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Recent compilers allow a general-purpose program (written in a conventional programming language) that
handles private data to be translated into a secure distributed implementation of the corresponding functionality.
The resulting program is then guaranteed to provably protect private data using secure multi-party computation
techniques. The goals of such compilers are generality, usability, and efficiency, but the complete set of features
of a modern programming language has not been supported to date by the existing compilers. In particular,
recent compilers PICCO and the two-party ANSI C compiler strive to translate any C program into its secure
multi-party implementation, but currently lack support for pointers and dynamic memory allocation, which are
important components of many C programs. In this work, we mitigate the limitation and add support for pointers
to private data and consequently dynamic memory allocation to the PICCO compiler, enabling it to handle a
more diverse set of programs over private data. Because doing so opens up a new design space, we investigate
the use of pointers to private data (with known as well as private locations stored in them) in programs and
report our findings. Aside from dynamic memory allocation, we examine other important topics associated with
common pointer use such as reference by pointer/address, casting, and building various data structures in the
context of secure multi-party computation. This results in enabling the compiler to automatically translate a
user program that uses pointers to private data into its distributed implementation that provably protects private
data throughout the computation. We empirically evaluate the constructions and report on the performance of
representative programs.
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1 INTRODUCTION
Recent advances in secure multi-party computation make it feasible to securely compute with
private data belonging to different organizations even for complex functionalities. Furthermore,
together with ubiquitous proliferation of cloud computing services, these techniques give rise to
secure computation outsourcing. For these reasons, the research community has recently developed
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a number of compilers for transforming a general-purpose program into its secure distributed
implementation (see, e.g., [10, 26]). These tools aim at generality and are designed to translate
a program written in a conventional programming language into an equivalent program that uses
secure computation techniques to protect private data. They also aid usability and make it easier for a
programmer without extensive knowledge of secure computation techniques to produce a protocol
that can be securely executed in a distributed environment.

It has been long known that any computable function can be securely evaluated by multiple
participants if it is represented as an arithmetic or Boolean circuit. This representation, however, is
not always obvious or known, and representing a program as a circuit may significantly increase the
program size. Existing compilers remove the need for the programmer to perform this translation
manually and assemble secure implementations from efficient building blocks for elementary opera-
tions. Thus, efficiency of the resulting secure computation is also one of the goals that compilers
target. Furthermore, the ability to support both private (i.e., protected) and public (i.e., not protected)
data or variables in a single program adds a level of complexity to the implementation because of the
need to support interactions between public and private variables and secure data flow enforcement.

While the design goal of several compilers was to support any feature of a general-purpose
programming language (such as C in [10] and [26]), all such compilers have limitations. In particular,
the original version of the PICCO compiler [26] provided no direct support for C pointers (i.e.,
pointers were supported only in the form of static arrays) and, as a result, no support for dynamic
memory allocation other than static arrays. Similarly, the original version of the two-party compiler
for ANSI C [10] supported pointers only in the form of statically allocated arrays restricted to a
constant size and had additional limitations (such as support for floating point arithmetic was not
available in the open source CBMC that the compiler builds upon). Thus, support for C-like pointers
– or, in other programming languages, support for the features that pointers enable such as dynamic
memory allocation, reference by pointer or address, and building data structures – is the most crucial
part of a general-purpose program that is currently unavailable in existing compilers. Adding this
support is thus the focus of our work.

In this paper, we put forward a framework for supporting pointers to private data and consequently
realize it in the PICCO compiler [26]. PICCO1 is a source-to-source translator that takes as an
input a C program with variables to be protected marked as private and produces a C program that
implements the computation using secure multi-party computation techniques based on linear secret
sharing. We view PICCO as an attractive choice of a C compiler because of the flexibility of the
setting it uses. In particular, the setting assumes three groups of participants: (i) input parties who
hold private inputs into the computation, (ii) computational parties who perform secure computation
on secret-shared data, and (iii) output parties who are entitled to learn the result of the computation.
The composition of these three groups can be arbitrary (in particular, including the same, overlapping,
or non-overlapping groups), which makes the setting suitable for secure multi-party computation
(SMC), delegation of the computation by multiple data owners to a subset of them or other suitable
entities or secure computation outsourcing by one or more parties. This flexibility follows from the
use of secret sharing techniques and may or may not be present in tools that build on alternative
secure computation techniques (such as, e.g., garbled circuit evaluation).

With linear secret sharing, before secure computation can commence, each input party splits
her private inputs into n > 2 secret shares, where n is the number of computational parties, and
communicates each share to the respective computational party. The computational parties then
proceed with evaluating the function on secret-shared data and communicate their shares of the
result to the output parties who reconstruct the output using their shares. Any linear combination of

1Available from GitHub at https://github.com/picco-team/picco.
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secret-shared integers is performed locally, but multiplication of secret-shared integers constitutes an
elementary interactive operation. Performance is then measured in the total number of interactive
operations as well as the number of sequential interactions or rounds, and recent solutions based on
secret sharing aim at minimizing overhead using both metrics.

When PICCO is used to perform source-to-source translation, the input program is a conventional
C program where each variable is marked to be either private or public. All computation with private
variables is transformed into secure arithmetic on shared data, while operations with public variables
that do not interact with private data are left unchanged. In addition to specifying private/public
qualifies for each variable, for performance reasons PICCO also allows the programmer to mark the
places where computation can proceed concurrently (i.e., to decrease the number of computation
rounds), which also extends the conventional C syntax.

Adding pointer support to a program that manipulates private data not only extends the compiler
to handle the full range of C programs (that do not violate secrecy of private data), but also permits
important features of programming languages, treatment of which, to the best of our knowledge, has
not been done before. As part of this work, we thus explore how pointers to private data (including
pointers with private locations) can be implemented and discuss our design decisions. We also study
common uses of pointers in programs and the impact our implementation has on those language
features. For example, enabling dynamic memory allocation is an important aspect of this work.
Based on our analysis as well as empirical evaluation, several of these features introduce only
marginal costs. Also, one of the important topics studied in this work is the use of pointer-based data
structures written for private data. Our results indicate that the use of pointers (to private data) is very
attractive and maintains high efficiency for several popular data structures. In some other cases, in
particular when working with sorted data, privately manipulating pointers increases complexity of
data structure operations and it might be desirable to pursue alternative implementations.

We would like to emphasize that it is not the goal of this paper to try to develop most efficient
implementations for different data structures. Instead, the goal is to determine how pointers to private
data can be supported at a low possible cost and to what performance of typical programs that
might lead. We note that, depending on the program structure, asymptotic complexity of a translated
program might be higher than that of the original. For example, consider an if-then-else statement
with a private condition (e.g., conditional statements used in traversing a binary tree). When data
privacy is not required, only one of the two branches will be executed, but with any compiler that
produces a secure implementation both branches will have to be evaluated to hide the result of the
private condition. Then with a sequence of n nested if-then-else statements, in the worst case the
secure program might have to execute O (2n ) instructions where the original program would execute
only O (n). This means that the general translation approach can lead to an exponential increase in
the runtime for programs of practical relevance. As part of this work, we show that data structures
that utilize pointers to private data cover the entire spectrum of possibilities: in one extreme, they
result in no asymptotic increase over conventional non-secure counterparts, and in another extreme,
the increase is exponential. This provides insights on when natural pointer use is very attractive and
when other, alternative implementations might be desired.

While for many data structures alternative, non-pointer-based implementations may be possible,
we note that our extension of PICCO with pointers enables support for an important aspect of
modern programs otherwise not available in any secure multi-party compiler we are aware of,
which is dynamic memory allocation. Dynamic memory allocation is essential for a general-purpose
programming language, but has not been systematically studied in the context of secure multi-party
computation (e.g., even publications and compilers that run secure computation on data sets of a
large size assume that the size of the data is fixed and known at compilation time). As an example,
consider an application in which data items arrive over time. A pointer-based linked list will allow
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for a natural and graceful mechanism of memory management, that unlike statically allocated arrays
does not require complex provisions for allocating a larger buffer when the current one becomes full,
moving the data, or merging previously allocated buffers.

The rest of this paper is organized as follows: We first give a brief overview of related work
in Section 2. After presenting background information in Section 3, we proceed with generically
presenting our solution for supporting pointers to private data in Section 4. In Section 5, we discuss
dynamic memory management, while Section 6 addresses specifics of pointer implementation in
PICCO. Section 7 next summarizes operations with pointers to private data and formally shows
security of the design. Section 8 analyzes various data structures built using pointers to private data.
Lastly, Section 9 presents the results of performance evaluation of representative programs that utilize
pointers (to private data) and Section 10 concludes this work.

2 RELATED WORK
In this section we review the most closely related work on SMC compilers and secure/oblivious data
structures. Regarding the compilers, Fairplay [16] was a pioneer work that enables compilation of
secure two-party protocols based on garbled circuits. Its extension to multiple parties, FairplayMP [3],
implements secure computation using Boolean circuits and secret sharing techniques. TASTY [9]
is another two-party SMC compiler that combines garbled circuit techniques with those based on
homomorphic encryption. Its follow-up ABY [8] provides more efficient mixed-mode two-party
computation using Boolean and arithmetic circuits. Sharemind [4] and VIFF [6] are multi-party
compilers based on custom additive 3-party secret sharing and standard threshold linear secret sharing,
respectively. All of the above compilers use custom domain-specific languages to represent user
programs. The two-party compiler for ANSI C [10] and PCF [13] both use two-party garbled circuit
techniques, where the former’s goal is to support general purpose C programs, while the latter uses a
new circuit format and employs optimizations to reduce the compilation time and storage. Lastly,
TinyGarble [21] uses hardware synthesis to optimize garbled circuits for two-party computation
and its follow-up [7] also provides optimizations for arithmetic circuits. All of these compilers
require linear in the size of memory work to access memory at a private location. SCVM [14], on the
other hand, is an automated compiler that utilizes oblivious RAM (ORAM) and targets two-party
computation. ObliVM [15] is another ORAM-based secure two-party computation compiler that
transforms programs written in high level abstractions to optimized garbled circuit implementations.
Finally, a recent compiler Frigate [18] was designed to guarantee correctness of programs compiled
into circuits for secure two-party computation.

To support data structures in the SMC framework, several solutions [11, 17, 22–24] have been
proposed. The main motivation of this line of work is the need to store and manipulate private data in
an efficient and flexible manner. Toft [22] proposed a private priority queue that has a deterministic
access pattern as opposed to randomized ones in ORAM-based data structures. Similarly, Zahur and
Evans [24] build static circuits for stacks, queues, and associative maps of complexities substantially
lower than touching all data items in the data structure in linear time. On the other hand, Keller and
Scholl [11] introduced implementations of arrays, dictionaries, and priority queues based on various
flavors of ORAM implementations. Mitchell and Zimmerman [17] also provide implementations
of stacks, queues, and priority queues based on oblivious data compaction and an offline variant
of ORAM. Wang et al. [23] proposed implementations of maps, sets, priority queues, stacks, and
deques based on ORAM techniques modified for specific data access patterns. Different from all
of the above, our work provides support for dynamic data structures in a generic way as found in
general purpose programming languages. That is, the programmer has the basic tools and primitives
that enable her to build any desired data structure.
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In our implementation, a pointer to private data may store one or more locations where the
data might reside, which in the worst case is linear in the program’s memory size. ORAM-based
techniques, on the other hand, guarantee that when an item is accessed at a private location, the
number of accessed memory locations is polylogarithmic in the total memory size. Thus, our general
solution may or may not be faster than using ORAM, depending on both the program and the data
size. As we discuss later in this work, employing ORAM techniques can be beneficial for certain
data structures (and sufficiently large data sets). Building custom data structures, however, is beyond
the scope of this work.

One of the applications that the compiler can naturally be used for once support for pointers to
private data is in place is evaluation of a context-free grammar on private data (implemented as a
shift-reduce parser using a stack). The grammar can be either public or private, and in the latter case
execution will correspond to evaluation of private expressions/programs on private data. Techniques
for evaluation of private programs (on private data) are a separate area of research, discussion of
which is beyond the scope of this work, but the reader may refer to recent results in this areas such as
those in [12, 20].

