
A

Reliable Medical Recommendation Systems with Patient Priv acy

T. RYAN HOENS, MARINA BLANTON, AARON STEELE, and NITESH V. CHAWLA,

University of Notre Dame

One of the concerns patients have when confronted with a medical condition is which physician to trust. Any
recommendation system that seeks to answer this question must ensure any sensitive medical information
collected by the system is properly secured. In this paper we codify these privacy concerns in a privacy-
friendly framework and present two architectures that realize it: the Secure Processing Architecture (SPA)
and the Anonymous Contributions Architecture (ACA). In SPA, patients submit their ratings in a protected
form without revealing any information about their data, and the computation of recommendations proceeds
over the protected data using secure multi-party computation techniques. In ACA, patients submit their
ratings in the clear, but no link between a submission and patient data can be made. We discuss various
aspects of both architectures including techniques for ensuring reliability of computed recommendations
and system performance, and provide their comparison.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]:
Security and Protection; H.4.m [Information Systems Applications]: Miscellaneous

General Terms: Algorithms, Design, Reliability, Security.

Additional Key Words and Phrases: Recommendation systems, privacy, framework.

1. INTRODUCTION

It is evident that the health of an individual significantly affects her quality of life. For
this reason, finding appropriate physicians to diagnose and treat medical conditions
is one of the most important decisions that a patient must make. Currently, patients
have two options that can aid them in addressing this problem, but both are of limited
applicability. The first option is to rely on friends and family for advice on where to
seek treatment. While recommendations produced by a close circle of friends can be
assumed to be very trustworthy, the likelihood that friends and family have experience
with the same medical history as the patient is quite low. Furthermore, such advice
can often be unavailable when, for instance, a patient moves to a new area and does
not have an established network from which to seek advice; even when this is not
the case, the number of physicians which friends and family have had contact with
may not adequately cover the options in the given area. The second option for patients
is to seek public information about and/or ratings for a physician available on, e.g.,
the internet. Such ratings, however, are sparse as medical history is often treated
as personal, confidential information. Public ratings also suffer from the problem of
trustworthiness, as the likelihood of inaccuracies is higher.

This work was partially supported by the NSF under grant BCS-0826958, the AFOSR under grant AFOSR-
FA9550-09-1-0223, and the Richard and Peggy Notebaert Premier Fellowship.
Part of this work appeared in the Proceedings of the ACM International Health Informatics Symposium
(IHI) 2010 [Hoens et al. 2010b].
Authors’ address: Department of Computer Science and Engineering, University of Notre Dame, Notre
Dame, IN 46556.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0000-0003/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2

In order to combat the problem of a paucity of experience among a patient’s trusted
friends and the limited value of the existing types of rating systems, we propose a
framework which enables patients to gather reliable doctor recommendations for their
condition(s) while protecting the privacy of both (i) the patients contributing their rat-
ings to the system and (ii) the patients making inquiries. In this framework patients
can rate physicians based on their satisfaction (defined on a per condition basis) af-
fording the patients more fine-grained control over how to choose the physician who
best suits their needs. It also protects the reliability of the results, meaning that (i)
dishonest users can only minimally influence the outcome of a physician’s rating and
(ii) no physician (or small group of users) has the ability to tamper with the ratings.
This enables the system to maintain the integrity of its ratings and ensure they are as
unbiased as possible.

As our privacy-friendly framework can be realized using a variety of techniques, we
present two alternative architectures. Because each alternative has its own advan-
tages and disadvantages, we provide a fair and detailed assessment of the properties
of each option, giving the community the ability to evaluate both. Moreover, certain
options might be preferable over others in different contexts or application scenarios.
Finally, we describe specific realizations of the architectures – which includes an im-
plementation and experimental evaluation of the system – and report the results.

Our contributions can therefore be summarized as follows:

— development of a privacy-friendly framework for a reliable recommendation system
of physicians using patient experience.

— presenting two architectures that realize the framework using different means from
secure computation and anonymous communication and authentication techniques.

— development of novel mechanisms for maintaining trustworthiness of the data in the
presence of dishonest contributors.

— design and implementation of specific protocols for the alternative architectures in-
cluding experimental evaluation on a system prototype.

2. RELATED WORK

There has been considerable research into privacy preserving recommendation sys-
tems. Originally, privacy was achieved in recommendation systems by giving user in-
formation to a trusted third party, who then performs the necessary calculations with
other trusted agents.

One problem with this early approach is that, in addition to privacy, in order to
be useful, recommendation systems must be robust against misbehaving users. One
common way misbehaving users may attempt to influence the rating of a specific
physician is known as “shilling attacks.” Shilling attacks are said to occur when a
user attempts to sabotage a competitor in order to make themselves look better. Lam
and Reidl [Lam. and Riedl 2004] describe the attacks and discuss how they can affect
the recommender system. Specifically, the authors consider various attack motivations
(e.g., increasing/decreasing, the rating of an item and hindering the credibility of the
recommendation system as a whole) and their effect on recommendation systems. Im-
portantly, they note that while observing sharp changes in scores is an obvious way to
detect (some) shilling attacks, non-trivial attacks against the system could potentially
succeed. Detecting such attacks is proposed as a future area of research. Chirita, Ne-
jdl, and Zamfir [Chirita et al. 2005] provide further insight into shilling attacks and
outline a detection algorithm which depends on the distribution of scores that each
user has made so far. The algorithm proved to be quite robust, providing not many
false positives while catching many of the shilling attacks. In this work, on the other
hand, instead of trying to detect system abuse, we concentrate on abuse prevention.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:3

While in shilling attacks competing physicians attempt to sabotage each other, “bad
mouthing” [Bankovic et al. 2011] is said to occur when a (potentially offended) patient
attempts to lower the score of a physician. “Boosting” (or “ballot stuffing”) is said to
occur if, instead of lowering a score, the patients collude to increase a rating [Dellarocas
2000; Srivatsa et al. 2005]. While we do not consider the implications of these attacks
in this paper, we note that the techniques in the literature to combat these attacks can
be extended for our systems [Chirita et al. 2005; Burke et al. 2006; Mehta et al. 2007;
Mobasher et al. 2006].

In addition to the problem of falsely modifying a score through illegitimate voting,
another issue with the trust-based schemes is that they require users to trust the third
parties to not misbehave with their data. In order to overcome this limitation, various
techniques have been developed which do not require this third party. Two common
ways of eliminating the need for the trusted third party are based on homomorphic
encryption and data perturbation.

In the approaches based on homomorphic encryption [Canny 2002a; 2002b; Miller
et al. 2004; Zhan et al. 2010; Berjani and Strufe 2011; Armknecht and Strufe 2011],
users encrypt their data before sending it to any other party. This encrypted data
is then used to compute the desired function, without the underlying plaintexts be-
ing made available to any party. In this way the user’s privacy is preserved since no
outside party is able to decrypt the ciphertexts (under certain constraints, e.g., when
less than t participants collude). Note that these approaches based on homomorphic
encryption all solve different problems than the one we solve here. That is, none of
the approaches mentioned computing the weighted average, instead they compute rat-
ings based on similarity scores or some other function. Specifically, the method due
to Canny [Canny 2002a; 2002b] addresses the problem of collaborative filtering which
can be solved via expectation-maximization, such that the update rules only require
addition. PocketLens, due to Miller, Konstan, and Riedl [Miller et al. 2004], is an al-
ternative approach which is based on finding similar neighbors to a user, who can in
turn be used to compute good ratings for items. This is accomplished by computing
the similarity of the ratings (via a dot product) of a user and various participants in
the system. This similarity measure is then used to obtain accurate ratings for as-yet-
unseen items. Zhan et. al. [Zhan et al. 2010] propose a method to compute Pearson
correlation. As the authors mention in the paper, the computation only requires mul-
tiplication, and is therefore relatively easier than the one we describe in this paper.
Lastly, Armknecht and Strufe [Armknecht and Strufe 2011] (building on the work of
Berjani and Strufe [Berjani and Strufe 2011]) define a recommendation system based
on Regularized Matrix Factorization (RMF). RMF was chosen because it provides accu-
rate results and has many desirable properties, most notably RMF can be learned via
stochastic gradient descent. The ability to be learned by stochastic gradient descent
means that the method can be trained without all instances in memory, and is easily
adaptable for use with homomorphic encryption.

An alternative to the homomorphic encryption based approaches are the data per-
turbation approaches [Polat and Du 2005; Kargupta et al. 2003; Zhang et al. 2006]. In
these approaches, users obfuscate their real data by adding noise to it before allowing
it to be used in any computation. In this way the users’ actual ratings remain pro-
tected, yet due to aggregation, the authors argue that data perturbation effects still
allow for effective recommendations to be made [Polat and Du 2005].

Another recent notion of privacy related to data perturbation approaches which has
been used in recommendation systems is called “differential privacy.” Loosely speak-
ing, differential privacy [Dwork 2006; 2008] for statistical databases guarantees that
the outputs of a statistical query over two databases which differ by one element will
differ by at most a negligible quantity. Intuitively, this means that the function is not

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4

significantly affected by any minor changes to the database. Differential privacy can
be achieved by adding noise to the query, the amount and type of noise being heavily
dependent on the statistical queries that users are allowed to execute on the database.
This results in a trade-off between accuracy and privacy. In application to recommen-
dation systems, McSherry and Mironov [McSherry and Mironov 2009] built a system
to achieve differential privacy over the Netflix dataset. Experiments on their system
showed that the accuracy of results was not severely effected throughout the query
execution by maintaining privacy of user data.

Specifically in the medical domain, one privacy preserving recommendation system
is due to Katzenbeisser and Petković [Katzenbeisser and Petkovic 2008]. The authors
developed a system in which a secure medical recommendation is obtained by first
encoding all relevant information (symptoms, diseases, etc.) into a standardized binary
vector. The system then uses a matching protocol to determine which doctors have
the best matching expertise via a secure matching algorithm, with the most suitable
result returned as the recommendation. This solves a slightly different problem than
our solutions, as we match patients with the optimal physicians for their relevant
conditions, whereas the system of [Katzenbeisser and Petkovic 2008] makes no such
guarantees.

Finally, as we codified requirements for privacy preserving medical recommenda-
tion systems, Chen and Williams [Chen and Williams 2010] codified requirements for
“privacy-aware social recommender systems.” In their architecture, the authors argue
that control, choice, and consent are the three main issues when developing a privacy
aware recommendation system. Taking these three issues into account, the authors
then suggest adopting the privacy principles put forth by the Organization for Eco-
nomic Cooperation and Development (OECD), adapting them to the recommendation
domain.

It is important to note that our work differs from the above publications in a few
important ways. First, we describe a framework for medical recommendation systems
which was designed to take the sensitivity of medical records into account. This in-
cludes the ACA and SPA architectures (Sections 6 and 5, respectively), which provide
concrete realizations of the goals set forth in the framework. Secondly, whereas previ-
ous approaches obtains a recommendation via collaborative filtering based approaches,
ACA and SPA allow for the computation of real-valued rankings of doctors (while still
maintaining patient privacy), resulting in more fine grained recommendations. These
fine grained recommendations also include the first instance of a description in the
literature of a weighted average computation combined with physician’s expertise us-
ing homomorphic encryption. Furthermore, while privacy preserving recommendation
systems based on secure computation (and homomorphic encryption in particular) ex-
ist, the anonymous contributions architecture is unique to this work.

3. THE FRAMEWORK

In this section we develop the conceptual model of a privacy-friendly and reliable med-
ical recommendation system by specifying its requirements and functional structure.
These requirements will guarantee that patient privacy, as well as system and recom-
mendation integrity, are maintained.

3.1. Functional Requirements

In our framework we assume that the system maintains a list of physicians and health
conditions for which recommendations can be provided.1 Each contributing patient i

1The list of physicians consists of all practicing physicians in one’s area, and the conditions can be compiled
according to the physicians’ specialties from a standard set which can be expanded upon physician’s or user’s

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:5

submits her rating rijk for a specific physician j and specific health condition k. Each
rating reflects the patient’s satisfaction with physician j treating condition k, and is
selected from a pre-defined and publicly known range. Without loss of generality, let
this range be [1, n], with the value of 0 reserved for when no rating is available. The
system will securely process or store the ratings to enable the following functionalities
for any interested patient:

— A patient interested in health condition k should be able to obtain a physician rec-
ommendation for the condition based on the aggregated satisfaction information for
all patients and all physicians treating the condition. Ideally, the recommendation
is versatile enough to include alternative best-ranked physicians instead of provid-
ing only a single recommended name. That is, let sjk denote the aggregate score
for physician j on condition k computed from individual ratings rijk . (In this work,
we use the term “rating” for individual values contributed by patients and the term
“score” for the aggregate normalized value which is a function of individual contribu-
tions.) Then instead of learning the name of physician j with the highest score sjk,
the patient will be presented with a list of alternatives.

