degree of protection
where a collusion of any number of players cannot succeed.
This might not be required in certain settings, and the pro-
tocol can be tuned to lower its robustness and at the same

time lower its communication and computational cost. Simi-
lar to protocol 1, we can randomly select a subset of k players
(2 ≤ k ≤ m) who will conduct the above protocol after all
other players distribute their individual shares among those
k. By tuning the value of k, the players can find a balance
between the acceptable resilience and complexity of the pro-
tocol. We do not provide detailed analysis of this protocol
here due to space limitations. Other tradeoffs are possible,
e.g., decreasing the round complexity at the expense of a
higher computation complexity by using circuit simulation.
Again, we omit the details.

5. SECURE TIME-SERIES FORECASTING
This section gives final protocols for performing collabora-

tive forecasting based on time series. We start with moving
average, then proceed with weighted moving average, and
lastly cover exponential smoothing.

5.1 Moving average
The goal of moving average forecasting is to find the be-

havior of the function at time t + 1 relative to the current
time t. This value can be computed as:

x =
Ft − dt

dt

= �
n−1�
i=0

dt−i � /n − dt

dt

(2)

=
dt−n+1 + . . . + dt−1 − (n − 1)dt

ndt

Below we provide a protocol for solving the moving average
problem based on our division protocols. For moving aver-
age and weighted moving average, we have developed alter-
native solutions that use binary search and a secure com-
parison protocol as their building blocks and can be found
in [4]. We do not give their details in this paper.

Protocol 7. Secure Moving Average Protocol

Input Player Pj, 1 ≤ j ≤ m, has input data d
(j)
t−i for n

time intervals, where 0 ≤ i ≤ n − 1.

Output Player Pj, 1 ≤ j ≤ m, learns Ft−dt

dt
, Ft is com-

puted as the moving average.

Protocol Steps: 1. Each player Pj sets x(j) = d
(j)
t−n+1 +

. . . + d
(j)
t−1 − (n − 1)d

(j)
t and y(j) = nd

(j)
t .

2. All m players jointly conduct a secure division
protocol, with each player Pj providing input x(j)

and y(j). The output of the division protocol is
the output of this protocol, i.e., Ft−dt

dt
.

Analysis Both complexity and robustness of this proto-
col depend on the underlying secure division protocol.
Communication and complexity requirements are also
those of the division protocol because there is no com-
munication in step (1) and only O(1) computation (n
is constant).

5.2 Weighted moving average
Computation of the weighted moving average is very sim-

ilar to the previous case of the moving average computation.
The difference is that all players agree on a weight vector
~w = {w0, w1, . . . , wn−1}, which is public. According to the

formula for computing the weighted moving average, equa-
tion (2) for this case becomes:

x =
Ft − dt

dt

= �
n−1�
i=0

widt−i � − dt

dt

=
w0dt−n+1 + . . . + wn−2dt−1 − (1 − wn−1)dt

dt

Protocol 8. Secure Weighted Moving Average Protocol

Input Player Pj, 1 ≤ j ≤ m, supplies n data points d
(j)
t−i,

where 0 ≤ i ≤ n − 1.

Output Player Pj , 1 ≤ j ≤ m, obtains Ft−dt

dt
, where Ft

corresponds to joint computation of the weighted mov-
ing average.

Protocol Steps Very similar to Protocol 7’s steps:

1. Each player Pj sets x(j) = w0d
(j)
t−n+1 + . . . +

wn−2d
(j)
t−1 − (1 − wn−1)d

(j)
t and y(j) = d

(j)
t .

2. All m players jointly conduct a secure division
protocol, where each player Pj supplies input x(j)

and y(j). The computation results in the desired
value.

Analysis See analysis of protocol 7.