3 BACKGROUND INFORMATION
PICCO uses Shamir secret sharing [19] for implementing secure arithmetic and other operations
on private data. It is an (n, t )-threshold linear secret sharing scheme, in which a private value is
represented using n > 2 secret shares, one held by each computational party. Then any t + 1 or
more shares can be used to reconstruct the private value, while t or fewer parties cannot learn any
information about the shared value (which is perfectly protected in the information-theoretic sense).
In a linear secret sharing scheme, a linear combination of secret-shared values can be performed
by each computational party locally, without any interaction, while multiplication of secret-shared
values requires communication between all of them. With Shamir secret sharing, computation takes
place over a field of a desired size (larger than any value that needs to be represented). A secret s is
represented using a random polynomial of degree t with the free coefficient set to s, and each share
corresponds to the evaluation of the polynomial on a distinct non-zero point. Given t + 1 or more
shares, the secret can be reconstructed using Lagrange interpolation. Then addition or subtraction of
secret-shared values, or multiplication of a secret-shared value by a known integer can be performed
by each party locally using its shares. Multiplication involves multiplying two shares, which raises
the corresponding polynomial degree to 2t , and resharing and interpolating the result to bring the
degree of the corresponding polynomial from 2t to t . This imposes the requirement that t < n/2. With
the way multiplication is performed, it is also possible to evaluate any multi-variate polynomial of
degree 2 over secret-shared integers with a single interaction. That is, we first evaluate the polynomial
and re-share the overall result instead of doing so for the intermediate products. This serves as a
powerful optimization tool when, for instance, the dot product of two secret shared vectors/arrays
needs to be computed, which results only in a single interaction.

While the regular field operations achieve perfect secrecy, implementation of some of the basic
operations used in PICCO (such as comparisons, division, etc.) is statistically secure, which requires
the bitlength of the field elements to be increased by the statistical security parameter. This slightly
increases the cost of field operations, as well as the amount of communication associated with
transmitting field elements. The optimal size of field elements is automatically determined by PICCO
for each program it compiles.

Performance of these techniques is measured in terms of the total number of elementary interactive
operations (field multiplications or reconstructions of a value from its shares) as well as the number of
rounds. For that reason, PICCO supports a number of optimizations to reduce the round complexity
of programs that it outputs through concurrent or batch execution.
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Support for pointers to private data (and the corresponding functionalities such as dynamic memory
management) was the only missing functionality in PICCO. Thus, we modify the compiler to enable
it to compile user programs that contain pointers to private data, which was not previously available.
Our changes to the compiler affect only pointers to private data and the introduction of two built-in
functions for memory allocation and deallocation (called pmalloc and pfree) associated with
pointers to private data.

4 ADDING POINTER SUPPORT
Recall that in C a pointer is a variable of a special type that stores a location in memory at which
data of a particular type can be located. Because a pointer stores an address, it can be treated very
generally with the possibility of directly manipulating pointers, changing the addresses they store,
dereferencing a pointer to access the data to which it points, casting a pointer of a particular type to a
pointer of another type, and using pointers to functions. As with any SMC compiler, our security
objective is to provably reveal no information about private data used in the computation.

4.1 Working Toward a Solution
When working with pointers in the presence of private data, besides traditional C pointers to public
variables, we can distinguish between pointers to private data that (i) point to a single known location
where the private data is stored and (ii) point to a memory pool or a number of locations where
private data is stored and the location of the private data is not known. In determining how this can
be implemented in a C-like programming language, we considered pre-allocating memory pools for
pointers with private locations. Such memory pools would be required for each data type to ensure
that we can store and extract private data correctly. This approach, however, has severe disadvantages,
which are:

(1) Using memory pools unnecessarily increases the program’s memory footprint, where one pool
will be needed for each used data type including complex types defined via the struct construct.
Furthermore, it is not clear to what size each pool should be set to optimize performance.

(2) It would also often incur unnecessarily large computation costs due to the need to touch all
locations within a memory pool per single access (or touch several locations when the pool is
implemented using more complex ORAM techniques). As will be evident later in the paper,
there are large classes of programs, applications, and data structures, where a pointer to private
data always corresponds to a single location, which removes the need to use secure multi-party
computation techniques for pointer manipulation. Allowing a pointer to store a single known
location drastically improves program performance compared to using pointer pools.

(3) Memory pools would also not work in the presence of pointer casting.

Then if we do not want a pointer to initially point to a pre-allocated memory pool, would the
decision to properly declare a pointer as pointing to a single (known) location or a set of locations
be left to the programmer? This is going to introduce an additional burden for a programmer who
would need to know at a variable declaration time whether the variable of a pointer type will require
protecting its value. This happens if the pointer is used inside a conditional statement with private
condition, which then requires protecting the location assigned to the pointer to protect the result of
the condition evaluation.

To ease the programming burden and at the same time avoid consuming unnecessary (memory
and computation) resources, our solution is to use the same programming interface for all pointers
that are to point to private data. When the pointer is being declared or initialized, it has one known
location associated with it (if the pointer is not initialized, that location is set to the default value
corresponding to uninitialized pointers). Throughout the computation, the pointer, however, may be
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pointing to multiple locations, one of which is its true location. This happens when the pointer’s
value is modified inside conditional statements with private conditions as illustrated next. Suppose
we declare variables a and b to be private integers followed by the code below:
1. private int *p;
2. p = &a;
3. if (priv-cond) then p = &b;

We see that variable p was declared as a pointer to a private integer, but the type of the pointer with
respect to whether the location itself is private is implicit. After executing lines 1–2, p has a single
known location, but after executing line 3, p is associated with a list of two locations (the address of
a and the address of b) and the value of the true location is protected. That is, a pointer always starts
with a single publicly known location and the location to which it is pointing may become private,
but the user does not declare the pointer itself as public or private. In the rest of this work, we use the
term “public location” in reference to a pointer to private data to mean that the pointer has a single
known location (either initialized or uninitialized) and we use the term “private location” to mean
that the pointer has a list of public locations, but which location is in use remains private.

When we consider interaction of public and private values in connection to the use of pointers, a
number of questions arise, which we address next.

(1) Can a pointer that was declared to point at private data be assigned the address of public data?
Note that without the use of pointers, the equivalent actions are generally allowed. That is, a
variable declared to hold private data can be assigned a known value, which is consequently
converted into protected form. The same does not hold for pointers and we disallow assigning
locations of public variables to pointers which were declared to point to private data. To see
why, suppose that a user program contains the code below where a was declared to be a public
integer, while b is a private integer:
1. p = &a;
2. if (priv-cond) then p = &b;
3. *p += 1;

After executing lines 1–2, p stores two addresses and the true location of where it is pointing
out of these two addresses is protected. On line 3, however, the pointer is dereferenced and the
result of private condition priv-cond evaluation is revealed by examining the value of a
before and after line 3. Thus, to eliminate information leakage, pointers to private data can be
assigned only locations that store private values.

(2) Can a pointer declared to point to public data be modified inside conditional statements with
private conditions and as a result become pointing to multiple locations? The answer to this
question is No. If a pointer to public data is updated in the body of a conditional statement
with private condition, it must be treated as a pointer to private data (otherwise, using its
dereferenced value reveals unauthorized information). Allowing such uses and performing the
conversion implicitly by the compiler will be confusing to the programmer (who no longer
can use the pointer to store addresses of public data). For that reason, we disallow updates to
pointers to public data within the body of conditional statements with private conditions.

We note that all program transformations that we describe in this work preserve semantics of
the original program and, given that a program can be compiled into the corresponding secure
implementation, the transformed program will always produce the same output as the original
program. There are some restrictions that user programs must meet in order to be compiled into
secure implementations with no information leakage. Such restrictions include the two cases at the
interaction of public and private data described above and additional mixed-mode restrictions placed
on programs with or without pointers (e.g., the fact that the body of a conditional statement with a
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private condition cannot have public side effects, a loop termination condition should be public or
made public, etc.). This is to ensure that no information leakage in the compiled program can take
place, and the programs that do not meet the requirements are aborted at compilation time. Once
these security constraints are met, our extension of PICCO with pointers will allow any user program
to be compiled into its secure counterpart.

We next proceed with describing how pointers to private data are implemented to realize the
ideas outlined above. We start with general description applicable to different underlying secure
multi-party computation frameworks.

4.2 Pointer Representation
As we incorporate support for pointers, we first note that pointers to public data will not need to
be modified and their implementation remains the same as in C. The most significant change in
implementing pointers to private data comes from the need to maintain multiple locations. For that
reason, the data structure that we maintain for pointers to private data consists of (i) an integer field
that stores the number α (≥ 1) of locations associated with the pointer; (ii) a list L of α addresses
where the data is stored; and (iii) a listT of α private tags, one of which is set to 1 (true data location)
and all others are set to 0. For the important special case of α = 1, the pointer has known (public)
location and the tags are not used.

We formalize the above pointer representation using the following invariant, which is maintained
throughout various pointer operations: among all locations stored with a pointer to a private object,
there is exactly one true location of the object and the tag corresponding to that location is set
to 1, while the tags corresponding to all other locations are set to 0. This invariant is true of all
well-formed programs and may be violated only in the case of dangling pointers as detailed later.

Because we would like to employ a uniform data structure for pointers to private data of any data
type such as integer, floating-point values, etc. and even pointers to a pointer, the data structure we
maintain needs to include two additional fields: (iv) an integer flag that determines the type of data
associated with the pointer (i.e., integer = 1, float = 2, struct = 3, etc.) and (v) an integer field that
indicates the indirection level of the pointer. For instance, if a pointer refers to a private value of a
non-pointer type, its indirection level is set to 1; and if it refers to a pointer whose indirection level is
k (for k ≥ 1), its level will be set to k + 1. A pointer to a struct also has indirection level 1 regardless
of the types of the struct’s fields (which can be pointers themselves).

4.3 Pointer Updates
Initially, at a pointer declaration time, the number of locations α associated with the pointer is set to 1
and the address is set to a special constant used for uninitialized pointers. Then every time the pointer
is modified (including simultaneously with pointer declaration), its data structure is updated. When
the pointer is assigned a new location using a public constant, a variable’s address, or a memory
allocation mechanism (e.g., as in p = 0, p = &a, or p = malloc(size)), α in the pointer’s
data structure is set to 1 and the associated address is stored in the pointer’s address list. When a
pointer is updated using another pointer (as in p = p1), the latter’s data structure is copied and
stored with the former.

Such simple manipulations are used only when the assignment does not take place inside the body
of a conditional statement with a private condition. Pointer assignments inside conditional statements
with a private condition present the most interesting case when the list of pointer locations gets
modified. Updating values modified in the body of a conditional statement with a private condition
already requires special handling in PICCO and other compilers, and all we need is to support
a specific procedure when a variable of a pointer type is being modified. We need to distinguish
between if-then and if-then-else statements, which we consequently discuss.
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Consider the following code with an if-then statement:
1. p = p1;
2. if (priv-cond) then p = p2;

where p, p1, and p2 are pointers (to private data) of the same type. This is the most general case,
where on line 2 both p and p2 can have any number of locations associated with each of them
(recall that all other assignment types use a single location). When this code is written for ordinary
(private) variables of the same type a, a1, and a2, a generic way to implement this update is to first set
[a] = [a1] and then compute [a] = ([c] ∧ [a2]) ∨ (¬[c] ∧ [a]), where c is a bit equal to the result of
evaluating priv-cond and notation [x] means that the value of x is protected and its value is not
known throughout the computation. (Note that this operation can be optimized as [c] · ([a2]−[a])+[a]
using secret sharing or ([c] ∧ ([a2] ⊕ [a])) ⊕ [a] using garbled circuits.) In the case of pointers, such
a simple update does not work because this procedure would turn addresses into secret shared values
preventing the pointer from being dereferenced (without touching all possible memory locations).
Thus, after executing the assignment p = p1, we combine the (public) locations of p and p2 and
set the tags in p based on the current tags of p and p2 and the result c of evaluating priv-cond.
Let pointer p after executing the first assignment contain α1 locations stored as L1 = {ℓ1, . . ., ℓα1 }

with corresponding tagsT1 = {[t1], . . ., [tα1]} (i.e., this information was copied from p1). Let also p2
store α2, L2 = {ℓ′1, . . ., ℓ

′
α2 }, and T2 = {[t ′1], . . ., [t

′
α2]}. Note that the addresses in each L can be listed

in any order (as long as the ordering is consistent across all computational parties), but the tag ti in
T must correspond to the address ℓi at the same position i in L. Then as a result of the conditional
assignment, we compute p’s new content as given in Algorithm 1.