— A patient interested in a combination of health conditions K = {k1, . . ., kℓ} should be
able to obtain a physician recommendation for the entire combination. Furthermore,
the patient should be able to assign different weights v1, . . ., vℓ to the conditions based
on their importance to the patient and obtain a recommendation that takes into ac-
count these weights. That is, the output will consist of best-ranked physicians where
the ranks are determined using the weighted sum of the physicians’ scores for the
individual conditions, weighted by the patient-provided importance values vi’s, i.e.,

the combined scores are computed as sjK =
∑ℓ

i=1 visjki
, where sjki

is the physician
j’s score for condition ki ∈ K. As before, a set of alternatives is preferred over a single
recommendation.

3.2. Rating Specification

When creating a recommendation system, an important consideration is providing
users with accurate and relevant recommendations. In our system, we assume that
the average rating given to a physician by her patients fits these criteria. Such rat-
ings, however, can be the result of a wide variety of questions (e.g., overall satisfaction,
time until cured, etc.), which are outside the scope of this work. When evaluating our
system, we therefore assume that some overall rating for a physician exists. Moreover,
we presume the rankings are numeric in nature, and have been normalized; this al-
lows us to assume that an “average” rating makes sense, and is consistent across the
recommendation system. Since none of the solutions presented in this work are re-
liant on any specific representation or source of scores, this does not affect any of the
observations made in the paper.

In the rest of this work we assume that a recommendation is given for a specific
condition (or a combination of conditions) and is computed from ratings submitted
by patients. That is, patient i who has seen physician j for condition k can submit a
rating rijk on the scale 1 to n. We use rjk =

∑
i rijk to denote the sum of all ratings

for physician j on condition k and weight wjk to denote the number of patients who
contributed their ratings for physician j treating condition k.

request. Standard ICD-9 codes can be used to uniquely represent conditions, which can be presented to the
users of the system using common terminology.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6

3.3. Privacy Requirements

In the vast majority of existing recommendation systems, data contributed by users
is assumed to be public information. In most cases this is a reasonable assumption,
as user preferences are usually not sensitive in nature. While for most applications
public ratings are acceptable, in medical applications they are not. This is due to the
fact that even the existence of certain medical conditions is extremely sensitive data
which the patient is highly unlikely to divulge. Therefore, expecting users to publicly
disclose their opinion for doctors treating the conditions, without any assertion of pri-
vacy, is impractical. As such, we believe that recommendation systems which require
users to divulge their recommendation (or even its existence) without provable privacy
guarantees should be treated with suspicion.

This leads to the first privacy requirement of a recommendation system for medical
applications: the existence of a recommendation for a patient, or a lack of thereof, is
sensitive data which must be protected and unavailable throughout the lifetime of the
recommendation system. This also means that if at any point in time the patient’s data
is revealed to any entity, there should be no link between the patient’s identifying
information (e.g., name, IP address, etc.) and the data the patient contributed to the
system.

Similarly, a user querying the system for a recommendation for a specific condition
should not be forced to reveal that condition to the system. This means that the user
will be able to obtain a recommendation for a specific condition or a combination of
conditions without communicating her preferences to the system in unprotected form.

3.4. Reliability Requirements

In addition to patient privacy, physicians must also be protected from unreasonable
users or dishonest competitors. That is, a small group of users should not be able to
sabotage a physician’s reputation. This is not limited to the patients who the physi-
cian treats, but also those who are refused, as well as other physicians competing for
the same patients. Protecting against such users has the added benefit of creating a
more robust recommendation system, thereby increasing its utility. Thus, the reliabil-
ity requirement of medical recommendation systems can be stated as: the reputation
of the physicians in the system must be preserved, or at least the effectiveness of a small
number of malicious users in altering physicians’ scores must be mitigated.

The above requirement immediately suggests two ways of dealing with dishonest
users: malicious behavior can either (i) be prevented or (ii) detected and compensated
for. As with any system that solicits input from a number of parties, each user can
enter any rating even if it does not fully reflect her true experience. It is, however,
possible to recognize several types of user misbehavior as abuse of the system. For
example, a user can influence the aggregate score of a physician treating a certain
condition by repeatedly submitting ratings for that physician. A user can also submit
a rating which is out of the range (i.e., negative or above n) which has a larger effect on
the physician’s score than a single correct rating (since normally the aggregate score
is computed as the average of individual ratings). We therefore target a system design
that can effectively block these and similar types of system abuse.

4. PROPOSED ARCHITECTURES

Given the requirements presented above, we provide two broad classes of architectures
which fit the framework. We call the first type the Secure Processing Architecture
(SPA) and the second type the Anonymous Contributions Architecture (ACA). These ar-
chitectures are described next, including their properties and engineering challenges

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:7

CS

secure

CS

recommendation

secured

patient

computation

ratings

data

2

1

3

CS

Fig. 1. Submission of user ratings and recommendation computation in SPA architecture.

associated with their realization. Concrete instantiations of the architectures, includ-
ing implementation, are given in Sections 5 and 6, respectively.

4.1. Secure Processing Architecture ( SPA)

In this architecture, as the name suggests, patients contribute secured (e.g., encrypted)
ratings, and the computation of all recommendations is performed over secured data.
The architecture, depicted in Figure 1, employs secure multi-party computation, where
a number of computational servers collect data from patients and jointly compute
recommendations. While identifying information of patients (who contribute or query
data) may be available to the servers running the system, all submitted data is pro-
cessed in a protected form and is not available to any entity. In the figure, compu-
tational servers CSi maintain the system and process patients’ data. A contributing
patient can properly secure her contribution and submit it to one or more computa-
tional servers. The servers engage in joint computation and make the recommenda-
tions available to queriers.

As customary in secure multi-party computation, a threshold scheme is used
whereby the computation is performed by p computational servers with threshold t. In
such schemes, any t ≤ p servers are able to successfully carry out or finish the compu-
tation, while any number less than t servers cannot learn anything about the data they
handle. In this way the data remains secure assuming that t or more servers do not
collude to learn any extra information. To maintain such security, in this framework
the computational servers should be maintained by mutually distrustful or competing
entities, so that any t of them are unlikely to conspire. For example, the computational
servers can be run by (i) competing physician offices or hospitals, (ii) insurance compa-
nies, (iii) consumer rights protection organizations or programs, or (iv) a combination
of the above.

In SPA, when a patient submits her secured rating for physician j and condition k,
the computational servers should not be able to learn the value of j and k. The easiest
way to hide this information is to have the patient submit a (secured) rating for each
physician and each condition where only one submitted rating has the actual rating
and carries a weight of 1, while all other submitted values have rating and weight 0.
The servers will then be able to update the scores for all physicians and all conditions
using the data received from the patient without the ability to know which particular
value has been modified.

In particular, this can be accomplished as follows: the computational servers main-
tain (protected) sums rjk and weights wjk for each valid combination of physician j and
condition k (i.e., for each physician j only the conditions that the physician treats are
maintained). When a new rating rijk of weight wijk is submitted, the sum of ratings is
updated as rjk + rijk and the weight is updated as wjk + wijk . When rijk and wijk are

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8

both 0, nothing is modified. The scores sjk can then be computed as the average rating
rjk/wjk or any other function of rjk and wjk .

There are two common techniques for computing over protected data2: (i) encryption
with special properties, called homomorphic encryption, which allows for operations
on ciphertexts to translate into certain operations on the underlying plaintexts, and
(ii) splitting the value to be protected among multiple parties and computing using its
shares. Either technique will enable us to perform the computations outlined above, as
well as all other computations necessary in computing recommendations. We chose to
use homomorphic encryption in our instantiation of this architecture and its prototype
implementation (Section 5).

Now notice that in this architecture the physicians’ scores sjk cannot be revealed
because of the privacy requirements. That is, suppose that the computational servers
post the scores which patients can use to compute necessary recommendations. Then
when the next patient contributes her secured rating to the system and the scores get
updated and published, it is likely trivial to find out what value, and for which physi-
cian and condition, the patient submitted a rating. Therefore, the aggregate scores
must be protected as well, with only the recommendation data (such as a sorted list of
best-ranked physicians) made available.

Because in this setup patients interested in learning recommendations have no im-
pact on the way recommendation data is computed, there is a need to carefully de-
sign the function f(rjk, wjk) for computing scores so that it is useful and appeals to
as broad of a population of users as possible. We leave it to the community to deter-
mine what function is most meaningful for use in medical recommendation systems,
but for the purposes of our realization, we propose to compute the scores as a combi-
nation of the average rating rjk/wjk and the number of patients treated wjk. That is,
set sjk = rjk/wjk + bjk, where rjk/wjk ∈ [1, n], bjk ∈ [1, m], and n and m are chosen
as desired. The purpose of bjk is to let experienced physicians with a large number of
patients have some advantage compared to physicians who treated a small number
of patients for condition k. The value of m determines how much the extra factor bjk

influences the final score, and we propose to use a non-linear scale for the value of bjk.
Specifically, let (t1 = 0, t2, . . ., tq) and (b1, . . ., bq), q ≤ m, be two increasing sequences
which will determine the value of bjk. We set bjk = bi (i.e., place wjk in bucket i) if the
value of wjk is between thresholds ti and ti+1, i.e., ti ≤ wjk < ti+1 if ti+1 exists. The
values of ti’s and bi’s can be set to any meaningful numbers as long as the sequences
are increasing and bq ≤ m. Since the appropriate choice is not only disease dependent,
but location dependent as well, we leave it up to the community to determine the bins.
For example, we can have n = 10, m = 5, b = (1, 2, 3, 4, 5), and t = (0, 3, 5, 10, 20). This
ensures that physicians who treated a sufficient number of patients will have the same
value for bjk (and thus the average ranking differentiates them), while physicians with
a very limited number of visits will have a lower value of bjk, and thus have to be rated
more highly in order to rank ahead of their more experienced colleagues.

Given the above, a user who would like to learn a recommendation for condition k
first obtains a list of the physicians sorted according to their scores sjk (or a sorted list
of top physicians only). We note that this outcome sufficiently hides individual con-
tributions, where the physicians’ ratings and the number of patients treated remain
private. As secure multi-party techniques are relatively expensive, we suggest having
the computational servers periodically compute the recommendations for all condi-
tions and make that information publicly availably. In this way a patient interested in
a specific condition is instantly able to obtain the desired recommendation. This also

2Other mechanisms exist as well, but are of limited applicability here.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:9

has the added benefit of hiding the recommendation of any individual, as the periodic
update, if spaced appropriately, will include a large number of new contributions from
many patients. For example, the rankings can be recomputed once a month or less
frequently if the number of contributions since the last update is not sufficiently high.

The system’s design also allows patients to determine a custom rating based on a
combination of conditions (where the combination is to remain private). In such cases,
we first note that the number of diseases in a combination will be small since pa-
tients will seek separate specialists for unrelated conditions rather than one physician
who can effectively treat all of them. Let u be the maximum number of conditions in
commonly queried combinations (e.g., u = 3). Then the following options can be imple-
mented within SPA: (i) the servers precompute and make available recommendations
for each combination of ≤ u conditions for their choice of importance weights or (ii) the
servers precompute recommendations for common combinations of ≤ u conditions and
compute recommendations for other combinations upon user request (note that the re-
sults cannot be saved for any subsequent user to immediately obtain since the queried
conditions are private). While the first option results in a higher load on the computa-
tional servers (as the number of all possible combinations grows rapidly, i.e., O(nu

c ) for
nc conditions), the second requires patients with non-standard queries to experience
delays. Also, combinations with non-standard weights will result in custom queries in
both cases. In addition, while the choice of the conditions in a queried combination can
be secured, the recommendation given to the querier (i.e., a sorted list of physicians) is
likely to leak some information about the conditions. Thus, precomputed recommenda-
tions where a patient can retrieve information about all conditions at once is preferred
from the patient privacy point of view.

