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Secure multi-party computation has seen substantial performance improvements in recent years and is being
increasingly used in commercial products. While a significant amount of work was dedicated to improving
its efficiency under standard security models, the threat models do not account for information leakage from
the output of secure function evaluation. Quantifying information disclosure about private inputs from ob-
serving the function outcome is the subject of this work. Motivated by the City of Boston gender pay gap
studies, in this work, we focus on the computation of the average of salaries and quantify information disclo-
sure about private inputs of one or more participants (the target) to an adversary via information-theoretic
techniques. We study a number of distributions including log-normal, which is typically used for modeling
salaries. We consequently evaluate information disclosure after repeated evaluation of the average function
on overlapping inputs, as was done in the Boston gender pay study that ran multiple times, and provide
recommendations for using the sum and average functions in secure computation applications. Our goal is
to develop mechanisms that lower information disclosure about participants’ inputs to a desired level and
provide guidelines for setting up real-world secure evaluation of this function.
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1 Introduction

Secure multi-party computation and other forms of computing on cryptographically protected
data (such as homomorphic encryption) open up possibilities for great utilization and analysis of
private data distributed across different domains, which otherwise might not be feasible due to the
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sensitive nature of the data. For example, analysis of health-related records and medical images dis-
tributed across different medical facilities and extracting cues from them lead to medical advances
without the need to see the records themselves. Today, data analysis practices by researchers are
hindered by laws regulating access to health data in different countries, and analyzing medical data
at scale presents challenges. Similarly, analyzing sensitive data such as salaries to understand dis-
parities by gender, race, or other types of marginalization can supply decision-makers with impor-
tant information and empower them to address the disparities. This was the case with the Boston
area gender pay gap surveys [13, 14, 42-44] that were initiated in 2015 and ran through 2017 with
more participants and data analysis by additional categories including race. More broadly, wider
adoption of privacy-preserving technologies, and secure computation in particular, can lead to
higher security standards and practices for a broad range of different aspects of our society.

Secure computation techniques have seen significant advances in recent decades in terms of
their speed, as well as the availability of implementations and tools to facilitate their use for a
variety of applications. Tech giants such as Google and Apple started using secure computation
techniques in their products [12, 37, 41, 63] and the number of start-up companies offering related
products is growing (see, e.g., References [36, 45, 53, 54]). However, a number of fundamental
questions still need to be addressed by the research community to make secure computing
practices commonplace.

One of the fundamental questions is how much information about a participant’s private input(s)
might be available as a result of evaluating a desired function on private inputs. Standard security
definitions adopted in the cryptographic community require that no information about private
inputs is disclosed during function evaluation. That is, given a function f that we evaluate on
private inputs x1, x2, . . . coming from different sources, security is achieved if a participant does
not learn more information than the function output and any information that can be deduced
from the output and its private input. However, there are no constraints on types of functions
that can be evaluated in this framework, and thus the information a participant can deduce from
the output and its private input about another participant’s private input is potentially large. This
problem is typically handled by assuming that the function being evaluated is agreed upon by and
acceptable to the data owners as not to reveal too much information about private inputs. However,
our ability to evaluate functions in this aspect and determine what functions might be acceptable
is currently limited. This question is the subject of this work.

Intuitively, what we want is to guarantee that the function being evaluated on private data
is non-invertible, i.e., observing the output does not reveal its private input. Cryptography uses
the notion of one-way functions—and assumes this property for hash functions—to model non-
invertibility. However, what is needed in this case is to ensure that the possible space for a target
private input is still large after the adversary observes the result of function evaluation. This notion
of non-invertibility was first used in the context of secure multi-party computation in solutions
for business applications such as supply chain management and component procurement [24-26]
and was formulated as the inability to narrow down the (private) input of another party to a sin-
gle value or a small set of possible values. Consequently, a series of publications by Ah-Fat and
Huth [1-4] put forward formal definitions that use entropy to measure the amount of uncertainty
about one or more participants’ private inputs after using them in secure multi-party computation.
The definitions are framed from (a) an attacker’s perspective who aims to maximize information
disclosure of a target’s private input and (b) from a target’s perspective who determines the maxi-
mum information disclosure about their inputs when deciding whether to contribute their inputs
to secure evaluation of a particular function. The above formulations are general and applicable
to any function, while application-specific formulations of what constitutes sufficient input pro-
tection and function non-invertibility also emerged. One example is building machine learning
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models resilient to membership inference attacks [58, 61] that guarantee that it is infeasible to
determine whether someone’s data was used for training the model.

Our contributions. In this work, we use the entropy-based definitions from Reference [1] as our
starting point and analyze a specific function of significant practical relevance. In particular, we
focus on the case of average salary computation as used in the Boston gender pay gap study [43].
When the total number of inputs is known (which is typically the case), the average computation is
equivalent to computing the sum. We intuitively understand that the larger the number of inputs
used in the computation of the average is, the better protection each individual contributing its
input obtains. In the extreme case of two participants,’ no protection can be achieved. This was
understood by the designers of the Boston gender pay gap study who recommended running the
computation with at least five contributors [44]. However, the information disclosure was not
quantified, which we remedy in this work.

We start by analyzing the function itself and formally show that the amount of information
an attacker learns is independent of their own inputs. This is consistent with our intuition that,
given a sum, one can always remove their contribution to the sum and analyze the resulting value.
Thus, the protection depends on the number of spectators, i.e., input parties distinct from those
controlled by the adversary and the party or parties being targeted.

We analyze the target’s input entropy remaining after participating in the computation (and
consequently the entropy loss as a result of participation) for a number of discrete and continuous
distributions including uniform, Poisson, normal (Gaussian), and log-normal. Log-normal is typ-
ically used for modeling salary data but is the least trivial to analyze. An unexpected finding of
our analysis is that for a given distribution, the absolute entropy loss is normally independent of
the distribution parameters, and the absolute entropy loss remains very close for different distri-
butions as we vary the number of participants/spectators. Quantifying the information loss allows
us to devise a mechanism to lower information disclosure to any desired level (e.g., 1% of original
entropy, 0.05 bit of entropy).

We extend our analysis of information loss to the case when the computation is run more than
once (as was the case for the Boston gender pay gap study) and examine the case with two eval-
uations. This corresponds to (i) the target participating in two computations with the same input
where the set of participants differs between the executions and (ii) the target participating in one
computation, where the other is run without the target’s input. We observe that information loss
increases as a result of multiple computations, regardless of whether the target participates once
or twice. Furthermore, the protection is maximized when one-half of the original contributors
are replaced, i.e., 50% of the initial participants remain and the other 50% are replaced with new
participants. Our multi-execution analysis is based on the normal distribution, but we expect the
outcome to be similar for other distributions as well.

We proceed with generalizing our analysis to three and more, M, executions. An interesting
finding is that the best configuration that minimizes information loss is determined by pairwise
overlaps of participants between the executions and not by other parameters and sizes. This allows
us to determine the optimal setup for a single and repeated execution of the average function.

We empirically validate our findings throughout this work and provide recommendations for
securely evaluating the average function in real-world applications. In particular, in all of our
experiments, the cost of participating in the average computation, i.e., the difference in the entropy
before and after the computation, is a fraction of a bit (for both Shannon entropy used with discrete

'We use the term “participants” to denote parties contributing inputs to the computation. The computation itself can be
performed by a different set of parties, but our result is independent of the mechanism used to realize secure function
evaluation.
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distributions and differential entropy used with continuous distributions). This translates to a small
relative entropy loss in practice. When modeling salary data using the log-normal distribution with
the parameters specifically chosen for salaries [17], the entropy loss is below 5% with at least 5
non-adversarial participants or spectators, and achieving 1% entropy loss requires 24 spectators.
These numbers are also surprisingly similar across different distributions. Furthermore, when the
computation is repeated (we use a normal distribution to adequately approximate the log-normal
setup), engaging in the computation the second time with an overlapping set of 50% participants
whose inputs do not change results in only 30% entropy loss of the first participation. These and
other findings lead to a number of recommendations for running this computation in practice,
which we provide at the end of this work.
This work is the full version of our conference publication [8].

On the choice of metric. Our analysis uses Shannon entropy. One might argue that this is not
the best metric because it does not distinguish between, e.g., leaking the least significant vs. most
significant bit of one’s salary, while learning the latter is much more valuable to an adversary
than learning the former. However, as we show throughout this work, information leakage for
this application is always small, regardless of the setup. In particular, the most favorable for the
adversary setup across all distributions discloses only about 0.7 bit of entropy, i.e., the adversary
cannot learn even a single bit of the target’s salary. Furthermore, we derive effective mechanisms
for reducing information loss to a controlled low level such that the worst-case scenario will not
realize. We conduct similar analysis using min-entropy (see Section 4.4) and show that Shannon
entropy trends are consistent with those for min-entropy. A primary advantage of using Shannon
entropy is that we are able to go much further in our analysis and ultimately derive close-form
expressions, which cannot be accomplished for other metrics.

2 Related Work

In what follows, we review prior literature on information disclosure from function output in the
context of computing on private data and related techniques that limit information disclosure.

2.1 Quantitative Information Flow

The field of quantitative information flow is closely related to our work. Denning [23] is credited
as the first to quantify information flow as a measure of the interference between variables at two
stages during a program’s execution (typically denoted by “high-" and “low-security” variables,
which equates to the target’s inputs and output in our setting, respectively). Smith [60] formally
established the foundations of quantifying the information leakage under the threat model that
an attacker can recover a secret in one attempt (denoted by the notion of vulnerability). It has
been shown by Massey [48] that the Shannon entropy cannot capture this information under the
guessing assumption, and Smith recommends min-entropy in its place. Alvim et al. [6] generalized
the min-entropy into the g-leakage to incorporate gain functions to model the benefit an adversary
gains from making guesses about the secret. Subsequent works encompassed variations on the
g-leakage [5]. Other works in differential privacy feature derivations of leakage bounds [19],
leakage analysis in the case of an adaptive adversary [39], and knowledge-based approaches for
measuring risk [47, 55].

The fundamental advantage of our Shannon-based approach is the ability to derive closed-form
expressions for the information leakage of the average salary computation, while other metrics do
not share this characteristic. For example, the chain rule of entropy (a simple, yet critical compo-
nent of our analysis) is not satisfied if min-entropy is used [38, 59] in place of Shannon entropy.
Our reductions would no longer hold, and we would be forced to resort to complete enumeration
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or approximation methods to compute the entropy. However, in Section 4.4, we provide supple-
mentary analysis that demonstrates similarities between Shannon entropy and min-entropy-based
analyses. We also remain open to evaluating other metrics in the future.

