
A

Secure and Verifiable Outsourcing of Large-Scale Biometric
Computations

MARINA BLANTON and YIHUA ZHANG, University of Notre Dame

KEITH B. FRIKKEN, Miami University

Cloud computing services are becoming more prevalent and readily available today, bringing to us economies
of scale and making large scale computation feasible. Security and privacy considerations, however, stand
on the way of fully utilizing the benefits of such services and architectures. In this work we address the
problem of secure outsourcing of large-scale biometric experiments to a cloud or grid in a way that the
client can verify that with very high probability the task was computed correctly. We conduct thorough
theoretical analysis of the proposed techniques and provide implementation results that indicate that our
solution imposes modest overhead.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]:
Security and Protection; C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms: Security, Design, Algorithms.

Additional Key Words and Phrases: Computation verification, secure outsourcing, all-pairs computation,
distance metrics.

1. INTRODUCTION

Cloud computing enables on-demand access to computing and data storage resources, which
can be configured to meet unique constraints of the clients and utilized with minimal man-
agement overhead. The recent rapid growth in availability of cloud services makes such
services attractive and economically sensible for clients with limited computing or storage
resources who are unwilling or unable to procure and maintain their own computing in-
frastructure. The cloud enables computational outsourcing when the client can utilize any
necessary computing resources for its computational task. It has been suggested that the top
impediment on the way of harnessing all of the benefits of cloud computing is security and
privacy considerations that prevent clients from placing their data or computations on the
cloud (see, e.g., survey [Gens 2008]). While in general sensitive data can be protected by the
means of encryption, computation using the data encrypted via the traditional means be-
comes impossible. Furthermore, the clients no longer have direct control over the outsourced
data and computation and there is a lack of transparency in the current cloud services. The
cloud provider can be incentivized to delete rarely accessed data or skip some of the com-
putation to conserve resources (for financial or other reasons), which is especially true for
volunteer-based computational clouds (see, for instance, documented cases of cheating in
SETI@home [Kahney 2001]). Furthermore, unintentional data or computation corruption

Portions of this work were supported by grants CNS-0915843 and CNS-1223699 from the National Science
Foundation and grant AFOSR-FA9550-09-1-0223 from the Air Force Office of Scientific Research.
Authors’ address: M. Blanton and Y. Zhang, Department of Computer Science and Engineering, University
of Notre Dame, Notre Dame, IN 46556; K. Frikken, Computer Science and Software Engineering, Miami
University, Oxford, OH 45056.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1094-9224/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

might also take place for a variety of reasons including malware, security break-ins, etc.
From that perspective, it is important for the clients to be able to verify the correctness
of the result of the outsourced computational task. The computation verification mecha-
nism should not require the client to perform the computation comparable in size to the
outsourced task itself. Secure and verifiable outsourcing of certain types of computation is
therefore the focus of this work.
The main motivation for this work comes from the extensive amount of computation

involved in biometric research that, due to memory and processing power constraints, in-
evitably pushes the computation on a computational cloud or grid. The sensitive nature
of the data used in the computation makes its protection throughout the computation a
necessary requirement, and to be able to rely on the outcome of the computation, the result
needs to be verified. While we present the developed techniques in the context of biometric
data processing, our results can be used for any type of computation of similar structure.
Secure and verifiable outsourcing can be described as follows. In biometric research, eval-

uation of a new recognition algorithm amounts to running the algorithm on a very large
number of biometric images. Given a data set DB of biometric images, first each image
needs to be processed to extract the features; we refer to the resulting biometric data as the
biometric template. Next, the distance between each pair of templates in DB is computed;
this is called “all pairs” computation. The result allows users to gather distribution (and
any necessary statistical) information about the quality of biometric matching for impostor
and authentic comparisons (images corresponding to different subjects are termed impostor
and images corresponding to the same subjects are termed authentic). The accuracy of the
result depends on the size and quality of images in DB, which can often consist of tens,
or even hundreds, of thousands of biometrics. This volume of the computation cannot be
performed on a single machine and needs to be partitioned and run by a computational
cloud or grid. For example, the iris database used in the Computer Vision Research Lab
at the University of Notre Dame contains over 100,000 biometrics, and performing all-pairs
computation using this database on a single machine takes several days.
To help the users with the task of running such large scale experiments, [Bui et al. 2009]

developed a level of abstraction and corresponding end-to-end computing system, called
BXGrid, which eliminates the need for users to be effective at configuring and using grid
computing systems, relational databases, distributed filesystems, etc. With BXGrid, the
computations can be run using four simple abstractions:

– Select(R): select a set of images and metadata from the repository based on requirements
R (such as subject gender, location, etc.).

– Transform(S, F): apply transformation function F (such as feature extraction) to each
member of a given set S.

– AllPairs(S, F): compare all members of given set S using function F , producing matrix
M , where each element M [i][j] = F (S[i], S[j]).

– Analyze(M,C): extract statistical (or other quality metric) data from matrixM and store
the result in C.

In this work, we extend this framework by integrating security protection in the above
computations to ensure that it can be placed on a cloud comprised of untrusted machines
and the correctness of the computation is verifiable by the client. Throughout this work, we
assume that the client is capable of performing work linear in the number biometrics in DB,
|DB|, but computation exceeding this linear bound (e.g., quadratic complexity of AllPairs)
is beyond the client’s capabilities. For that reason, we concentrate on the computation cor-
responding to AllPairs and Analyze functionalities. Furthermore, because secure comparison
of biometric templates has been a subject of prior research (see, e.g., [Erkin et al. 2009;
Barni et al. 2010; Blanton and Gasti 2011]), most of this work is dedicated to techniques
for computation verification. Our goal is to decouple the verification techniques from the

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

mechanism for securing the computation, so that any suitable solution for protecting data
privacy can be employed. The implementation details for several of our solutions, however,
assume that the underlying arithmetic is carried out over a finite group, which makes them
suitable for use with data protected via secret sharing or homomorphic encryption. They
can also be used with (garbled) Boolean circuits, but the circuits will need to simulate
computation in Zq for some q. To illustrate how all computation considered in this work
can be carried out privately in an outsourced scenario, we describe secure protocols that
can be derived from prior literature. For that purpose, we utilize unconditionally secure
multi-party computation techniques based on secret sharing to secure the computation and
use such techniques in the implementation.