In order to satisfy the reliability requirements of the framework, abuse of the sys-
tem can be prevented using the following mechanisms. Each contributing patient can
be required to submit only one rating rijk at a time. This allows the computational
servers to detect an abnormal number of contributions from a particular user, treat
the contributions as malicious, and disregard them. Additionally, when a patient sub-
mits a rating, she will have to prove that the submission is well-formed. This can be
done through Zero-Knowledge Proofs of Knowledge (ZKPK), which prove the validity
of certain statements over secured data without revealing any other information. In
this application, the patient uses ZKPKs to prove that (i) all submitted pairs (rijk , wijk)
except one are set to 0, (ii) there is weight wijk of value 1 and the corresponding rating
rijk is in the range [1, n]. ZKPKs for all necessary functions such as OR, AND, equal-
ity, and a range are known and can be combined to prove the overall statement. We
provide additional details in section 5.3.

While designing a specific system using SPA, it is important to realize that there is a
trade-off between privacy and computational overhead on one side and data reliability
on the other. That is, instead of submitting

∑np

i=1 nj pairs, where np is the number
of physicians (who are numbered 1 through np) and nj is the number of conditions
physician j treats, to contribute a single recommendation, a patient might choose to
submit fewer pairs for a subset of physicians and/or conditions. This might allow the
computational servers to reduce the patient’s physicians or conditions to a smaller
set, but reduces the patient’s computational overhead of sending a rating. This will
also allow the computational servers to more effectively detect abuse of the system by
dishonest users who repeatedly submit ratings for the same physician.

4.2. Anonymous Contributions Architecture ( ACA)

In this architecture, unlike the prior approach, the patients submit their ratings in
the clear. In order to ensure that there is no connection between a patient’s identi-
fying information and her contribution, all submissions are made anonymously. That

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10

is, patients use a system for anonymous routing to submit their contributions to the
entity that receives all patient ratings and publishes information about them. Such
anonymizer systems are readily available today (see, e.g., Tor anonymity network [Tor]
and other anonymizer services and proxies such as [Anonymizer, Inc.; ShadowSurf],
among many others).

With this design, we can achieve the privacy requirements listed in Section 3. That
is, the privacy of a patient who submits a rating rijk for physician j and condition k
is not compromised because the recommendation system service learns no informa-
tion about the user’s identity and thus is unable to make any inferences about the
health history of any particular patient. The service then processes all received rat-
ings and makes aggregate information about the ratings available to all parties to
use. This means that the privacy of all patients who would like to use the system is
protected, as they can download the entire published table (i.e., information about all
conditions) posted by the recommendation service and then disregard any irrelevant
data. Alternatively, such users can use an anonymizer and retrieve only information
about specific conditions from the published data.

To make the recommendation data available to the patients at least as flexible as
in SPA, we suggest that the recommendation system service publishes the following
information: for each physician j and condition k publish a pair 〈rjk/wjk, bjk〉, where
as before wjk is the number of patients that contributed their rankings for physician
j and condition k, rjk/wjk =

∑
i rijk/wjk is the average rating for physician j and

condition k, and bjk is the bucket value for wjk. Availability of such data satisfies the
functional requirements of Section 3. Furthermore, the data provides more informa-
tion than the recommendations in SPA, as not only the ordering of physicians by their
scores is known, but various other relevant information (e.g., the differences between
the scores) can be computed as well. In particular, a patient can compute a recommen-
dation for any combination of conditions using custom weights.

With respect to the reliability requirements, the anonymous nature of a patients’
submissions can make the system prone to abuse. That is, dishonest users might at-
tempt to influence a physician’s overall rating by submitting bogus or repeated val-
ues. While it is trivial to defend against the former (i.e., all ratings are submitted in
the clear, thus out-of-the-range or malformed values are immediately discarded as in-
valid), dealing with the latter requires architectural support. To aid this issue, it can
be beneficial to split the recommendation system service into two entities, called the
Certification Authority (CA) and the Tabulating Authority (TA)3. The responsibility of
the CA is to manage users, while the responsibility of the TA is to collect, process, and
publish recommendation data.

The CA first registers users, issuing them anonymous credentials at the time of
registration. Thus, users are required to register prior to submitting ratings to the TA.
A registered user can then send her rating to the TA and authenticate the submission
using her anonymous credentials issued by the CA. We note that the authentication is
anonymous in the sense that the only information revealed is that the user has been
registered with the CA and is authorized to submit a contribution. In particular, the
TA (or any other entity) is unable to tell whether any two contributions have been
made by the same or different users.

By using a type of anonymous authentication which allows for enforcement of access
control policies, abuse of the recommendation system service can be mitigated. That is,
if at the time of submission the TA verifies that the (anonymous) user is authorized to
submit a rating for physician j and condition k, the contribution will be accepted. For
this type of system, we consider two policies: (i) a bound on how many ratings a user

3As with multiple entities in SPA, it is recommended the CA and TA are run by different organizations.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:11

ratings
validation

periodic

(if needed)

patient

published
data

registration

anonymizer

TA

CA

periodic
encrypted

anonymously
update

authenticated

Fig. 2. Submission of user ratings and recommendation computation in ACA architecture.

is authorized to submit for a single (physician j, condition k) pair and (ii) a bound on
the total number of submissions by a user. This will ensure that a single user cannot
alter the aggregate score of a particular physician beyond a normal use and that a
single user cannot have a significant impact on the system as a whole. We develop two
realizations of ACA that support enforcement of both of these policies. The first is based
on one-time-use credentials that the TA can update and reissue after each submission
and which use new zero-knowledge proof techniques (detailed in Section 6.2) and the
second is based on the novel use of electronic cash, which has a natural support for a
distributed TA (detailed in Section 6.3).

Finally, because new users normally contribute for the first time shortly after their
registration, we would like to prevent the CA from making correlations between the
users that register and the content of the messages transmitted to the TA over the
network. For that reason, we assume that the TA has an encryption key and all contri-
butions sent to the TA will be encrypted with that key. Furthermore, to prevent the CA
from making similar correlations based on the updated information that the TA pub-
lishes, the updates by the TA to the published data should be infrequent, only after a
significant number of new contributions (which will include contributions by both old
and new users) has been accumulated. Note that this is not a major restriction of the
system, as a small number of updates are unlikely to drastically affect the ratings of
the physicians. Also, in the event that a malicious party conspires with a number of
users or is able to obtain background knowledge about some of the ratings, the party
will be able to reduce the set of observed changes in rankings between periodic updates
to the remaining populace of the system.

The ACA architecture is depicted in Figure 2. A contributing patient interacts with
the CA only during registration and at that time she is issued anonymous credentials.
The rest of interaction occurs with the TA (which can be distributed and consist of
multiple entities), and any querier would need to access only the published data. De-
pending on the realization of this architecture, there may or may not be direct periodic
communication between the CA and the TA to validate credentials used in patients’
submissions. Recall that the functional requirements of the system are met with this
architecture since, given the published scores, a querier will be able to determine a
ranked list of physicians for both individual conditions and a combination of condi-
tions using weights of his choice.

5. REALIZATION OF SECURE PROCESSING ARCHITECTURE

In this section we describe our particular realization of SPA. We first present the nec-
essary background information, then define the full protocol, and conclude the descrip-
tion with a system implementation.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12

5.1. Preliminaries

As previously mentioned, techniques for implementing data protection in SPA include
homomorphic encryption and secret sharing. In our solution, we use a semantically
secure additively homomorphic public key threshold encryption scheme as a build-
ing block. The additive homomorphic property of such encryption schemes means that
when one multiplies two encrypted messages, the result is a ciphertext that corre-
sponds to an encryption of the sum of the messages. This property also implies that
an encrypted message can be multiplied by a constant c by raising the ciphertext to
power c. Semantic security means that no information about the underlying text can
be learned from a ciphertext.

Recall that in a threshold public key encryption scheme anyone can encrypt using
a public key, but decrypting values requires at least t out of p computational servers
(for some t ≤ p) to combine their keys to decrypt the value. In order to provide more
security, we require the ability to generate the key material used in homomorphic
encryption (i.e., the encryption and decryption keys) in a fully distributed manner. This
requirement removes the need for a trusted party who has access to more data (i.e.,
the full key material) than anyone else. This is especially important in the current
application, as this means that the security of each patient’s data is not dependent
upon any one party.

One scheme that encompasses the above properties is the Paillier cryptosys-
tem [Paillier 1999], which we use in our implementation. That is, the Paillier cryp-
tosystem is a semantically secure additively homomorphic encryption scheme, which
can be used as a threshold scheme [Fouque et al. 2000; Damgård and Jurik 2001]
whose key generation can be performed in a fully distributed manner [Boneh and
Franklin 1997; Damgård and Koprowski 2001].

In what follows, we use [a] to denote an encrypted value of a. With the techniques
we employ, some operations on encrypted values (such as addition and multiplication
by a constant) can be performed locally, while other operations (such as multiplication
or comparison of encrypted values) require interaction of the computational servers.
Furthermore, comparison requires the operands to be available in bitwise form, which
means that an encrypted value first needs to be transformed into encryptions of its bits.
We use [a]ℓB to denote encryption of the individual bits of a, i.e., [a]ℓB = 〈[a0], . . ., [aℓ−1]〉,

where ai ∈ {0, 1} for i = 0, . . ., ℓ − 1 and a =
∑ℓ−1

i=0 ai2
i (the length ℓ is explicit in the

notation to permit a variable-length representation). It follows that our solution will
need to rely on the following sub-protocols from the literature (see, e.g., [Hoens et al.
2010a; Schoenmakers and Tuyls 2006; Bunn and Ostrovsky 2007]):

— MULT: a protocol that, on input [a] and [b], produces [a ·b]. This is the simplest protocol
that in our setting relies on additive splitting and additively homomorphic encryp-
tion. At high level, the idea consists of splitting the (encrypted) second operand [b]
into random additive shares bi such that b =

∑
i bi and making share bi available to

the corresponding server i in the clear. Multiplication is performs by each server on
its own share using the homomorphic properties of the encryption scheme to obtain
[a · bi], after which the server assemble the product [a · b] in the encrypted form.

— BIT-LE: a protocol that, given [a1]ℓB and [a2]ℓB outputs an encrypted bit [b], where
b = 1 iff a1 ≤ a2. For this functionality, we rely on the implementation described
in [Hoens et al. 2010a], in which the bit b is computed in the encrypted form from the
(encrypted) bits of a1 and a2 by using a formula that consists of a number of additions,
multiplications, and XOR operations. Since the XOR operation can be realized in
terms of arithmetic operations as x ⊕ y = x + y − 2xy, the overall complexity of this
protocol is dominated by O(ℓ) multiplications MULT.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:13

— BITS: a protocol that, on input [a] and ℓ, produces encryption of ℓ least significant
bits of the underlying plaintext of [a], i.e., [a]ℓB. In this work we utilize the protocol
from [Schoenmakers and Tuyls 2006], which has complexity proportional to ℓ. The
protocol relies on the ability to multiply and invert encrypted values, generate ran-
dom encrypted bits, and add and compare bit-decomposed values in encrypted form.

5.2. Protocol

In the description of the protocol, for simplicity of presentation, we assume that physi-
cians 1 through np are used to produce recommendations for any given condition k (in
practice, some physicians with specialization far from condition k can be eliminated).

At a high level, the computation in the protocol proceeds as follows: First, for each
physician we compute her score sjk from the corresponding (aggregate) rating (rjk,
wjk). This means that the weight wjk needs to be compared to all thresholds t1, . . ., tq

as ti
?
≤ wjk. After the results of the comparisons are available in the encrypted form as

a binary vector of length q, we set the encryption of bjk to the sum of computed bits in
the vector, where bit i is weighted by the value bi−bi−1 (and by bi when i = 1). Because
the computed vector will always consist of a number of 1’s followed by a number of 0’s
(if any), this approach computes the value of the bucket bjk correctly. This mechanism
minimizes the amount of interactive computation, and thus the amount of time, for
the computation.

As a result of this step, we store sjk as a numerator-denominator pair ([s′jk], [wjk]) =

([rjk + bjkwjk], [wjk ]). This representation allows us to finish the computation and sort
the scores without performing expensive division operations. That is, to compare the
scores of two physicians j1 and j2, we compare s′j1kwj2k to s′j2kwj1k.