An additional distinction between our work and existing literature on (quantitative) information
flow is that we do not consider possible leakage from intermediate aspects of a computation’s
execution. Whereas other works may examine a program’s loops [47], side-channel vectors [39],
or inter-dependent structures [7], we strictly investigate the relationship between the output and
target’s input, since function itself is assumed to be evaluated using secure multi-party protocols.

2.2 Function Information Disclosure

Existing literature on information leakage from the output of a secure function evaluation is lim-
ited, relative to the rest of the field of secure computation. Secure multi-party protocols are de-
signed to guarantee no information is disclosed throughout a computation but do not ensure in-
put protection after the output is revealed. The work of Deshpande et al. [24-26] was pioneering
in that respect and designed secure multi-party protocols for business applications that ensured
that the function being evaluated is non-invertible, i.e., no participant can infer other participants’
inputs from the output. A trivially invertible example is the average salary calculation between
two individuals, since either party can recover the other’s input exactly. Deshpande et al. [25, 26]
first addressed non-invertibility in the context of secure supply chain processes. The proposed
protocols offered protection from inference of future inputs to a repeated calculation after a re-
sult is disclosed. A later work by Deshpande et al. [24] achieved non-invertibility for a framework
designed for secure price masking for outsourcing manufacturing. The authors argued informa-
tion leakage was minimal by analyzing mutual information between correlated normal random
variables but did not consider other distributions or entropy metrics.

Ah-Fat and Huth [1] provided the first in-depth analysis of information leakage from the out-
puts of secure multi-party computations. The authors formalized two metrics to measure expected
information flow from the attacker’s and target’s perspectives, namely, the attacker’s weighted
average entropy (awae) and target’s weighted average entropy (twae), respectively. Partici-
pants’ inputs are modeled using probability distributions and were specified to be uniform, but
this constraint can be relaxed. The inherent difficulty of this entropy-based approach is the re-
quirement to enumerate every possible input combinations from all parties, which scales poorly
as the input space and number of participants grow. We utilize their definitions for our analysis
and demonstrate their utility to computation designers to determine potential disclosure about
participants’ inputs

This model was expanded in Reference [2] to encompass the Rényi, min-, and g-entropy. The
extension is presented in combination with a technique for distorting secure computation outputs
to limit information disclosure from the output and achieve balance between accuracy and privacy.
This was further developed in Reference [3] with a fuzzing method based on randomized approx-
imations. A closed-form expression for the min-entropy of a two- and three-party auction was
derived in Reference [4] alongside a conjecture for the case with an arbitrary number of parties.

Conceptually, the notion of output privacy is related to our work. The terminology was intro-
duced in the field of data mining [15, 40, 50, 51, 64] with the goal of designing techniques to protect
inputs from inference attacks on the output model. Information about the inputs that can be ob-
tained from the output includes, but is not limited to, properties that can be uniquely attributed to a
small number of input participants. Conventional approaches for minimizing disclosure involve ap-
plying transformations on the result via monotonic functions [15] or even proactive learning [64].
These techniques have little to no impact on the result of the computation. This direction differs
from our work, since the type of disclosure they aim to rectify is not quantified.
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There is also literature that uses specific formulations to demonstrate that computation does not
disclose sensitive information about participants. This includes resilience to membership inference
attacks [58, 61] in the context of machine learning training and differential privacy [27, 29] for
statistical databases. In particular, differential privacy ensures the output of a query is negligibly
dependent on a single individual’s record in the database, and resilience to membership inference
attacks prevents one from determining whether a specific individual’s data were used for model
training. These concepts have no direct relationship to our work, aside from designing mechanisms
for lower information disclosure as a result of computation on private data. In this work, we do
so by varying the number of participants in the computation, while other methods augment the
function to produce, e.g., a differentially private output. We discuss differential privacy in the
context of the average salary in more detail in Section 4.5.

3 Preliminaries

Following Reference [1]’s notation, let P denote the set of all participants in a computation with
|P| = m. All participants P are partitioned into three groups: parties controlled by an attacker
A C P, a group of parties being targeted T C P \ A, and the remaining participants called specta-
tors S = P\ (AU T). Let the random variable Xp, correspond to the input of a single participant
P; and xp, denotes a value that Xp, takes. In addition, the notation Xp = (Xp,,....Xp, ) denotes a
multidimensional random variable and Xp is a vector of the individual values of the same size. We
also let Xp = }}; Xp, define a new random variable representing the sum of the participants’ ran-
dom variables. The same notation applies to the sets A, T, and S. Our present analysis is based upon
the assumption that all participants’ inputs are independent and identically distributed, which we
consequently relax.

For discrete distributions, we use Shannon entropy H(X) to measure the information of a dis-
crete random variable X with mass function Pr(X = x) defined over domain Dx. Specifically,

H(X) = - Z Pr(X = x) - log Pr(X = x),
xeDx

where all logarithms are to the base 2. If we are dealing with continuous distributions, then we
shift to the differential entropy A(X) with density function f(x) over the support set X, defined as

) = = [ o) 1og flxi
We study information leakage of the computation of the average:
> =2 o 1
0= f(Xa,X1,Xs) = E (an + ZxAj + szk) s
i J k
where o denotes the output of the function. We model the output o by the random variable O
defined over the domain D¢, namely,

1
0=—
m

ZXTl.+ZXAj+ZX5k).
i 7 r

The 1/m factor can be ignored in the final expression, since the number of participants is typically
known by all parties and can trivially be removed from the output. We omit it throughout the
remainder of the article.

In this work, we consider distributions where the sum of independent individual random vari-
ables is well studied and their mass or density functions have closed-forms expressions or can be
reasonably approximated. This includes the following distributions:
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— Discrete uniform U (a, b), where a and b are integers corresponding to the minimum and
maximum of the range of the support set {a,a+1,...,b—1,b}.

— Poisson Pois (1), where A € R is the shape parameter that indicates the expected (average)
rate of an event occurring over a given interval.

— Normal (Gaussian) N (,u, 0'2), where 1 € Rand o? e Ry correspond to the mean and squared
standard deviation, respectively.

— Log-normal log N (p, 0?) with parameters y € R and 6? € R, which correspond to the
mean and squared standard deviation of the random variable’s natural logarithm.

2

X ~ Dist indicates that random variable X has distribution Dist.
As stated earlier, Ah-Fat and Huth [1] provided multiple information-theoretic measures to
quantify information disclosure after a function evaluation, which we use here:

Definition 1([1]). The joint weighted average entropy (jwae) of a target T attacked by parties
A is defined over all X4 € D4 and X7 € Dr as
jwae(ch,)_c'T) = Z Pr(O =0 | )_()A = J?A,)ZT = 551") . H(XT | )_()A = )_EA,O = 0).
oeDo
This metric measures the information an attacker would learn (on average) about the target when

the input vectors are X4 and X7. One can subsequently define the average of the jwae over all
possible X1 or X4 vectors weighted by their respective prior probabilities.

Definition 2 ([1]). The target’s weighted average entropy (twae) of a target T attacked by
parties A is defined for all X7 € D7 as

twae(¥r) = Z Pr(X4 = %a) - jwae(Za, ¥1).
X ‘A€DA
The twae informs a target how much information an attacker can learn about its input when the
input is X7.

Definition 3 ([1]). The attacker’s weighted average entropy (awae) of a target T attacked by
parties A is defined for all X4 € D4 as

awae(Xa) = Z Pr(Xr = Xr) - jwae(Xa, ¥1).
)_C'T eDr

The awae informs an attacker about how much information it can learn about the target’s input
when the attacker’s input vector is X4. The attacker can consequently compute the awae on all
values in D4 to determine which input maximizes the information learned about the target’s input
(and thus what should be entered into the computation). Using the definition of jwae, it follows
that:
awae(a'c'A) = Z PI‘()?T = )?T) Z PI‘(O = O|)?A = )?A,XT = )?T) : H(XT | )?A = )?A,O = O)
XT€DT 0€Do
= Z ZPr(O:O,.)?TZ)_C:T|)?A=)_C>A)'H()-()’T|>?A=)_C)A,O=O).

xreDr 0€Do
Since )_()T is independent of X A, we derive that awae equals to conditional entropy:

awae(%) = ) Pr(0 = 0| Xa=34) HXr | Xa = %40 = 0) = HX7 | X4 = %,0).

0oeDo

where the last equality is due to the definition of conditional entropy.
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4 Single Execution

In this section, we analyze a single execution of the average function on private inputs and the
associated information disclosure of the target’s inputs. Recall that the computation is modeled by

0 = f(Xa,Xr,Xs) = ZXTi + ZXAj + ZXsk, (1)
i J k

and we let n = |S| denote the number of spectators.

As a first step, we plot the values of awae and twae for our function of interest. Figure 1 illus-
trates these values with a single adversarial participant, a single target, and a varying number of
spectators (1-3). All inputs follow the uniform distribution U (0, 15). Calculating the twae and
awae values using Definitions 2 and 3 requires enumerating all input and output combinations.
This quickly becomes computationally inefficient as the input space grows.

Each participant, acting as a target, can utilize the twae prior to the computation to determine
how much information an attacker can learn (on average) from the output for a specific input
that the participant enters into the computation. As the figure illustrates, the target’s remaining
average entropy is maximized when the input is in the middle of the range, indicating that those
values have better protection than inputs near the extrema. As the number of spectators increases,
the curves shift upwards, i.e., the uncertainty about the target’s input increases and the gap in the
uncertainty between different input values reduces.

The awae, however, gives an adversary the ability to determine which input to enter into the
computation that leads to maximum information disclosure about a target’s input (without know-
ing what input the target used). As displayed in the figure, the adversarial knowledge does not
change by varying its inputs into the computation. This is consistent with our intuition that, given
the output, the adversary can remove their contribution to the computation and possess informa-
tion about the sum of the inputs of the remaining parties. We formalize this as the following result:

Cramm 1. awae(x}y) is independent of attacker’s input vector X4.

PrOOF. According to the chain rule of entropy, which states that H(X,Y) = H(X | Y)+H(Y) [22,
Ch. 2.5], we have that:

H(Xr | Xa=%4,0) = H(X1,0 | Xa = %4) — H(O | X4 = ¥a)
= H(X7 | Xa = %4) + H(O | X7, X4 = X4) — H(O | X4 = %4)

szi -H (ZXT,-+ZXS,-), )
i i Jj

which is independent of x}4. i

= H()?T)+H

Using our notation from Section 3, the above expression for awae(x}4) simplifies to
H(Xr) + H (Xs) - H(Xr + Xs) = HXr | X1 + Xs). ®3)

The next step is to determine which measure (awae or twae) we should use in our analysis of the
average salary computation. Ah-Fat and Huth [1] argued that the awae served as a more precise
metric for measuring information leakage of a secure function evaluation than twae for their choice
of function and used awae in their subsequent work [2]. Our perspective also aligns with that
conclusion. In particular, while the twae informs the target of the amount of information leakage
for the input they possess, the target may not be technically savvy enough to be able to apply the
metric and make an informed decision regarding computation participation (plus, the choice to
participate or not participate can leak information about their input). Perhaps more importantly, a
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Fig. 1. The twae(XT) and awae(X,4) using inputs over U (0, 15) with a different number of spectators |S|.

function needs to be analyzed by the computation designers in advance and without access to the
inputs of future computation participants to determine a safe setup for the participants. Thus, the
available mechanism for this purpose is the attacker’s perspective or awae, and we focus on this
metric in the rest of this work.