Our contributions. We design a mechanism for verification of outsourced AllPairs computa-
tion and provide its rigorous analysis, which allows the client to set the security parameters
as to achieve the desired probability of misbehavior detection (Section 3). We also design
a mechanism for verifying the distance distribution computation Analyze and likewise pro-
vide its rigorous analysis. Our full analysis is for the Hamming distance (Section 4), and
consecutive modifications to the strategy and the analysis address the Euclidean distance
(Section 5) and the set intersection cardinality (Section 6). Finally, we combine solutions for
AllPairs and Analyze functionalities to result in a complete solution for the overall process
for each distance metric and report on implementation results for the Hamming distance.
The computation is assumed to be carried out on protected data, and we illustrate a way
of achieving privacy-preserving outsourcing for all functionalities used in this work.
The basic idea of our constructions – that of inserting pre-computed sub-tasks and ver-

ifying them upon task completion – is not new and has been used for verifiable remote
computation (e.g., [Golle and Mironov 2001; Szajda et al. 2003]) and storage (e.g., [Ate-
niese et al. 2007; Juels and Kaliski 2007]). It, however, has never been applied to important
classes of computation such as biometric comparisons and statistical computation, which is
the subject of this work and lead us to interesting and non-trivial results. That is, despite
the simplicity of the high-level idea, our design leads to complex new solutions and novel
analysis for verifying not only distance computation, but also probability distributions for
a number of standard distance metrics. Furthermore, the ideas used in our solutions for the
Analyze functionality are new. Our analysis shows that our verification techniques are suit-
able for this application and result in reasonable overhead. Our analyses provide valuable
insights for development of computation verification techniques for outsourcing computa-
tion to servers whom might be incentivized to skip a portion of the computation. To the
best of our knowledge, this work is unique in that it assumes a more complex structure of
the computation than a large set of parallel, homogeneous, and indivisible tasks (such as
one-way function inversion) considered in prior work, and provides a mechanism for exactly
determining the values to which security parameters must be set. This work also doesn’t
simply consider a specific problem in which verification can naturally be performed faster
than the computation itself (e.g., matrix multiplication). For that reason, we expect that
our techniques will provide value beyond the types of computation treated in this work.
Preliminary version of this work appeared in [Blanton et al. 2011b] as a short paper.

Compared to this work, [Blanton et al. 2011b] provided only basic solutions for verification
of distribution computation Analyze for fewer distance metrics and without any analysis or
evaluation. Such analysis, however, is a major contribution of this work. The full version of
this work is also available as a technical report [Blanton et al. 2011a].

2. PROBLEM DESCRIPTION

2.1. Computation description

A client has a pre-selected large collection S of biometric templates, which are to be com-
pared and analyzed. To accomplish the AllPairs functionality, the matrix M is partitioned

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

between multiple computational servers such that each server receives a computational task
which can be performed within its memory and computational capacity constraints. Then
a server receives a job of the form of two sets S1 and S2 of n items each and its task is to
perform comparisons of each pair of items x ∈ S1 and y ∈ S2, producing an n× n distance
matrix as the output. For example, if the client has 80,000 biometric templates to be used
in AllPairs computation and sets n = 1000, the overall computation will consist of 6,400
individual tasks, which the client sends to a large number of servers and the servers carry
out their respective tasks in parallel. When we refer to the distance matrix that each server
produces, we will assume that the items from the first set correspond to the rows of the
matrix and the items from the second set correspond to the columns.
Each server is not assumed to follow the computation as prescribed, but it might be

interested in attempting to avoid being detected that (some of) the computation was not
performed. The computation is appropriately secured, so that the server does not learn
any information about the data it handles, but has the description of the computation.
Furthermore, because all computation takes place on protected data, the server will not be
able to distinguish the data that the client injects from the original data.
Also, because biometric comparisons amount to computing the distance between two

biometric templates which consist of multiple elements, we will assume that each biometric
item consists ofm elements and each distance is in the range [0, σ], where σ is a function ofm
and depends on the employed distance metric. For instance, σ = m for both the Hamming
distance and the set intersection cardinality distance metric. In the context of a specific
distance metric, each biometric item is either an (ordered) vector or (unordered) set. In the
former case, we will use vectors and coordinates to refer to the biometric templates and their
components, and in the latter case we will use sets and elements. When the distance metric
is not implied by the context, we use generic terms (biometric) items and their elements.
To accomplish the Analyze functionality, the computational servers will need to post-

process the distance values in the matrix to compute statistical information. In this work
we propose that each server computes the number of times each particular distance value
appeared among its n2 computed distances (the client can easily merge the data returned
by multiple servers in this form by simply adding the counts from the servers for each given
distance value). This information fully defines the distribution and will allow the client to
compute any necessary statistics from it. To compute the count for each distance, the server
will obliviously compare a distance it computed for a given cell to all possible distance values
and increment one of them that matched (without knowing which count was incremented).
We will refer to the data structure that stores distribution information (i.e., an array of
protected counts) as C. Note that the number of counts that C contains will depend on the
range [0, σ] of distances information about which is being collected. Let C = 〈c0, . . ., cv−1〉,
where v could be equal to σ + 1 or another value depending on the verification method.
Then the pseudo-code below shows how C is being updated for each cell after computing
the corresponding distance. Below, notation [x] denotes that the value of x is not known by

the server, the result of the equality testing operation (x
?
= y) is a bit, and di is the distance

value associated with count ci. Initially, all ci’s are set to 0.

[d] := dist([x], [y]);
for i = 0, . . ., v − 1: [bi] := ([d]

?
= [di]); [ci] := [ci] + [bi];

Note that because the server does not have access to the distances di associated with each
ci, the values of di do not have to equal to i or even be in the range [0, v − 1].
We assume that computation on protected data takes place in a group (or a field) and

arithmetic operations are therefore the elementary operations in that representation. Note
that this assumption holds for multiple ways of computing on protected data (e.g., using
homomorphic encryption or secret sharing).

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

output

Client
task 1

task 3

task 2

task 4

input
S ′ S ′

2S ′
1

C4

S ′′
1 S ′′

2S ′′

=

C

+ . . .+

C1

C3

C1

S ′
1

S ′′
1

M1

C3

S ′
2

S ′′
1

M3

C2

S ′
1

S ′′
2

C4

S ′
2

S ′′
2

M2

M4

S ′
2, S

′′
1

S ′
1, S

′′
1

C1

Fig. 1. Overview of computation (without the verification process).

Figure 1 illustrates the setting on a small example that corresponds to combined AllPairs
and Analyze functionalities. In the figure, the client partitions its input to form four tasks,
and sends each task to a single server. Each server computes an n × n portion of matrix
M , Mi, as well as distribution information Ci corresponding to Mi and returns the result
to the client. The client adds values in the Ci’s to obtain overall distribution C.
While the abstraction of biometric computation that we use in this paper, namely, AllPairs

and Analyze, was initially developed for grid computing, it can be easily adapted to a
common cloud computation paradigm such as MapReduce. To implement the AllPairs and
Analyze functionalities, the client takes the input datasets, divides them into smaller sub-
problems, and distributes them to the “map” nodes who perform AllPairs computation.
Upon accomplishing the computation, each “map” node sends the distance matrix to a
specified “reduce” node (determined by the partition function), which further extracts the
statistical data to form a partial distribution corresponding to its inputs, and sends it to the
client who combines it with other partial distributions in a meaningful way. Furthermore,
if the client would like to perform only AllPairs computation, he himself needs to carry out
the reduce functionality, which is straightforward regardless of the underlying infrastructure
and implementation of secure computation. [Okcan and Riedewald 2011] also study optimal
algorithms for implementing all-pairs functionality using MapReduce and [Afrati et al. 2012]
study the trade-offs in implementing all-pairs similarity computation using MapReduce.