The above computation raises an interesting technical point in that the comparison
must be performed correctly even if one or both of the scores have no contributions and
are therefore 0. That is, if a physician j1 has no ratings for condition k, both rj1k and
wj1k are 0 (and thus s′j1k = 0). According to the above comparison method, when the

score of such a physician is being compared to the score of another physician who has a
patient ratings, both values being compared will become 0, and the resulting outcome
(as defined by the comparison protocol) is random. To ensure that the result of such
comparisons is always correct, we modify the computation to add a flag which indicates

whether wjk is non-zero. That is, the comparison becomes s′j1kwj2k + non-zero(wj1k)
?
≤

s′j2kwj1k+non-zero(wj2k). The output of non-zero(wjk) is true (or 1) iff the OR of the bits

of wjk is 1. In the protocol, we denote this additional function by OR([wjk]ℓB), which will
produce an encrypted bit. Notice that the function is not difficult to implement using
a number of multiplications and additions.

An important observation is that this modification does not affect other comparisons
in the system, i.e., when physicians j1 and j2 have ratings for condition k, s′j1kwj2k+1 ≤

s′j2kwj1k +1 iff s′j1kwj2k ≤ s′j2kwj1k. Similarly, when both physicians have no ratings, the

result is unchanged.
In the protocol, we use various optimizations to ensure that its runtime is as low

as possible. In particular, we use varying-length representation in bit decomposition
BITS and comparison BIT-LE operations. Let ℓw denote the maximum length of counts
wjk, ℓs denote the maximum length of scores sjk = rjk/wjk + bjk (i.e., if the ratings
are in the range [1, n] and the bucket values in the range [1, m], ℓs = ⌈log2(n + m)⌉),
and ℓ = 2ℓw + ℓs the maximum length of values used in the computation (i.e., for
representation of s′j1kwj2k). We expect a normal choice of these parameters to be: ℓ = 32,
ℓw = 13, and ℓs = 6.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14

To optimize the performance of comparing weights wjk to the thresholds ti, notice
that the weights wjk can generally be longer than a value ti, but by considering only
log2⌈ti⌉+1 bits we can always compare the values correctly. To form the (log2⌈ti⌉+1)-bit
representation of wjk, we leave the log2⌈ti⌉ least significant bits of wjk unchanged and
replace the remaining bit with the OR of the remaining ℓw − log2⌈ti⌉ most significant
bits of wjk. Thus, when the length of wjk is greater than the length ti, the optimized
comparison will always result in wjk being larger than ti, otherwise the comparison
proceeds as usual. When considering performance, note that such shortened repre-
sentations of wjk for the lengths of ti’s can be computed using O(ℓw) multiplications,
regardless of the number of thresholds q.

The above optimization due to the variable-length representations allows us to re-
duce the runtime of the protocol by at least 40%. We are now ready to present the
protocol.

RANK(k, ([r1k], [w1k]), . . ., ([rnpk], [wnpk])):

(1) The computational servers set δ1 = b1 and δi = bi − bi−1. For j = 1, . . ., np they
compute in parallel:
(a) execute [wjk]ℓwB ← BITS([wjk], ℓw).
(b) using [wjk]ℓwB compute shortened representations [wjk ](log

2
⌈ti⌉+1)B of wjk for

i = 2, . . ., q and also compute [fjk] = OR([wjk]ℓwB).
(c) set [c1] = [1] and execute [ci]← BIT-LE(ti, [wjk](log

2
⌈ti⌉+1)B) for i = 2, . . ., q.

(d) locally compute [bjk] = [
∑m

i=1 ciδi] =
∏m

i=1[ci]
δi .

(e) execute [d]← MULT([bjk], [wjk]) and locally set [s′jk] = [sjk + d] = [sjk] · [d].

(2) The servers sort all tuples ([s′jk], [wjk], [fjk]) for j = 1, . . ., np using a suitable
sorting algorithm and output the result, where each comparison is performed on
([s′xk], [wxk], [fxk]) and ([s′yk], [wyk], [fyk]) as follows:

(a) execute [vx]← MULT([s′xk], [wyk]) and [vy]← MULT([s′yk], [wxk]).

(b) locally compute [v′x] = [vx] · [fxk] = [vx + fxk] and [v′y] = [vy] · [fyk] = [vy + fyk].
(c) execute [v′x]ℓB ← BITS([v′x], ℓ) and [vy]ℓB ← BITS([v′y], ℓ).
(d) execute [z]← BIT-LE([vx]ℓB, [vy]ℓB) and open the value of z.

In the above protocol, step 1 corresponds to computing ratings for each physician-
condition pair. In particular, we first bit-decompose each weight wjk in step 1(a), com-
pute shortened representations of each bit-decomposed wjk for performance reasons
(by ORing the most significant bits which are being eliminated), as well as store the
OR of all bits of wjk in fjk in step 1(b). The shortened representations allow us to faster
compare (bit-decomposed) weights wjk to the thresholds ti in step 1(c), from which we
compute the appropriate bucket values bjk in step 1(d), and by the end of step 1 form
ratings in the form 〈s′jk, wjk, fjk〉, where s′jk = sjk + bjkwjk and fjk = non-zero(wjk).

Step 2 sorts all rating tuples for each physician-condition pair, where a rating is first
transformed into the form s′jkwjk + non-zero(wjk) = (rjk + bjkwjk)wjk + non-zero(wjk)

during steps 2(a) and 2(b), bit decomposed in step 2(c), and compared to other rat-
ings in step 2(d). The resulting ordering of ratings (i.e., physicians’ rankings) is made
public.

Note that in the above protocol the exact sorting algorithm is not defined. For our
implementation we chose merge sort due to its simplicity, speed, and ease of being
parallelized. The results are presented in the next section.

It is not difficult to show the security of the RANK protocol based on a standard def-
inition of secure multi-party computation (see, e.g., [Goldreich 2004]). In particular,
security in this context means that a protocol execution does not leak any information
about the data being processed other than what can already be deduced by a partici-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:15

pating party from its inputs and outputs alone, as intended. In our case, the security
follows from the fact that only secure building blocks are used and the composition
theorem [Canetti 2000] that states that composition of secure building blocks results
in security of the overall construction. Because the computational servers carrying out
the protocol can be assumed to comply with their prescribed functionality, it is suffi-
cient to use building blocks secure in the semi-honest model (in which the servers fol-
low their prescribed computation, but might try to learn additional information about
the data they handle). This would significantly improve performance of the solution
compared to the setting where the computational parties are fully malicious (and thus
can arbitrarily deviate from the protocol or disrupt the computation).

To permit users to obtain recommendations for a combination of conditions K, we
briefly discuss the modifications to the protocol above for two options: (i) the servers
pre-compute the recommendation for conditions K using their choice of importance
weights vi’s for the individual conditions in K and (ii) a patient asks the servers to com-
pute a custom recommendation for her choice of conditions and corresponding weights
which are to remain private. In the first case, the servers perform step 1 of the above
protocol as specified for all physicians and all conditions in K. Then for each physician
j with scores ([s′jki

], [wjki
]) for ki ∈ K, they compute the combined score ([s′jK ], [wjK ])

as wjK =
∏

ki∈K wjki
and s′jK =

∑
ki∈K(vis

′
jki

∏
kx∈K,i6=x wjkx

) in the encrypted form.

Note that this computation uses only multiplications and additions, but results in val-
ues of larger length, which has an impact on the performance of sorting in the protocol.
Given such scores, step 2 of the protocol is then carried out unchanged using larger bit
length.

To implement case (ii), the patient encrypts her weights vi for conditions ki in K.
If the patient does not wish to reveal any information about the conditions in K, she
can include all possible conditions and assign an importance weight of 0 to the irrel-
evant conditions. This will incur a significant overhead on the computational servers
and unbearable wait time on the patient. To reduce the runtime, the patient instead
can use only a few extra conditions in K to hide the ones in which she is interested.
While this significantly reduces the computational overhead, this approach also leaks
information about the patient’s conditions of interest. (Note that the query result also
may leak information.) The rest of the computation then proceeds as with option (i)
with the exception that the weights vi are processed encrypted.

5.3. Abuse Detection

Prior literature provides efficient zero-knowledge proofs of knowledge (ZKPK) for a
variety of statements, with several efficient proofs for encrypted values and Paillier
encryption scheme in particular (see, e.g., [Damgård and Jurik 2001; Baudron et al.
2001; Cramer et al. 2001; Lipmaa et al. 2002]). Camenisch and Stadler [Camenisch
and Stadler 1997] introduced notation for various proof of knowledge and we adopt
their notation to our context. For example, we use

PK{(α, β) : A = [α] ∧B = [β] ∧ (α = β)}

to denote a ZKPK of knowledge and equality of the plaintexts corresponding to the
ciphertexts A and B. The variables in the parentheses are not known to the verifier, but
certain statements about them are being proved in zero knowledge. For the purposes
of this work, we rely on the following ZKPKs from prior literature:

— Proof of plaintext knowledge, denoted PK{(α) : A = [α]}. Such proofs have been
developed in [Damgård and Jurik 2001; Baudron et al. 2001].

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16

Table I. Comparison of ZK shuffle computation and communication cost for u elements for use with
Paillier encryption, where computation is measured in modular exponentiations and communication is
measured in bits.

Scheme
Prover’s Verifier’s Communication

Communication
work work rounds

[Peng et al. 2005] 7u 6u 4 12uκ1

[Groth and Ishai 2008] 8u 7u 3 4u
2/3

κ1

[Peng and Bao 2010] 2uκ2 uκ2 κ2 2uκ1κ2

[Groth 2010] 3u 2u 4 4uκ1

— Proof that a ciphertext encrypts a given value, denoted PK{: A = [v]}. This proof
can be executed as a proof of plaintext knowledge above followed by opening the
plaintext value or by revealing the random coins used during ciphertext generation.

— Proof that a ciphertext encrypts one value from a given set, denoted PK{(α) : A =
[α]∧α ∈ S}. Such proofs can be found in, or follow from the techniques of, [Damgård
and Jurik 2001; Baudron et al. 2001].

— Proof of a random permutation (shuffle) of a set of ciphertexts, denoted PK{(π) :
B1 = π(A1), . . ., Bu = π(Au)}. During the shuffle, the ciphertexts are re-randomized
so that it is not feasible to link a ciphertext from the initial set to a ciphertext in the
permuted set. Such proofs have been developed in [Peng et al. 2005; Groth and Ishai
2008; Peng and Bao 2010; Groth 2010] among others. [Groth and Ishai 2008] provide
the first solution with a communication complexity that grows sub-linearly with the
number of ciphertexts in the shuffle. [Peng and Bao 2010] provide the first solution
to achieve perfect zero-knowledge. We provide a comparison of computation and
communication costs of selected solutions from the literature for Paillier-encrypted
values in Table I. The costs in the table are functions of the size u of the set being
permuted, the work is measured in modular exponentiations, and the communica-
tion cost shows the dominating term. In the table, κ1 denotes a security parameter
that determines the ciphertext length (i.e., the RSA modulus length), and κ2 is a
correctness parameter for interactive proofs (where applicable), where the probabil-
ity that the result is incorrect is 1/2κ2. For Paillier encryption, each ciphertext size
is 2κ1. While [Groth 2010] introduces several shuffling schemes, we list in the table
the scheme for shuffling known contents.

The overall statement that a user will need to prove in zero knowledge when sub-
mitting a rating rijk in our solution is:

PK{(α, π) : A1 = [α] ∧ α ∈ [1, n] ∧A′
1 = [1] ∧A2 = [0] ∧A′

2 = [0] ∧ . . . ∧Au = [0] ∧

∧A′
u = [0] ∧ (B1, B

′
1) = π(A1, A

′
1) ∧ . . . ∧ (Bu, B′

u) = π(Au, A′
u)}

Here u =
∑np

i=1 nj and the ciphertext pairs (B1, B
′
1), . . ., (Bu, B′

u) are submitted as the
user’s rating. That is, the user prepares two sets of ciphertexts (A1, A

′
1), . . ., (Au, A′

u)
and (B1, B

′
1), . . ., (Bu, B′

u). She then shows that A1 corresponds to an encryption of a
value in the range [1, n] (i.e., the user’s rating rijk), that A′

1 encrypts 1 (i.e., the weight
wijk), and that the remaining ciphertexts encrypt 0. The user then randomizes and
permutes the ciphertexts (preserving each pair) so that the pair (A1, A

′
1) is placed in

the location corresponding to physician j and condition k within the set of permuted
(Bi, B

′
i) ciphertexts and proves correctness of the shuffle. The servers use the permuted

ciphertexts (Bi, B
′
i) to update the aggregate ratings ([rjk], [wjk]) for all physicians and

conditions. Each user’s contribution thus involves work (measured in cryptographic
operations) linear in u =

∑np

j=1 nj with a low constant and can be substantially lowered
if less stringent privacy guarantees are acceptable to the user.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:17

5.4. Implementation

To test the feasibility of the RANK protocol, which is periodically executed by the com-
putational servers, we implemented it in Java using Paillier encryption with a 1024-bit
key. Java was chosen due to its large number support and the ease of implementing
distributed algorithms. All sub-protocols (i.e., BITS, MULT, BIT-LE) were implemented
as in [Hoens et al. 2010a].