Based on the above, in what follows, we use H ()?T | X + Xs) to measure the leakage, and the
simplified function is

f(;(]‘,)-(:s) = ZXTi + ZXSI = X1 + Xs.
i J

This refines the parameters we can vary in our analysis to (1) the number of participants in the
target and spectators groups and (2) the types of distributions and statistical parameters of the
inputs. Furthermore, the computational difficulty associated with directly computing the awae
is absent when using H(X7 | X7 + Xs). Instead, the computation simplifies to calculating the
entropy of sums of random variables. We examine the behavior of the conditional entropy for
several characteristic probability distributions next.

4.1 Discrete Distributions

We start with discrete input modeled using the uniform and Poisson distributions. The sum of
n identical independent Poisson random variables X; ~ Pois(4) is equivalent to a single Poisson
random variables X = Y, X; ~ Pois(nl) with the mass function Pr(X = x) = (n1)* e ™/(x!).
Note that the Poisson distribution is defined over all non-negative integers, hence the distribution
has infinite support. We choose to halt the calculation of H(X) when Pr(X = x) < 1077, as the
contribution of events beyond this point to the entropy is infinitesimal.

Conversely, the sum of n identical independent uniform random variables X; ~ U (0, N — 1) is
not immediately obvious. Caiado and Rathie [16] derived several equivalent expressions for the
mass function of the sum of n uniform random variables, one of which we use in our analysis and
is defined as:

Lx/N]

Pr(sz)zin Z I'(n+x+pN)(-1)P
p=0

Tp+1)I(n—p+1DL(x—pN+1)]’

N

where I'(n) = (n — 1)! is the Gamma function. The domain of X is {0,...,n(N — 1)}.
Our analysis of awae for these two distribution is given in Figures 2 and 3, respectively. We
compute and display
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Fig. 3. Analysis of target’s entropy loss using the uniform distribution with ¢/(0, N—1), varying N with |T|=1.

— the original entropy of target’s inputs prior to the computation H (X7) (subfigure a),

— the awae or target’s remaining entropy after the computation H ()_fT | X1+ Xs) (subfigure a),

— their difference of the two that represents the absolute entropy loss H ()?T) -H ()?T | X7 +Xs)
(subfigure b), and

— the entropy loss relative to the original entropy prior to the execution (H (Xr) - H ()ZT |
Xr + Xs))/H()_()T) (subfigure c)

with a single target (|T| = 1), a varying number of spectators, and varying distribution parameters.
Relative entropy loss is included to demonstrate to potential input contributors, who are likely non-
experts, that information disclosure is small. That is, disclosure of, e.g., 5% of input’s information
is easier to explain to non-experts than 0.1 bit of entropy. The absolute loss is equivalent to the
mutual information between the target input and the output:

I(X7;0) = H(X7) — H(X7 | X1 + X5).

Figure 2 presents this information for the Poisson distribution with A € {4,8,...,128}. In
Figure 2(a), entropy after the execution converges toward the corresponding entropy prior to the
execution for all values of A as the number of spectators increases. Increasing A by a factor of
two repeatedly yields an upward shift of these two curves by a constant amount while preserving
their respective shapes. The increase is expected as a result of the inputs having more entropy as
A increases, but the shape of the remaining entropy is notable, as A does not appear to impact the
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entropy loss. This is further confirmed when displaying the absolute entropy loss in Figure 2(b):
The resultant curves overlap each other, regardless of A.

The relative entropy loss in Figure 2(c), calculated as a percentage of the target’s initial entropy,
demonstrates how many spectators the computation needs to include to lower the entropy loss to
the desired level. The larger the original entropy is (larger 1), the fewer spectators will be needed
to stay within the desired percentage. For example, 5 spectators are needed with A = 4 to limit
relative loss to 5% (marked by W), and 24 spectators are needed to cap the loss at 1% (marked by
X). When A = 128, the number of spectators reduces to 3 and 13 to maintain loss tolerances of 5%
and 1%, respectively.

The same trends hold for the uniform distribution in Figure 3, where we use N € {8, 16,. . ., 256},
but the values themselves slightly differ. For example, the absolute entropy loss in Figure 3(b) is
slightly larger than the loss in Figure 2(b) when the number of spectators is small. When N = 8
with 3 bits of original entropy, 5 and 24 spectators are needed to achieve at most 5% and 1% relative
loss, respectively. This is the same as what was observed for Poisson distribution with 3-bit inputs

(A = 4).

4.2 Continuous Distributions

For continuous distributions, we shift to differential entropy and analyze normal and log-normal
distributions, the latter of which is typically used to model salaries. While there is no direct relation-
ship between differential and Shannon entropy (see Reference [22, Chapter 8.3]), we demonstrate
that they exhibit very similar behavior for the average computation.

The differential entropy of a normal random variable X; ~ N'(y, o) is h(X;) = § log (27ec?) [22,
Ch. 8.1]. The sum of n identical normal random variables is also normal, namely, X ~ N (ny, no?).
This enables us to directly apply the differential entropy definition to the sum.

The log-normal distribution is a well-established means of modeling salary data for 99% of the
population [20], with the top 1% modeled by the Pareto distribution [62]. The differential entropy
of a log-normal random variable X; ~ log N'(y, 0?) is h(X;) = Iog(e’”% V2ro?). However, the sum
of nlog-normal random variables has no closed form and is an active area of research [9-11, 21, 31,
56, 57, 65]. We adopt the Fenton-Wilkinson (FW) approximation? [21, 31] that specifies a sum
of n identical independent log-normal random variables X; ~ log N'(u, o%) as another log-normal
random variable X ~ log N(ji, %) with parameters

52 - In (exp(az) -1

- + 1) , fi=In(n - exp(p)) + % (0c®—6%).

This enables us to compute differential entropy using a closed-form expression. Unlike prior dis-
tributions, we use a single set of i and ¢ parameters calculated from real salary data in Reference
[17]; namely, u = 1.6702 and o = 0.145542.

Figures 4 and 5 present experimental evaluation of entropy loss with a single target and a vary-
ing number of spectators for normal and log-normal distributions, respectively. As before, we
report target’s entropy before and after the execution, the difference of the two as the absolute
entropy loss, and the entropy loss relative to the entropy before the execution.

In Figure 4 (normal), we set the mean p = 0 for all experiments (since differential entropy
does not depend on p) and vary o? from 4 to 128. The results are consistent with the discrete

20ther approximations for the sum of log-normal random variables are difficult to translate into an expression for the dif-
ferential entropy, and hence we choose the FW approximation. Its disadvantage is that the FW approximation deteriorates
for 02 > 4 and small values of x in the density function [10, 65]. Fortunately, our ¢ is sufficiently small, allowing us to
use the FW approximation free of consequence.
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counterparts in terms of the trends, curve shapes, and specific values. The absolute loss in
Figure 4(b) is once again constant for any o, and the relative loss is dictated by the amount of
input’s entropy in Figure 4(c). When ¢ = 4 and inputs have 3 bits of entropy, the number of
spectators required to maintain at most 5% and 1% entropy loss (5 and 24 spectators, respectively)
is the same as for Poisson and uniform distributions with 3-bit inputs (A = 4 and N = 8, respec-
tively). With 5.5-bit inputs (62 = 128), 3 and 13 spectators are needed to achieve at most 5% and
1% loss, respectively, which is the same as for Poisson distribution with 5.5-bit inputs (1 = 128).

The results in Figure 5 (log-normal with real salary parameters) are consistent with both the dis-
crete and continuous distributions. Surprisingly, we observe the same 5 and 24 spectators achieve
at most 5% and 1% relative loss, as observed with all other distributions (with input original entropy
being slightly over 3 bits).

Before concluding our discussion of continuous distributions, we are able to show one more
result. We experimentally demonstrated that the amount of absolute entropy loss is parameter-
independent for several distributions, but we can formally prove this for normally distributed
inputs:

Cramm 2. Ifthe inputs are modeled by independent identically distributed normal random variables,

then the absolute entropy loss h()_(}) - h()_()T | X1 + Xs) depends only on the number of target |T| = t
and spectator |S| = n inputs and is 1 log (£ + 1).
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ProoF. Let |T| = t and |S| = n, such that X; ~ N(0,t0?) and X5 ~ N(0,nc?). The absolute
entropy loss is therefore

hXr) = hKr | Xr +Xs) = h(Xr) = (h(Xr) + h(Xs) = hXr +X5)) = h(Xr + Xs) = h(Xs)
1 .1 * ~rog (L +1) - 6 f1og (-
—zlogZHe(t+n)0 210g2ﬂen0' _ZIOg(n +1) —®(log(n +1)),
which depends only on n and t. O

4.3 Discrete vs. Continuous Distributions

We next compare the information loss across all four (discrete and continuous) distributions. We
choose parameters to maintain the initial entropy of an input, H(X;) or h(X;), to be approximately 3
bits, as to reasonably correspond to the log-normal distribution. This leads to Pois(4), U (0, 7), and
N(0, 4). We plot this information for a single target and a varying number of spectators in Figure 6.

In the figure, all distributions converge with > 4 spectators and are very close even with 3 spec-
tators. This convergence on large values is expected as a consequence of the central limit theorem.
From the four distributions, the closest are the Poisson results with A = 4 (discrete) and the normal
distribution N(0, 4) (continuous). Unlike normal, log-normal, and the single-variate uniform distri-
butions, an exact expression of the entropy of a Poisson distribution has not been derived. Instead,
when computing the necessary values in Section 4.1, we directly applied the definition of Shannon
entropy. To draw a parallel between discrete and continuous distributions, and specifically show
a similarity between Poisson and normal distributions, we turn to an approximation of Poisson
distribution’s entropy computation.

It was conjectured that for sufficiently large A (e.g., A > 10), the Poisson distribution’s Shannon
entropy can be approximated by H(X;) = % log(2meA), which resembles h(X;) = % log(27ea?) used
for normal distributions. Evans and Boersma [30] proposed a tighter bound (further formalized by
Cheraghchi in Reference [18]), to be

. 1 1 19
H(X;) = 3 log(2rel) — 24 242 3600

and remains close to that of normal distribution with o2 = A.