5.3 Exponential Smoothing
The formula for exponential smoothing can also be rewrit-

ten to simplify joint computation. In the formula below
assume α is public, Ft−1 is calculated during the previous
execution of the protocol and is additively split between m
players. The goal is then to compute:

x =
Ft − dt

dt

=
Ft−1 + α(dt−1 − Ft−1) − dt

dt

=
(1 − α)Ft−1 + αdt−1 − dt

dt

Protocol 9. Secure Exponential Smoothing Protocol
Using Division Protocol

Input Player Pj, 1 ≤ j ≤ m, provides input data d
(j)
t−1 and

d
(j)
t , as well as the result of the previous execution of

the protocol F
(j)
t−1.

Output Player Pj, 1 ≤ j ≤ m, learns Ft−dt

dt
, where Ft is

the result of exponential smoothing computation, and

also gets a share F
(j)
t of Ft.

Protocol Steps: 1. Each player Pj sets x(j) = (1 −

α)F
(j)
t−1 + αd

(j)
t−1 − d

(j)
t and y(j) = d

(j)
t .

2. All players jointly execute a secure division pro-
tocol, where each player Pj provides x(j) and y(j)

as his input. The output of the division protocol
is the output of this protocol.

3. Each player Pj sets F
(j)
t as (1−α)F

(j)
t−1 + αd

(j)
t−1.

Analysis The core of this protocol is the underlying divi-
sion protocol, therefore all complexity and communica-
tion analysis, as well as robustness against colluding
players is the same as for the division protocol used.

6. SECURE LINEAR REGRESSION
BENCHMARKING

As was mentioned earlier, we apply the linear regression
technique to a set of xi, yi values, where the number of
points n is set in advance. Then each yi is given in the form
of two numbers ci and di, where yi = ci/di to make it pos-
sible to operate on normalized values and guarantee correct
outcome. We consider this scenario to be more general than
the one where each player provides only his yi’s values. This
is because every protocol that solves a problem with yi val-
ues provided in the form of ci and di pairs can be used to
solve that problem where yi is provided as a single value.
In our case, if players decide that division is not necessary,
they can follow either of the paths below:

(a) They can agree on the values of d(j)’s such that� m

j=1 d(j) = 1.

(b) They can omit the step of the protocol where the yi’s
are computed using the division protocol and use their
original shares of yi’s instead.

Another assumption that we make in this model is that all
values of xi are known to all players and are agreed upon
prior to protocol initiation. This means that all of the xi’s
values will be used in computation of the regression coeffi-
cients even if a player does not have data for all of the points.
If, however, none of the players have data for a specific value
of xi, that point must be excluded from the computation.
This means that the players learn what data point is being
excluded, which is viewed as additional information about
other players’ input that should be kept secret. Changing
the protocol so that it can handle cases where no data is
available for a certain point and no player learns this in-
formation will result in significantly more complex solutions
both in terms of computation and communication. There-
fore, we decide to solve this issue in the following way. The
protocol starts as usual, and for each data point we com-

pute yi = � � m

j=1 c
(j)
i � / � � m

j=1 d
(j)
i � . If it is detected that

this division is not possible to perform because all c
(j)
i , d

(j)
i

pairs for a specific data point xi are zero, then the execution
is suspended. Each player will be notified that computation
cannot be carried out, and they have two options: they can
abort the protocol or continue its execution, but in the latter
case information about the missing values will be revealed
to all players. If all of the players decide to continue, the
value of xi that caused the problem is excluded from the set
of possible points and the protocol is restarted. If at least
one of the players decides to abort, execution terminates.

To compute the regression coefficients themselves, we use
the formulas given in equation (1). Here the value of � n

i=1 xi

is public and can be computed by each player. Then the
equations becomes:

a = A
�
n

n�
i=1

xiyi − �
n�

i=1

xi � n�
i=1

yi � , b =
� n�

i=1

yi/n � − B

where A and B are known to all players and can be precom-

puted, such that A = 1/
�
n � � n

i=1 x2
i � − � � n

i=1 xi � 2 � and

B = � a � n

i=1 xi � /n (notice that B can be computed only
after a is known as a result of joint computation).