As the computations were distributed, we simulated each computational server as
its own PC on a 100Mb LAN. The computers used were Dell workstations with 3.20
GHz Pentium 4 processors and 1 GB of memory. To make the tests more general, and
applicable to a wider range of settings, we tested the computation separately in the two
steps of the RANK protocol. By presenting timing results for each step individually we
provide the ability to estimate performance of the protocol on a variety of different
parameters (e.g., number of bits in each ti, number of buckets, etc.).

To test step 1, we varied the length of bucket thresholds ti used in determining the
value of bjk. Specifically, we timed step 1 using thresholds of size 2, 5, 10, 15, and
20 as measured in bits. Note that the higher threshold sizes on this list are present
only to demonstrate how the techniques scale to larger values, as they are unlikely
to be applicable to a recommendation system in practice. We also varied the number
of physicians in the experiments; using 5, 10, 20, 50, 75, and 100 physicians. Given
this, we provide a good estimate as to how long it will take to compute the scores for
a specific number of physicians given an arbitrary number of buckets (with thresholds
of varying sizes).

To test step 2, we timed how long it took to sort the various number of physicians
when each was given a randomly assigned score and weight. The length ℓ = 32 was
used for bit decomposition and comparison. Combining this with the results obtained
from the timing of step 1, we can then estimate how long it will take to compute the
full protocol.

The data used when measuring the timing results was simulated. The use of sim-
ulated data does not adversely affect the timing results obtained, as the performance
only depends on (i) the number and size of thresholds t and (ii) the performance of the
sorting algorithm (as measured in the number of comparisons). The former is inde-
pendent of the data, and the sorting algorithm is not dependent on how the actual
underlying data was obtained. Instead the number of comparisons required is the
most important factor when timing the protocol. To ensure that the simulated data
accurately reflected a real world scenario, we generated a sorted list of unique rat-
ing/weight pairs. We then permuted this list randomly, ensuring that the sorting algo-
rithm had to perform the average number of comparisons to sort the list. This process
was then repeated to determine the average time required to sort the list.

The results for step 1 are presented in Table II. In this table the number of physi-
cians is represented vertically, while the number of bits in threshold ti is represented
horizontally. To estimate the performance for thresholds t, one first chooses the row cor-
responding to the number of physicians (e.g., 5). One then chooses the columns which
correspond to the number of bits in each ti. Thus, if buckets are defined by thresholds
3, 16, 31, 100, 520, and 1000, the columns selected correspond to 2, 5, 5, 7, 10, and 10 bits,
respectively. Note that this example is given for demonstration purposes only and is
not meant as suggested values for ti. Given these columns, the approximate timing is
obtained by adding the denominator for the first threshold, and the numerator for the
remaining thresholds. The denominator represents timing for running step 1 of the
protocol using a single threshold of the specified size; and the numerator corresponds
only to a single comparison with a threshold (of the specified size) in step 1(c) of the
protocol. Thus in our example, we have 524 + 381 + 381 + 428 + 499 = 2212 seconds

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18

Table II. Timing results for step 1 of the RANK protocol. The denominator denotes the time required for computing
the entire step 1 with a single threshold of specified size. The numerator denotes the time required to perform an
additional threshold comparison of the specified size in step 1(c).

Number of The length of bucket threshold value in bits
physicians 2 5 7 10 15 20

5 310 / 524 381 / 594 428 / 641 499 / 713 621 / 835 742 / 955
10 618 / 1047 765 / 1194 864 / 1294 1013 / 1442 1265 / 1693 1519 / 1948
20 1238 / 2094 1536 / 2393 1738 / 2594 2041 / 2897 2554 / 3410 3079 / 3934
30 1855 / 3139 2304 / 3588 2608 / 3892 3064 / 4348 3840 / 5124 4633 / 5917
40 2477 / 4191 3078 / 4793 3484 / 5199 4094 / 5809 5132 / 6846 6188 / 7901
50 3094 / 5237 3848 / 5991 4356 / 6499 5119 / 7263 6418 / 8561 7741 / 9884
60 3714 / 6287 4619 / 7192 5229 / 7802 6147 / 8720 7704 / 10277 9297 / 11870
70 4334 / 7335 5392 / 8392 6103 / 9103 7176 / 10176 8995 / 11996 10854 / 13854
80 4956 / 8385 6164 / 9594 6977 / 10407 8206 / 11635 10281 / 13710 12408 / 15838
90 5575 / 9433 6935 / 10793 7850 / 11708 9234 / 13092 11567 / 15425 13965 / 17823
100 6199 / 10488 7712 / 12001 8729 / 13018 10265 / 14554 12861 / 17150 15524 / 19813

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  10  20  30  40  50  60  70  80  90 100

T
im

e 
(s

)

Number of physicians

Time for Step 2
Time for Step 1 and Step 2

Fig. 3. Timing results for steps 1 and 2 of the RANK protocol.

(approximately 36 minutes) for step 1 (using the same thresholds for 100 physicians
requires approximately 12 hours).

In practice, we suggest using thresholds t = (0, 3, 5, 10, 20). While a practicing physi-
cian is likely to treat a significantly larger number of patients, the number of users
who contribute to a recommendation system is likely to be significantly lower. There-
fore, even a few patient ratings indicate significant experience in treating a particular
condition. In this example, the largest threshold uses only 5 bits.

The performance of step 2 is presented by the lower curve in Figure 3. We see that
the amount of time spent sorting 100 physicians is quite high (approximately 1 day).
Note, however, that this computation needs to be done quite infrequently (e.g., semi-
annually or quarterly), as the score for a doctor is not expected to be highly volatile.
As previously mentioned, this also has the added benefit of providing more security for
each of the users, as the wider the spacing between updates, the less likely that any
one recommendation will be recognized.

The upper curve in Figure 3 shows the results of the overall RANK protocol. The
difference corresponds to the runtime of step 1 using the 5 suggested threshold values.
As we can see from this figure, the bucket computation time decreases in significance
when compared to the amount of time used for sorting as the number of physicians
grows. This is to be expected, as the sorting algorithm requires more comparisons than
the bucket computation.

Finally, we note that while Paillier encryption is well-known and commonly used
in secure multiparty computation protocols, recent progress shows that additively ho-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:19

momorphic encryption schemes can result in significantly faster performance. In par-
ticular, [Damgård et al. 2008b; 2008a] provide an encryption scheme with shorter ci-
phertext size and faster encryption, decryption, and operations on ciphertexts. The
scheme supports plaintext of small size and was originally developed for computing
on encrypting bits. [Blanton and Gasti 2011], however, used the scheme for a general-
purpose computation (using the plaintext size ℓ comparable to the values used in this
work) and showed a performance gain by about an order of magnitude on average com-
pared to Paillier encryption. A threshold version of the scheme was not provided by the
authors, but it shows the feasibility of significant computation speedup of this type of
computation in the near future.

6. REALIZATION OF ANONYMOUS CONTRIBUTIONS ARCHITECTURE

Similar to the previous section, here we describe our realization of ACA. We first
present the background information, and then proceed with a description of two possi-
ble implementations of this architecture.

6.1. Preliminaries

6.1.1. Signature with protocols. For this architecture, we make use of Camenisch-
Lysyanskaya (CL) signatures, or signatures with protocols, such as [Camenisch and
Lysyanskaya 2002; 2004]. As customary for signature schemes, a signature scheme
consists of key generation, signing, and verification algorithms, which we define at
high level as follows:

— SETUP: on input a security parameter κ, creates and outputs a public-private key
pair (pk, sk).

— SIGN: on input message m and private key sk, produces signature sigsk(m).
— VERIFY: on input message m, public key pk, and signature sigsk′ (m′) outputs 1 iff

sigsk′ (m′) is a valid signature on m under the corresponding private key sk.

What, however, distinguishes the above CL schemes from ordinary signature schemes
is that they come with additional protocols. Using the schemes above, it is possible to
obtain a signature on a committed message m without disclosing it to the signer. In
this case, a commitment to message m, denoted com(m), should be such that it hides
the value of m (hiding property), but given com(m) it is infeasible to create another
message m′ 6= m that matches the commitment com(m) (biding property). Pedersen
commitment scheme [Pedersen 1991] is commonly used with CL signatures for this
purpose. We define the ability to sign committed messages by overloading the signing
algorithm with an additional capability as follows:

— SIGN: on input commitment com(m) and private key sk, produces signature sigsk(m).

To be more precise, in this type of commitment information about m is uncondition-
ally (or information-theoretically) protected, which means that that regardless of how
many values an adversary tries, she will not be able to learn information about the
message included in the commitment. This is achieved by using randomness that pro-
tects the value of m. For that reason, a commitment to message m can be expressed
as com(m; r), where r explicitly defines the randomness used to form the commitment.
Then during signing this randomness is used to form the signature, which more cor-
rectly should be defined as a signature on two messages, m and r, where as before r
protects m. More generally, a signature can be formed on any agreed upon number of
messages m1, . . ., mk, and we denote the corresponding signature by sigsk(m1, . . ., mk).
Similarly, one can commit to several messages m1, . . ., mk in a single commitment
which we denote by com(m1, . . ., mk; r). Then by invoking the signing algorithm, one
can produce a signature sigsk(m1, . . ., mk, r) from that commitment. Because in our

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20

case, we always want the messages in a signature to be unconditionally protected (so
that the signature can be consequently used without leaking any information about
the values that it contains), we assume that the last message in a signature is always
a random value and is not explicitly included in our notation. In other words, we, for
instance, use notation sigsk(m1, m2) to denote a signature on three messages m1, m2,
and implicit r. Similarly, we omit randomness from commitment notation.

Using these signature schemes, it is also possible to prove knowledge of a signature
on a message in zero knowledge (i.e., without disclosing any information about the
message itself or revealing the original signature). We denote this functionality using
the notation for ZKPKs as follows:

PK{(α) : A = sigsk(α)}

Similarly, for a signature on multiple messages, we use notation

PK{(α1, . . ., αk) : A = sigsk(α1, . . ., αk)}

This property is achieved by randomizing an existing signature in such a way that the
randomization process does not invalidate its verifiability. This is necessary to ensure
that each time a signature is used in a ZKPK, it will appear differently and cannot be
linked to the past uses of the same signature in previous invocations of the same or
different protocols. The above proof can be combined with other statements about the
message(s) contained in the signature. For instance, the statement

PK{(α1, α2) : A = sigsk(α1, αk) ∧ (α1 > 0) ∧ (α2 = 2α1)}

proves two properties of the messages contained in a signature, namely, an inequality
(or range) statement and a linear equation, solutions to both of which are known.
In fact, we utilize both range proofs and proofs of linear relationships in our solution
using the techniques of, for instance, [Boudot 2000] and [Camenisch and Stadler 1997],
respectively.

In this context, the term anonymous credentials is used to refer to a signature is-
sued by a certain authority on specific attributes that will allow the signature owner
to anonymously prove certain statements about her attributes and obtain privileges
based on such credentials.

In what follows, whenever the key is understood from the context, we omit it from
the notation and, for instance, use sig(m) instead.

6.1.2. Other tools. In our solution we also utilize Tor anonymizing network [Tor], which
patients use to submit their contributions anonymously. In Tor, a message is routed
through a number of participating hosts in such a way that each host knows only from
what machine the message arrived and to which it should be sent next, but no other
information (i.e., only the first Tor host will have information about the source and only
the last one about the destination). This is achieved by multiple layers of encryption
which are removed as the message moves through the network.

In ACA, the patients submit their information in an encrypted form. The easiest
way to achieve this is to employ standard tools such as the widely used SSL/TLS
suite [Dierks and Allen 1999; Dierks and Rescorla 2006; 2008]. Therefore, we assume
that the TAs support the means of establishing secure channels via SSL which the
contributing patients can use.