One implication of this result for us is that Claim 2, which we demonstrated for normal distri-
butions, would apply to the approximation of Poisson distributions as well. As a result, we obtain
independence of the (absolute) entropy loss of distribution parameters for both discrete and con-
tinuous distributions and almost identical behavior across the distributions as a function of the
number of spectators.

oY)
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4.4 Min-entropy Analysis

We treat min-entropy as an alternative to Shannon entropy, which was studied in the context of
information flow by Smith [60]. While we are unable to go as far in our analysis as in the case
of (Shannon) entropy, we certainly observe similar trends. We begin by defining the concept of
vulnerability:

Definition 4 (Vulnerability, [60]). Given a discrete random variable X with support X, the vul-
nerability of X, denoted by V. (X), over the unit interval [0, 1] is given by

Veo(X) = max Pr(X = x).
xeX

The vulnerability V(X) is interpreted as the worst-case probability that an adversary could
guess the value of X in one attempt. If m guesses are allowed, then the adversary’s success proba-
bility is at most mV(X). The implication is that if the vulnerability with a practical number of m
guesses is significant, then V., (X) must also be significant. Since the vulnerability is a probability,
we can convert it to an entropy measure (in bits) by taking the logarithm of V,,(X). Conveniently,
this is exactly the definition of min-entropy Ho(X) = log m Smith’s [60] motivation for de-
parting from Shannon entropy stems from its ineffectiveness of properly assessing the threat the
output Y has on its input X.

Since our analysis studies the relationship between input and output random variables (i.e.,
X7 and O), a necessary extension is the conditional vulnerability, which specifies the expected
probability of guessing X in one try, given that Y is observed:

Definition 5. Given two random variables X and Y with supports X and Y, respectively, the
conditional vulnerability Voo (X | Y) is

Vo X | Y)= Z Pr(Y=y)-Voo(X | Y=y), where Vo(X | Y = y) = max(Pr(X =x | Y = y)).
vy xeX
Having established the necessary foundations of min-entropy, we are equipped to extend our

single-execution analysis of Section 4 from the perspective of min-entropy:

Definition 6. The attacker’s weighted average min-entropy (awae) of a target Xr attacked by
parties A is defined for all X4 € Dy4 as

awaeoo(fA) = HDO(XT | O,)ZA = }_C)A) = —log Z PI‘(O =0 | )ZA = )_C)A) . Vw()ZT | )?A = fA,O = 0),

oeDo
where Vi, ()?T | X A = X4,0 = o) is the conditional vulnerability defined above.

The above definition is a concrete min-entropy specification of Ah-Fat and Huth’s [2] general-
ized awae, which is parameterized by « and a gain function g. We can manipulate Definition 6 into
terms consistent with Section 4 by plugging in the expression for conditional vulnerability:

awae(¥4) = —log Z Pr(O=o0|Xa =%4)- ( max Pr(X7 = X7 | X4 = ¥4,0 = o))
J?T eDr

oeDo

= —log Z Pr(O=o | )?AZfA)'

o€Dp

Pr(O=o | >?T=£T,)?A=2A).Pr(>?T=fT))
max

XreDr Pr(O=0 | Xa=%)

= —log Z (qmax PI‘(O =0 | )27‘ = )_C)T,X)A = }-C>A) 'PI‘()?T = }-C>T)) .

xreDr
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Fig. 7. Min-entropy analysis.

In the second line, we invoked Bayes’ theorem, and in the third line, we observed that the denom-
inator is a constant factor in the max expression and could thus be factored out and subsequently
canceled with the leading Pr(O = o | X4 = Xa).

In Claim 1, we proved awae(x) was independent of the attacker’s input X4. Conversely,
awaeq(x4) cannot be simplified further to prove the claim holds. Hence, we conjecture the fol-
lowing:

CONJECTURE 1. awaen(x4) is independent of attacker’s input vector x.

We can, however, repeat the calculation of Figure 1 using min-entropy. In Figure 7(a), we once
again observe the same behavior that the adversarial knowledge does not change by varying its in-
puts into the computation.® This suggests the conjecture holds for the average salary computation.
Hence, we assume such in our subsequent analysis.

The next logical step is to examine how the effect transitioning from Shannon entropy to min-
entropy has on the absolute loss. We compute and display both absolute losses in Figure 7(b),
where participants’ inputs are modeled by the Poisson distribution (as in Section 4.1). As observed
previously in Figure 2(b), the Shannon absolute loss curves all overlap each other. Interestingly,
we observe the min-entropy absolute loss curves converge towards their Shannon counterparts as
A grows. This suggests that for a sufficiently large statistical parameter, the choice of metric used
to represent information disclosure is less impactful.

4.5 Comparison to Differential Privacy

The purpose of this work is to measure information disclosure from function output, which is
the first necessary step to determine whether the function is suitable for evaluation on private
data. Once it is determined that it is not, the second question to answer is how the function or
the setup is to be modified to reduce information disclosure to a controlled sufficiently small
level. This can be achieved by different means, e.g., by enrolling more participants as suggested
in this work or by modifying the function to be evaluated (e.g., by injecting noise in the output).
In the context of the average computation we consider in this work, the information disclosure
can be reduced to any desired level by controlling the number of participants. This eliminates the

3Interestingly, awaeo, (x4 ) is the same for |S| = 1 and |S| = 2 and the curves overlap on the plot.
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need for function modification. Nevertheless, we provide a detailed analysis of the suitability of
differential privacy (DP) for this application. In short, when the number of participants is large,
information disclosure from the output is very low and DP is not needed, but when the number
of participants is small, applying a DP mechanism results in distortion that impairs utility.

We start with a brief overview of the fundamentals of DP. The core tenet of DP involves restrict-
ing the information learned about a single individual within a sensitive dataset; this is normally
accomplished by introducing noise to the result. Formally, DP is defined as follows:

Definition 7 (¢, §)-differential privacy, [28]). Let M be a mechanism that takes an input database
D of size n supported by D and produces a randomized output in the set S. Then, M is considered
to be (e, 8)-differentially private for ¢, > 0 if for all adjacent databases D and D’ (differ by a single
entry) and all sets S C Range(M) if Pr [M(D) € S] < exp(¢)-Pr[M(D’) € S]+ 3, where Range(M)
is the set of all possible outputs of the mechanism M.

The above definition encapsulates both “pure” DP (§ = 0) and “approximate” DP, which allows
an additive privacy loss of § > 0, where ¢ is negligible in the size of the database. We formulate
our arguments under the stronger assumption of pure DP.

Though many differentially private mechanisms exist (see, e.g., References [46, 49]), we restrict
our view to the Laplace mechanism [28] due to its well-established nature and reliable performance
for low-dimensional queries [52]. We construct the one-dimensional Laplace mechanism, since the
output of the average function is a single value. We require the notion of function sensitivity, i.e.,
the maximum difference in the output of f when applied to two adjacent datasets:

Definition 8 ([27]). Let f : D™ — R. The sensitivity of f is Af = maxp, p |f(D) — f(D’)|, where
D and D’ are adjacent.

The sensitivity dictates the scale parameter of a Laplace random variable, which we can now
formally define:

Definition 9 (Laplace mechanism, [27]). Let f : D"—R. Given £>0 and sensitivity Af, the
Laplace mechanism is defined as M(D) = f(D)+L, where L~Lap(Af/e¢) is a Laplace random
variable.

We compute how much noise is required to maintain differential privacy for a given ¢. The
absolute error introduced by a mechanism M (or, analogously, the “utility” of the mechanism
in the literature) is measured via a loss function {. The function ¢(f(D), M(D)) refers to the loss
of an individual user when the output of the function is f(D) and the mechanism’s (perturbed)
output is M(D). The choice of ¢ is arbitrary, but most DP literature [34] uses the mean error
L(f(D), M(D)) = |f(D)— M(D)|, and thus we use it for our analysis. Given a statistical signif-
icance «, it can be shown (via application of Chernoff bounds) that the error introduced by the
Laplace mechanism is bounded by

£(f(D), M(D)) = |f(D) - M(D)| < (Af /e) In(1/a),

with probability 1—« (i.e., the confidence level). We interpret this bound as the “worst-case” upper
bound on the distance between the true and the perturbed outputs. To transform this bound into a
measurable quantity, we compare it against the expected value of the function with no distortion
applied as a percentage, i.e., the relative error.

If we model inputs by the uniform distribution X; ~ U(0, N — 1), then we can derive an exact
value for the sensitivity of our f. For the average with uniformly distributed inputs, the function
sensitivity is Af = N — 1, since the output of the function o can differ by at most N — 1 if one indi-
vidual does not participate. Given the expected value for the sum of n uniform random variables
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of E[}; X;] = n%, the maximum possible error V introduced by the mechanism is

(Af/e)In(1/a) 2In(1/a)
V= = .
n(N -1)/2 en

This quantity is monotonically decreasing in n such that, as n increases, the bound on V shrinks to
zero. This echoes the sentiment in DP literature that databases are typically assumed to be large.

Consider the example of 6 participants (5 spectators, 1 target) with X; ~ U(0,7), ¢ = 1, and a
standard [35, 52] 95% confidence level (@ = 0.05). From our analysis in Section 4.1, this ensures
the relative entropy loss for the target is at most 5%. However, the relative error introduced by
the Laplace mechanism is at most V = 99.8%, implying that the output of the computation can
vary so drastically as to render the output unusable. Placing this in the context of the Boston
gender pay gap study, where the goal was to determine the difference between male and female
average salaries, the error is too large for reliable decision-making. Imposing a stricter bound on
the relative entropy loss of 1% by increasing the number of participants to 25 reduces the upper
bound on the error to V = 24.0%. We find disclosure of 1% of the input’s entropy (e.g., about 0.03
bit for this application) to be acceptable, at which point there is no longer a need to use DP, and
we can output precise results.

To summarize, increasing the number of participants is a natural mechanism for lowering infor-
mation disclosure for the average computation. DP is of limited utility in this context, as applying
it to the setting where the number of participants cannot be increased results in utility loss.

4.6 Mixed Distribution Parameters

Up to this point, we have assumed that all participants’ inputs are sampled from identically dis-
tributed random variables. However, we can relax this assumption and investigate if/how the infor-
mation disclosure changes if parties’ inputs are non-identically distributed. For example, employee
salaries may differ slightly from company to company while still following the same distribution.
We can model this by adjusting the statistical parameters of individual participants.

We begin by formalizing the notion of participant “groups.” Define G as a finite set of statisti-
cal distributions, of which participants’ inputs can be sourced from. For example, if we have two
groups B and C of normally distributed inputs parameterized by N(0,c3) and N(0, o) (where
oa # 0f), respectively, then G = {B,C}. This formulation poses two interesting directions for
introducing participant group identities, i.e., correspondence of a participant to one of the distri-
bution groups, into our analysis:

— Group identities of individual participants are known. The first setting we consider
is that the identity, i.e., the group, of each individual participant is known. In practice, this
is realized by multiple entities with inputs modeled by different statistical distributions con-
tribute to a computation, where the number of inputs submitted by each is publicly available.