Protocol 10. Secure Linear Regression Protocol

Input Player Pj, 1 ≤ j ≤ m, provides a set of pairs c
(j)
i ,

d
(j)
i , where i corresponds to data points x1, x2, . . . ,

xn.

Output Player Pj , 1 ≤ j ≤ m, learns the coefficients a and
b such that ~y = a~x + b.

Protocol Steps: 1. All players engage in a secure divi-
sion protocol n times to compute yi for 1 ≤ i ≤ n,
where yi’s remain additively split among all play-
ers.

2. Each player Pj locally computes a(j) =

A
�
n � n

i=1 xiy
(j)
i − � � n

i=1 xi � � n

i=1 y
(j)
i � .

3. All players engage in the secure split protocol with
a(j), publish their outputs, and compute the sum
a = � m

j=1 a(j).

4. Each player Pj locally computes b(j) =� n

i=1(y
(j)
i /n).

5. All players engage in the secure split protocol with
b(j), publish their outputs and each player com-
putes b = � m

j=1 b(j)−B, where B is subtracted by
each player separately from computing the sum of
b(j)’s.

Analysis This protocol is as secure against colluding play-
ers as its underlying blocks are (i.e., division and
split). Communication and computational complexity
of the protocol are also bounded by the division and
split protocols, where both of them are invoked a con-
stant number of times (the division protocol is executed
n times, where the number of points n is constant).

7. CONCLUSIONS AND FUTURE WORK
In this work, we provided privacy-preserving solutions to

collaborative forecasting and benchmarking that can be used
to increase the reliability of local forecasts and data corre-
lations, and to conduct the evaluation of local performance
compared to global trends. We gave both building blocks
and their use in protocols for a number of different forecast-
ing methods based on time-series and regression techniques.
The building blocks are general enough to be used in other
protocols for forecasting and benchmarking, as well as in
other applications. In particular, the division protocols pre-
sented in this work, to the best of our knowledge, are the first
attempt to perform division in secure multi-party computa-
tion as well as to perform computations on floating point
numbers.

This work can be extended in a number of ways. Future
directions include:

• The model can be extended to other time-series fore-
casting techniques.

• Along with providing short-range forecasting, we
would like to be able to perform long-range fore-
casts. Long-range forecasts take into account seasonal
changes and other long-range patterns.

• We also would like to design protocols to cover other
types of regressions for benchmarking collaboration.
This will allow us to draw reliable conclusions for dif-
ferent types of data distributions.

• We would like to make some of the protocols provided
in this paper more robust against other types of mali-
cious behavior.

Acknowledgments
The authors are grateful to Vinayak Deshpande and Leroy
Schwarz for their input on early stages of this work.

8. REFERENCES
[1] A. Aho, J. Hopcroft, and J. Ullman. The Design and

Analysis of Computer Algorithms. Addison-Wesley,
1974.

[2] K. Allan, M. Stemper, and O. Tucker. Collaborative
forecasting. http://e-business.pwcglobal.com/pdf/
CollaborativeForecasting.pdf.

[3] H. Alt. Comparing the combinational complexities of
arithmetic functions. Journal of the ACM,
35(2):447–460, 1988.

[4] M. Atallah, M. Bykova, J. Li, and M. Karahan. Secure
collaborative forecasting and benchmarking. Technical
Report CERIAS TR 2004–22, Purdue University,
2004.

[5] M. Atallah and W. Du. Secure multi-party
computational geometry. In International Workshop
on Algorithms and Data Structures (WADS2001),
pages 165–179, 2001.

[6] M. Atallah, H. Elmongui, V. Deshpande, and
L. Schwarz. Secure supply-chain protocols. In IEEE
International Conference on Electronic Commerce,
pages 293–302, 2003.

[7] O. Baudron and J. Stern. Non-interactive private
auctions. In Financial Crypto’01. Springer–Verlag,
2001.

[8] P. Beame, S. Cook, and H. Hoover. Log depth circuits
for division and related problems. In Annual IEEE
Symposium on Foundations of Computer Science,
pages l–6, 1984.

[9] D. Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability.
Journal of Cryptology, 1(1):65–75, 1988.