ALGORITHM 1: ⟨α3,L3,T3⟩ ← CondAssign(⟨α1,L1,T1⟩, ⟨α2, L2,T2⟩, [c])
1: L3 = L1 ∪ L2;
2: α3 = |L3 |;
3: for every ℓ′′i ∈ L3 do
4: pos1 = L1.find(ℓ′′i );
5: pos2 = L2.find(ℓ′′i );
6: if (pos1 ,⊥ and pos2 ,⊥) then
7: [t ′′i ] = ([c] ∧ [t ′pos2 ]) ∨ (¬[c] ∧ [tpos1 ]);
8: else if (pos2 =⊥) then
9: [t ′′i ] = ¬[c] ∧ [tpos1 ];

10: else
11: [t ′′i ] = [c] ∧ [t ′pos2 ];
12: end if
13: end for
14: set T3 = {[t ′′1 ], [t

′′
2 ], . . ., [t

′′
α3 ]};

15: return ⟨α3,L3,T3⟩;

In the algorithm, L3 is composed of all locations appearing in L1 or L2 (repeated locations are
stored only once). We use notation L.find to retrieve the position of the element of L provided as the
argument or special symbol ⊥ if the element is not found. The tags in the output T3 are set based on
three different cases: (i) a location in L3 is found in both L1 and L2; (ii) it is found in L1, but not in
L2; and (iii) it is found in L2, but not L1. Because only tags inT1 andT2 and c are private, only lines 7,
9, and 11 correspond to private computation.

If the conditional statement is of the form if-then-else, but p is not updated in the body of the else
clause, then the computation in Algorithm 1 is applied unchanged. If the pointer is instead updated
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only in the body of the else clause, then the computation is performed similarly, but Algorithm 1 is
called with the value of 1 − c instead of c.

Lastly, if the pointer is updated in both clauses of the if-then-else statement, the pointer content
prior to that statement needs to be disregarded. The pointer values used in the two assignments
are then merged as in Algorithm 1 using the result c of the private condition evaluation. To better
illustrate this, consider the following code segment:
1. p = p1;
2. if (priv-cond) then p = p2;
3. else p = p3;

After we assign p1 to p on the first line, p’s content is overwritten with the content of either p2
or p3 depending on the result c of evaluating priv-cond. We can see that before entering the
if-clause, the current content of p (i.e., that copied from p1) can be safely disregarded without
affecting its correctness. In other words, to update p inside the conditional statement, we call
CondAssign(⟨α2,L2,T2⟩, ⟨α3,L3,T3⟩, c ) in Algorithm 1, where ⟨α2,L2,T2⟩ and ⟨α3,L3,T3⟩ are contents
of pointers p2 and p3, respectively.

These constructions compose in the presence of nested conditional statements with private condi-
tions. For instance, after executing the code:
1. if (priv-cond1) then p = p1;
2. else
3. p = p2;
4. if (priv-cond2) then p = p3;
5. else p = p4;

p will contain the combined content of pointers p1, p3, and p4. That is, Algorithm 1 is first called
with the content of pointers p3 and p4 and the result c2 of evaluating priv-cond2, after which
Algorithm 1 is called on the result of its previous execution, the content of p1, and the result c1 of
evaluating priv-cond1.

4.4 Pointer Dereferencing
When pointer p with a private location is being dereferenced, its dereferenced value is privately
computed from α , L = {ℓ1, . . ., ℓα }, and T = {[t1], . . ., [tα ]} stored at p in a logical way. Let [ai ]
denote the value stored at location ℓi ∈ L for pointer with indirection level of any type (simple type,
struct, function, etc.). Then we compute the dereferenced value as [v] =

∨α
i=1[ai ] ∧ [ti ].

When the dereferenced value is being updated, all locations in L need to be touched, but the content
of only one of them is being changed. If we, as before, use [ai ] to denote the value stored at ℓi ∈ L
and let [anew ] denote the value with which the dereferenced value is being updated, then we update
the content of each location ℓi as [ai ] = ([ti ] ∧ ([anew ]) ∨ (¬[ti ] ∧ [ai ]). That is, the true location
(ti = 1) will be set to anew , while all others (ti = 0) will be kept unchanged.

Because a pointer to private data is represented using a special structure, we need to modify
the procedures above for pointers with indirection level > 1 (i.e., pointers to pointers) to correctly
assemble and update pointer objects. In this case, each ℓi ∈ L stores an address of a pointer pi and
let each pi be associated with αi , Li = {ℓ

(i )
1 , . . ., ℓ

(i )
αi }, and Ti = {[t (i )1 ], . . ., [t (i )αi ]}. To retrieve the

dereferenced value of p, we need to compute [ti ] ∧ [t (i )j ] for 1 ≤ i ≤ α and 1 ≤ j ≤ αi and merge all
lists Li for 1 ≤ i ≤ α . The resulting list is thus set to L′ = L1 ∪ L2 ∪ · · · ∪ Lα and let α ′ = |L′ |. For
any location in L′, its corresponding tag is the OR of all [ti ] ∧ [t (i )j ] values matching that location in
the individual lists Li . The result is α ′, L′ and the corresponding tags T ′.

To illustrate this on an example, let α = 3, T = ([0], [0], [1]), and L store the addresses of
pointers p1, p2, p3 with α1 = 1, L1 = (123), T1 = (1); α2 = 2, L2 = (189, 245), T2 = ([0], [1]);
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and α3 = 3, L3 = (123, 176, 207), T3 = ([0], [1], [0]). The result of this operation is a pointer with
L′ = L1 ∪ L2 ∪ L3 = (123, 176, 189, 207, 245), α ′ = |L′ | = 5, and T ′ = ([0], [1], [0], [0], [0]).

To update the dereferenced value of p through an assignment as in *p = p’, each pointer pi
stored at address ℓi ∈ L needs to be updated with p’’s information. In particular, for each pi each tag
[t (i )j ] (for location ℓ (i )j ) is updated to (¬[ti ]) ∧ [t (i )j ]. We also compute tag [ti ]∧ [t ′j ] for each location
ℓ′j in p’’s list of locations. We then merge the location list of each pi with that of p’ to form pi ’s new
list. For any new location inserted into Li , its tag is set to the computed [ti ] ∧ [t ′j ] for the appropriate
choice of j, and any location that appears on both pi and p’ lists, the value [ti ] ∧ [t ′j ] is ORed/added
to pi ’s updated tag for that location. In other words, if ti is true, we take p’’s value and otherwise
keep pi ’s value.

If pointer p with a private location is being dereferenced m > 1 times, the above dereference
algorithms are naturally applied multiple times with the firstm − 1 instances being the version that
produces a pointer and the last instance producing either a pointer or a private value depending on
p’s indirection level. p can then be treated as the root of a tree with its child nodes being locations of
pointers stored in its list and the leaves of the tree eventually pointing to private data (of a non-pointer
type). To perform an m-level dereferencing operation, we traverse the top m + 1 levels of the tree
and consolidate the values stored at those levels (and update the values at the (m + 1)th level if the
dereferenced value is to be updated).

4.5 Pointers to Struct
We next discuss design and implementation of pointers to structs, including their representation
and the associated algorithms. Pointers to complex data types declared using struct constructs are
common for building data structures such as linked lists, stacks, and trees, and thus pointers to structs
deserve special attention.

As before, if a complex data type contains no private fields, no transformations are needed.
However, when dealing with pointers to structs with private fields, we need to address the following
questions:

(1) A struct groups together a number of different variables that can be either private or public, but
the complex data type itself declared using struct is not associated with any particular type
of secrecy. When declaring a pointer to a complex data type, we thus need to determine if a
pointer to it can be treated as a pointer to private data or if it has to be treated as a conventional
pointer to a public variable.

(2) When designing the representation of a private pointer that points to struct, we need to take into
account the fact that fields of a complex data type can be accessed and modified independently
of each other or the struct itself. Thus, it remains as a question whether we should maintain a
separate list of addresses for each struct field or maintain only a single list of addresses for all
possible struct variables associated with the pointer.

(3) The last question is whether we can reuse the previously described algorithms for working
with private pointers for updating or dereferencing pointers to structs on the individual fields
of a struct or if modifications are needed.

In what follows, we thus focus on answering these questions.
Secrecy of pointers to struct. Secrecy of a pointer to struct is implicitly determined by the protection
modes of the struct’s fields. We determined that a pointer to a complex data type can be treated as a
pointer to private data only if all fields in its declaration are private. It means that if at least a single
field of a struct is public, pointers to this data type can be of public type only. This treatment is
necessary to eliminate information leakage when pointers to structs are modified inside conditional
statements with private conditions. Consider, for example, a data type containing one private and
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one public field. If we treat a pointer to this data type as a pointer to private data, it can be modified
inside an if-statement with a private condition and have multiple locations associated with the
pointer. However, by dereferencing and observing the value of the public field, one can determine
the true location of the pointer and thus learn unauthorized information about the result of the private
condition.

Because a complex data type may contain other struct variables as its fields, the variables in the
data type will need to be checked recursively to determine whether at least one public field is present
(with provisions to skip cycles in the declarations). If none are found, pointers to this data type are
treated as pointers to private data.

Pointer to struct representation. To implement private pointers to structs, we needed to determine
whether a single list of locations is sufficient for all fields of the complex data type (recall that
all fields are private) or separate lists must be maintained. In working to answer this question, we
determine that there is no need to maintain multiple lists of locations, because the list of locations
associated with each field in the struct must be the same (adjusted for the offset of the field within
the struct). That is, values of a struct’s fields can be modified individually (e.g., as in p->x = y),
but the only way to access or modify the location of a field is through the location of the entire struct.
In other words, the list of addresses associated with a pointer to struct p (and thus the addresses
corresponding to all of its fields) can be modified only by directly updating p, as operations of the
type p->x = y do not affect the list of addresses associated with the field x. Storing a single list
has the added benefit that we can employ the same representation of pointers to private data as for
simple data types. This treatment also implies that a pointer to a struct object will have indirection
level 1 even if all fields of the struct are pointers themselves.

Operations on private pointers to struct. We represent pointers to a struct record in the same way
as other pointers. This means that operations for using pointers and updating their values remain
unchanged. To dereference a specific field of a pointer as in p->x and retrieve the value of the
variable x, also only minor changes to the previously described algorithms are needed. In particular,
all we need is to determine the offset f of the variable’s address within the record and perform the
dereferencing procedure in the same way as for pointer p itself, but instead of using locations ℓi from
L, we use locations ℓi + f . The same modification applies to the case when the dereferenced value is
modified through assignment.

If we would like to dereference p and retrieve the entire record as in rec = *p, we need to
iterate through each field of the struct and retrieve the dereference value of each field as described
above for p->x. Similarly, to update a dereferenced pointer p as in *p = rec, we need to perform
the equivalent of p->x = rec.x for each field x of the struct.

4.6 Pointers to Functions
Similar to pointers to ordinary data types, we need to distinguish between pointers to functions that
will be treated as pointers to private data and pointers to functions that will be treated as pointers
to public data. The former can be used inside conditional statements with private conditions (as
a result of which they acquire multiple locations and the true location becomes private) and are
restricted to functions with no public side effects. The latter can contain pointers to functions of any
type, but cannot be modified or dereferenced inside conditional statements with private conditions.
The distinction is made at the time of pointer declaration using private/public qualifiers with void
data type. That is, by using private void *p, p will be treated similar to other pointers to
private data, while all pointers declared syntax public void *p will be treated as conventional
C pointers.
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Private pointers to functions are supported naturally in our framework. When a pointer stores a
single location, the function is invoked as in conventional program execution. If, however, a pointer
acquires multiple locations as a result of its modification inside conditional statements with private
conditions, at the time of pointer dereferencing all functions stored in the pointer will be executed,
but only the effects of one of them will be applied. Conceptually this is the same as executing
branching statements with private conditions: all branches are executed, but only the effects of
one of them are applied depending on the result of private condition evaluation. That is, when a
pointer p storing α locations L = (ℓ1, . . . , ℓα ) with the corresponding tags T = (t1, . . . , tα ) is being
dereferenced, each function fi stored at address ℓi is being invoked. Then each (private) variable a
that fi modifies is set to a = (ai ∧ ti ) ∨ (aor iд ∧ ¬ti ), where aor iд and ai are its original and newly
computed by fi values. If a is modified by multiple fi ’s with indices i1 through ik , its value is updated
as a = (

∨k
j=1 ai j ∧ ti j ) ∨ (aor iд ∧¬

∨k
j=1 ti j ) (recall that only one ti can be set to 1, so we can replace

the ORs in the formula with addition or XOR for efficiency).