— Group identities of individual participants are unknown. Conversely, we have the sce-
nario where we have knowledge of the possible distribution groups participants can belong
to with anticipated likelihoods, but the group identity of an individual party is not known.
This is objectively more general than the first category but requires knowledge in the form
of the probabilities of an arbitrary participant belonging to each group.

It is therefore of interest to revisit our prior conclusions under the known and unknown group
identity generalizations (denoted by Cases 1 and 2, respectively), since both formulations bear
operational significance.

Entropy loss as a result of computation participation. The first conclusion we revisit is
Claim 1, since it is integral to our analysis as a whole. The claim states that the information
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disclosure from the average function output is independent of the attackers’ inputs. Based on this
result, our subsequent analysis enabled us to derive expressions for awae.

In the current generalized setting, Claim 1 remains true for both Cases 1 and 2, since the deriva-
tion in the proof of Claim 1 itself remains unchanged. However, we must adjust Equation (3) such
that participant group membership is captured by our entropy measure. We recall our definitions
of entropy remaining after participation and the absolute entropy loss:

H(Xr | Xr +Xs) = HXr) + H(Xs) - H(X1 + Xs) (4)

H(Xr) = HX7 | Xr + Xs) = HX1 + X5) = H(Xs). (5)

Accounting for group identities, we introduce the participant identity random variable IDp, sup-
ported by G. This corresponds to the group identity of participant P;, and we denote idp, € G as

the value IDp, takes. We similarly denote IT)p = (IDp,, ..., IDp,,) as a multidimensional random

variable, with id p as the vector of individual values of the same size.
At this point, our analysis splits into two directions based on the knowledge of individual group
identities.
Case 1: If participant group identities are available (i.e., ID7 = idy and IDs = id s), then Equation (4)
becomes:
H(Xr | X1 + X5, 1Dy = idr, IDs = ids) =H(Xr | 1Dy = idr) + H(Xs | IDs = ids) ©
N I N 6
— H(X7 + X5 | ID7 = idr, IDs = ids).

Since we have exact knowledge of each participant’s identity, we can explicitly partition the input
random variables accordingly. Therefore, all the above quantities are computable with minimal
deviation from our original analysis. For instance, if we recall our earlier example with two partic-

ipant groups B and C, then the term H(X | IDs = i_as) can be computed as:

ZXSjll_bS:i_as)zH > Xs+ Y X || 1Ds=ids .

Jj€Ss jeS:idsj:B jeS:idsj:C

H(Xs | IDs=ids)=H

The absolute entropy loss directly follows from Equation (6) and is computed as:

H()_()T | IBT = i?iT) —H()_(:T | Xr +X5, IBT = i?iT, l_ljs = i-as) ( )
o I N . N 7
= H(Xr + Xs | ID7 = idr, IDs = ids) — H(Xs | IDs = ids).

Under this generalization, the group to which a target belongs impacts how much information is
disclosed from the computation, i.e., the disclosure can fall within a range based on the values iZiT
can take. We determine the worst-case information disclosure by iterating over all possible target
identities and taking the maximum:

max (H(XT + X5 | Dy = idy, Ds = ids) — H(Xs | IDs = iﬁs)) .
idr
We can further refine our earlier notation established in Section 3 to encompass participant group

identities (applicable to both targets and spectators). Let P C P be the set of participants belonging
to group G € G. The sum of random variables modeling participant inputs is given as

XS:Z ZXPi:ZXPG’

GeG iePg GeG

where Xp; = X ;cp, Xp;-
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Case 2: When the group identities of individual inputs are not known and only the probability
of belonging to a given group is given, the procedure for evaluating the information disclosure
changes. The probability mass and density functions, respectively, for the participant inputs ran-
dom variables are now:
Pr()?p = )-C>P) = ZPI‘UBP
idp
f&p) = Pr(iDp

idp

i_ap)Pr()ZP = )?p | lbp = i_ap)

idp)f(Zp | IDp = idp).

For a participant set P, there are |G| IPI possible identity configurations, such that the number of
terms in the summation is exponential in the number of participants and/or size of the group
identity set. The Shannon and differential entropies are now computed as:

H()?p) = - Z ZPI‘(IBP = lap)Pr()_(:p = J_C)p“_bp = I_ap)

xp€Dxp \idp

(8)
. log ZPI‘(IBP = i_ap)Pr()?p = J_C)p“_l))p = i_ap) N
idp
h()_ép) = —/ ZPI(IBP = i_ap)f(fp | IBP = i-ap)
Xp i_ap
)

. log ZPI‘(I_DP = i-ap)f(fp | |_|5p = i-ap) dJ_(:p
idp

The fundamental difference between the entropy calculation under this generalization and the
analysis conducted in Sections 4.1 and 4.2 is that the entropy of these random variables is no longer
exactly modeled by the input distribution itself (e.g., Poisson, uniform, Gaussian, log-normal). Fur-
thermore, for continuous input distributions, our previous approach of leveraging closed-form ex-
pressions is no longer applicable when group identities are unknown —the information disclosure
must be computed numerically, rather than exactly.

Parameter independence of the absolute loss for normally distributed inputs. The next
conclusion we revisit is Claim 2, which previously stated that for normally distributed inputs,
the absolute entropy loss depends only on the number of targets and spectators present in the
computation. This conclusion changes in the generalized setting when the participants’ inputs are
no longer identically distributed, as we demonstrate below.

Case 1: Let oé be the standard deviation of the participants inputs that belong to group G. Using
the definitions from Section 4.2 for the entropy sums of identically distributed normal random
variables, the entropy of Xp, is h(Xp;) = 3 log (2mecd |Pg|). We similarly derive the following
expressions needed to compute the absolute entropy loss (given in Equation (7)):

- - o - 1
h(Xt + Xs | IDT = id7,IDs = idg) = ElogZ;re (Z (O'é' |Tg| + 0'(2}' |Sc| ))
GeG

- - 1
h(Xs | IDg = idg) = ElogZJIe (Z (0'(23~ |Sc| ))
GeG
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(a) Absolute entropy loss h(XT)—h(XT|XT+X5). (b) Relative entropy loss h(X7) ~h(X7|X7+Xs)

h(Xr)

Fig. 8. Mixed distribution analysis under Case 1. The red dashed curves correspond to our baseline where
all groups are identically distributed (B,C,D ~ N(0, O'é)), while the remaining curves indicate the target
belonging to distinct groups distributed by B ~ N(0, ag), C ~ N(o, 1.120§), and D ~ N(0,0.920§). The
shaded regions illustrate the full space for the absolute entropy loss, generated from every possible spectator
and group configurations.

Plugging in these equations to our expression for the absolute entropy loss and simplifying yields:

ZGEG (Ué |TG|) 1l
ZGEG (O-é |SG|)

Unlike the analysis in the proof of Claim 2, the standard deviations do not cancel. However, we
can reformulate our interpretation of the sums of standard deviations when accounting for group
identities. Let us define Gé € R, as the “base standard deviation” for all input random variables.
Then, for all G € G, there exists some g > 0 such that Gé = 5(;-(7]%. Substituting into the above
expression yields:

= ¢ - - - - 1
h(XT + X5 | IDr = id7,IDg = ids) — h(XS | IDg = ids) = Elog(

- - o - S - 1 Sg-o2-|T,
h(X7 + Xs | ID7 = idp, IDs = ids) — h(Xs | IDs = ids) = Elog(ZGEG( oo ITel) | 1)

Yces (86705156

1 Ygea (0c |Tal) )
=~ log 28 0C 6V ),
2 (zcewcwscn“

The key conclusion from the above equation is that the absolute entropy loss is not directly affected
by the statistical parameter & but rather the relationship each o has (via the scaling factor 8ip)
to the base standard deviation o.

To demonstrate this phenomenon, we compute the absolute entropy loss when the target be-
longs to one of three possible groups differing by +10% in their average salary. Concretely, we
have B, C, or D with deviations G?;, 1.120123, and 0.9202, respectively. The target is interpreted to
“move” from group to group as to maintain a consistent group size, e.g., [SsUT| = |Sc| = |Sp| when
the target is in group B. This constitutes the curves displayed in Figure 8. To further illustrate the
best- and worst-case information disclosure, we compute the absolute entropy loss for all possible
spectator-group configurations and compose the shaded region from the maximums and mini-
mums. Figure 8(a) reflects our observation that, regardless of the base standard deviation 0123 (4,8,
or 16), the curves fall on top of each other. Moreover, the absolute loss when idy = B is equivalent
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0511 - B,C,D~N(0,03)
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Fig. 9. Mixed distribution analysis under Case 2, where the probability of an arbitrary participant belonging
to any specific group is equally likely, i.e., Pr(IDp = B) = Pr(IDp = C) = Pr(IDp = D) = 1/3.

to our original computation when all groups are identically distributed. We also reproduce our rela-
tive loss experiment using the same +10% salary configuration for o; = 4 in Figure 8(b). Achieving
maximum relative losses of 5% and 1% now requires at least 6 and 27 spectators, respectively.

Case 2: When group identities of individual inputs are unknown, we refer to the definition of abso-

lute entropy loss (Equation (5)) alongside the expressions for the differential entropy we derived
in Equation (9) for the required quantities and obtain:

h(XT+X5)=—/ Z Pr(|BT=i_aT,l-bS:i_as)f(xT+xS||bT:i_aT,|65:i_as)
XTUXs\ -~
idr,ids

log Z Pr(leziaT,|bs=i?:|5)f(xT+xS||BT=i-(;|T,l-|55=iag) d(xT—i-xs)

idr,ids

h(Xs)Z—/ ZPI‘UBs:ids)f(xSl|bs=id5) log ZPr(leZids)f(xS||65=ids) dxs.
5\ s ids

These values need to be computed numerically, since, as previously stated, the random variables
that represent the target and spectators’ inputs no longer exactly translate to the input distribution
itself. Utilizing the same group configuration as specified above under Case 1 and assuming the
probability for each identity is equally likely (for convenience), we compute the absolute loss
in Figure 9 alongside our baseline where every participant belongs to a single group. The most
interesting observation is that all the curves overlap each other, a trend originally observed in
Sections 4.1 and 4.2. We note that this is likely a consequence of the experimental configuration
itself (groups’ salaries differ by +10%, identity probabilities are equally likely).