2.2. Security model

As mentioned above, our goal is to achieve secure and verifiable computation outsourcing.
This means that we wish to (i) protect privacy of the data being outsourced and (ii) verify
that the computation was carried out as prescribed. Throughout this work, we use the term
“verification” to refer to computation verification (as opposed to biometric verification).
Because our focus is on the second goal of computation verification for the types of com-
putations described above, throughout most of this paper we assume that the computation
can be carried out in a secure manner. For completeness, we, however, show how the types
of computation used in this work can be carried out in a secure manner by the servers.
We therefore obtain that the server performing the computation should be unable to

learn information about the data it handles, but might deviate from the computation by
skipping a portion of it or returning incorrect results. In particular, we assume that the
server computes fraction p of its task, where 0 ≤ p ≤ 1, and attempts to manipulate the
result so as to make the client believe that it computed its task as prescribed. The client’s
goal, then, is to devise a verification mechanism which detects the server’s misbehavior even
when the portion of skipped computation, 1−p, is small. More formally, if the server deviates
from the standard semi-honest model in which it follows the prescribed computation, its
work is bounded by fraction p of the assigned task. By placing a computational bound
on adversary’s malicious actions, our goal is to avoid expensive techniques such as zero-
knowledge proofs of knowledge [Goldwasser et al. 1985], verifiable secret sharing [Chor

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

et al. 1985], and fully homomorphic encryption [Gennaro et al. 2010] often used in presence
of fully malicious adversaries.
Let D denote the event that the client detects server’s cheating (and D the event that the

client does not detect it). Then the client’s goal is to achieve Pr[D] ≥ 1− 1
2κ for the desired

security parameter κ whenever the fraction of work p that the server performed is below
the client-chosen threshold. The data privacy guarantees, however, are required to hold for
any value of p.
It is assumed that the server knows the verification procedure and knows (or can suffi-

ciently approximate) all of the parameters used by the client for devising its task verification
mechanism. These include Pr[D], p, m, n, and all other security parameters derived from
them as detailed later in this work. We also assume that the server might know certain
properties of biometric data and use them to its advantage, but while designing verifica-
tion mechanisms for the client we conservatively do not assume some specific property of
biometrics will hold to ensure that the solution can be applied to any type of data.
The above description treated a single task that the client outsources to a server in

isolation, while for this application the client is expected to submit many tasks to multiple
servers. We then require that exposure to previous tasks (comprising of the same or different
computation and on the same or different data) give a server no advantage in passing
verification of the current task, even if the server can influence and adaptively ask for
specific tasks. In other words, all tasks are independent. Note that a server can perform a
different fraction of work p in each task, but Pr[D] ≥ 1− 1

2κ is required to hold any time p
is below the client-specified threshold.

On the security definition.With the above formulation, the client will detect, with the desired
probability, instances when the server performs (at most) p fraction of its task. Because a
task consists of many sub-tasks, this fraction of work can, for instance, correspond to pn2

computed distances out of assigned n2. An alternative formulation of the problem is to
suggest that each task is computed with probability p, where the probabilities for each sub-
task are independent. (This can be meaningful in the context of data or task corruption,
where each sub-task has a small probability of being corrupt.) In that case, the overall
number of performed computations is not known, but is characterized by a distribution. We
later show that the two definitions lead to almost identical analysis when the task size n is
large. For concreteness we base our analysis on the first formulation of server misbehavior.

In prior and our work that uses probabilistic checking (both for computation and storage
outsourcing), in order for the client to perform work independent of the overall size of
the outsourced job/data, corruption of a constant portion of the job/data (e.g., 1%) can
be detected with high probability. If the client wishes to detect smaller corruptions, its
verification work grows above constant. In case of storage outsourcing, small errors can
also be compensated by using error-correction codes at the expense of extra storage. Such
techniques, however, are not applicable to computation outsourcing.

2.3. Server instantiation

Depending on how the secure computation is realized, a single task might be carried out by
one physical machine (e.g., on encrypted data) or be performed by a number of machines
and take the form of secure multi-party computation. To abstract from the implementation
details, in both cases we say that the server performs a task, and it should be understood
that the functionality is carried out by one or more physical machines. When each task is
carried out by a number of physical machines, it is expected that the client chooses machines
from different service providers in order to achieve proper data protection (e.g., that not
all machines participating in a task may collude with each other). In other words, each
individual task in Figure 1 is run by machines located at different providers. This makes
collusion unlikely, as competing service providers have to actively conspire.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

When the task is carried out by a single physical machine in today’s cloud computing
environments, our security model implies that the client will be able to detect the cases when
the machine did not perform all of the computation, when a fraction of the computation
was corrupt (e.g., by means of a malicious VM running on the same hardware), or when
a fraction of the input or computed data was lost or corrupted (due to malware, service
outages, etc.). When a task is executed in the form of an interactive protocol by multiple
machines some of which are honest, the client will be able to detect data and computation
corruption on any number of participating machines due to similar causes. Furthermore,
the client will be able to detect cases when a subset of participating machines skip a portion
of or deviate from their computation, while preserving correct communication patterns.

2.4. Achieving privacy of distance and statistics computation

Three distance metrics are treated in this work: the Hamming distance (used for iris), Eu-
clidean distance (used for faces and biometric types), and set intersection cardinality (used
for fingerprints). Secure outsourcing of iris code comparisons to one or multiple servers has
been recently addressed [Blanton and Aliasgari 2012]. The computation considered in that
work is more complex than the Hamming distance alone, but for the purposes of this work we
simplify the computation and show how the Hamming distance and statistics computation
can be achieved in the multiple servers setting. Based on that, we also provide a protocol for
the Euclidean distance computation. Lastly, [Blanton and Aguiar 2012] developed currently
the only multi-party implementation of secure set intersection and its cardinality suitable
for use in an outsourced environment. We show how the solution can be adopted to our
work. All protocols for secure distance and statistics computation are given in Appendix A.

3. VERIFICATION OF DISTANCE COMPUTATION

The main idea behind verifying AllPairs computation is to insert a number of fake, random
items at random positions when forming a computational task 〈S1, S2, dist〉 for a server.
The fake items need to be chosen only once for all tasks and the distances between them
are precomputed. Their protected representation, however, is randomized for each new task
to ensure that the server cannot identify them. Upon job completion, the client receives and
reconstructs the results, and then compares the distances between the fake items computed
by the server with the values that it expects. Because the server does not know a priori which
values will be checked, it will have to compute the distances honestly.1 For that reason, to
form set S1, the client uses n−n1 real items and n1 fake items at random positions to create
S1. Similarly, S2 consists of n− n2 real items and n2 fake items at random positions. Here
n1 and n2 are parameters which will be set to obtain Pr[D] ≥ 1− 1

2κ . The exact approaches
for assigning values to the fake items and verifying the result can differ. We present two
solutions and compare their performance. Both of them result in insertion of n1 items in
S1 and n2 items in S2, but in the first case the client’s verification is O(n1n2), while in the
second case it is O(n1 + n2) with a lower probability of cheating detection.