4.7 Pointer Predicates
As previously discussed, the value of a pointer to private data is treated as public when it stores a
single location (α = 1), and it is private otherwise (α > 1). More generally, if pointers to private
data are used in predicates or similar expressions, the result of a predicate evaluation is public if its
outcome can be determined using only public data. For example, the outcome of an expression that
compares two pointers to private data for equality is public if (i) both pointers store a single location
in their lists L1 and L2 or (ii) at least one of the pointers stores multiple locations, but L1 ∩ L2 = ∅. In
other circumstances, the outcome depends on private tags and is treated as private. Note that when
the result of a predicate evaluation on pointers is private, it can be naturally computed by privately
determining the true location of each pointer and applying the predicate to them.

Because it is not always possible to determine at compile time whether a predicate evaluated on
one or more pointers (to private data) will have a public or private status (which, for example, may
depend on program’s public input), some checking will need to be deferred to run time. We show
how we address this in PICCO in section 6.1.

4.8 Passing Arguments by Reference
Function calls contribute to the basic software engineering principles of modular program design,
but could be expensive in terms of stack memory usage for the passed arguments. This has led to
differentiating between function calls where the arguments are passed by value and by reference.
In the latter case, the function typically takes a pointer to the argument and all updates to the
dereferenced pointer will be visible after completing the function call (thus, arguments passed by
reference can be used for either input or output).

Passing private variables to functions by reference inherits the same benefits as for conventional
(public) variables in the programming language. The good news is that no special provisions are
needed for passing private variables by reference, resulting in efficient implementations. Furthermore,
because often to pass an argument by reference, its address is supplied to a function call (as opposed
to supplying an existing pointer), the resulting pointer will have a single known location. This allows
us to enjoy the benefits of avoiding using extra resources without the slowdown of working with
pointers with private locations.

4.9 Array Indexing
Because arrays are based on pointers, array indexing also applies to pointers. Thus, we can see
constructions such as p = a and p[i], where p is a pointer and a is an array, and need to support
them for pointers to private data. Pointer indexing p[i] with a pointer p to private data and a public
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index i is implemented naturally, where we iterate through all locations in the address list L of p,
advance each of them by i multiplied by the size of the data type, retrieve the data at the determined
positions, and combine all of them using private tags for each location to obtain the result. In other
words, the computation is very similar to that of pointer dereferencing, where instead of retrieving
data at the positions specified in L, we advance each position by i data items. (As C permits the use
of negative indices, when i in p[i] is negative each location in L is decremented by the necessary
amount during this operation.)

4.10 Pointer Arithmetic
Pointers can be modified by setting the address to which they point to the result of an arithmetic
expression evaluation. While in C pointers can be used in arbitrary expressions similar to the way
integer variables are used, only a limited set of operations on pointer variables is meaningful when
they are used to store and manipulate addresses within the program. For example, pointer arithmetic
can be relied upon to increment or decrement a pointer value by an integer amount to move to
a different position within an array or between struct fields, which can also be achieved without
using pointer arithmetic. Many other arithmetic operations on pointer variables are not meaningful,
and moving between different variables using pointer arithmetic is unreliable and error-prone.
Nevertheless, not supporting pointer arithmetic makes the approach deviate from standard C and
disables a small class of functionalities such as, for example, embedded linked lists as implemented
in the Linux kernel. Thus, we identify meaningful operations on pointers to private data and realize
them in this framework as described next.

As mentioned before, in regular C, pointers can store any integer values and using pointer variables
in arithmetic expressions will result in evaluating the expressions on the integer values stored in such
variables. In the context of pointers to private data, we however distinguish between pointer objects
and (integer) addresses that pointer objects store. Thus, pointer content is no longer equivalent to
integer values, and we support pointer arithmetic with pointer objects only for the purposes of using
pointers to store and manipulate addresses. Such arithmetic operations can be categorized into two
groups:

(1) Using pointers to private data in expressions of the type p + exp and p - exp, where exp
is an expression that evaluates to a (public) integer value. This operation produces the same
output as executing &p[exp], i.e., all locations stored in p are advanced by the amount of
space occupied by exp elements of the array.

(2) Using pointers to private data in offset computation as in p1 - p2. This operation is straight-
forward to implement when both pointers store a single location. When, however, at least one
of them has multiple locations, we realize this operation by computing the private difference
between the true locations of the pointers. This option, in our opinion, implements the right
semantic value as opposed to other variants (such as computing pair-wise differences between
all addresses stored in the pointers) which bear little meaning.

Note that expressions of the type p + exp, and equivalently &p[exp], where exp evaluates to a
private integer, are not meaningful and not supported.

4.11 Pointer Casting
Variable casting refers to the ability to treat a variable of one type as a variable of another type.
Casting a constant or variable of one type to a constant or variable of another type typically results in
the value being preserved after the conversion (if possible) even if the two types use different data
representations. This means that conversion is likely to involve computation. Conversion algorithms
between floating point and integer values in this framework are known (see, e.g. [2]), while conversion
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between integer types of different sizes and floating point types of different sizes requires minimal to
no work (assuming no overflow or underflow detection is required when casting a value to a shorter
representation).

Pointer casting is handled differently and C is unique in the sense of allowing pointer-based
in-memory casting from one data type to another. Pointer casting involves no data conversion: the
memory is read as is and is interpreted as a sequence of elements of another type. Thus, pointer
casting is meaningful between a limited number of data types. In order to support pointer casting, we
need to resolve the main question: because data representation of private data types differs from data
representation of the corresponding public data types, we need to determine how to mimic sizes of
public data types when working with blocks of private data without modifying the data itself. For
example, a secret sharing implementation represents private values as elements of the same field,
which means that, for example, shares of a 16-bit integer and shares of a 64-bit integer have the
same bitlength. However, a programmer who casts memory storing an array of 64-bit integers to a
pointer to an array of 16-bit integers, expects to extract four 16-bit integers from each 64-bit integer.
This means that to meet the programmer’s expectations, private data will need to be processed and
assembled in a different form. We, however, cannot modify the original data because only the pointer
was cast, not the data itself.

Instead of duplicating the memory and performing conversion at the time of casting, our solution
is to do the necessary computation at the time of pointer dereferencing. This means that we need
to record information about the data type from which casting was performed (to the data type of
the pointer) at the time of casting, but delay conversion until the pointer is dereferenced. We store
casting data type information with the pointer and use it to extract the relevant portion of the memory
at pointer dereferencing time. Note that in the presence of a sequence of casts, only a single data
type needs to be maintained because the memory layout does not change.

5 DYNAMIC MEMORY MANAGEMENT
Pointers are often used in programming to dynamically allocate memory on the heap and deallocate
it when it is no longer in use. Here we focus on C-style malloc() and free() used with pointers
to public variables and show what modifications are needed to support dynamic memory allocation
with pointers to private variables.
malloc() in C allocates the requested number of bytes on the heap which are passed as an

argument to the function malloc(). The result of this function is the address of the allocated
variable or the first array element in case of dynamic array allocation, which is stored in a pointer.
To support dynamic memory allocation for private variables, we start with the following code in C:

1. int* p = (int*) malloc(sizeof(int));
2. int* p1 = (int*) malloc(10*sizeof(int));

Here p points to single variable, while p1 points to a dynamic array of size 10. The assignment
operator directly saves the malloc result into the pointer because they are of compatible types.
However, this is not the case for pointers to private variables because a private pointer is represented
using multiple fields. Consequently, we cannot assign the malloc result directly to a private pointer and
use a modified interface for pointers to private variables. In particular, we use a function pmalloc2

to implement private malloc, which is invoked as:

1. private int* p = pmalloc(10, private int);

2Note that the choice of the function is not crucial and it can be called malloc instead to simplify programmers’ effort
for transforming an existing program to an equivalent program that computes with private data. We, however, prefer to use
pmalloc to make it explicit that the computation refers to private data.
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As shown, pmalloc takes two arguments, which are the requested number of dynamic variables and
the data type. The function returns the data structure used for private pointers in our implementation
with α = 1 and the only location in L set to the address of the first variable in the allocated array
(when the first argument to the function is > 1). Specifying the private data type is often necessary to
properly allocate and initialize the memory. For example, in PICCO a private integer is represented
using one variable of type mpz_t from the GMP library [1] and a private float is represented using
four mpz_t variables. Once memory for the necessary number of variables is allocated, each of
them also needs to be initialized before it can be used in computation.

Calling free with a pointer in C allows to deallocate the memory (for either a variable or dynamic
array) to which the pointer is pointing. To support similar functionality for private variables, we
design a function pfree that similarly takes a pointer (to a private variable or dynamic array) as its
only argument. With pfree we distinguish between two different cases: the pointer provided as an
argument to the function has a single known location (i.e., α = 1) or it has a private location out of a
public list (α > 1).

Handling the first case is simple and efficient: we can simply call free to deallocate memory
associated with the address stored in the pointer. Pointers to private data with public locations
constitute a very common use case in programs that use pointers to private data or build data
structures from private data (e.g., linked lists, stacks). Freeing memory used by pointers to private
data in such cases is thus going to be extremely efficient and does not introduce additional overhead.

Handling the second case well, however, is very challenging. This is because deallocating physical
memory results in publicly observable outcomes, and we must be extremely careful not to reveal the
true location stored in a pointer with a private location while at the same time reducing the program’s
memory usage. For example, a simple strategy of deallocating memory associated with all locations
on a pointer’s list of addresses will not be acceptable for some programs. That is, consider a dummy
example with two pointers p1 and p2, for each of which we allocate memory using pmalloc.
Then the locations to which the pointers are pointing are swapped based on the result of a private
condition evaluation. We obtain that both p1 and p2 now contain two identical locations in their lists
of addresses, but their true addresses are distinct. Suppose we process the data to which p1 points
and want to deallocate the corresponding memory. If we deallocate both addresses on p1’s list, p2
becomes a dangling pointer and the data to which it was pointing is no longer accessible. Thus, such
an implementation of pfree would be too restrictive to permit its general use.

Thus, calling pfree(p) should result in deallocating memory associated with only one address
on p’s list of addresses. Furthermore, the address being deallocated cannot depend on any private
data (but can be any function of public data). This means that we are not necessarily deallocating
memory associated with the true location of the pointer and other pointers that store the same location
on their lists must be adjusted to preserve correctness of the computation (which involves additional
resources). For example, we can choose to deallocate the fist location ℓ1 on a pointer’s list, but if this
was not the pointer’s true location (which we can privately check), the data stored at ℓ1 needs to be
relocated and other pointers storing ℓ1 on their lists need to be updated accordingly. We next describe
in more detail how we can realize this idea.

First, if the pointer p on which pfree was called contains the default location corresponding
to uninitialized pointers on its list of addresses L (which is public knowledge), we choose not to
perform memory deallocation. This is to ensure that no memory is being deactivated (which may be
in use by other pointers) if p happens to be uninitialized. Otherwise, we free the first location ℓ1 on
p’s list.3 (Alternatively, the location used by the smallest number of pointers can be freed.) Before

3In the event that data stored at the locations contained in the pointer have different sizes, the location with the data of the
smallest size should be chosen instead.
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we can actually free the memory, we need to privately update the values stored at the remaining
locations in L using the value stored at ℓ1 to maintain correctness. We will need to ensure that (i) if ℓ1
happens to be the true location, the values stored in the remaining locations will remain unchanged
and (ii) if ℓ1 is not the true location, the value stored at ℓ1 can be found at p’s true location, while the
values stored at all other locations remain unchanged. The rationale for doing this as follows: if ℓ1 is
indeed p’s true location, no additional work would be required if this fact was public (i.e., it is the
programmer’s job to ensure that freeing p does not affect other variables still in use). If ℓ1, however,
was not p’s true location, it may be in use by other pointers and the value stored at ℓ1 needs to be
relocated to p’s true location prior to memory deallocation (and the pointers that contain ℓ1 in their
lists need to be updated accordingly).