5 Two Executions

A natural generalization of the results of the prior section is to consider executing the average
salary computation more than once. For example, after running the Boston gender pay gap study
once, the same computation was executed the following year with an extended set of participants.
In this case, if the time interval between the executions is small enough such that the inputs do
not change between the executions or change minimally, then one would expect that repeated
participations would lead to additional information disclosure compared to a single execution.
Thus, in this section, we analyze the case of two executions and demonstrate their impact on the
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participants. We consider both the cases when a target contributes its input to both executions
and when the target participates only in one of the executions and other takes place without the
target but on related inputs. Both cases result in additional information disclosure compared to a
single execution, which we quantify in this section.
We partition the set of spectators S into the following subsets:
— spectators present only in the first execution S; C S,
— spectators present only in the second execution S; € S\ Sy,
— and spectators present in both executions Si2 = S\ (S; U Sy).
A person participating more than once (target or spectator) enters the same input into both
executions.
When the target participates in both executions, we have:

O1= > Xp,+ ) Xi+ Y X;=Xr+Xs, +Xs,
i

€Sy i€S;
Oy= Y Xp,+ ) Xi+ Y X;=Xr +Xs, +Xs,.
i i€Sy, i€S,

The random variables O; and O, are not independent, as they both are composed of Xt and Xg,,.
We therefore want to compute the conditional entropy (using differential entropy notation):

h(Xr | 01,02) = h(Xr, 01, 0,) ~ (01, 02). (10)
Cramm 3. The above conditional entropy can be expressed as
h(X1|01,02) = h(Xr) + h(Xs,,+Xs,. Xs5,,+Xs,) = h(O1, Oy). (1)
Proor. Simplifying the first term of Equation (10) using the chain rule of entropy h(X,Y) =
h(X | Y)+ h(Y) [22], we obtain:
h(Xt,01,02) = (X1, X1 + Xs,, + Xs,, X1 + X5, + X5,)
= h(X7) + h(X7 + X5, + Xs, | X1) + h(X7 + X5, + Xs, | X7 + X5, +X51,)?T).
Using the fact that all participants’ inputs are independent, we have:
h(Xr,01,0,)
= h(X1) + h(Xs,, + Xs,) + (X1 + Xs,, + Xs,, X7 + X5, + X5, | X1) = B(X1 + X5, + X5, | X7)
= h(X1) + h(Xs,, + Xs,) + h(Xs,, + Xs,, Xs,, + Xs,) — h(Xs,, + Xs,)
= h(X7) + h(Xs,, + Xs,, Xs,, + Xs,)-
The second term of Equation (10) can be rewritten as:
h(04, 02) = h(XT + X5, + X5, X1 + X5,, + X5,)
= h(Xt + Xs,, + Xs,) + h(X7 + Xs,, + X5, | X1 + X5,, + X5,),
but cannot be simplified further. Therefore, the final expression of the conditional entropy is
h(X1|01,02) = h(Xr) + h(Xs,, + Xs,. Xs5,,+Xs,) = h(O1, Oz). 0

In the special case when no spectators participate in both executions (i.e., S; = 0), the middle
term simplifies to h(Xs,) + h(Xs,).

When the target participates only in one of the experiments, we define executions O; and O;,
which are the same as O; and O,, respectively, except that the target’s inputs are not included. For
instance, O] = Xs,, + Xs,. The relevant entropies in that case are h()_()T|O’, 0,) and h()_fT|Ol, 0,).
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The above requires us to introduce the definition of joint entropy of correlated random vari-
ables. Now, the normal distribution stands out among those considered in Section 4 as a suitable
candidate for our analysis. The generalized multivariate normal distribution is well-studied and
has a closed-form differential entropy, which we discuss next.

5.1 Bivariate Normal Distributions

Evaluating Equation (11) requires defining the differential entropy of a multivariate normal ran-
dom variable. We then derive the necessary core parameters for our distributions and use them to
compute the conditional entropy.

Let X; ~ N(p;,0?) be a single normal random variable as defined in Section 3. We define
X = (X1,... ,Xk)T to be a general multivariate normal distribution of a k-dimensional ran-
dom vector, with X ~ N(u,%). Here, p € RF is the mean vector specified as g = ]E[)?] =
EIX:]LE[Xz), .. EXk DT = (i, przs - .o )", and B € RF¥K is the k x k covariance matrix with
each element defined as %; ; = E[(X; — p1;)(Xj — y;)] = Cov[X;, X;]. The differential entropy of the
multivariate normal distribution X is given by h()_()) = % log((2e)k det ) [22, Chapter 8.4], where
det X is the determinant of the covariance matrix. The next step is to characterize our multivariate
distributions and determine their covariance matrices. We also derive their mean vectors, which
are used for intermediate results.

To compute the second and third terms of Equation (11), we formalize the bivariate distributions
S = (X, + Xs,, Xs,, + Xs,)T and O = (0;,0,)". We denote yp = Y, jtp, and ok =Y, 0}2,1_ as the
sum of the means and standard deviations, respectively, of all participants within a group P. Note
that the mean is absent from the formula for the differential entropy, and therefore we can safely
assume all y; = 0. Starting with O, we invoke the linearity of the expectation for the mean vector:

s = E[O1]\ _ (E[X7+Xs,+Xs, 1\ _ (nr+ps,+us,| _ (1
0 \E[O:] E[X1+Xs,,+Xs,] uT s, s, Hz)

For the covariance matrix, using the properties Cov[X,X]| = Var[X] = a)2< and Cov[X,Y] =
Covl[Y, X] yields

- COV[Ol, Ol] COV[O], Og] _ Var [Ol] COV[Ol, Oz]
O 7 \Cov[0,, 0] Cov[O,, 0] ~ \Cov[O1,05] Var[O,]
_ 0'72-+O'§12+O'§1 Cov[04, Os] _ ol Cov[0;, 0s]
Cov[0;, 0] 0%+0§12+0'§2 Cov[O;, O,] o? )
The expression for Cov[Oy, O,] can be stated as follows:

Cramm 4. Cov[0,0,] = 0'% + 0';2 if S35 is non-empty, and Cov[O;, Oz] = 0% otherwise.

Proor.
Cov[04,0]
=E[(O1 = i1)(O2 = p2)|=E[0104 — 11201 — 1105 + piy i
=E[(X7+Xs,, + Xs,) (X1 + Xs,, + Xs,) ] — Elp2 (X1 + Xs,, + X5,)] = E[p1 (X7 + Xs5,, + X55,) | + E[ 2]
=E[X7] + E[X} ]+ 2E[X7Xs,,] + E[X7Xs,] + E[X7Xs,] + E[Xs,,Xs,] + E[X5,,Xs,]
+E[Xs,Xs,] — p2(B[XT] + E[Xs,] + E[Xs,]) — (B[ X7] + E[Xs,,] + E[Xs,]) + p1pta.

Hi Ha
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Exploiting the definition of variance E[X?] = O')2< + pg( and fundamental properties of expectation:

CovlO1,05] = 07 + 05, — pufia + ji + 5, + 2uTps,, + HTHs, + HTs, + Hs, s, + fis, s, + Hs, s,

=H1H2

2 2
o7 + 05 .
Clearly, if S;, = 0, then the above result simplifies to Cov [0y, O,] = cr%. This result is intuitive,

since the covariance measures the strength of correlation between two random variables, and Oy
and O, are both composed of X7 and X, . O

The final parameters of the bivariate distribution O are

2 2, 2

. (M) o ( ) o} 2 0% +20512)

6= 125 = .
Ha or +og, g;

Repeating this procedure for the spectator joint distribution S yields a similar set of parameters:

2 2 2
L (/1512 + lusl) Y= (Gslz * 651 0.512 )
= X5 = 2 .

u 2 2
s Hsy, t Hs, 95, 95, + 9,

Equipped with expressions for X 5 and Xz, we are prepared to begin our experimental analysis of
h(Xt | O1, 03).

5.2 Experimental Evaluation

The above allows us to experimentally evaluate the target’s entropy loss for when inputs are nor-
mally distributed. We use normal distribution N(0, 4) to reasonably approximate the log-normal
distribution with real data. Once again, |T| = 1 for concreteness, and we let |S;| = |Sz| in all
experiments, i.e., the number of spectators is the same in both executions.

It is informative to analyze information loss as the fraction of shared spectators changes, and we
do so for three different computation sizes. To be as close to the setup that guarantees 1%-5% en-
tropy loss for the log-normal distribution (5-24 spectators), we choose to execute our experiments
with 6, 10, and 24 spectators (where having an even number is beneficial for illustration purposes).
This corresponds to the number of non-adversarial participants when the target is absent and the
number of non-adversarial participants is one higher when the target is participating.

We display the following information in Figure 10:

— the target’s initial entropy h(X7),
— the target’s entropy after a single execution (X1 | O;),
— the target’s entropy after participating twice h(X7|01,0,),
— the target’s entropy after participating in one of the two executions, i.e., A(Xr | Oy, 0;) and
h(Xt | 01,0,)
and plot the values as a function of the fractional overlap between two executions for a given
number of spectators.

Naturally, the value of h()?T | O;) remains constant when the number of participants is fixed.
We observe that when participating twice, h()zT | O1,0;) converges to h()_fT | Oy) as the frac-
tion of shared spectators increases. This is expected, because at 100% overlap, we are functionally
calculating h()_()r | 01,0:) = h()ZT | O1). We formalize this into the claim:

Cram 5. If the target participates in both evaluations and 100% of the spectators are reused, then
h(Xt | O01,02) = h(Xt | O1).

ACM Trans. Priv. Sec., Vol. 28, No. 1, Article 12. Publication date: December 2024.



Info. Disclosure from Secure Computation: A Comprehensive Study of Average Salary 12:25

3.05 3.05 3.05
3.00 300 300 o
205 g Iy -

7295 7295 e =295

= R = > =

2 —~—— 2 — = =

2290 /‘/ 2290 2:2.90

Zos B : 1 £

22859 ‘\ 285 \ Z285
2.80 2.80 2.80
275 \ 275 275 .

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Fraction of shared spectators

Fraction of shared spectators

Fraction of shared spectators
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Fig. 10. Target information loss after participating in one or two computations. Omitted: If the target partic-
ipates in one experiment and all the shared spectators are reused, then h(Xt | Oy, Oé) =0.

Proor. We begin by analyzing the absolute loss between the first and second evaluations when
the target participates twice, namely:

h(X1 | 01) = k(X1 | O1,02).

Assume all participants’ inputs are normally distributed (X; ~ N(0,5?)). Denote p = |P| as the

size of an arbitrary group P (e.g., s12 = |S12|), such that Xp ~ N(0, po?). Simplifying the absolute
loss between the first and second evaluations, we obtain:

h(Xr | O1) = (Xt | O1,0,) = h(X7) + h(Xs,, + Xs,) — (Xt + Xs,, + Xs,)
— (h(X7) + h(Xs,, + Xs,, Xs,, + Xs,) = h(O1, 02))
= h(X512 +X51)—h(XT+X512 +Xsl)+h(01, OZ)_h(XSIZ +X51,X512 +X52).