1If matrix M is returned to the client, the client can retrieve and reconstruct the necessary values. Most
commonly, however, the client does not receive the entire matrix, but rather queries selected cells of interest.
In the original BXGrid system, the client might retrieve and manually examine a small number of cells that
correspond to biometrics with certain features or otherwise biometrics chosen by the client or might not
receive any matrix values at all if the AllPairs computation is followed by the Analyze computation. In our
case, the client will need to retrieve at least the cells that it needs for computation verification. Thus, when
the entire matrix M is not returned to the client, the server sends a commitment to all computed values in
M using, e.g., the Merkle hash tree approach of [Du et al. 2004]. The client then challenges the server on
certain cells of the matrix and the server must show that correct distances were included in the commitment.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

3.1. First approach

The solution is as follows: The client generates n1 fake items, the set of which is denoted
by F1, and n2 fake items, the set of which is denoted by F2, such that the client knows or
computes the pairwise distances between each x̂ ∈ F1 and ŷ ∈ F2. The x̂’s (ŷ’s) are placed
at random locations in S1 (resp., S2). After the server performs the computation, the client
verifies all n1n2 distances between each x̂ and ŷ. We note that the client must use fake items
because any n1n2 distances between original biometrics in the task are not guaranteed to
have a certain amount of uncertainty each. Fortunately, the client can reuse the same sets
F1 and F2 (after proper re-randomization of their representation) for all tasks.
Per our assumption, a lazy server honestly computes fraction p of n2 distances, and creates

the distances for the rest using any desired strategy of significantly lower work (guessing,
copying computed distances, etc.). If the server computed all n1n2 distances checked by the
client correctly, its misbehavior will not be detected.
In what follows, we analyze the probability of server’s misbehavior to be detected for a

fixed value of p. Let n1 ≪ n and n2 ≪ n (which holds under our assumption that n is large).
The manner in which the server computes the pn2 distances can affect the probability of its
cheating being detected. In order to determine what server’s strategy leads to the minimal
probability of misbehavior detection for a given p, we analyze three server’s strategies:

(1) The server computes the distances in the entire matrix row or column. That is, if the
server computes a distance in any given row, it will compute all other distances in that
row. Thus, the number of computed rows is pn. Suppose for the sake of the current
analysis that the server’s cheating is detected with probability 1 if it skipped the com-
putation of a cell that the client checks. Then the probability that the server’s behavior
is undetected corresponds to the probability that all n1 fake items from F1 fell into the
pn computed rows:

Pr[D] = (1− p) + p
(1− p)n

n− 1
+ p

pn

n− 1

(1− p)n

n− 2
+ · · ·+ p

pn

n− 1
· · · pn

n− n1 + 2

(1 − p)n

n− n1 + 1

The above probability follows hyper-geometric distribution, where elements are drawn
from a set without replacement. Using the properties of hyper-geometric distribution,
the above can be rewritten as:

Pr[D] = 1−
(

np

n1

)

/

(

n

n1

)

= 1− (np)!(n− n1)!

(np− n1)!n!
. (1)

Given that n1 ≪ n and n2 ≪ n, we can instead use binomial distribution for computing
Pr[D] which assumes that elements are drawn with replacement. We then obtain:

Pr[D] = (1− p) + p(1− p) + p2(1− p) + · · ·+ pn1−1(1 − p) = 1− pn1 = 1− Pr[D]. (2)

While equation 1 more accurately determines the probability, for the purposes of this
work it is sufficient to consider binomial distribution as a close approximation that sim-
plifies the analysis and we thus use the expression in equation 2.
Next, we modify the analysis to take into account the fact that the server can avoid
detection by successfully guessing the correct distance for a cell that the client checks.
Recall that the computed distances lie in the range [0, σ]. Because the client has full
control over the fake items that it injects in the computation, it will want to minimize the
probability of the server guessing any distance it checks. For that reason, the client ideally
would like to make the distances distributed uniformly at random (to have the probability
of guessing a distance be 1/(σ+1)), but unfortunately this is not possible with the way
the distances are created and checked. That is, the client assigns n1 + n2 values, and
due to triangle inequality dist(A,B) ≤ dist(A,C)+dist(C,B) all possible combinations of
n1n2 distances could not be achieved. Therefore, for the current discussion we denote the

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

maximum probability with which the server can guess any given distance by 0 < α < 1,
and later instantiate it with a specific value.
Going back to our analysis, if the server did not compute the cells in a particular row,
it must guess all n2 checked distances in that row in order to avoid being detected. The
server can do so with probability αn2 . This means that the probability that the server is
not detected after checking the cells in a single row is p+(1−p)αn2 , and the probability
that the server is detected is 1− (p+ (1 − p)αn2) = (1− αn2)(1 − p). This tells us that
the probability that the server’s cheating is detected after checking n1 rows is when the
detection was successful at least for one row:

Pr[D] = 1− (p+ (1 − p)αn2)n1 (3)

Similarly, if instead of the rows, the server computes all distances in a number of matrix
columns, the probability of detection becomes:

Pr[D] = 1− (p+ (1 − p)αn1)n2 (4)

The above tells us that to maximize Pr[D], it is to the client’s advantage to set n1 = n2.
This is due to the fact Pr[D] will be close to 1 in equation 3 only when n1 is significant,
but in equation 4 the value of n2 needs to be maximized for the same reason.

(2) The server computes partial rows and columns. This strategy generalizes the first one,
and the server now computes cells corresponding to prn partial rows and pcn partial
columns in a consistent way, where p = prpc, and a cell is computed if both its row and
column are among the computed prn and pcn, respectively. With this server’s strategy,
the client will not be able to detect cheating if all n1 fake items fall within the prn
computed rows and all n2 fake items fall within the pcn computed columns or if the
server did not compute all checked distances, but guesses their value correctly.
For any given row out of n1, the server’s behavior is not detected if either (i) the row
was among partially computed rows and the server either computed n2 checked cells
in that row or guessed their value correctly and (ii) the row was not among partially
computed rows and the server guessed all n2 checked cells in that row. The probability
of (ii) is (1 − pr)α

n2 . The probability of (i) consist of the multiplicative term pr and
the probability that all n2 cells were among computed or guessed. The latter can be
expressed in terms of the probability that a single cell is among computed or guessed,
which is pc + α(1 − pc), and the probability that all of them were computed or guessed
is therefore (pc +α(1− pc))

n2 . Thus, the probability that checking a single row does not
result in detection is pr (pc + α (1− pc))

n2 and the overall formula for client’s success
after checking all n1 rows is:

Pr[D] = 1− (pr (pc + α (1− pc))
n2 + αn2 (1− pr))

n1 . (5)

As before, we use binomial distribution to approximate the probabilities. We can also
reverse the role of rows and columns to obtain an expression similar to the above. Fur-
thermore, since based on the previous analysis we know that the client sets n1 = n2, the
above equation can be simplified to be a function of n1 only.

(3) The server computes distances at random cells. The server chooses pn2 matrix cells
at random and computes their values. The server’s behavior is undetected when all
n1n2 checked by the client cells fall within the computed pn2 cells or the server guesses
correctly the checked distances that it did not compute. In this case the probability that
the cheating is undetected after checking a single cell is p + (1 − p)α. As before, the
cheating is detected when it is detected in a least one of the checks and we obtain:

Pr[D] = 1− (p+ (1− p)α)n1n2 . (6)

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

In Appendix B we show that, of all above strategies and their combinations, under certain
parameters strategy 1 minimizes the probability of the server’s misbehavior to be detected,
while in other cases it is strategy 3. Such a strategy will thus be chosen by the server.