Let p at the time of calling pfree store α , L = {ℓ1, . . ., ℓα }, T = {[t1], . . ., [tα ]} and A =
{[a1], . . ., [aα ]} denote values stored at locations in L.4 To obliviously update [ai ]’s for 2 ≤ i ≤ α ,
we compute [ai ] = ([ti ]∧ [a1]) ∨ (¬[ti ]∧ [ai ]). This satisfies the above two requirements as follows:
if t1 is true (ℓ1 is the true location) and thus ti is false, the result will be ai for any i; if ti is true and
thus t1 is false, the result will be a1; if both t1 and ti are false, the result will be ai . Surprisingly, the
formula does not depend on t1.

Second, we need to update private pointers that store the freed location ℓ1 in their lists (and are
still in use), but no computation needs to be performed for pointers that store any of ℓ2, . . ., ℓα from
L, but not ℓ1 itself. We need to replace ℓ1 in other pointers’ lists with locations that are guaranteed to
include the value originally stored at ℓ1 and update the locations’ tags accordingly. Thus, for each
pointer p’ that stores ℓ1 in its list L′, we retrieve ℓ1’s position pos in L′ and its corresponding tag
t ′pos . We then replace ℓ1 in L′ with {ℓ2, . . ., ℓα } and t ′pos in T ′ with {[t ′pos ] ∧ [t2], . . ., [t ′pos ] ∧ [tα ]}. If
any of ℓi for i = 2, . . .,α already appears in L′, that location is not included the second time and its
tag is set to the sum of the tag already present in T ′ for location ℓi and [t ′pos ] ∧ [ti ].

Returning to our example with p1 and p2, we have that prior to calling pfree(p1), p1 stores
α1 = 2, L1 = (ℓ1, ℓ2), T1 = (t1, t2), and p2 stores α2 = 2, L2 = (ℓ2, ℓ1), T2 = (t ′1, t

′
2). Then either

t1 = t ′1 = 1 and t2 = t ′2 = 0 or t1 = t ′1 = 0 and t2 = t ′2 = 1. Once pfree(p1) is called, ℓ1 is
scheduled for deallocation. If t1 = 1, no changes take place; otherwise (t2 = 1), the data from
location ℓ1 is copied into location ℓ2. We obtain that location ℓ1 is being removed from L′ (and the
corresponding tag t ′2 from T ′) and location ℓ2 is being added to L′ with the corresponding tag t ′2 ∧ t2.
Because ℓ2 is already present in L′, it is stored once and the tag becomes t ′1 ∨ (t ′2 ∧ t2). Thus, L′ now
stores a single location and the tag is 1 for any possible set of original tags.

Note that the second step of updating pointers that store location ℓ1 in their lists is more complex
when the pointer p being freed points to a struct or an array. In those cases, multiple addresses are
processed in this step (ℓ1 and other valid addresses that store data at fixed offsets from ℓ1) depending
on the type of data to which p points. All of the operations, however, can be carried out in parallel
(as, for instance, is the case in our single-round implementation of calls to pfree).

If the user program is written correctly (i.e., does not leave dangling pointers after a call to free),
our design of pfree will maintain that for each pointer exactly one location’s tag is set to 1 and
all other locations’ tags are set to 0. When, however, a call to deallocate memory corresponding
to a pointer results in dangling pointers, all tags in such pointers can be 0. For that reason, if a
call to pfree causes the number of addresses for some pointer to reduce to 1, we do not treat the
corresponding tag as public. That is, when a program is not correctly written, opening the value of
the tag may reveal private information, while assuming that the tag is 1 may modify the program’s
4Although in the current discussion we assume p is a private pointer that points to a simple non-pointer data type, the same
idea will apply when p points to a pointer or struct. In particular, if p points to a pointer, the procedure will include merging the
lists of pointers stored at locations ℓ1 and ℓi and updating the tags similar to the formula for simple data types. Furthermore,
when p is a pointer to a struct, each field is updated separately according to its type.
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behavior. Thus, our design maintains privacy even in the presence of programming errors that result
in dangling pointers.

We also note that the use of pmalloc or pfree will not be allowed inside conditional statements
with private conditions because these functions have public side effects.

6 POINTER IMPLEMENTATION IN PICCO
The previous sections discuss our approach for implementing pointers to private data and related
operations, while in this section we discuss specifics of integrating the approach with PICCO.

6.1 Specifics of pointer implementation in PICCO
Recall that each pointer starts with a single location (i.e., α = 1) at the time of its declaration,

and the list and the number of locations α are updated during pointer assignments. In PICCO, we
maintain this information only during program execution and thus the locations that a pointer might
store or their number is not necessarily known at compile time.

Also, because PICCO examines the list of variables modified inside the body of each conditional
statement with a private condition and updates them differently from when the modification is not
surrounded by a private condition, in the case of pointers we specify how pointers need to be updated
inside such statements using Algorithm 1 and the compiler will process all variables inside the body
of conditional statements with private conditions.

Optimizations. In PICCO that uses linear secret sharing, performance of pointer dereferencing
with indirection level 1 is low because this operation is implemented as an inner product that
costs only one interactive operation (recall that we replace the OR with a sum because at most
one tag is set to 1). Similarly, the computation for pointer dereferencing with higher indirection
level can be replaced with the sum because at most one tag can be set. In addition, evaluating
predicates over pointers when the result of the evaluation is private can be optimized for certain
types of predicates. For example, in the case of pointer equality, the general solution is to compute
[ℓ1] =

∑
ℓ
(1)
i ∈L1

ℓ
(1)
i [t (1)i ] and [ℓ2] =

∑
ℓ
(2)
i ∈L2

ℓ
(2)
i [t (2)i ] and then compare [ℓ1] and [ℓ2] for equality,

while an optimized implementation computes
∑

ℓ
(1)
i ∈L1∩L2

[t (1)i ][t (2)j ], where ℓ (1)i = ℓ
(2)
j for each

ℓ
(1)
i ∈ L1 ∩ L2. The latter can be implemented as the inner product that costs a single interactive

operation and is significantly lower than the cost of comparing two private integers.
Pointer predicates. Recall that with pointer predicates some checking needs to be deferred to run

time. In particular, if pointers to private data are used in a predicate to form a conditional statement
and the result of its evaluation is private, the usual constraints for the body of conditional statements
with private conditions apply. We address this by evaluating the body of such conditional statements
for public side effects at compile time (as in the original PICCO design). If the body contains public
side effects, the transformed program will include checks for the status of the conditional statement
at run time. If the result of evaluating the conditional statement is determined to be private at run
time (and public side effects are present in the body of the statement), execution will be aborted with
an error due to a possible information leak.

Note that the fact whether the execution is aborted or not never leaks private information, as this
decision is solely based on public data. That is, an abort takes place when (i) the result of evaluating
a predicate on two or more pointers is treated as private and (ii) the body of the conditional statement
that uses the predicate contains public side effects. Whether the result of evaluating the predicate
is public or not is public knowledge because it is determined by the public locations stored in the
pointers and the predicate itself. Similarly, whether the body of the conditional statement has public
side effects or not is based on the public code that forms the body of the conditional statement.
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Pointer casting. Because in PICCO simple data types can be defined to have any bitlength, casting,
for example, a pointer of one integer type to a pointer of another integer type does not guarantee
that one data type will have a bitlength multiple of another. In that case we still calculate what the
relevant portion of the memory is based on the position of the memory being dereferenced, but the
last, partially filled, element might not be reliably extracted. For example, suppose some memory
was filled as a 3-element 30-bit integer array. When it is cast to an array of 20-bit integers, the fourth
elements will be extracted as bits 61–80 of the original data, while retrieving the fifth element might
result in memory violation because there is not enough data in the original array to fully form that
element.
6.2 Other optimizations
Because the computation involved in computing a pointer’s dereferenced value is interactive (and
thus is relatively expensive) when the pointer stores multiple locations, we considered caching
and reusing its result. That is, when a pointer’s dereferenced value is computed, we can store it in
the pointer structure and reuse the value on consecutive dereference operations when there are no
changes to the values stored at all pointer’s locations L between such operations. Once any value
stored at one of the pointer’s locations is modified, the cached dereferenced value needs to be marked
as out of date. A similar caching technique can also be applied to the computation on private tags
that takes place during pointer update and dereference operations. Note that private tags can be
viewed as aggregation of conjunctions of 1-bit private variables that denote the evaluation results
of private conditions (or their negations) in user programs. Because, once computed, the variables
will have fixed values, the conjunction results of those variables can be cached in our framework
in a lookup table and allow for their retrieval when the same conjunctions need to be repeatedly
computed. This optimization will result in considerable savings when multiple private pointers are
updated or dereferenced within the body of a conditional statement with a private condition. The
savings due to either of the above caching optimizations are, however, application-dependent and
require additional program analysis at program parse and translation time. Thus, these optimizations
are not presently a part of our implementation.

Another possible optimization can lower a program’s memory footprint by reusing data structures
created for pointers to private data. In particular, when a pointer is assigned another pointer’s value
(as in p = p1), we could have both pointers pointing to the same data structure instead of creating
its copy. When, however, one of the pointers with the shared data structure is being modified, it should
be unlinked from the shared data structure and its data structure modified accordingly. Implementing
this would require that each pointer data structure is associated with a list of pointer variables which
are using it. Furthermore, a data structure can be reused only when all information stored in it is
identical for multiple pointers (i.e., not only the locations in L, but also the private tags inT ). Because
different pointers often have distinct roles in user programs, the expected savings are not very large.
This optimization is presently not a part of our implementation.

6.3 Pointers as arrays with known bounds
In PICCO, statically allocated arrays of private variables have the array size stored with them

(which is known at the array creation time). Knowing the size of the arrays allows the compiler
to support a number of important operations on arrays. Most significantly, this permits the use of
private indexing with arrays, when an element at a private position i is retrieved from an array a
using syntax a[i]. (The size of the array must be known to support private indexing, regardless of
what technique is used to implement it.) This also permits the use of other operations such as inner
(or dot) products on two arrays, which were introduced to optimize runtime of compiled programs.
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We treat private indexing as an essential part of secure computation with private data and would
like to see it supported for arrays dynamically allocated on the heap. This means that we would like
to offer pointer indexing p[i] with private i and private pointer p. The main challenge that we need
to overcome is the fact that the size of the memory pointed by p is not available in C. Furthermore,
a location stored in p may be arbitrary and do not correspond to a valid memory address (i.e., be
unaccessible by the program, correspond to memory marked as not being in use or any location from
the program’s stack, etc.). This means that a pointer can take on many addresses which were not
allocated for variable use and for which the corresponding size cannot be meaningfully determined
(i.e., accessing such addresses would trigger invalid memory access exceptions in safe programming
languages). The size of properly allocated memory, however, can be determined and utilized to
implement private indexing (and other operations that require array size) with pointers to private data.
In particular, all memory that malloc allocates on the heap is marked with the size of each allocated
block. Thus, we can use the information that malloc/free maintain to determine whether a pointer
content falls within a properly allocated memory block, and if it is the case, access the block’s size
and use it to implement private indexing.

In more detail, in addition to using private indexing with statically allocated arrays (as already
implemented in PICCO), we permit private indexing to be used with pointers to private data. The
latter is only successful if the location stored in the pointer5 was allocated via a prior call to pmalloc
(and it was not deallocated during a call to pfree). Because the secure implementation that PICCO
produces makes calls to malloc for various internal tasks, as opposed to only user-triggered calls
to pmalloc, there is a need to maintain address ranges corresponding to user-allocated dynamic
memory. For that reason, the program internally maintains a list of addresses returned by malloc
that correspond to memory requested by the user program via calls to pmalloc (and an address is
taken off the list if it is being freed). Then when private indexing p[i] is called in the user program
and the pointer stores address ℓ, we iterate through the list of maintained addresses. For each such
address l , we retrieve the corresponding block size s from the information stored by malloc and
check whether l ≤ ℓ < l + s and the offset of ℓ from l is a multiple of the data type size. If these
checks succeed for at least one location on the allocated address list, s is adjusted for the data type
size and is used as the size of the array to which p points. Note that with this implementation ℓ does
not have to correspond to the beginning of the memory block. Then when ℓ is not the address of the
beginning of the array, i can legitimately take negative values.