[10] Collaborative planning, forecasting, and replenishment
(CPFR). http://www.cpfr.org/Members.html.

[11] W. Du. A Study of Several Specific Secure Two-party
Computation Problems. PhD thesis, Purdue
University, 2001.

[12] W. Du and M. Atallah. Privacy-preserving cooperative
scientific computations. In IEEE Computer Security
Foundations Workshop, pages 273–282, 2001.

[13] W. Du and M. Atallah. Privacy-preserving statistical
analysis. In Annual Computer Security Applications
Conference, pages 102–110, 2001.

[14] J. Evans. Applied production and operations
management. West Publishing Company, 4th edition,
1993.

[15] G. Fliedner. Collaborative planning, forecasting, and
replenishment in the retail supply chain. Decision and
Information Sciences Department, Oakland University.

[16] O. Goldreich. Secure multi-party computation.
http://www.wisdom.weizmann.ac.il/home/oded/
public html/pp.html, 2001.

[17] O. Goldreich, S. Micali, , and A. Wigderson. How to
play any mental game. In Annual ACM Symposium on
Theory of Computing, pages 218–229, 1987.

[18] S. Goldwasser. Multi-party computations: Past and
present. In Annual ACM Symposium on Principles of
Distributed Computing, August 1997.

[19] John galt solution, inc. http://www.johngalt.com/.

[20] Y. Lindell and B. Pinkas. Privacy preserving data
mining. In Advances in Cryptology – CRYPTO’00,
pages 36–54, 2000.

[21] D. Naccache and J. Stern. A new cryptosystem based
on higher residues. In ACM Conference on Computer
and Communications Security, pages 59–66, 1998.

[22] T. Okamoto and S. Uchiyama. A new public-key
cryptosystem as secure as factoring. In Advances in
Cryptology – EUROCRYPT’98, volume 1403 of
LNCS, pages 308–318, 1998.

[23] T. Rabin and M. Ben-Or. Verifiable secret sharing and
multiparty protocols with honest majority. In Annual
ACM Symposium on Theory of Computing, pages
73–85, 1989.

[24] A. Schoehage and V. Strassen. Schnelle multiplikation
grosser zahlen. Computing, 7:281–292, 1971.

[25] H. Singh. Collaborative forecasting.
http://www.supplychain.com/docs/
collaborativeforecasting.pdf, 2002.

[26] W. Stevenson. Production/Operations Management.
Richard D. Irwin, Inc., 4th edition, 1993.

[27] A. Yao. Protocols for secure computations. In Annual
IEEE Symposium on Foundations of Computer
Science, 1982.

Appendix A
It is well known (“folklore”) that homomorphic encryption
can be used by two parties P1 and P2 to carry out secure
split multiplication. This is because, if T is the modulus for
the homomorphic encryption system, and if all arithmetic is
henceforth assumed to be modulo T , then we have E(a)b =
E(a ∗ b). This implies a split multiplication protocol in the
following way. Assume x and y are modularly additively
split between P1 and P2 as x = x(1)+x(2) and y = y(1)+y(2),
and let z be the desired answer to be obtained additively
split as z = z(1) + z(2). Then

xy = x(1)y(2) + x(2)y(1) + x(1)y(1) + x(2)y(2)

The last two terms in the above can be computed locally by
P1 (third term) and P2 (fourth term). The first two terms

are computed by having P1 send to P2 both E(x(1)) and

E(y(1)), then P2 (who can encrypt but does not have the
private decryption key) chooses a random r and computes:

v = E(x(1))y(2)

)E(y(1))x(2)

)E(−r) = E(x(1)y(2)+x(2)y(1)−r).

and sends v to P1 who decrypts it and sets z(1) equal to

z(1) = D(v) + x(1)y(1) = x(1)y(2) + x(2)y(1) − r + x(1)y(1).

whereas P2 sets z(2) equal to

z(2) = r + x(2)y(2)

Note that z(1) + z(2) = xy, as required.