3.2. Second approach

Now instead of verifying all n1n2 cells corresponding to the distances between a pair of fake
items, the client will verify max(n1, n2) cells that cover all n1 rows and all n2 columns. The
solution itself is as follows: For a task of square size n×n let n1 = n2. The client generates
n1 fakes items F1 and n2(= n1) fake items F2 such that the distance between each ith item
x̂ from F1 and ith item ŷ from F2 is chosen uniformly from the range [0, σ] and then items
x̂, ŷ are created with that distance2. The x̂’s (ŷ’s) are placed at random locations in S1

(resp., S2). To verify the result, the client extracts the distances corresponding to ith items
from F1 and F2 for each i from the matrix returned by the server and compares the result
to the values it generated.
As before, we analyze three server’s strategies assuming that elements are drawn from

a set with replacement which holds when n1 = n2 ≪ n. The probability that the server’s
misbehavior is not detected after verifying a single cell is:

The server computes the distances in the entire row or column p+ (1 − p) 1
σ+1

The server computes partial rows and columns prpc + (1− prpc)
1

σ+1

The server computes distances at random cells p+ (1 − p) 1
σ+1

In each case the probability is computed as the server either computed the corresponding
distance or did not compute it, but guessed it correctly. This gives us that in any of the
above cases the detection probability after checking n1 cells, at distinct rows and columns
unpredictable to the server, is:

Pr[D] = 1−
(

pσ + 1

σ + 1

)n1

. (7)

The same applies to the case when role of columns and rows is reversed since n1 = n2. The

above makes it easy for setting the value of n1. In particular, if we set n1 ≥ κ(σ+1)
(1−p)σ , then

the adversary will be undetected with probability

Pr[D] =

(

pσ + 1

σ + 1

)n1

=

(

1− (1 − p)σ

σ + 1

)n1

≤ e−
n1(1−p)σ

σ+1 = e−κ.

3.3. Discussion

Before we proceed with further description, we would like to compare the two proposed
solutions with respect to their probability of detecting server’s misbehavior and the overhead
they incur on the client. Let n1 = n2 according to our prior analysis, and recall that in the
first solution the client performs O(n2

1) work but might achieve better detection probability
than using the second solution with O(n1) client’s work. Higher detection probability in
turn leads to the ability to set n1 to a lower value which decreases the server’s overhead.
Let us consider the first server’s cheating strategy discussed in sections 3.1 and 3.2, i.e.,

computing entire rows or columns. The equations for the two proposed solutions are given
in equations 3 (or 4) and 7, respectively. Because equation 3 uses parameter α, we need
to show that it is possible to produce fake items so that α can be guaranteed to have a
reasonably lower value such as 1/2 for any pair of fake items.

2We assume that any distance in the range [0, σ] can be generated, which is true for all of the distance
metrics considered in this work.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Let m = 2n1 and n1 ≤ n2.
3

(1) Set ith bit of the ith item in F1 to 1 and all other bits to 0.

(2) To set an item ŷ in F2, choose m/2 random bits j1, . . . , jm/2. Let s =
∑m/2

k=1 jk and let ŷ′

be the m/2-bit string that starts with m/2− s 1s and then has s 0s. The vector ŷ is then set
to j1||j2|| . . . ||jm/2||ŷ

′, where “||” denotes concatenation. A key property of this assignment
is that there is always m/2 1s in any ŷ.

(3) When computing dist(x̂, ŷ) for each x̂ ∈ F1 and ŷ ∈ F2, there are two cases: (i) ji = 0 in ŷ
and (ii) ji = 1 in ŷ, where i is the position of the only bit set to 1 in x̂. In case of (i), the ith
bit of ŷ is 0 and there are m other locations in ŷ set to 1, which gives us dist(x̂, ŷ) = m/2+1.
In case of (ii), x̂ and ŷ match at the ith bit, but differ in m− 1 other locations, which gives
us dist(x̂, ŷ) = m/2− 1.

For example, ifm = 6 and n1 = 3, then F1 = {100000, 010000, 001000}. The eight possible values
for ŷ are {000111, 001110, 010110, 011100, 100110, 101100, 110100, 111000}. If we let ŷ = 110100,
then dist(100000, 110100) = 2, dist(010000, 110100) = 2, and dist(001000, 110100) = 4.
It is important to note that dist(x̂, ŷ) depends only on the value of the bit ji, and thus all
distances are independent from each other. Hence, the probability that an adversary could
guess L distances computed in this way is ≤ 1

2L
.

Fig. 2. Example: Generating fake items for Hamming distance.

Specifically, the problem consists of generating item sets F1 and F2, such that dist(x̂, ŷ)
for each x̂ ∈ F1 and ŷ ∈ F2 has as much uncertainty as possible. Ideally, we would want to
choose all n1×n2 distances independently from [0, σ] and then compute fake items sets that
produce these distances. However, this is usually not possible, because the distances must
satisfy the triangle inequality. Furthermore, even if a chosen set of distances satisfies the
triangle inequality, it is non-trivial to generate the fake items that produce them. We present
a solution for achieving α ≤ 1/2 on the example of the Hamming distance in Figure 2. A
similar approach can be used for other distance metrics as well.
We obtain that α ≤ 1/2 is achievable and as a result αn2 can be sufficiently close to 0.

This will make equation 3 of the first solution equal to 1 − (p + ǫ1)
n1 for a small quan-

tity ǫ1 = (1 − p)αn2 , while equation 7 of the second solution has 1 − (p + ǫ2)
n1 , where

ǫ2 = (1 − p)/(σ + 1). While for common choices of parameters ǫ1 < ǫ2 and therefore the
probability of detection is higher in the first solution, contrary to the expectations, this
gives us that by checking O((n1)

2) values in the returned matrix, the client does not gain
a noticeable advantage in detecting server’s misbehavior compared to the solution where
the client checks only O(n1) values. This is not what one would expect because in a more
traditional analysis where an adversary guesses all values (instead of computing a signifi-
cant portion of them honestly) this is not the case. In particular, with a traditional analysis
the detection probabilities for similar strategies would be 1− (1/(σ+ 1))n1 for checking n1

values and 1 − (αn1)n1 for checking (n1)
2 values – a significant difference for any choice

of n1 that can provide reasonable security guarantees. We therefore conclude that, unlike
other settings, the solution presented in section 3.1 would not provide a noticeable advan-
tage over the solution of section 3.2, which, in addition to having a lower overhead for the
client, is easier to analyze. (Note that we can make this conclusion based on the analysis of
a single server’s strategy since the server will follow the strategy with the lowest probability
of detection.) In the rest of this work, we therefore use the solution of section 3.2.
Before we conclude this section, we note that the analysis presented so far is applicable

to any type of tasks when pair-wise computations are performed n × n times. Biometric
comparisons, however, consists of computing a distance over multiple elements of biometrics.

3That is, m ≥ 2min{n1, n2} will be true for biometrics such as iris codes that use the Hamming distance.
For simplicity, we also let m = 2n1 with n1 ≤ n2, which means that the extra bits are ignored, but their
use can result in a better scheme.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

Thus, the server might attempt to reduce its workload by computing partial distances using
a subset of the elements and then adjust the results in the attempt to avoid detection.
We next show that our solution (from section 3.2) also effectively combats this server’s
strategy. Suppose that the server computes p fraction of each distance for each cell of
the matrix. That is, it computes the distance corresponding to pm elements of its choice
and needs to guess the remaining portion of the distance. Because the distances that the
client checks are distributed uniformly at random in the range [0, σ] and with each distance
metric considered in this work one element of a biometric can contribute distance σ/m, the
distances corresponding to the (1 − p)m elements that the server did not compute in the
checked cells will be distributed uniformly at random in the range [0, (1− p)σ]. This means
that the probability that the server’s behavior is not detected after checking a single cell is

1
(1−p)σ+1 and the detection probability after checking all n1 cells is Pr[D] = 1−

(

1
(1−p)σ+1

)n1

.