Under the circumstances when the address ℓ does not fall within any memory block dynamically
allocated by the user, the private indexing operation is not performed and the returned result is set
to be secret-shares of 0 (note that, regardless to what value the result is set in such a case, it is not
guaranteed to be interpreted as an error). We thus proceed with the computation despite the error, but
send signal SIGBUS6 and store an error message in a fixed location, so that the program can catch
the signal and act on it. Note that the address that each call to pmalloc returns is always public
information and the programmer can avoid using invalid addresses. Ideally, the fact that the private
indexing operation cannot be carried out on the given address is determined before the program is
run, at compile time. This, however, will not always be possible and for some incorrectly written user
programs the error will not be triggered until the program is executed (even programming languages
that perform static analysis of user programs do array-bounds checking dynamically). The best we

5The current discussion refers to a single location stored in a pointer, which we view as the most common use of private
indexing. When the pointer contains multiple locations, the operation is performed on each location separately and the results
are combined in the same way as during pointer dereferencing.
6Alternatively, custom SIGUSR1 or SIGUSR2 can be triggered if the user program is known not to use it.
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can do is to perform static program analysis at compile time and warn the user about places where
such an error might be possible.
7 ANALYSIS
After discussing multiple aspects of private pointer design and its uses in programming, in this
section we summarize the notion of pointers to private data and operations on it and formally show
that program execution that involves pointers to private data complies with a standard definition of
security used in secure multi-party computation.

A pointer to private data is defined as a C-style pointer to a private object storing location
information of the object, where a private object can be one of the following types:

(1) a primitive private data type (private int, float, etc.);
(2) a composite data type (C-style struct), each element of which is a private object;
(3) a function with no public side effects;
(4) a pointer to a private object.

The second and fourth categories define a pointer to private data recursively, which means that
a pointer can have any indirection level, nested struct types, and any combination of primitive,
composite, and pointer data types.

The previously defined operations on pointers to private objects are:

(1) Pointer read and update with value v, denoted as read(p) and update(p, v), respectively.
(2) Dereferenced pointer read and update, denoted as read(*p) and update(*p, v), respectively.
(3) Pointer update inside a conditional statement with a private condition. Following prior work,

we use multiplexor notation to denote this operation as mux(p, v1, v2, cond), where p is set to
v1 if private cond evaluates to 1 and to v2 otherwise. Pointer read inside a conditional statement
with a private condition is processed identically to a conventional read read(p) and thus is not
listed as a separate operation.

(4) Dereferenced pointer update inside a conditional statement with a private condition, which
we denote as mux(*p, v1, v2, cond). Similar to the previous case, processing of dereferenced
pointer reads is not affected by the presence of conditional statements.

(5) Dynamic memory allocation in the form of malloc; for an assignment p = pmalloc(n, type)
we use notation alloc(p, n, type).

(6) Dynamic memory deallocation as in pfree(p), denoted as dealloc(p).
(7) Array indexing p[i] with a public index i. This is treated as a generalization of pointer

dereferencing, and we use notation read(p, i), update(p, i,v), mux(p, i,v1,v2, cond) to denote
read, update, and update inside a conditional statement with a private condition, respectively.

(8) Array indexing p[i] with a private index i is also divided into three operations readp(p, i),
updatep(p, i, v), and muxp(p, i, v1, v2, cond). These operations can only be performed on
locations stored in a pointer that correspond to arrays with known bounds (i.e., allocated using
the pmalloc interface or static array declaration).

(9) Evaluation of predicate f on one or more pointers p1, . . ., denoted as pred(f , p1, . . . ).
(10) Pointer casting, denoted as cast(p, type), where type is the data type to which p is cast.
(11) Pointer addition/subtraction, denoted as add(p, u), where value u is possibly negative.
(12) Pointer difference diff(p1, p2).

In the above,v,v1, andv2 correspond to either values associated with private objects or data structures
corresponding to pointers to private objects, depending on the context. The value of cond is always a
private bit, while variables n, i, u, and type are public. Any variable can be read inside a conditional
statement with a private condition, but updates can be performed only as specified using the mux
operations.
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This list implicitly defines operations that cannot be performed on pointers to private objects and
will be rejected by the compiler. That is, addresses of public objects cannot be used to update a
pointer to private data (either via update or mux); a pointer to public data or a mix of private and
private fields defined with a struct construct cannot be modified inside a conditional statement with
a private condition (i.e., there is no corresponding mux operation); pmalloc and pfree cannot
be called inside conditional statements with private conditions (i.e., there is no mux operations for
them); lastly, casting cannot be called inside conditional statements with private conditions as it
modifies publicly stored data.

Recall that implementation of pointers maintains the invariant that in a well-formed program there
is exactly one true location associated with a private object. The invariant may be violated only when
memory associated with a pointer is being deallocated when the pointer is still in use (in such a case,
no tag is set to 1 and dereferencing the pointer will return no data).

In showing security of pointer-related operations that reference private data, we use a traditional
simulation-based definition of security. Because PICCO is built on top of (n, t)-threshold secret
sharing techniques with n ≥ 3 computational parties, we utilize the same setup in our security
analysis. Similarly, because the underlying techniques offer information theoretic security, we utilize
statistical (as opposed to computational) indistinguishability in the security definition.

Definition 7.1. Let parties p1, . . .,pn engage in a protocol Π that evaluates program P on a mix of
public and private data. Let VIEWΠ (pi ) denote the view of pi during the execution of Π, which is
formed by its input, internal random coin tosses ri , and messages m1, . . .,mk passed between the
parties during protocol execution: VIEWΠ (pi ) = (ini , ri ,m1, . . .,mk ). Let I denote a subset of the
participants of size t and VIEWΠ (I ) denote the combined view of the participants in I during the
execution of Π. Protocol Π is said to be t-private in the presence of semi-honest adversaries if for
each coalition of size at most t < n/2 there exists a probabilistic polynomial time simulator SI that
given the input of the parties in I , P , and P’s output, produces a view statistically indistinguishable
from VIEWΠ (I ) together with the output of the parties in I .

THEOREM 7.2. Any program P with pointers to public and private data and no out-of-boundary
array access compiled by PICCO is translated into a t-private protocol for any t < n/2 when the
computation is carried out by n parties.

The proof of Theorem 7.2 is provided in the full version [25]. We note that our security result above
is stated for programs that PICCO successfully compiles and that do not contain out of boundary
array accesses. As previously discussed, the compiler will reject almost all types of improperly
written programs during static analysis at compilation time. For example, if a pointer to public data is
modified inside a conditional statement with a private condition, the program will not compile. This
means that the compiler will filter out the majority of programs with errors, while any well-formed
program enjoys simulatable security.

The main type of errors that the compiler may not be able to detect during static analysis deals
with memory access to invalid locations (e.g., out of boundary array access, access to a hard-coded
invalid location, etc.). When such accesses are triggered, one or more computational parties might
not be able to continue with the execution and quit on error, but no privacy violations take place.
This is because while incorrect shares of private data might be read, the data will still remain in the
protected form and cannot be reconstructed without the programmer’s original intent. Note that this
discussion applies only to dereferencing a pointer with no offset (e.g., as in *p) or with a publicly
known offset (e.g., as in p[i] with public i) because in our implementation accessing an array at a
private location never results in out of boundary access (i.e., calling this operation on an improperly
allocated array will be skipped at runtime).
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Because the memory layout may differ on different platforms, illegal memory accesses might
result in different behavior of the computational parties (e.g., execution at one party might result
in a segmentation fault faster than at another party). As our simulator is not guaranteed to run in
an identical environment to those of the honest parties, the simulation might be distinguishable for
programs with illegal memory accesses based on the point of execution when any given party aborts
the computation. Thus, we exclude such programs from the security statement of Theorem 7.2, but
still guarantee that any program that compiles in our framework will not result in privacy violations.

To summarize, our solution guarantees that any program that can be compiled in our framework
never reveals any unauthorized information about private data. Simulation of a poorly written program
with illegal memory accesses may not be indistinguishable from its real execution, but any properly
written program enjoys simulation-based security.

8 POINTER-BASED DATA STRUCTURES
There are several popular data structures typically built using pointers. In this section we discuss how
they would be implemented using pointers to private data and in what complexities their performance
results. In particular, we explore linked lists, trees, stacks, and queues.

8.1 Linked Lists
A linked list consists of a sequentially linked group of nodes. For a singly linked list, each node is
composed of data and a reference in the form of a pointer to the next node in the sequence, while
for more complex variants such as doubly and circular linked lists the reference field incorporates
additional links. A linked list allows for efficient node insertion and removal, which makes it an ideal
candidate for implementation of stacks and queues as well as representation of graphs that uses an
adjacency list. In what follows, we discuss implementations of linked lists that store private data.
We start by analyzing various operations in standard linked lists and then elaborate on the special
case when a linked list stores sorted data. The latter does not represent a typical use of linked lists in
programming (and does not even have attractive features), but is provided as a relatively simple way
to demonstrate what form working with sorted data can take in a secure computation framework.

Throughout this section, we express complexities of the operations as a function of n, where n
is the “visible” list size. This value will correspond to the actual list size when delete operations
remove an element from the list so that its size is reduced, while it will correspond to the number of
insertions (i.e., the maximum list size) when delete operations only mark data as deleted (to hide
whether the element was found or not), but not reduce the list size. The same notation applied to
other data structures discussed in this section when insertions/deletions are based on the result of
private conditions.

Standard linked lists. Because of ubiquitous use of linked lists in programming, we analyze different
possible uses of linked lists and the corresponding operations. When a linked list stores public data,
node insertion has cost O (1) as a node is inserted in a fixed place (e.g., beginning or end of the list).
Performing a search requires O (n) time, where n is the number of nodes in the list, because the nodes
are traversed sequentially. Deleting a node from a fixed place (i.e., beginning or end of the list as
done in the case of stacks and queues) involves O (1) time, but when deletion is preceded by a search
(and the found node is deleted), the search together with deletion require O (n) time.

When a linked list stores private data, the reference field holds a pointer to private data (i.e., a
record of the same type) and at the time of node creation, the pointer stores a single location. Without
loss of generality, let nodes be inserted in the beginning of the list. Node insertion then places a new
node in the beginning of the list manipulating pointers as before, which still takes O (1) time and is
very efficient. Searching a list involves n private comparisons and all nodes need to be processed
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as not to reveal the result of individual comparisons on private data, and the total work is O (n).
Similarly, when a node is deleted from the beginning (or end) of the list, the time complexity is O (1)
and each node’s pointer still stores a single location. It is only when nodes need to be removed from
varying positions in the list and the position itself needs to be protected, pointers can start acquiring
multiple locations, which causes the time complexity of list traversal and deletion after a search to
go up. However, when the fact whether the searched data was found in the list or not must remain
private, we cannot remove any node, but instead need to erase the content of a found node (if present)
with a value that indicates “no data”. In this case, all pointers still contain a single location and the
cost of list search and other operations do not change, but the list will never reduce in its size. We
defer the discussion of the case when the node is guaranteed to be found in a search and needs to be
removed from a private location until the end of this subsection.

Sorted linked lists. As mentioned before, we discuss sorted linked lists only as a means of demon-
strating how sorted data might be processed using a general-purpose secure computation compiler. It
should be understood that this is not a typical use of linked lists or even not the best way of working
with sorted data. We use the results of this discussion in our consecutive description.

Now when a node is being inserted in a linked list, the insertion position must be determined based
on the data stored in the list, which involves O (n) time with public data (and the complexities of
other operations are the same as before). When we work with private data, the location where the
node is being inserted must remain private (since it depends on private data) and the execution needs
to simulate node insertion at every possible position. Consider the following two ways of inserting a
node and the performance in which they result:

(1) Pointer updates: The first is a traditional implementation of node insertion in a linked list,
where if the correct insertion point is found, we update the pointer of the found node in the
list to point to the new node and the pointer of the new node to point to the next node in
the list. Because this conditional statement is based on private data, this will result in adding
one location to the pointer in the found node and one location to the pointer in the node
being inserted. After executing this operation for every node of the list, the pointer of each
node in the original list stores 2 locations and the pointer in the newly inserted node stores n
locations. When this operation is performed repeatedly, each node in the list acquires more
and more locations (to the maximum of the current list size). This means that if the list is built
by inserting one node at a time, the cost of node insertion and list traversal becomes O (n2).
Node deletion after a search also takes O (n2) time, while node deletion from a fixed location
is bounded by O (n). When, however, only a constant number of nodes are inserted into an
existing list (which, e.g., can be provided as sorted input into the program), the complexity of
all operations are unchanged from the public data case.