Using the definitions from Section 5.1, we calculate the remaining terms as

1 S12 + 81
h(Xs,, + Xs,) + h(XT + X5, + X5,) = = log| ————
( Si2 51) ( T Si2 Sl) 2 Og(t+312+51)

h(01,03) = ! log ((27e)*((t + s12)(s1 + $2) + 5152)0°)

— DN

h(X'S12 + X517X512 + XSZ) = - log ((271'6)2(512(51 + 32) + 8132)0'2)

1 ((t + 312)(31 + 32) + 3132)
lo .

s12(s1 + s2) + 5152

N

h(Ob OZ) - h(XS12 + X519X512 + XSz) =

Therefore, the absolute entropy loss between the first and second evaluations is
1 Si2+ s 1 I+ 812)(s1 + 82) + 818
L og [zt + L log (£ +s12)(s51 + 52) + 5152
2 t+ S12 + 81 2 312(31 + 32) + S182

1 ) S12 + 51 t(sp + s2) + s12(s1 + s2) + 51852
-lo .
2 & t+ S12 + 81 512(81 + 32) + 5182

Since we assume s; = s,, the above expression simplifies to

WXt | 01) = h(Xr | 01,0) =

- - 1 S12 + 81 2t + 2sg + $1
h(Xt | O1) = h(X7 | 01,0,) = =1 .
( T| 1) ( Tl ! 2) 2 Og((t+312+51)( 23()+Sl ))
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This function is monotonically decreasing when the total number of spectators is fixed to s;2 + s1,
and we vary the ratio %12 € [0, 1], which is consistent with our observation that the absolute loss

will converge to h()_fT | O1). O

Conversely, increasing the fraction of the overlap has the inverse effect for h()_()T | Oy, 0;),
causing it to trend downward. At 100% overlap, h()_fT | O1,0;) = 0 (point omitted from the plots).
This is a consequence of effectively computing h()?T | O1,Xs,,):

h(Xt|O1, Xs,,) = h(Xt, O1, X5,,)~h(O1, Xs,,) = h(X7)+h(Xs,,)~(h(X7+Xs,, | Xs,,)+h(Xs,,))
= h(X7)+h(Xs,)~(h(XT)+h(Xs,,)=h(X7)~h(XT).

When |T| = 1, then h()_fT) = h(Xt), thus reducing the above equation to zero. This informs us
that the output of the second computation O, without any unique spectators reveals the target’s
information entirely. We state this observation as follows:

CraIM 6. If the target participates in one evaluation and 100% of the spectators are reused, then
h(X7 | 01,0) = 0.

Proor. Next, we examine the absolute entropy loss between the first and second evaluations
when the target participates in only the first evaluation:

h(Xt | 01) = k(X1 | 01,03).

The only difference from the prior calculation arises from replacing h(O;, O;) with h(O1, O;),
which evaluates to

1
h(01,0,) = 2 log ((2me)*(t(s12 + 52) + s12(s1 + 52) + $152)07) ,

such that our final expression is

- - , 1 S12 + S1 t(Slz + 32) + 312(81 + 32) + S182
h(Xt | O1) - h(X7 | 01,0,) = =1
(X7 [ O1) = h(X7 [ 01, 02) 2 Og((t-i—slz +sl)( s12(s1 + 82) + 5182

1 | S12 + 81 t(512 + 1) + s1(2s0 + s1)
=-lo .
2 & t+s12 + 81 s1(2s9 + 1)

This function equals to infinity when s; = s, = 0, which confirms that the output of the second

computation O; without the presence of any unique spectators reveals the target’s information
entirely. ]

A passive result of both proofs is that all forms of absolute loss are parameter-independent,
which is consistent with Claim 2.

Our next observation pertains to the point of intersection where h()_()r | 01,0,) = h()ZT | 01,0,),
which occurs when 50% of the spectators are shared across the computation. This appears for the
special case when the total number of spectators in a single evaluation is even. Concretely, we
compare

h(X1|01,0,) = h(X1, 04, 0,) — h(Oy, 0y), 12
h(X1|0y,04) = h(Xr, 0;,04) — h(0y, 03).

It can be shown using the procedure outlined in Section 5 that h()_()T, 01,0;) = h()?T, 04, 0;). There-
fore, we prove the following:

Cramv 7. With normally distributed inputs, the terms h(O;,0;) and h(Oy,0,) are equal when
|512| = |51|~
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Table 1. Percentage of Information Loss after Two
Executions Relative to a Single Execution for n = 10.

Number of evaluations Spectator overlap
the target participatesin | 40% | 50% | 60%
One 18.0% | 31.3% | 52.3%
Two 40.1% | 31.3% | 23.5%

Proor or Cram 7. Following the steps used to derive the covariance matrix of 0= (04, 0,),
the covariance matrix of O’ = (04, 0;) is
2, 2 2 2
26’ — (GT + O—5212 + %, ) %5y, ) )
IS IS + s,
Recall that the differential entropy of the multivariate normal is h()? ) = % log((2e)* det ). The
sole object of interest is the det X term, as the remainder contribute a constant factor. We calculate

2
2 2 2 2 2 2 2 2
det ZO (O’T +o5, + 051) (O'T +og, + 0'52) (O'T + O'Sw)

2 2 2 2 2 2 2 2
O'T(O'S1 + 0'52) + 0'512(0'51 + 0'52) + O'SIO'SZ.

Similarly,
_ (.2 2 2 2 2\ _ 4 _ 2f 2 2 2 [ 2 2 2 2
detX;, = (O’T +o5, + 0'51) (0512 + 0'52) o5, = O (0'512 + 0'52) +05, (051 + 0'52) + 05,05,

Therefore, the equality h()_()r | 01,0,) = h()ZT | 01, 0,) is satisfiable if and only if U§1z = ogl, which
occurs when |Si3| = |Sy]. O

As computation designers, we can minimize information disclosure for all participants by target-
ing 50% of participants’ overlap between the first and second executions. For the configurations in
Figure 10, at 50% overlap, the percentages of information loss from the second evaluation relative
to the first evaluation are comparable for the selected number of spectators n (30.18% for n = 6,
31.3% for n = 10, and 32.45% for n = 24). This corresponds to the intersection points in Figure 10.

As we may be unable to guarantee that exactly 50% of participants overlap between two execu-
tions, we can increase our tolerance for entropy loss by inviting more participants and building a
buffer to accommodate overlaps in a range, e.g., 40%—60%. Using data in Figure 10, this information
is convenient to gather for n = 10. That is, if we increase the fraction of overlapping spectators,
then single-participation targets are most at risk. The converse is true if the overlap decreases—the
target suffers less exposure from participating one evaluation. Table 1 summarizes the results. This
means that performing two executions in the worst case costs a participant entropy loss 1.5 times
higher than if only a single computation is executed. As a result, with the target entropy loss of
5% and 1%, we need to increase the number of spectators from 5 and 24 to 7 and 33, respectively.

We note that our analysis of repeated executions applies only when the inputs of the participants
in the overlapping set of participants do not change. And if the executions are distant enough in
time that the participants’ inputs significantly change, then they would no longer be treated as
repeated dependent executions.

5.3 Additional Two Executions Experiments

We examine the impact of shared spectators’ presence on target’s information loss. In Figure 11(a),
we plot:
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01, 0y) for several |S12| sizes.

Fig. 11. Comparing the relative and absolute entropy losses of participants with normally distributed inputs.

The number of spectators per experiment on the x-axis is computed as [S12 U S1| = |S12 U S2|, starting with
1S1] = [S2] = 1.

— the target’s initial entropy h()_()T),
— the target’s entropy after a single execution A(Xt | O;), and

— the target’s entropy after two executions h(Xt | 01, 0,) with a different number of spectators
participating in both executions.

We vary the total number of spectators per experiment |S12 U S1| = |S12US;| on the x-axis, starting

with one unique spectator per experiment |S;| = [Sz| = 1. The h(Xt | Oy, O;) curves correspond

to awae after two executions and start when the number of participants reaches their respective

number of shared spectators |S;;| to make an accurate comparison. A single curve for h()_fT | O1)
suffices, since it does not use the notion of shared spectators.

We observe in Figure 11(a) that the larger the number of shared spectators for a given |Sy| is, the
less information is revealed about the target. These spectators function as “noise” that protects the
target. The protection offered by a small number of shared spectators becomes less pronounced as
the number of participants grows.

We also compute and present in Figure 11(b) the target’s absolute entropy loss for the following
experiments:

— after a single execution h()?T) - h()_fT | O1),

— after two executions h(X7) — h(Xt | O1,0;), and

— after the second execution h(X7 | O1) — (Xt | Oy, O)

using a varying number of shared spectators |Siz|. We see that for each fixed number of shared
spectators |Sz|, the absolute loss as a result of the first participation (A(X1) — (Xt | O1)) is
greater than the absolute loss of the second participation (h(X7 | O;1) — (Xt | O1,02)). With no

shared spectators, the curves converge at about 15 participants per execution, while increasing the
number of shared spectators causes the curves to converge at a slower rate.

5.4 Mixed Distribution Parameters for Two Executions

In Section 4.6, we examined how our conclusions changed when we generalize our analysis to
non-identically distributed participant inputs. We are similarly interested in how this affects our
two-execution analysis. Recalling the formulation of our two-evaluation setting where spectators
are present in the first, second, or both executions, we now consider these spectator subsets can be
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further partitioned into sub-subsets based on their group identities. Combining our two-evaluation
notation and that of Section 4.6, we define Py g C P as the set of participants present in execution(s)
k = {1,2,12} belonging to group G € G. For example, k = 1 means participation in the first
execution, while k = 12 means participation in both. The sum of these participants’ inputs is

Xp, = Z Z Xp,; = ZXPI:,G’

GeGi€Pr g GeG
where Xp; = Xicp, o Xpy ;-

Optimal setup for minimizing information disclosure. In Section 5.2, we determined that
the point of intersection of the entropies h()?T | O1,0;) and h()_éT | Oy,0;) at 50% participant
overlap provides the best level of protection for all types of targets, and moving in either direction
(increasing or decreasing the overlap) causes the leakage to increase. We revisit our proof of Claim 7
in our generalized setting to determine whether the equality h()ZT | O1,0,) = h()zr | O1,0;) still
holds when 50% of the spectators are shared across the computation, i.e., [Siz| = |Sy].