This quantity is at least as large as the value computed in equation 7 for any p ≤ 1 and σ
(and is strictly larger when p < 1), and therefore is not attractive for the adversary.
In addition, if the server combines this strategy with one of the three possibilities listed

above, it still will not be able to reduce the probability of detection below the value listed
in equation 7. For instance, if the server computes partial distances in p′n rows using
p′′m elements, such that p′ · p′′ = p, the probability that misbehavior is not detected
after checking a single cell is when the server either computed the partial distance and
guessed the remaining portion or did not compute the distance and guessed it entirely:
p′ 1

(1−p′′)σ+1 +(1−p′) 1
σ+1 . It is clear that the success probability of this hybrid strategy lies

between the computed probabilities for the individual misbehavior strategies and becomes
equal to the probabilities of one of the individual strategies when p′ = 1 or p′′ = 1 (while
maintaining p′ · p′′ = p). Therefore, equation 7 provides the lower bound for successful
cheating detection for given p, σ, and n1.

4. VERIFICATION OF STATISTICS COMPUTATION FOR HAMMING DISTANCE

We are now interested in providing a verifiable solution to the Analyze functionality. To
accomplish that, the client employs a different method for verifying that the distribution
computation was performed correctly. In the following description we use the Hamming
distance as the distance metric for computing distances between two items. Modifications
to this method that apply to other distance metrics are provided in the next sections.

4.1. First attempt

As before, the server receives a job of size n × n. The client inserts fake items in the
computation to aid the verification process, but it also inserts an additional fake element
into both real and fake items. The goal of the additional element is to separate the ranges
of distances between a pair of real items and distances between real and fake items. More
precisely, the distances between two real items remain in the range [0, σ], while distances
between a real and fake items now fall into the range [σ+1, 2σ+1]. The server’s job consists of
compiling distribution information C = 〈c0, . . ., c2σ+1〉 by computing the distance between
two biometrics and comparing it to 2σ + 2 possible distances in C in such a way that the
count for the distance that matched is obliviously incremented. This allows the client to
verify correctness of the computation. That is, the client adds the counts corresponding
to the distances in the range [0, σ] and the counts corresponding to the distances in the
range [σ + 1, 2σ + 1]. and compares the aggregate counts to their expected values (i.e.,
(n−n1)(n−n2) and (n−n1)n2+n1(n−n2), resp.). If both match, the server’s computation
is considered correct.
We show how the above can be accomplished for the Hamming distance, as it will be

useful for building our final solution. Each biometric is represented as an m-bit vector,
and dist(x, y) = dist(〈x1, . . ., xm〉, 〈y1, . . ., ym〉) =

∑m
i=1 xi ⊕ yi ∈ [0,m]. The client inserts

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

coordinate xm+1 into each vector x, where xm+1 = 0 if x is a real biometric and xm+1 =
m+1 otherwise (the remaining coordinates of a fake biometric are chosen as bits according
to any desired distribution). Note that we are somewhat abusing the computation because
ym+1 = m + 1 is not a bit, but the server will be unable to distinguish the two types
of values because their protected values are represented in the same way.4 This gives us
distances in [0,m] for two real items and in [m+ 1, 2m+ 1] for real and fake items. Also, if
during the computation the XOR is applied directly to a pair of coordinates, the distance
between two fake vectors will lie in the range [0,m]. When, however, arithmetic operations
are used to implement a⊕ b as a+ b− 2ab, the distance between two fake items will be in
[1 − 4m2, 1 −m2]. We can setup secure computation over non-negative integers in such a
way that this range has no overlap with [0, 2m+ 1].
Now if the server computes pn2 distances and would like to avoid being detected, instead

of trying to guess the locations of fake items, it can simply return 2m+2 counts, such that c0
through cm add to (n−n1)(n−n2) and cm+1 through c2m+1 add to (n−n1)n2+n1(n−n2).
Because the server knows (or can guess sufficiently well) the values of n1 and n2, it can
always be successful in avoiding the detection. This means that a different solution is needed.

4.2. Improved solution

To improve the security properties of the above solution, we employ two ideas: (i) (protected)
distances used for computing statistics are given to the server in a randomized order and
(ii) the client verifies a larger number of aggregate counts. By itself, the first modification
still results in insufficiently high detection probability, but in combination with the second
it leads to the client’s ability to achieve a desired level of protection. To combat certain
attacks, the client also inserts a number of fake elements in each item instead of only one.
The idea is as follows: before the computation is sent to the server, the client adds extra

k elements to each real item (with m original elements), and creates fake items consisting
of m + k elements. The m + k elements are randomly permuted, but consistently across
all items. The client chooses a small integer ℓ, which will be used as a security parameter
and also chooses ℓ values larger than the maximum distance σ. Each value will be used to
increase the distance between certain fake items and real items, and for concreteness, and
without loss of generality, let these ℓ values be σ + 1, . . ., σ + ℓ. The client forms real and
fake items in such a way that the distance between two real items is in the range [0, σ], the
distance between any given fake item and a real item is in the range [d, d + σ] for a fixed
d ∈ [σ + 1, σ + ℓ], and the distances between real items and all fake items fall in the range
[σ+1, 2σ+ ℓ]. For each distance d ∈ [σ+1, 2σ+ ℓ], the client compiles statistics and records
the expected counts. At the time of computation verification the client will then need to
compare the computed counts for distances in [σ + 1, 2σ + ℓ] to their expected values and
compare the aggregate count for distances in [0, σ] to (n− n1)(n− n2).
In the context of Hamming distance, this solution is realized as follows. The client sets

all extra coordinates to 0 in real biometric vectors. Let i1, . . ., ik denote positions of these
extra coordinates. To create a fake vector, the client chooses a distance d at random from

[m + 1,m + ℓ] and k values d1, . . ., dk such that
∑k

i=1 di = d. The client sets the ijth
coordinate in the fake vector to dj for j = 1, . . ., k and all original coordinates to 0. This
gives us that the distance between this fake vector and any real vector will be in the range
[d, d+m]. The client records the number of times each d was used in a fake vector in the set
S1 and the set S2, respectively (both formed in the above described way). Let the counts

be denoted by cji , where i ∈ [m+ 1,m+ ℓ] and j ∈ [1, 2].

4This holds when the secure computation is realized using homomorphic encryption or secret sharing tech-
niques. If the client, however, wishes to employ two-party techniques based on garbled Boolean circuits, the
size of coordinate representation will have to be increased to make values of different size indistinguishable
to the computational servers.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Input:

— the range of distances [lr, ur] between two real items in data structure C;
— the range of distances [lf , uf] between real and fake items in data structure C;
— the maximum distance do that the original elements of real items contribute to the distance between

real and fake items.

Algorithm steps:

(1) The client adds the counts corresponding to the distances between lr and ur using C[lr] through
C[ur] and compares the result to (n− n1)(n− n2).

(2) The client computes the expected distribution of the distances between real and fake items as follows:

for each i = lf , . . ., uf , the client sets ci =
∑min(uf−lf+1,i)

j=max(lf ,i−do)
(c1js

2
i−j+c2js

1
i−j). The client then compares

each ci with C[i].

Fig. 3. Description of client’s computation of the expected statistics.

Before the client is able to verify the results of server’s computation, the client needs to
compute additional information as follows: For each real vector in S1, the client computes
the number of coordinates set to 1 in that biometric, i.e., its Hamming weight, and counts the
number of instances of each Hamming weight across all real vectors. Let s10, . . ., s

1
m denote

the distribution of the Hamming weights, where s1i indicates the number of real vectors
in S1 with the Hamming weight of i. Similarly, the client produces the same distribution
information for the real vector in S2, and we denote the computed values by s20, . . ., s

2
m.