6.2. Solution based on Anonymous Subscriptions

6.2.1. Description of the technique. The work of [Blanton 2008] describes a mechanism
for anonymous online subscriptions that relies on anonymous credentials and miti-
gates abuse of anonymity. While anonymous credentials based on CL signatures can

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:21

be used to enforce proper access control (e.g., by verifying the type of subscription and
the fact that a subscription’s expiration date is in the future), they are prone to abuse
by dishonest parties in that copies of the same subscription are valid credentials them-
selves which cannot be identified or linked to each other. [Blanton 2008] proposed a
mechanism in which chained one-time credentials are used for anonymous access. The
idea is that, at the registration time a user obtains a CL signature on credentials as
usual, but the signature also contains a randomly chosen message not known to the
server. At the time of access, the user reveals that message to the server, who verifies
that it has not been used before and verifies (in zero-knowledge) other credentials of
the user. If the verification succeeds, the server grants the user access and reissues
the anonymous credentials in the form of its signature on a new randomly chosen by
the user message (not known to the server) and the remaining user credentials. With
this design, there can be at most one chain of successful authentications to the server
per user, which means that if the user duplicates her anonymous credentials and dis-
tributes them to other user, she denies herself access to the service. We build our first
solution on this mechanism and propose novel zero-knowledge verification techniques
that significantly improve the efficiency of the solution compared to what is readily
available today.

As previously mentioned, the conditions that should be checked in our system in-
clude a bound on the number of times a participant can rank a specific physician for
a specific condition and a bound on the overall number of contributions to the system
by a participant. Because at the time of rating a patient submits in the clear both the
physician and the condition for which she is rating the physician, it is trivial to ensure
that a patient does not rate a physician for a condition that that physician does not
treat. Similarly, because the rating itself is submitted in the clear, it is easy to verify
that the rating is indeed from the correct range [1, n]. We, however, would like to en-
force the limit on the number of times an individual submits rating for physician j and
condition k that the physician in question does treat, to ensure that the physician’s
score cannot be influenced by dishonest participants. For the same reason, we enforce
the limit on the total number of contributions by a patient. We denote these two values
for individual physician-condition and total contributions by cimax and ctmax, respec-
tively.

Using anonymous credentials built from CL signatures, this can be achieved by issu-
ing to a patient a signature on counts cjk = cimax for each valid (physician j, condition
k) pair and the count for the overall number of contributions c = ctmax at the registra-
tion time. Then during each submission, the TA learns the pair (j, k) and rating rijk

that the (anonymous) patient intends to submit. Before accepting the rating, the TA
verifies that indeed both counts cjk and c in the user’s credentials are greater than 0
(without learning any other information about them) and if the check succeeds, mod-
ifies the credentials by decrementing both cjk and c by 1 (once again, without any
knowledge of their values) and accepts the rating. Because each credential can be used
only once, the patient will be forced to consequently use the modified credential thus
complying with the policy that limits both the number of contributions per physician-
condition and the number of total contributions by an individual.

This solution, however, suffers from inefficiency. In particular, a participant’s cre-
dential consist of a signature on

∑np

i=1 nj + 2 messages, where nj is the number of
conditions that a physician treats. While a signature itself is compact and of constant
size, proving that counts cjk and c are above 0, however, involves work linear in the
number of messages. In other words, the first step of proof of knowledge

PK{(α1, . . ., αu) : A = sig(α1, . . ., αu) ∧ (αi > 0) ∧ (αj > 0)}

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22

for known i and j is to show that A is a valid signature on u messages, which requires
u modular exponentiations for both the prover and the verifier. We, however, ideally
would like to have a patient’s work during submission of a single rating to be indepen-
dent of the total number of physicians and conditions in the system.

To mitigate the problem, we propose to pack several counts into a single message,
which can significantly improve the efficiency of the necessary proofs of knowledge.
To the best of our knowledge, this is the first time packing is used in signatures and
zero knowledge protocols despite the popularity of such protocols. In detail, because
each count can be represented using only a few bits and a signature can be issued
on a message of significantly larger length, we combine several counts into a single
message. Let ℓic denote the number of bits used to represent a count for an individual
physician and condition and ℓtc denote the number of bits used to represent a count for
the total number of contributions. In our case, it is sufficient to set ℓic = ⌈log(cimax +1)⌉
(i.e., to be able to represent values between 0 and cimax) and ℓtc = ⌈log(ctmax + 1)⌉,
which will be justified later. Because the maximum number of contributions by a single
user per physician and condition should be kept very low, we do not anticipate values
greater than 2 to be used for ℓic. Let q denote the maximum length of messages that
can be signed using a CL signature scheme. For typical implementations, we expect q
to range from 160 to 200. With our solution we then pack ⌊ q

ℓic
⌋ individual counts per

message, which reduces the total number of messages included into a signature by a
factor of 80–100. For simplicity, the count for the total number of contributions c is
included as an individual message.

We obtain that at high level the (ZK) proof that a patient will need to execute at the
time of submitting her rating can be expressed as follows:

PK{(α0, α1, . . ., αu) : A = sig(α0, α1, . . ., αu) ∧ (α0 > 0) ∧ (1)

(0 < αi′′ mod 2(i′+1)ℓic − αi′′ mod 2i′ℓic ≤ cimax2i′ℓic)}

where u =
∑np

j=1 nj/⌊
q

ℓic
⌋+ 2 and i′, i′′ are known to both parties. We will consequently

show how this functionality can be realized.

6.2.2. The protocol. Prior to any data submission, the CA runs the SETUP algorithm of
a CL signature scheme and announces the public parameters and key pk of the system.
Additionally, each entity serving the role of the TA publishes her public key which
enables the patients to establish secure communication channels with them. Public
parameters of the system also include values cimax, ctmax, ℓic, ℓtc, and the number of
individual counts cjk per signature message nm = ⌊ q

ℓic
⌋.

REGISTER:

(1) User U computes com(m) for a randomly chosen value m of bitlength q and sends
it to the CA.

(2) The CA produces additional messages to be included in U ’s credentials by setting
m0 = ctmax and mi =

∑nm−1
j=0 2jℓiccimax for i = 1, . . ., u (where mu may contain fewer

than nm counts).
(3) The CA generates sigsk(m, m0, m1, . . ., mu) using its sk and sends the signature to
U , who stores it as her anonymous credentials.

SUBMIT:

(1) When user U would like to submit rating rijk for physician j and condition k,
the user retrieves (or computes) index indjk for the pair (j, k) among the

∑np

j=1 nj

physician-condition pairs. The user also computes i′ = indjk mod ⌊q/ℓic⌋ and i′′ =
⌈indjk/⌊q/ℓic⌋⌉.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:23

(2) U prepares a commitment com(m′) to a randomly chosen message m′ of bitlength
q.

(3) U randomizes her credentials sigsk(m, m0, m1, . . ., mu) and sends them and com(m′)
to the TA.

(4) U and the TA engage in a ZKPK during which U opens the first message, m, in the
credentials and proves in zero knowledge the statement

PK{(α0, α1, . . ., αu) : A = sigsk(m, α0, . . ., αu) ∧ (α0 > 0) ∧ (2)

(0 < αi′′ mod 2(i′+1)ℓic − αi′′ mod 2i′ℓic ≤ cimax2i′ℓic)}

(5) Upon successful verification of the ZKPK and the fact m has not been previously
used, the TA records the rating rijk for physician j and k.

(6) The TA issues a new credential sigsk(m′, m′
0, m1, . . ., mi′′−1, m

′
i′′ , mi′′+1, . . ., mu),

where m′
0 = m0 − 1 and m′

i′′ = mi′′ − 2i′ℓic are computed from the previous cre-
dentials without the knowledge of m0 or mi′′ .

Security and privacy of this interaction follows from the properties of the building
blocks we use. In particular, the use of CL signatures and Pedersen commitments un-
conditionally hides information that could be used to identify the users and ensures
that each interaction is unlinkable to prior interactions of that user with the TA. Fur-
thermore, unforgeability of signatures and security of zero-knowledge proofs ensures
that a user cannot bypass the verification process without valid credentials, and by our
protocol design, duplication of user credentials is not possible.

While the protocol for SPA required results from secure multi-party computation,
this solution relies on CL signatures and secure communication with anonymous rout-
ing. Since the amount of required computation is low, we do not provide the results of
a sample implementation. That is, computing scores by the TA incurs minimal over-
head (no cryptographic operations). Similarly, retrieving scores and computing recom-
mendations by queriers does not involve cryptographic operations either. Submitting
a rating involves the number of cryptographic operations on the order of u, which with
our packing technique is not going to be high and can be performed in real time.

6.2.3. Proofs of knowledge. In this section we focus on implementing a ZKPK of the
form (a < α mod B1−α mod B2 ≤ b) given a signed α, which is used in our protocol (and
it is known how to implement the remaining portions of the overall zero-knowledge
proof). First of all, this statement can be decomposed into the following expression,
where each clause can utilize a single proof technique:

PK{(α, β, γ, δ) : A = sig(α)∧(β = α mod B1)∧(γ = α mod B2)∧(δ = β−γ)∧(a < δ ≤ b)}

Proof techniques for all of the above are known (namely, a proof of knowledge of a
signed value, a range proof, a proof of linear relationship of variables, and a conjunction
of proofs) with the exception of a proof of equality modulo a certain value. The latter is
therefore the focus of this section.

An expression of the form α = β mod B can further be decomposed into a statement
of the form (β = γ1B+γ2)∧(α = γ2)∧(0 ≤ α < B) or (β = γ1B+γ2)∧(α = γ2)∧α ∈ [0, B).
The difference is that the former expression uses a range proof, while the latter uses
a set membership proof which will be more efficient for small B. We, however, design
a proof of knowledge of a statement α ≡ β (mod B) which has the cost of a single
equality proof and therefore is more efficient than the above. Such a proof might also
be of independent interest for other applications. With this type of proof, one can prove
the statement α = β mod B as (α ≡ β (mod B)) ∧ (0 ≤ α < B).

Now we are ready to proceed with the proof that allows the prover to convince the
verifier that α ≡ β (mod B) for unknown α and β in zero knowledge. As customary

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24

in the related literature, our solution is based on discrete logarithms. Informally, this
means the values about which we would like to prove a certain statement appear in the
exponent. This is true for both commitment and signature schemes that we use. More
formally, let G be a group of prime order p and g1 and g2 be generators of G. Then,
for instance, with Pedersen commitment scheme, commitment com(m) to m ∈ Zp is
formed as com(m) = (g1)

m(g2)
r for a random value r ∈ Zp (note that all operations are

in G, i.e., use modular arithmetic). The CL signature schemes that we use also have a
similar form. For that reason, we next describe a proof in which on input y1 = (g1)

x1

and y2 = (g2)
x2 the prover shows that x1 ≡ x2 (mod B) for B < p.

PK{(α, β) : y1 = gα
1 ∧ y2 = gβ

2 ∧ (α ≡ β (mod B))} (3)

It should be understood that we describe the proof in the above form for simplicity of
representation, and it achieves significantly weaker zero-knowledge guarantees than
what our solution achieves. In particular, the above proof is zero-knowledge in presence
of a computationally bounded verifier and when x1 and x2 are large (i.e., the verifier
cannot solve the discrete logarithm of y1 to the base g1 or of y2 to the base g2 and is also
unable to brute force a significant portion of the overall space for α and β). A better
option (which is used in our solution) is to use a signature or commitment where the
values x1 and x2 are information theoretically protected, e.g.,

PK{(α, β, γ1, γ2) : y1 = gα
1 hγ1

1 ∧ y2 = gβ
2 hγ2

2 ∧ (α ≡ β (mod B))}

In this case, the proof becomes zero-knowledge in presence of a computationally un-
bounded verifier. For simplicity of presentation we present a proof technique for state-
ment in equation 3, which can be compiled into the proof statement above using known
techniques for proving knowledge of a discrete logarithm representation (for y1 and y2

in this case).
We describe a standard type of a non-interactive proof which relies on a collision-

resistant hash function H() : {0, 1}∗ → {0, 1}κ1, modeled as a random oracle for secu-
rity purposes. Other types can be easily derived from our protocol. For security reasons,
we require |p| ≥ κ1|xi| + κ2 for a security parameter κ2 that allows us to achieve sta-
tistical hiding (i.e., some information about the xi’s can be revealed with a probability
near 1/2κ2). Here |xi| is the bit length of values used in such proofs and the verifier is
assumed to be honest.