(2) Data updates: Another possible implementation of sorted linked lists is to always insert a new
node at the beginning of the list and keep swapping its content with the next node on the list
until the correct insertion point is found. When this algorithm is implemented obliviously on
private data using an SMC compiler, the computation processes each node on the list starting
with the newly inserted node and based on the result of private comparison of current and
new data either performs the swap or keeps the data unchanged. After each node insertion the
reference field of each node still points to a single node in the list and therefore the complexity
of all operations are unchanged from their public versions.

Thus, it is clear that we want to avoid acquiring a large number of locations in each reference field of
a pointer-based data structure and privately moving data (as opposed to privately moving pointers) is
preferred when working with sorted data.
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Node deletion in standard linked lists. We can now return to the question of deleting a node from
a private location in a standard (unsorted) linked list when it is known that the searched node is
present and needs to be removed from the list. The above two approaches of inserting a node in a
private position also apply to deleting a node from a private position. The first, standard, approach
of manipulating pointers will result in acquiring multiple locations at each pointer, which degrades
performance of all operations. Using the second approach of data updates, we can obliviously place
the data to be deleted into the first node on the list (after scanning the nodes and swapping values
based on private data comparisons) and then simply remove it from the list. This will maintain
optimal complexities of all operations. The above tells us that traditional implementations of data
structures can exhibit performance substantially worse than alternative implementations in a secure
computation framework and our analysis can be viewed as a step in making informed decisions about
implementation needs.

8.2 Trees
Trees implement hierarchical data structures commonly used to store sorted data and make searching
it easy. A tree node is typically comprised of data and a list of references to its child nodes. In
an n-node balanced search tree, all of searching, node insertion, and node deletion take O (logn)
time. Unfortunately, these complexities greatly change when we write a program to implement a
search tree on private data. In what follows, we distinguish between trees that are pre-built using the
information available prior to the start of the computation and trees built gradually using information
that becomes available as the computation proceeds:

(1) Pre-built trees. Consider a balanced binary search tree and suppose that we want to perform
a search on the tree. A traditional implementation involves O (logn) conditional statements
to traverse the tree from the root to a leaf choosing either the left or right child of the current
node. When the data is private, such statements use private conditions and thus both branches
of the computation must be executed. The result is that the sequence of O (logn) nested private
conditions results in executing all possible O (n) branches of the computation and touches
all nodes in the tree. This is an exponential increase in the complexity compared to working
with public data, even if we do not consider node insertions and deletions that result in node
rotations to balance the tree (which are discussed next together with gradually-built trees).

(2) Gradually-built trees. By analogy with inserting nodes into a sorted linked list, we can either
manipulate pointers to insert a new node at the appropriate place in the tree or insert the node
in a fixed location and move the data in place. The complexity of the latter option is O (n) for
insertions, deletions, and search and we take a closer look at the former. As we traverse the
tree looking for the place to insert the new node, similar to searching, all nodes will be touched
(as a result of nested private conditions). Furthermore, because the execution cannot reveal
the place into which the new node is inserted, pointers in all nodes will acquire new locations.
If we add computation associated with node rotations when the tree becomes unbalanced,
pointers will be acquiring new locations even faster (to the maximum of n − 1 per pointer).
After repeatedly calling insert to gradually build the tree, eventually each node will point to
all other nodes resulting in O (n2) complexity for insertions, deletions, and searching. Such
complexity is clearly avoidable and alternative implementations should be pursued.

Search trees represent the worst possible scenario where implementing an algorithm on private data
using a general-purpose compiler incurs an exponential increase in its runtime compared to the public
data counterpart. As is evident from our discussion of linked lists and trees, searching an n-element
store for a single element cannot be performed in less than linear time using generic techniques,
regardless of whether the data is stored sorted or not. It means that without custom, internally built
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implementations of specific data structures it is conceptually simpler and more efficient to maintain
data in unsorted form, use append for insertion (O (1) time), and shift data to implement deletion.

8.3 Stacks
A stack is characterized by the last-in, first-out (LIFO) behavior, which is achieved using push and
pop operations. It has several fundamental applications such as parsing expressions (e.g., parsing
programs in compilers), backtracking, and implementing function calls within an executable program.
Our analysis and consecutive implementation of stack that works with private data demonstrate its
appeal for secure computation.

A pointer-based implementation of a stack is built using a linked list, where a node is always
inserted at the head of the list and is always removed from the head as well, either of which takes
O (1) time. As was discussed in section 8.1, implementing these operations on private data maintains
constant time complexities.

When using a stack with private data, we also consider the possibility that push and pop operations
might be performed inside conditional statements with private conditions, in which case it is not
publicly known whether the operation takes place and what record might be on top of the stack.
Then if we implement a conditional private push operation by manipulating pointers, the top of the
stack will storem + 1 locations when the lastm push operations were based on private conditions.
Implementing a push operation is then equivalent to executing the code:
1. node p = new node();
2. if (priv-cond)
3. p->next = top;
4. top = p;

Because both p and p->next store only a single location at the time of conditional push, merging
the lists of p->next and top takes O (m) time. Similarly, merging the lists of top and p takes
O (m) time.

Implementing a pop operation within a private condition involves executing code:
1. if (priv-cond)
2. temp = top;
3. top = top->next;
4. // use temp

The complexity of this operation is dominated by the second assignment. Because top points to
O (m) locations, and the next field of each of its locations can store O (m) locations as well, the
overall complexity of that assignment is O (m2). This means that the worst time complexity of a
conditional push is O (n) for a stack containing n records and it is O (n2) for a conditional pop.

If we instead implement push and pop operations that depend on private conditions by maintaining
a single chain of records (with pointers containing a single location) and data update, push and pop
operations result in O (1) and O (n) work, respectively. That is, we can always insert a new node (with
data or no data depending on the private condition) into the stack and take O (n) time during pop to
privately locate the first node with data (and erase the data as necessary).

8.4 Queues
Queue is another important data structure used to maintain a set of entities or events in a specified
order which are waiting to be served. We can distinguish between first-in, first-out (FIFO), last-in,
first-out (LIFO), and priority queues. Implementing a queue involves maintaining two pointers: the
head and the tail. The head points to the beginning of the queue, i.e., the element that will be removed
by a dequeue operation, and the tail points to the last element added to the queue using an enqueue
operation.
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Table 1. Performance of various data structures using pointers to private data.

Data structure Insert Delete Search
Linked list O (1) O (1) O (n)

Linked list (delete at private location) O (1) O (n) O (n)

Search tree O (n) O (n) O (n)

Stack or queue O (1) O (1) —
Stack (conditional private push & pop) or

O (1) O (n) —
queue (conditional private enqueue & dequeue)

Priority queue
O (1) O (n) —
O (n) O (1) —

Priority queue (conditional private enqueue & dequeue) O (1) O (n) —

Similar to the stack, when enqueue and dequeue operations in a FIFO queue are implemented
on public data or private data outside of private conditional statements, their complexities are
O (1). Their complexities for enqueue and dequeue operations are also O (n) and O (n2), respectively,
when implemented through private pointer manipulation (the implementation needs to maintain two
pointers for the head and tail of the queue, but updating the second pointer does not asymptotically
increase the amount of work) and O (1) and O (n), respectively, when private data update is used.

In a priority queue, each node additionally stores priority (which we assume is private) and dequeue
removes a node with the highest priority. The complexity of priority queue operations depends on
the underlying data structure used to implement it. The best known complexities for public data are
O (logn) for enqueue (O (1) average case) and O (logn) for dequeue using a heap.

Suppose first that there are no conditional statements with private conditions. If we use a linked
list to store queue nodes, we can achieve O (1) for enqueue and O (n) for dequeue (i.e., always store a
newly inserted node in the beginning and remove the highest priority node from a private location
as a result of the search for the highest priority element) or O (n) for enqueue and O (1) for dequeue
(i.e., store the list sorted and always remove the first node during dequeue). Then if the operations
depend on private conditions, we can maintain O (1) for enqueue and O (n) for dequeue using a very
similar approach to that of regular queues and stacks. That is, we always insert an element into the
beginning of the queue as a result of a conditional enqueue (if the condition is false, the element is
empty), and during dequeue we scan the queue for the highest priority element and erase it from the
queue if the condition is true.

If the underlying implementation is a heap, we insert a new node in a fixed leaf location and use
O (logn) compare-and-exchange operations to maintain the invariant of a max-heap to implement
enqueue. Realizing dequeue, however, requires O (n) work because it cannot be revealed what path
was traversed from the root to a leaf (since the path choice depends on private priorities). Similar
to other implementations, we can maintain these complexities even when enqueue and dequeue are
performed as a result of private condition evaluation.

8.5 Summary
Before we conclude this section, we would like to summarize performance of different data structures
that can be implemented on private data using newly introduced pointers to private data or records.
Table 1 lists the best performance we could achieve using a pointer-based implementation of the data
structures discussed in this section. Priority queue has two alternative implementations. Recall that
in all data structures with conditional operations performance depends on the number of insertions as
opposed to the actual data size. We note that the complexities in Table 1 can be directly linked to the
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amount of memory consumed by those data structures, with small fixed constants hidden behind the
asymptotic notation.

These data structures can also be evaluated using alternative mechanisms. For example, our
analysis suggests that implementing these data structures using arrays of private data instead of
pointers to private data would result in the same complexities (which is often the case for public data
as well). Also, utilizing ORAM-based implementation can improve asymptotic complexity of some
(but not all) data structures and can lead to faster runtime in practice at least for large enough data
sets. The most pronounced benefit of using ORAM will be observed for implementing search trees,
where all operations can be performed in polylogarithmic (in n) time (e.g., using the solution in [23]).
On the other hand, using ORAM for linked lists can only increase the complexity of its operations
(even the complexity of a delete at a private location following a search cannot be reduced below
O (n)). Other data structures that can benefit from ORAM-based implementations are stacks and
queues where the operations that update the data structures are performed inside private conditional
statements. ORAM techniques, however, involve larger constants behind the big-O notation than
simple operations and their initial setup cost is also significant. We thus leave a thorough comparison
of ORAM vs. pointer or array based implementations of various data structures in this framework as
a direction of future work.

9 PERFORMANCE EVALUATION
In this section, we report on the results of our implementation and evaluation of a number of
representative programs that utilize pointers to private data. Because such programs have not been
previously evaluated in the context of secure multi-party computation, we cannot draw comparisons
with prior work. In some cases, however, we are able to measure the cost of using pointers, or
the cost of a pointer-based data structure, in a program by implementing the same or reduced
functionality that makes no use of pointers. Note that because PICCO can be used for both secure
multi-party computation and outsourcing, the inputs in these programs can come from one or more
input parties/clients. The programs that we implemented and evaluated as part of this work are:

(1) The first program constructs a linked list from private data read from the input and then
traverses the list to count the number of times a particular data value appears in the list. This is
a traditional implementation of a linked list, where each record with private data is prepended
to the beginning of the list when building it. Because of space constraints, the program is given
in the full version [25] (Figure 1).
We next notice that this program is sub-optimal in terms of its run time because it does
not utilize concurrent execution capabilities provided in PICCO. For that reason, we also
implement an optimized version of this program. The difference is that all private comparisons
during the list traversal are executed in a single round using PICCO’s batch constructs.

(2) To evaluate pointer-based implementations that work with private data maintained in a sorted
form, and more generally privately manipulating pointer locations vs. obliviously moving data,
we build a program for a sorted linked list. The functionality of this program is similar to
that of the first program (i.e., create a linked list and then traverse it to count the number of
occurrences of a given data item in it) and the difference is in the way the list is build. We
evaluate two variants of the program corresponding to pointer update (PU) and data update
(DU) as described in section 8.1. The programs for the DU and PU variants are provided in
[25] (Figures 2 and 3).