The client computes the expected distribution of the distances above m as follows: for each

i = m+1, . . ., 2m+ ℓ, set ci =
∑min(m+ℓ,i)

j=max(m+1,i−m)(c
1
js

2
i−j + c2js

1
i−j). The above represents the

number of instances contributed by the distances between fake vectors in S1 and real vectors
in S2 and fake vectors in S2 and real vectors in S1. For example, cm+1 = c1m+1s

2
0 + c2m+1s

1
0,

cm+2 = c1m+1s
2
1 + c1m+2s

2
0 + c2m+1s

1
1 + c2m+2s

1
0, etc.

After the server receives sets S1 and S2, it computes the distances between all pairs
and produces statistics by comparing each computed distance to the values in the range
[0, 2m+ ℓ]. Since the comparisons are performed without the server knowing to what value
a distance is being compared, the client randomizes the order of the distances. This means
that the server will not be able to know what positions within the set of 2m + ℓ values
correspond to original distances from 0 to m and which correspond to distances above m
(this is applicable to both the distances used during comparisons and computed counts in
C). After the server returns the distribution data to the client, the client (i) adds the counts
corresponding to distances between 0 and m and compares the result to (n − n1)(n − n2)
and (ii) compares each ci with the value returned by the server. If all above checks succeed,
the client treats the obtained statistics data as correct.
We generalize the above procedure (which also will be used for other distance metrics)

in Figure 3. We use notation C[i] to denote the count returned by the servers for distance
i. For the current solution, we have [lr, lu] = [0,m], [lf , uf] = [m+ 1, 2m+ ℓ], and do = m.
Note that the last parameter do indicates that the original coordinates of real vectors can
contribute distances between 0 and m to the distances between real and fake vectors.
In order for the distances between two fake vectors not to interfere with the counts

being verified, we can ensure that dist(x, y) between fake x and y are outside of the range
[0, 2m+ ℓ] and suggest the following: Because we assume that computation takes place in
a group, the client can choose di’s uniformly at random from Zq, where q is the group size,

while maintaining
∑k

i=1 di mod q = d. When q ≫ 2m + ℓ, with high probability all n1n2

distances between two fake vectors will fall outside of the range [0, 2m + ℓ], while other
distances remain unaffected. If, however, dist(x, y) happens to be in [0, 2m+ ℓ] for some x
and y, the client can choose a different set of di’s for x or y. We, however, allow dist(x, y)
to be in [0, 2m+ ℓ], in which case the client needs to adjust the counts it expects from the

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

server and also needs to compensate for the error when using statistical data computed by
the server. This incurs minimal overhead on the client, but allows to keep q low without
having to increase the server’s load.

4.3. Analysis of misbehavior detection

We next analyze the server’s success in avoiding being detected when it performs the fraction
p of its task. We treat two options when (i) the server computes all distances between real
and fake vectors correctly (by guessing the locations of fake vectors) and increases the
count(s) for distances between real and real values, and (ii) the server does not compute all
distances between real and fake vectors and instead increases the counts for both distances
between real and real and distances between real and fake vectors.

Correct computation of statistics for distances between real and fake vectors.
The server’s goal is to identify locations of vectors that are fake (both for columns and rows)
and compute their distance to real vectors, as the client distinguishes between distances
between real-real and real-fake vectors. Suppose that, to maximize the coverage of fake
vectors, the server selects a number of columns and a number of rows and computes a cell
if its row or column (or both) is among the selected rows or columns, respectively, and
the total number of cells computed is pn2. While the server needs to compute only n− n1

(or n − n2) cells in each chosen column (row) instead of all n, the server does not know
which locations to skip as it is trying to guess their positions. Therefore, it is to the server’s
advantage to compute entire rows and columns. We have that pn2 = z1n+z2(n−z1), where
z1 is the number of chosen rows, and z2 is the number of chosen columns. As before, let
n1 = n2 and also let z1 = z2 since this is the best server’s strategy when n1 = n2. Now,
given the value of p, we can compute z1 = z2 and then compute the probability that all n1

rows/columns will appear among the computed z1.
Let p′ = z1/n = 1 − √1− p. The probability that the rows that the server computes

include all n1 inserted rows is 1 − (p′)n1 and the probability that the columns that the
server computes include all n1 inserted columns is also 1− (p′)n1 . Furthermore, the server’s
behavior is not detected only when it computed all distances between real and fake vectors
and also guessed the location of a cell corresponding to a value between 0 and m among
the counts in C; the success probability of the latter is (m+ 1)/(2m+ 1 + ℓ). We obtain:

Pr[D] = 1− m+ 1

2m+ 1 + ℓ
(p′)n1+n2 = 1− m+ 1

2m+ 1 + ℓ

(

1−
√

1− p
)2n1

(8)

Now notice that the server might also be able to compute correct distances between the
vectors using only a fraction of coordinates during the computation of each distance. In
particular, recall that each distance is computed using m+ k coordinates, where m of them
correspond to the original data in real vectors, and the server can compute n2 partial dis-
tances using p(m + k) coordinates. When computing a distance between two real vectors,
using any number of coordinates will result in the outcome falling into the correct range
[0,m]. For computing distances between real and fake values, however, notice that all arti-
ficial k coordinates must be used in order to pass the client’s check. That is, all k artificial
coordinates should fall within p(m+ k) coordinates used by server. Because k can be com-
parable to m, we need to assume that the coordinates are drawn without replacement, and
using the properties of hyper-geometric distribution we obtain the probability of including
all k coordinates in p(m+ k) coordinates:

Pr[D] =

(

m

p(m+ k)− k

)

/

(

m+ k

p(m+ k)

)

=

k−1
∏

i=0

p(m+ k)− i

m+ k − i
(9)

Second, in order to pass the client’s verification, the server needs to obtain the exact dis-
tances between real and fake vectors, which means that it also needs to have the coordinates

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

n

C
pn

Fig. 4. Illustration of incomplete computation while creating statistical data.

set to 1 to be within the computed coordinates. Assuming that at least β ·m of the original
coordinates are set to 1 in each biometric for some fixed β and the coordinates are randomly
(and consistently) permuted to eliminate any patterns, the above probability decreases to:

Pr[D] =

(

m− βm

p(m+ k)− βm− k

)

/

(

m+ k

p(m+ k)

)

=

βm+k−1
∏

i=0

p(m+ k)− i

m+ k − i
(10)

The above assumes that p(m+ k) ≥ βm+ k; otherwise, Pr[D] = 0. We also note that while
equation 8 tells us the minimum value to which n1 should be set for a desired bound on p
and desired probability of detecting cheating, equations 9 and 10 tell us the minimum value
to which the security parameter k should be set for a given p and Pr[D].