(1) The prover generates two random values v1, v2 ← Zp such that v1 ≡ v2 (mod B)
and computes t1 = gv1

1 , t2 = gv2

2 .
(2) The prover creates a commitment c = H(g1||g2||y1||y2||t1||t2||B) (where “||” denotes

concatenation), which serves the role of a challenge.
(3) The prover computes r1 = (v1−cx1) and r2 = (v2−cx2). If either r1 or r2 is negative,

the prover restarts the proof from step 1. Otherwise, she sends g1, g2, y1, y2, r1, r2, c,
B to the verifier.

(4) The verifier computes t′1 = gr1

1 yc
1, t′2 = gr2

2 yc
2, and c′ = H(g1||g2||y1||y2||t

′
1||t

′
2||B).

(5) If c′ = c and r1 ≡ r2 (mod B), the verifier accepts the proof.

Note that the probability of failure in step 3 is negligible in the security parameter κ2,
which means that the prover will be able to successfully complete the proof on the first
try with overwhelming probability.

We next need to show that the above protocol is zero-knowledge proof of knowledge
of the desired statement in presence of an honest verifier. To do so, we prove three stan-
dard properties sought of a ZKPK, namely, completeness (which states that an honest
prover with possession of gx1

1 and gx2

2 , where x1 ≡ x2 (mod B) can indeed success-
fully complete the proof), soundness (which states that a prover with x1 6≡ x2 (mod B)

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:25

cannot successfully complete the proof with a non-negligible probability), and zero-
knowledge (which states that a simulator without access to x1 and x2 can produce a
verifier’s view indistinguishable from a real protocol execution).

Completeness. When x1 ≡ x2 (mod B), the prover will be able to convince the verifier
of this fact with probability 1. Since the prover’s claim is true, the verifier will compute:

t′1 = gr1

1 yc
1 = g

(v1−cx1)
1 gcx1

1 = t1 and t′2 = gr2

2 yc
2 = g

(v2−cx2)
2 gcx2

2 = t2

This means that c must be identical to c′. Additionally, if x1 ≡ x2 (mod B) and v1 ≡
v2 (mod B), then it is straightforward to see that r1 ≡ r2 (mod B). Therefore, the
prover will be able to successfully complete the proof with probability 1.

Soundness. If x1 is not congruent to x2 mod B, to produce a forgery the prover must
generate x′

1 and x′
2 that will produce r′1 and r′2 that are congruent mod B. However,

since the verifier will compute t′1, t′2 to be different than t1, t2 used by the prover, by
our assumption that H() is a random function the probability that c′ = c is 1/2κ1.
Therefore, the probability that a cheating prover can convince an honest verifier that
x1 ≡ x2 (mod B) is negligible in the security parameter κ1.

Zero-knowledge. We show that the verifier’s view can be simulated without any knowl-
edge of x1 and x2 and can be performed as follows:

(1) On input a random value c, the simulator chooses at random v1, v2 ∈ Zp congruent
modulo B and random x1 and x2 of the appropriate length also congruent modulo
B.

(2) The simulator computes r1 = (v1 − cx1) and r2 = (v2 − cx2). If either value is
negative, the simulator restarts from step 1.

(3) The simulator computes t1 = gv1

1 , t2 = gv2

2 , programs the random oracle for H to
output c on input (g1||g2||y1||y2||t1||t2||B), and outputs g1, g2, y1, y2, r1, r2, c, and B.

Now notice that under the assumption that the verifier is bounded (and the length of
the xi’s is sufficiently large), the verifier’s view is computationally indistinguishable
from the protocol execution. The values of ri ’s achieve stronger, statistical indistin-
guishability. Also, as mentioned earlier, if the proof is modified to work with commit-
ments or signatures that perfectly hide the values of x1 and x2, the proof becomes
statistical zero-knowledge in presence of a computationally unbounded verifier. This
completes the security analysis of the proof.

The last part that remains is to show that the proofs of knowledge in equations 1 and
2 do indeed enforce the necessary policy in our protocol. In particular, we want to show
that a party with a signature on a count equal to 0 or less is unable to successfully
pass the verification. In our case this is necessary because the packed counts (and
their negative values in particular) can “interfere” with each other within a single
message.

With modular arithmetic, all values we operate on are positive, but if it is necessary
to handle negative values, it is common to allocate a half of the available space for
negative values. For that reason, we might want to have the valid values [1, cimax]
and [1, ctmax] for cjk and c, respectively, occupy less than a half of the entire space
(i.e., 2ℓic and 2ℓtc). Then checking for (α0 > 0) can be accomplished by verifying that
(0 < α0 < 2ℓtc−1). In this case, even if α0 is decremented below 0, the proof will be
successful only for users who are still authorized to contribute. In our implementation,
however, the TA do not issue a renewed credential on a negative count (i.e., a credential
is renewed and decremented only when the current count is above 0). This means that
the lowest value that a credential can have is 0, which makes such cases even easier to

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26

handle in that that support for negative counts is not needed. Similarly we have that
packed counts cjk ’s will not decrement below 0, but only negative values would affect
other counts stored at lower bits within the same message. We thus obtain that ℓic and
ℓtc can safely be set to ⌈log(cimax + 1)⌉ and ⌈log(ctmax + 1)⌉, respectively.

6.3. Solution based on Electronic Cash

Our second solution for implementing ACA consists of utilizing electronic cash (or e-
cash) which can also be built from CL signatures such as [Camenisch and Lysyanskaya
2004]. E-cash schemes can vary widely in their implementations and properties, but in
this work we are interested in a particular type of e-cash that allows for offline spend-
ing of anonymous coins and can be built on CL signatures. Informally, in such schemes,
a user obtains an electronic coin of denomination v by obtaining a signature from the
bank sig(s, id, t, v), after which bank withdraws amount v from the user’s account. Here
s is the coin’s serial number unknown to the bank (included into the signature using a
commitment), id is the user’s identity, and t is a random value. When the user would
like to purchase goods from a merchant, she spends the coin anonymously as follows:
The user opens the serial number s and denomination v and also releases the value
d = id ·R+ t computed on the merchant’s choice of R (the correctness of this value is ac-
companied by a zero-knowledge proof using a randomized version of the signature). At
a later point, the merchant exchanges the coin it obtained from the user for monetary
value v. To do so, the merchant submits s, v, R, d, and the proof of their correctness
to the bank. If the value s has not been previously used, the bank pays amount v to
the merchant. Otherwise, double spending took place. To determine whether the user
double spent the coin (at a single or multiple merchants) or the merchant is trying to
deposit the coin more than once, the bank retrieves the record it already has for s. If
the current values d and R that the merchant is submitting differ from the previously
stored values d̂ and R̂, the bank concludes that the user is at fault. In this case, the
bank recovers the user’s identity by solving a system of equations id · R + t = d and

id · R̂ + t = d̂ for two unknowns id and t and applies a penalty to the user’s account.
Otherwise, if R = R̂, the bank concludes that the coin was spent by the user only once
since it is the responsibility of the merchant to use unpredictable values of R. With
such a solution, the user can anonymously spent coins offline. If the scheme is followed
as prescribed, the user remains anonymous (i.e., the user’s identity is information the-
oretically protected when the equation id ·R + t is evaluated only on a single point R);
if, however, the user double spends a coin, the anonymity is lost.

The above description demonstrates how two crucial features, namely, anonymous
offline coin spending and double spending prevention, can be achieved using anony-
mous credentials. In our system, however, double spending prevention alone is not
sufficient, and a mechanism for enforcing a substantially more complex access control
policy need to be developed. The use of anonymous tokens that can be spent at a vari-
ety of entities, although, allows the TA to be realized in a distributed way and be run
by multiple entities. In this section, therefore, we design a solution that utilizes elec-
tronic cash in a novel way to enforce non-trivial access control policy involving multiple
conditions. To the best of our knowledge, this is the first time e-cash is used for this
purpose and for enforcement of the conjunction of access control rules in particular.

At high level, our solution consists of issuing different types of tokens, each of which
can be used only once. A patient is issued ctmax tokens that can be used to submit a
rating for any physician and condition. For each physician j and condition k that that
physician treats the patient is also issued cimax tokens that can be only used for rating
physician j and condition k. Then at the time the patient would like to submit her
rating, the patient will be required to submit two tokens: one for the individual (j, k)

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:27

pair and another general token that can be used toward any rating. This will allow the
system to enforce the proper mechanism for mitigating system abuse.

One important consideration that must be taken into account when issuing multi-
ple credentials to a single user is that of collusion resilience. In our context collusion
resilience means that tokens belonging to different users cannot be successfully com-
bined to obtain access to resources which each of the users are not authorized to have
individually. Suppose a certain user exhausts one type of tokens she is issued, e.g., for
a specific physician j and condition k pair, but has an abundance of tokens that can
be spent on any physician. If the user obtains another token for the same physician j
and condition k pair from another user (which the second user does not intend to use),
she should not be able satisfy the system requirements by submitting two tokens, each
of the correct type, that were issued to different users. We achieve collusion resilience
by requiring that two tokens (of different types) submitted at the time of rating corre-
spond to the same user, without revealing the identity of that user.

We next describe our solution in detail. In what follows, a (physician j, condition
k) pair with the special value of (0, 0) will be interpreted as “any physician and any
condition.”

REGISTER:

(1) User U computes ctmax commitments com(mi, ti) for randomly chosen values mi

and ti and sends them to the CA.

(2) U also computes cimax commitments com(m
(jk)
i , t

(jk)
i ) on random values for each

valid (physician j, condition k) pair and sends them to the CA.
(3) Upon verifying U ’s identity id, the CA uses commitments com(mi, ti) and its secret

key sk to issue ctmax tokens sigsk(mi, ti, id, “0||0”) to U .

(4) The CA also uses commitments com(m
(jk)
i , t

(jk)
i ) in conjunction with its key sk to

issue cimax tokens sigsk(m
(jk)
i , t

(jk)
i , id, “j||k”) to user U for each valid (j, k) pair.

SUBMIT:

(1) When user U would like to submit rating rijk for physician j and condi-
tion k, the user retrieves unused tokens of the type sigsk(m′, t′, id, “0||0”) and
sigsk(m′′, t′′, id, “j||k”).

(2) The user randomized these signed tokens; let A and B denote their randomized
versions. U sends to a TA of its choice values j, k, rijk , m′, m′′, A, and B.

(3) The TA provides U with a random challenge R and receives two values d1 and d2

as a response.
(4) U and the TA engage in a ZKPK interaction, during which U proves the statement

PK{(α1, β1, α2, β2) : A = sigsk(m′, α1, β1, “0||0”) ∧B = sigsk(m′′, α2, β2, “j||k”)

∧(β1 = β2) ∧ (d1 = β1 ·R + α1) ∧ (d2 = β2 · R + α2)}

(5) Upon successful verification, the TA records all values received from U as well as
a transcript of the proof, Φ, and accepts the rating rijk .

VERIFY:

(1) When a TA would like to test the validity of a submitted rating rijk for physician
j and condition k, the TA submits to the CA the values j, k, m′, m′′, A, B, R, d1, d2, Φ
received from an (anonymous) user at the time of obtaining rijk .

(2) The CA searches its database of spent tokens for m′ and m′′. If neither of them is
found, the CA verifies the correctness of the proof Φ against the values it received
from the TA, records m′, m′′, R, d1, d2, and confirms the validity of the submission.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28

(3) Otherwise, if at least one of m′ and m′′ have previously been submitted, the CA

investigates the case. Let R̂, d̂1, denote values associated with a previously stored
m′. The CA compares R to R̂, and if they differ, recovers the id of the responsible

user from R, d1, R̂, and d̂1. In this case, the CA notifies the TA of the system abuse,
which causes the TA to discard the rating rijk. Otherwise, if R = R̂, the CA notifies
the TA of the duplicate verification request, which means that rijk was previously
verified by the TA.

(4) If m′′ was also found in the CA’s database, the CA repeats step 3 above for m′′ using

the respective values R, d2, R̂, and d̂2.

As before, security and privacy of our solution primarily follow from the properties of
the building blocks that we use. That is, each contributing user remains anonymous
as long as he complies with the agreed upon usage rules. All queriers also retrieve
necessary scores and recommendation data anonymously. In addition, the rules for
mitigating system abuse are enforced properly as the user is unable to reuse her to-
kens, and collusion resilience is achieved through zero-knowledge proofs at the time of
each contribution.