(3) The third program implements mergesort that takes an array of unsorted integers as its input.
The program makes an extensive use of pointers to private data to pass data by reference to
a function that conditionally swaps two data items based on their values (i.e., performs the
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so-called compare-and-exchange operations). Mergesort was chosen not necessarily because it
provides the best performance for an oblivious sort, the objective instead was to demonstrate
how performance of a program that utilizes pointers to private data (and exercises modular
design of a program) compares to a similar program that does not use pointers. We thus also
evaluate another version of mergesort that performs compare-and-exchange operations in
place (without calling any function) and makes no use of pointers. The pointer-based and
non-pointer-based implementations of mergesort are available in [25] (Figures 4 and 5).
Note that for this program it is straightforward to eliminate the use of pointers (which are are
used for passing data by reference) while preserving the program functionality. Comparison to
alternative, non-pointer-based implementations for other functionalities (for instance, for data
structures such as linked lists and a shift-reduce parser functionality below) is deferred to the
end of this section.

(4) Our last program implements a shift-reduce parser for a context-free grammar (CFG) on private
data. This is one of the fundamental applications that can now be naturally implemented using
the compiler by building and maintaining a stack, once support for pointers to private data is
in place. We choose a CFG that corresponds to algebraic expressions consisting of additions,
multiplications, and parentheses on private integer variables, which is specified as follows:

statement→ statement | statement + term
term→ term | term * factor
factor→ var | (statement)
Here, all variables are shown in italics, while terminals are set in bold font. The grammar can
obviously be generalized to more complex expressions and programs that work with private as
well as public variables of different types. We view this application as enabling one to evaluate
a custom function on private data without writing and compiling a separate program for each
function. That is, both the function to be evaluated and its input (consisting of private data)
are provided as input to the parser. We note that it is possible for the function or the grammar
rules to be private as well, but this would result in an increase in the program performance.
Our parser uses one lookahead character, and due to the complexity of the implementation, the
program itself is not included in the paper.
To approximate performance overhead associated with using a pointer-based stack, we create
a program that performs only arithmetic operations on private data which are given to the
parser and which the parser executes. Note that unlike evaluation of mergesort, these are
not equivalent functionalities. That is, one program is much more complex, parses its input
according to the CF grammar, maintains a stack, etc., while the other only performs additions
and multiplications.

Note that most of these programs already exercise dynamic memory allocation (i.e., all linked list
programs and the shift-reduce parser). However, to provide a more complete evaluation of dynamic
memory management, we also include experiments that measure the overhead of dynamic memory
deallocation. Thus, we incorporate calls to pfree to two programs: (i) we call pfree as part of the
shift-reduce parser at the end of each pop operation and (ii) we evaluate the cost of removing the
head node in a sorted linked list built using pointer update (Figure 3 in [25]). These were chosen
as natural applications of memory deallocation, where pointers to private objects contain a single
and multiple locations, respectively. In the second case, the head stores locations of all nodes on the
list and the overhead of pfree includes updating the structures of other pointers on the list upon
memory deallocation.

Each program was compiled using PICCO, extended with pointer support as described in this work,
and run in a distributed setting with three computational parties. All compiled programs utilize the
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Table 2. Performance of representative programs with unsorted data structures measured in seconds.

Program
Field Data size
size 25 28 211 214 217 220

Linked list
81

0.0004 ± 5% 0.003 ± 4% 0.014 ± 3% 0.097 ± 2% 0.760 ± 1% 5.401 ± 1%
(list building, traversal, 0.086 ± 1% 0.661 ± 1% 5.302 ± 3% 42.27 ± 1% 337.8 ± 1% 2,692 ± 2%
and optimized traversal) 0.026 ± 7% 0.140 ± 3% 1.019 ± 1% 8.051 ± 2% 63.75 ± 1% 513.8 ± 1%
Shift-reduce parser 33 0.005 ± 9% 0.039 ± 2% 0.307 ± 1% 2.439 ± 1% 19.73 ± 2% 157.2 ± 1%
Arithmetic operations 33 0.005 ± 9% 0.038 ± 3% 0.294 ± 1% 2.336 ± 1% 18.85 ± 1% 150.8 ± 1%

Table 3. Performance of representative programs with sorted data structures measured in seconds.

Program
Field Data size
size 24 25 26 27 28 29

Sorted linked list (DU)
81

0.466 ± 1% 1.908 ± 1% 7.750 ± 1% 31.24 ± 1% 125.5 ± 1% 565.5 ± 1%
(list building and traversal) 0.036 ± 1% 0.071 ± 1% 0.142 ± 1% 0.284 ± 1% 0.567 ± 1% 1.311 ± 1%
Sorted linked list (PU)

81
1.464 ± 1% 9.956 ± 1% 85.51 ± 2% 918.6 ± 2% 9900 ± 3% N/A

(list building, traversal, 0.051 ± 1% 0.149 ± 2% 0.613 ± 2% 5.285 ± 2% 45.93 ± 2% N/A
and head node removal) 0.005 ± 1% 0.015 ± 1% 0.044 ± 2% 0.174 ± 2% 0.720 ± 3% N/A
Mergesort without pointers 81 0.053 ± 5% 0.121 ± 5% 0.271 ± 5% 0.625 ± 4% 1.453 ± 4% 3.124 ± 4%
Mergesort with pointers 81 0.053 ± 4% 0.122 ± 5% 0.272 ± 5% 0.638 ± 6% 1.503 ± 5% 3.201 ± 5%

GMP library for large number arithmetic and OpenSSL to implement secure channels between each
pair of computational parties. We ran all of our experiments using three 2.4 GHz 6-core machines
running Red Hat Linux and connected through 1Gb/s Ethernet. Each experiment was run 10 times,
and we report the mean time over all runs and the corresponding deviation from the mean observed
in the experiments. The results of the experiments for working with unsorted and sorted data are
given in Tables 2 and 3, respectively.

As can be seen from the tables, each program was run on data of different sizes. For all linked
lists programs as well as mergesort, the data size corresponds to the number of elements in the input
set, while for the shift-reduce parser and arithmetic operations the size corresponds to the number of
arithmetic operations in the formula, which were a mix of 90% multiplications and 10% additions.
All linked list experiments contain two times for building and traversing the linked list, respectively,
and we also report the time of the head node removal for sorted linked lists with pointer update. The
tables also report the size of field elements in bits used to represent secret shared values. While all
programs were written to work with 32-bit integers, most programs in these tables use statistically
secure comparisons, which requires the length of the field elements to be increased by the statistical
security parameter (which we set to 48). (The size of the field elements needs to be the size of the
data plus one bit to ensure that all data values can be represented.)

The results tell us that working with linked lists (the first program in Table 2) in the secure
computation framework is very efficient. That is, building a linked list that consists of thousands
of elements takes a fraction of a second. Traversing a linked list is also rather quick, where going
through a linked list of size 211 takes about 1 second in our optimized program.

Performance of the sorted linked lists (the first two programs in Table 3) characterizes performance
expected from different data structures where it is necessary to hide the place where a new node
or data item is being inserted. As previously mentioned, there is no good reason to implement the
PU variant of different data structures and it is provided here for sorted linked lists for illustration
purposes only. The DU version of sorted linked list has the same list traversal time as the regular
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(unsorted) linked lists, and the reported time for sorted linked lists can be further optimized in the
same way as it was done for regular linked lists. When we are building a sorted linked list via DU,
each operation takes O (n) time and thus the time to perform this operation for all n elements of the
input is O (n2). This quadratic performance is also observed empirically where increasing the size
of the data set by a factor of 2 results in a four-time increase in the list building time (all insertion
operations are performed sequentially). As far as the head node removal operation in a sorted linked
list with PU goes, it consists of two pointer dereferences (i.e., using data and next fields) and one call
to pfree, where the overhead of pfree was between 76.4% to 81.3% of that operation’s time. In
this particular experiment, each pointer stores O (n) locations, which contributes to the complexity of
both memory deallocation and pointer dereferencing, but the latter operation can be performed more
efficiently.

If we next look at mergesort (the last two programs in Table 3), we see that the variant that
uses pointers to private data and makes a function call to a compare-and-exchange operation for
each comparison and the variant with no pointers and corresponding function calls differ in their
performance by a very small amount. The non-pointer version that performs less work is faster by
0.4–2.4%.

Lastly, the performance of our shift-reduce parser (the second program in Table 2) is extremely
fast and it almost entirely consists of the time it takes to evaluate the provided formula on private data
(the last program in Table 2). That is, despite having a more complex functionality and employing
pointer-based stack, the time to perform arithmetic operations only is almost the same as the time the
parser takes. Also, adding pfree to the program does not effect the runtime (because the pointer
stores a single address) and the times with memory deallocation are omitted from the table.

As far as memory consumption goes, the introduction of pointers to private data only marginally
affects the amount of allocated memory for programs with pointers storing a single memory location
(linked list, shift-reduce parser, and mergesort). The amount of memory needed to store and process
sorted linked lists is quadratic in the data size and matches in its complexity list traversal. Removing
a node from the list and calling pfree reduces the memory consumed by the data. While in general
calls to pfree can increase memory consumption, in this case all pointers store the same lists of
O (n) locations and removing a node and merging the lists in pfree decreases the size of each list.
In general, we can say that memory consumption is at most quadratic in the amount of data and
user-declared variables in any program.

We note that all functionalities used for our experiments have alternative implementations using
arrays. For linked lists, mergesort, and a shift-reduce parser, we expect array-based implementation
to exhibit very similar performance to that based on pointers because all pointers store a single
location. For sorted linked lists, we expect array-based programs to have performance similar to our
data update implementation (with the same asymptotic complexities). To confirm this finding, we
evaluated performance of array-based sorted linked lists, the source code of which can be found
in the full version [25] (Figure 6). Building the sorted list took about 20% less time using arrays
for most data sizes, while list traversal was about 9% slower using arrays for most data sizes. Thus,
both implementations exhibit comparable performance. Memory consumption is also similar in most
programs, with the exception of array-based sorted list implementation that uses memory linear in
the data size.

Performance of our pointer-based programs can also be compared to that of array-based imple-
mentations using another system or compiler. Sharemind [4] is a powerful system that supports a
wide range of programs and, similar to PICCO, builds on (a different type of) information-theoretic
secret sharing, which is hand-optimized to work with three computational parties. Despite similarities
of the setup, Sharemind programs exhibit significantly different performance characteristics. In
particular, the implementation is optimized for performing a large number of identical operations in a
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batch, while the cost of performing only a single operation is high (e.g., on the order of 100ms for a
single integer equality test [5]). As such, Sharemind programs will perform significantly worse (i.e.,
orders of magnitude slower) on our programs that perform sequential execution, such as unoptimized
linked list traversal, the shift-reduce parser, and building a sorted linked list (mergesort is also slower
as reported in [26]). In the case of optimized linked list traversal, on the other hand, Sharemind
implementations will still be slower for small data sets (such as 25), but significantly faster for large
data sets (up to two orders of magnitude faster for 220 elements).

All of this demonstrates that pointers have a great potential for their use in general-purpose
programs evaluated over private data. Some pointer-based data structures can exhibit substantially
slower performance in this framework than their public-data counterparts, and custom, internally
built implementations for such data structures are recommended.

10 CONCLUSIONS
In this work, we introduce the first solution that incorporates support for pointers to private data
into a general-purpose secure multi-party computation compiler. To maintain efficiency of pointer-
based implementations, we distinguish between pointers with public addresses and pointers with
private addresses and introduce the latter only when necessary. We provide an extensive evaluation
of the impact of our design on various features of the programming language as well as evaluate
performance of commonly used pointer-based data structures. Our analysis and empirical experiments
indicate that the cost of using pointers to private data is minimal in many cases. Several pointer-
based data structures retain their best known complexities when they are used to store private data.
Complexity of others (most notably balanced search trees) increases due to the use of private data
flow, and custom, internally built implementations of oblivious data structures that work with sorted
data are recommended. We hope that this work provides valuable insights into the use of various
programming language features when developing programs for secure computation using a general-
purpose compiler, as well as highlight benefits and limitations of pointer-based designs for SMC
compiler developers.
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