Considering the expansions of h()_()T | O1,0,) and h()_()T | 01,0;) in Equation (12), it can be
shown that the terms h()_fr, 01,0,) and h()?T, 01, 0;) are equal, leaving h(Oy, Oz) and h(Oy, O;) for
us to compare. We perform this analysis under Case 1 (participant group identities are known),
since the proof of Claim 7 relies on the existence of the closed-form expression for the differential
entropy.

Computing h(Oy, O,) and h(Oy, O;) in the generalized setting requires re-formalizing the covari-
ance matrices of the joint random variables 0= (01, 0,) and 0 = (01, 0;). Performing the steps
outlined in Section 5.1 yields the following:

o (ZGEG U(Z; (|TG| + |512,G| + isl,GD 2.GeG 0(2; (|TG| + |512,GD )

o Ycec o (ITal + [S12,6]) Ycea 0g (ITcl + [S12,6] +1S2,6))
_ (ZGEG o2 (ITg| + |Siz.6] + [S1.c)) Yeea 08 Szl )

o YGea & |512,G| YGea & (|512,G|+|52,c|) '

Given the definition of the differential entropy of a multivariate normal as h()z) =
% log((27e)* det X), we compute the determinants of the above matrices as:

detXy = (Z ¢ (ITal +|512,G|+|S1,G|)) (Z ol (|TG|+|512,G\+|Sz,c|))—(z ol (ITG|+|512’G|))
- Yot 3 st (el Z sl 3 iclslee )
+ Z o (1S1.6)) Z & (|S2,))
detX, = (Z e (ITcl +|512,G|+|S1,G|)) (Z ol (|512’G|+|51’G|))_(Z o? (|512’0|))

3, bt 3 (o G5l )| » Y el 3 (s el +fec )
+ 302 5ucl) 3 o .

GeG GeG
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By inspection, we obtain that the equality h()_(} | 01,0;) = h()_(} | O1,0;) is satisfiable if and
only if Ygea (02 [Si2.6]) = Zcea (04 [Si.c|). However, this no longer implies that the optimal
configuration is at 50% overlap. For |G| > 1, there can be multiple solutions with respect to the
individual group sizes, statistical parameters, and overlap percentages such that the equality can
be satisfied.

6 Three Executions and Beyond

The next logical step is to further generalize our analysis to three and any number M executions.

6.1 Three Executions

For three evaluations, there are additional possibilities for spectators to overlap between experi-
ments. Specifically, we have:

— spectators who participate in one experiment (Sy, Sz, S3),
— spectators who participate in two experiments but not a third (S;2, S13, S32), and
— spectators who participate in all three experiments (Si23).

Let n be the (fixed) total number of spectators per experiment. For each evaluation, let superscript
(z;) denote a target’s participation flag defined as:

{O T does not participate in evaluation i
T = .

1 T participates in evaluation i
We require 33_, 7; > 0 to signify that the target participates at least once. Therefore, there are
23 —1 = 7 possible target configurations. For example, (11, 72, 73) = (1, 0, 1) means the target partic-
ipated in the first and third executions. We use this notation to generate expressions for all config-
urations of the targets’ participation in evaluations. The random variables for each evaluation are:

Oim =1-Xr + X51 +X512 + X513 + X5123 =171 Xr + X§1

O;TZ) =10 X1 + X5, + Xs,, + Xs,, + Xs,,, = 12 X1 +X§2

Ogﬁ) = 13-X7 +X52 + Xst + X513 + XSIZS =13 X7 + XAa’
where X is the sum of all spectator configurations in evaluation i. If we denote p = |P| as the
size of an arbitrary group P such that Xp ~ N(0, po?), then the covariance matrix for the random
vector 61’2’3 _ (Ogn)’ Og‘rz)’ Ogrs))T is
Cov[0\™, 0{™] Cov[0{™, O{] Cov[O™, O]
%5,,, =| CovOf™. 0™ Cov[O{™, O] Cov[OL™), Of]
Cov[O{™, 0{™] Cov[O{™, 0] Cov[O{™, O{™)]

T1-t+S1+S12
T1To t+S12+S123 T173°1+S13+S123

+S13+5123
To t+So+S12 2
=| 7172 t+S12+5123 ToT31+S93+S123 | O
+523+S123
s iadt St T3+1+83+S93
T173°1 151315123 T2T3°L+523 15123
+S13+5123
T1°'t+n T1To t+S12+S123  T173°t+S13+S5123
=| 7172 t+S12+5123 Tt +n Tp T3 I+S93+S123 O'2.
T17T3-t+S13+S123  ToT3-f+S23+S123 T3t +n
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The second covariance matrix required is for the random vector Sy 25 = (X ) X S, X 4 )T and is

n S12tS123  S13tS123
2
25123 = | S12+S123 n So3+S123 |O°.
S13+S8123  S231S123 n

With these matrices, we are capable of computing the conditional entropy h(X7 | Ogﬁ), ngz)’ Ogm).
It will be important later that the above covariance matrices only depend on pairwise spectator
overlaps between the executions (s13 + $123), (S12 + S123), and (s23 + $123), rather than individual
sets sq2, $23, S123, and so on.

6.2 M Executions

We can generalize the prior section’s analysis to obtain the target’s conditional entropy for an arbi-
trary number of evaluations. Let M be to the total number of evaluations where M € Z. . Denote
A as the set of integers from 1 to M, such that A = {1, ..., M}. We can generate the set of all subsets
of spectators that overlap and do not overlap between evaluation using the power set of A (denoted
by P(A)). Specifically S = P(A)\ {0}, the empty set is excluded, as it corresponds to the target not
participating in any computation. The number of spectator subsets and target participation con-

figurations is |S| = 2™ — 1. The output random variable of experiment i € {1,. .., M} is therefore
O =;-Xr+ > Xso =1 Xr+X,.
RCS:ieR

We can generate elements of the M X M covariance matrix of the random vector 51 M =
(Ogﬁ), e, Og\ZM))T using the following expression for i,j € {1,...,M}:

2 2 Iy .
J 2 2 e s
Ti'0p + XRcS:ieR op ifi=j

Similarly, elements of the covariance matrix of the random vector §1 M=K 600 X SM)T can
be generated as follows:
YReS(ijerOp  fi# ]
Cov[Xgi,XSj] = { CS:(i,j)e 2 R . .
2RCS:icR oR ifi=j
If the total number of spectators per evaluation is fixed to n, then Y pcs.icr 05 = o2n.

6.3 Experimental Evaluation

Unlike two executions, we can no longer graphically represent conditional entropy as a function of
overlap sizes, as there are several dimensions to consider. Instead, we enumerate all possible spec-
tator configurations for n = 24, and for each spectator configuration, we compute the minimum
of the seven conditional entropies corresponding to valid target configurations 7y, 7, 73:

Jmin k(%r | 0f", 05, 0).
We then determine the maximums across all spectator configurations that correspond to the opti-
mal choices that minimize target’s information disclosure.

We plot the top 500 spectator configurations, which yield 20 unique entropy values (displayed
in the color map), in Figure 12 from different viewing angles. The axes correspond to pairwise
overlap sizes, and a point with a fixed overlap, e.g., s12 + s123, corresponds to different individual
sizes of sy, and s;,3 that add to the same values. Recall that only the sum contributes to the entropy
computation.
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Fig. 12. Configurations and values of minimal information disclosure as functions of the pairwise spectator
overlaps for three evaluations.

The maximum conditional entropy (singular white point) occurs when the pairwise overlaps are
1/3 of n, i.e., when s13+S123 = S12+S123 = S23+5123 = 8. Other top configurations are located nearby
but do not deviate from the center evenly. In the projection of two of the three pairwise overlap
dimensions (s12 + S123 VS. s13 + S123, Figure 12(b)), the top-500 configurations are concentrated in
the 1/3 overlap region. The shape is preserved (and thus the figures are identical) in the other
two projections. It is important to point out that the difference in entropy between the largest and
smallest value plotted is less than 1/100th of a bit.

Having examined optimal configurations for two and three executions, we want to generalize
the findings to any number of experiments and spectators n. In Figure 13, we plot the optimal
pairwise overlap percentages as a function of n for 2, 3, and 4 executions. Information leakage is
always the smallest when all pairwise overlaps are equal (i.e., for M = 3, 13 + S123 = S12 + S123 =
$23 + S123). The optimal overlap percentage for M = 2 is upper bounded by 50% and tends towards
50% as n grows. Interestingly, the optimal overlap for both M = 3 and M = 4 trend toward 1/3
overlap, while ideal overlaps are generally smaller for M = 4. Analysis of large M, while potentially
interesting, is of limited practical value.

7 Conclusions and Recommendations

In this work, we study information disclosure associated with revealing the output of average
salary computation on private inputs. Using the framework of Reference [1], we analyze the
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Fig. 13. The optimal shared spectators overlap relative to the total number of participants n for M
evaluations.

function and derive several information-theoretic properties associated with the computation.
Inputs are modeled using several discrete and continuous distributions, leading to multiple
interesting conclusions about their entropy loss. We expand the scope to multiple executions on
related inputs and determine the best configurations that minimize information disclosure. This
leads to the following recommendations for computation designers:

— The amount of information disclosure about a target is independent of adversarial inputs. It
was also experimentally shown to be independent of distribution parameters for three differ-
ent distributions and analytically shown for normal distribution. All examined distributions
produce nearly identical entropy loss curves.

— One can reduce the amount of entropy loss to a desired level by increasing the number of
participants. For example, the computation designer can advertise at most 5% or 1% maxi-
mum entropy loss for the average salary application, which will require recruiting 6 or 25,
respectively, non-adversarial participants when running only a single evaluation.

—In the presence of repeated computations, information disclosure about inputs continues
for both participants who stay and participants who leave. With two executions, protec-
tion is the largest with 50% overlap in the participants, while both a small overlap and an
overwhelming overlap result in undesirable information disclosure about different types of
participants (i.e., those who stay vs. those who leave).

— With more executions, pairwise overlap sizes determine information disclosure. For three
and four executions, optimal configurations have overlap sizes near 1/3 of the number of
participants.

— Information disclosure about participants’ inputs can still be kept at a desirable level by en-
rolling enough participants and restricting the percentage of reused inputs to be in a desired
range. For example, with two executions and following the guidelines of keeping the overlap
near 50%, the number of non-adversarial input contributors needs to be at least 8 to meet
the target of 5% information loss.

This work provides the foundation for a number of interesting future directions, the first of which
is expanding our analysis to more advanced descriptive statistics. This encompasses computations
such as the max/min, median, and standard deviation. For these functions, it may not be possible
to derive closed-form expressions for the information disclosure, and we would consequently
pivot to leveraging simulation-based techniques to compute the entropy. Entropy estimators
(such as those designed in References [32, 33]) are a highly accurate means of calculating the
entropy of an unknown distribution, given a set of samples. These techniques provide a wide
range of opportunities to measure the disclosure beyond statistical functions.
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