This solution also has a light computational overhead as all ratings are received and
processed in the clear. The storage of a contributing user consists of cimax

∑np

i=1 +ctmax

signatures and the same number of corresponding messages mi’s and m
(jk)
i ’s. Because

signatures are only tens of bytes long, this storage is not going to be a burden for
the user. Finally, the work associated with each submission and verification protocol
consists of a constant number of cryptographic operations and is thus very low. In par-
ticular, an implementation built on the signature scheme of [Camenisch and Lysyan-
skaya 2004] would use bilinear maps with pairings implemented over elliptic curves.
In such a setting, the equivalent of modular exponentiations is noticeably faster than
in conventional cryptography, and the main overhead comes from performing a pair-
ing operation (which for a typical set of parameters takes tens of milliseconds). The
largest overhead of the solution then comes from signature verification that the server
performs per contribution, while still allowing the server to perform all necessary com-
putation within a second. The client’s overhead is noticeably lighter, which gives a
solution that can support a very large number of users.

7. CONCLUSIONS AND DISCUSSION

This work puts forward a framework for building medical recommendation systems
in which (i) privacy of patient data is provably preserved, (ii) reliability of data is
maintained by mitigating system abuse by dishonest users, and (iii) the functional-
ity is flexible enough to provide recommendations on individual conditions as well as
their combinations. We provide two alternative architectures, SPA and ACA, that sat-
isfy the framework requirements. Our realization of the SPA architecture relies on
secure multiparty techniques which we enhance with misuse prevention techniques.
Our realization of the ACA architecture relies on anonymous credentials and utilizes
new zero-knowledge proof of knowledge techniques and a novel use of electronic cash
for effective misuse prevention, as well as has lightweight computational overhead.

While both architectures meet all of the functional, privacy, and reliability require-
ments and can be deployed in practice, each has drawbacks in comparison to the other.
For example, in SPA:

(1) Using modern secure multiparty computation techniques, computing recommen-
dations incurs heavy computational load on the servers. The load depends on the
number of physicians present in the recommendation system and the number of

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:29

supported health conditions, but requires new recommendations to be produced
infrequently.

(2) Custom queries for user-specified combinations of conditions and weights cannot
be executed often due to their computational cost on the servers (and significant
wait time for users). Furthermore, such queries are likely to leak some information
about the conditions included in the query (otherwise, the queries are infeasible to
execute).

(3) Finding mutually distrustful parties to perform the computations may not be easy;
without such entities, the system does not guarantee privacy.

While in ACA we have:

(1) Users must be willing to register with the system in order to make any contribu-
tions, but the concept of anonymous authentication might be difficult to explain to
the average user.

(2) Privacy of user ratings is achieved by hiding among other users in the system. That
is, when the system is not used by a large enough user base, privacy guarantees
weaken (this affects SPA to a lesser degree because physicians’ scores are not pub-
lished). The users of the system need to be aware of such potential vulnerability.

Based on this comparison, we leave it for the community to decide which architecture
may be most beneficial for a particular context.

REFERENCES

ARMKNECHT, F. AND STRUFE, T. 2011. An efficient distributed privacy-preserving recommendation system.
In IEEE Ad Hoc Networking Workshop. 65–70.

BANKOVIC, Z., VALLEJO, J., FRAGA, D., AND MOYA, J. 2011. Detecting bad-mouthing attacks on reputation
systems using self-organizing maps. In Computational Intelligence in Security for Information Systems.
LNCS Series, vol. 6694. 9–16.

BAUDRON, O., FOUQUE, P.-A., POINTCHEVAL, D., STERN, J., AND POUPARD, G. 2001. Practical multi-
candidate election scheme. In ACM Symposium on Principles of Distributed Computing (PODC). 274–
283.

BERJANI, B. AND STRUFE, T. 2011. A recommendation system for spots in location-based online social
networks. In EuroSys Workshop on Social Network Systems.

BLANTON, M. 2008. Online subscriptions with anonymous access. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS). 217–227.

BLANTON, M. AND GASTI, P. 2011. Secure and efficient protocols for iris and fingerprint identification. In
European Symposium on Research in Computer Security (ESORICS). 190–209.

BONEH, D. AND FRANKLIN, M. 1997. Efficient generation of shared RSA keys. In Advances in Cryptology -
CRYPTO. 425–439.

BOUDOT, F. 2000. Efficient proofs that a committed number lies in an interval. In Advances in Cryptology –
EUROCRYPT. LNCS Series, vol. 1807. 431–444.

BUNN, P. AND OSTROVSKY, R. 2007. Secure two-party k-means clustering. In ACM Conference on Computer
and Communications Security (CCS). 486–497.

BURKE, R., MOBASHER, B., WILLIAMS, C., AND BHAUMIK, R. 2006. Classification features for attack de-
tection in collaborative recommender systems. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 542–547.

CAMENISCH, J. AND LYSYANSKAYA, A. 2002. A signature scheme with efficient protocols. In International
Conference on Security in Communication Networks (SCN). LNCS Series, vol. 2576. 268–289.

CAMENISCH, J. AND LYSYANSKAYA, A. 2004. Signature schemes and anonymous credentials from bilinear
maps. In Advances in Cryptology – CRYPTO. 56–72.

CAMENISCH, J. AND STADLER, M. 1997. Proof systems for general statements about discrete logarithms.
Technical Report No. 260, ETH Zurich.

CANETTI, R. 2000. Security and composition of multiparty cryptographic protocols. Journal of Cryptol-
ogy 13, 1, 143–202.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30

CANNY, J. F. 2002a. Collaborative filtering with privacy. In IEEE Symposium on Security and Privacy.
45–57.

CANNY, J. F. 2002b. Collaborative filtering with privacy via factor analysis. In ACM Conference on Research
and Development in Information Retrieval (SIGIR). 238–245.

CHEN, S. AND WILLIAMS, M. A. 2010. Towards a comprehensive requirements architecture for privacy-
aware social recommender systems. In Asia-Pacific Conference on Conceptual Modelling. Vol. 110. 33–
42.

CHIRITA, P.-A., NEJDL, W., AND ZAMFIR, C. 2005. Preventing shilling attacks in online recommender
systems. In ACM International Workshop on Web Information and Data Management (WIDM). 67–74.

CRAMER, R., DAMGÅRD, I., AND NIELSEN, J. 2001. Multiparty computation from threshold homomorphic
encryption. In Advances in Cryptology – EUROCRYPT. 280–289.

DAMGÅRD, I., GEISLER, M., AND KRØIGÅRD, M. 2008a. A correction to efficient and secure comparison for
on-line auctions. Cryptology ePrint Archive, Report 2008/321.

DAMGÅRD, I., GEISLER, M., AND KRØIGÅRD, M. 2008b. Homomorphic encryption and secure comparison.
Journal of Applied Cryptology 1, 1, 22–31.

DAMGÅRD, I. AND JURIK, M. 2001. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In International Workshop on Practice and Theory in Public Key Cryp-
tography (PKC). 119–136.

DAMGÅRD, I. AND KOPROWSKI, M. 2001. Practical threshold RSA signatures without a trusted dealer. In
Advances in Cryptology – EUROCRYPT. LNCS Series, vol. 2045. 152–165.

DELLAROCAS, C. 2000. Immunizing online reputation reporting systems against unfair ratings and discrim-
inatory behavior. In ACM Conference on Electronic Commerce (EC). 150–157.

DIERKS, T. AND ALLEN, C. 1999. The TLS Protocol Version 1.0. RFC 2246 (Proposed Standard).

DIERKS, T. AND RESCORLA, E. 2006. The Transport Layer Security (TLS) Protocol Version 1.1. RFC 4346
(Proposed Standard).

DIERKS, T. AND RESCORLA, E. 2008. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246
(Proposed Standard).

DWORK, C. 2006. Differential privacy. In International Colloquium on Automata, Languages and Program-
ming (ICALP). LNCS Series, vol. 4052. 1–12.

DWORK, C. 2008. Differential privacy: A survey of results. In International Conference on Theory and Ap-
plications of Models of Computation (TAMC). LNCS Series, vol. 4978. 1–19.

FOUQUE, P.-A., POUPARD, G., AND STERN, J. 2000. Sharing decryption in the context of voting or lotteries.
In International Conference on Financial Cryptography (FC). LNCS Series, vol. 1962. 90–104.

GOLDREICH, O. 2004. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University
Press.

GROTH, J. 2010. A verifiable secret shuffle of homomorphic encryptions. Journal of Cryptology, 546–579.

GROTH, J. AND ISHAI, Y. 2008. Sub-linear zero-knowledge argument for correctness of a shuffle. In Ad-
vances in Cryptology – EUROCRYPT. 379–396.

HOENS, T. R., BLANTON, M., AND CHAWLA, N. 2010a. A private and reliable recommendation system
using a social network. In IEEE International Conference on Information Privacy, Security, Risk and
Trust (PASSAT). 816–825.

HOENS, T. R., BLANTON, M., AND CHAWLA, N. 2010b. Reliable medical recommendation systems with
patient privacy. In ACM International Health Informatics Symposium (IHI). 173–182.

KARGUPTA, H., DATTA, S., WANG, Q., AND SIVAKUMAR, K. 2003. On the privacy preserving properties
of random data perturbation techniques. In IEEE International Conference on Data Mining (ICDM).
99–106.

KATZENBEISSER, S. AND PETKOVIC, M. 2008. Privacy-preserving recommendation systems for consumer
healthcare services. In IEEE International Conference on Availability, Reliability and Security (ARES).
889–895.

LAM., S. K. AND RIEDL, J. 2004. Shilling recommender systems for fun and profit. In ACM International
Conference on World Wide Web (WWW). 393–402.

LIPMAA, H., ASOKAN, N., AND NIEMI, V. 2002. Secure Vickrey auctions without threshold trust. In Finan-
cial Cryptography (FC). 87–101.

MCSHERRY, F. AND MIRONOV, I. 2009. Differentially private recommender systems: Building privacy into
the Netflix prize contenders. In ACM International Conference on Knowledge Discovery and Data Mining
(KDD). 627–636.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:31

MEHTA, B., HOFMANN, T., AND FANKHAUSER, P. 2007. Lies and propaganda: detecting spam users in
collaborative filtering. In International Conference on Intelligent User Interfaces. 14–21.

MILLER, B., KONSTAN, J., AND RIEDL, J. 2004. Pocketlens: Toward a personal recommender system. ACM
Transactions on Information Systems 22, 3, 437–476.

MOBASHER, B., BURKE, R., WILLIAMS, C., AND BHAUMIK, R. 2006. Analysis and detection of segment-
focused attacks against collaborative recommendation. Advances in Web Mining and Web Usage Analy-
sis, 96–118.

PAILLIER, P. 1999. Public-key cryptosystems based on composite degree residuosity classes. In Advances in
Cryptology – EUROCRYPT. LNCS Series, vol. 1592. 223–238.

PEDERSEN, T. 1991. Non-interactive and information-theoretic secure verifiable secret sharing. In Advances
in Cryptology – CRYPTO. LNCS Series, vol. 576. 129–140.

PENG, K. AND BAO, F. 2010. A shuffling scheme with strict and strong security. In Emerging Security
Information, Systems, and Technologies. 201–206.

PENG, K., BOYD, C., AND DAWSON, E. 2005. Simple and efficient shuffling with provable correctness and
ZK privacy. In Advances in Cryptology – CRYPTO. 188–204.

POLAT, H. AND DU, W. 2005. SVD-based collaborative filtering with privacy. In ACM Symposium on Applied
Computing (SAC). 791–795.

SCHOENMAKERS, B. AND TUYLS, P. 2006. Efficient binary conversion for Paillier encrypted values. In Ad-
vances in Cryptology – EUROCRYPT. LNCS Series, vol. 4004. 522–537.

SRIVATSA, M., XIONG, L., AND LIU, L. 2005. Trustguard: countering vulnerabilities in reputation man-
agement for decentralized overlay networks. In International Conference on World Wide Web (WWW).
422–431.

ZHAN, J., HSIEH, C. L., WANG, I. C., HSU, T. S., LIAU, C. J., AND WANG, D. W. 2010. Privacy-preserving
collaborative recommender systems. Systems, Man, and Cybernetics, Part C: Applications and Re-
views 40, 4, 472–476.

ZHANG, S., FORD, J., AND MAKEDON, F. 2006. A privacy-preserving collaborative filtering scheme with
two-way communication. In ACM Conference on Electronic Commerce (EC). 316–323.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.