Incomplete computation of statistics for distances between real and fake vectors.
Now suppose that the server does not try to guess the locations of fake vectors, but rather
attempts to adjust statistics information to avoid detection. In this case, the server might
have higher chances of being undetected and its success depends on the values of m and ℓ,
as well as on the distribution of distances between real and fake vectors.
Because there is a structure to the distances in the matrix, we first examine the case when

the server fully computes distances and statistics information for a number pn of rows and
modifies the statistics information to compensate for the remaining distances. First, note
that if the server computes pn rows correctly, it will need to guess (i) the number of fake
rows among the remaining rows (horizontal red matrix rows in Figure 4), (ii) the locations
of the counts in C associated with distances between each of not computed fake vector in
S1 and real vectors in S2 (i.e., locations in C associated with red cells in Figure 4), (iii) the
locations of the counts in C associated with the distances between n2 fake vectors in S2

and not computed real vectors in S1 (locations in C associated with vertical blue columns
in Figure 4), and (iv) at least one location in C corresponding to a distance between 0 and
m (for increasing the count corresponding to white matrix cells in Figure 4).
Next, because the server might be able to estimate (i) with good accuracy and the prob-

ability of guessing (iv) is high, we have to rely on (ii) and/or (iii) being difficult. Suppose
that the server guessed (i) correctly, and its value is ŵ = (1−p)n1. A naive strategy for the
server would be to guess one location in C for a distance in the range [0,m] and increment
the corresponding count by ((1− p)n− ŵ)(n− n2) (thus covering all white cells) and then
guess the locations in C corresponding to all red and blue cells correctly and update the
counts. We, however, notice that the server can reduce the amount of information that
needs to be guessed by reusing information associated with some cells. For instance, the
server can take one of the computed rows (which with high probability corresponds to a
real vector in S1) and copy it (1− p)n− ŵ times into not computed rows (or just replacing
the value of [b] with ((1 − p)n − ŵ + 1)[b] when updating the counts for that row). This
would remove the need for the server to guess the locations in C associated with the blue
cells in Figure 4. Alternatively, the server can compute the distances in the first cell of
each row (which with high probability correspond to a real vector in S2) and copy the dis-

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

tance contained in that cell to all distances in the row. This will remove the need to guess
locations of the distances contained in the red cells, but all locations associated with the
blue cells need to be guessed, as well as at least one count associated with a distance in
the range [0,m] needs to be decremented to compensate for incorrectly updated blue cells
distances. The previous, row copying, strategy is superior for the server in that it minimizes
the number of values to be guessed. In particular, for each fake vector x in S1 or S2, the
distance between that vector and a real vector y in S2 or S1, respectively, will be equal to
sx + sy, where sx is the sum of the coordinates of x and sy is the sum of the coordinates in
y. In the worst-case for the client, all original biometrics have the same Hamming weight,
which means that the distances between a single fake coordinate and all real coordinates
will have the same value. This also means that all distances corresponding to the cells in
a single blue column or a single red row will be stored in a single location in C. And, in
order to update statistics information about a row or column that has not been computed,
the server will need to guess a single location in C. Therefore, our goal is to set the security
parameters in such a way that, regardless of what strategy the server employs, it will have
to guess enough locations in C so that its probability of success is sufficiently low.
Because the server’s success is maximized when it has to guess only the locations in C

associated with the distances in red rows, we perform the analysis based on this case. In
what follows, let γ be a confidence security parameter, which will guide the values of other
security parameters to ensure that the client’s security guarantees hold with probability
at least 1 − γ. Let us look at a hyper-geometric experiment that models the number of
fake (red) rows falling within the not computed region of (1 − p)n rows. If we denote a
random variable that follows this distribution by X and its outcome by w, we obtain:

Pr[X = w] =
(

(1−p)n
w

)(

pn
n1−w

)

/
(

n
n1

)

, where ŵ = (1 − p)n1 is the mean value. Because the
client will want the outcome of X to be above a certain threshold, we obtain:

Pr[X ≥ w] =

n1
∑

i=w

(

(1− p)n

i

)(

pn

n1 − i

)

/

(

n

n1

)

≥ 1− γ (11)

Then given the value of γ and w, the client will be able to compute the necessary value
of parameter n1 from equation 11. To determine the value of w, we first need to compute
how many distinct locations in C the server must guess to achieve the desired probability
of cheating detection Pr[D], after which we will use that value, s, to compute w.
The server can guess s out of 2m+ ℓ + 1 locations in C correctly with probability:

Pr[D] =
s

2m+ 1 + ℓ
· s− 1

2m+ ℓ
· · · 1

2m+ 1 + ℓ− (s− 1)
= 1/

(

2m+ 1+ ℓ

s

)

. (12)

Therefore, given Pr[D] = 1−Pr[D], the client computes s and will need to set ℓ ≥ s, so that
the expression in equation 12 evaluates to a sufficiently low value which does not exceed the
desired probability Pr[D]. Next, we determine how many fake vectors from S1 (red rows)
need to fall within the not computed region to result in s distinct distance values (where
a row is conservatively assumed to contribute one distance) with the probability of success
that the client wants to achieve. That is, we express the probability that w (fake) vectors,
each with a randomly chosen distance d in the range [1, ℓ], will result in s out of ℓ distinct
values. By increasing the value of w, this probability increases, and the client will choose
the minimum w that gives probability at least 1− γ.
In what follows, let Y denote a random variable associated with an experiment of throwing

w balls into ℓ bins and follow the distributions of the number of bins with at least one ball
in them. First notice that when w = s, each ball must land in a new bin:

Pr[Y ≥ s] = 1 · ℓ− 1

ℓ
· ℓ− 2

ℓ
· · · ℓ− s+ 1

ℓ
=

∏s−1
i=1 (ℓ − i)

ℓs−1
. (13)

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

When w = s + 1, the first s balls can still land in unique bins, but now one ball can also
land in a previously occupied bin. We therefore obtain:

Pr[Y ≥ s] = 1 · ℓ− 1

ℓ
· ℓ− 2

ℓ
· · · ℓ− s+ 1

ℓ
· 1 + 1 · 1

ℓ
· ℓ− 1

ℓ
· · · ℓ− s+ 1

ℓ
+ · · ·+ (14)

+1 · ℓ− 1

ℓ
· · · ℓ− s+ 2

ℓ
· s− 1

ℓ
· ℓ− s+ 1

ℓ
=

∏s−1
i=1 (ℓ− i)

ℓs−1

(

1 +
s−1
∑

i=1

i

ℓ

)

Similarly, for w = s+ 2, we have:

Pr[Y ≥ s] =

∏s−1
i=1 (ℓ − i)

ℓs−1

(

1 +
1

ℓ

s−1
∑

i=1

i+
1

ℓ2

s−1
∑

i=1

s−1
∑

j=1

(i · j)
)

. (15)

Therefore, by increasing the value of w, the client will find a value that satisfies Pr[Y ≥
s] ≥ 1−γ and will further use that value of w to compute the value of n1 using equation 11.
Note that by increasing the value of parameter ℓ, the value of n1 will be reduced.
Now let us analyze the case when the server computes partial distances using p(m +

k) coordinates for all cells and then the corresponding distribution using the computed
distances. We next show that if in doing so the server misses at least one artificial coordinate,
its probability in avoiding detection will be low (and can be controlled by appropriately
setting the parameter ℓ). The client should set the value of k as to obtain

1−
(

m

(1− p)(m+ k)

)

/

(

m+ k

(1− p)(m+ k)

)

= 1− m!(p(m+ k))!

(m+ k)!(p(m+ k)− k)!
≥ 1− γ. (16)

This expression corresponds to the probability that at least one of the k coordinates will fall
within the skipped (1− p)(m+ k) coordinates. It allows the client to compute the security
parameter k for the desired value of γ.
Now suppose that at least one out of k artificial coordinate was not used during distance

computation. This means that the computed distances between two real vectors will be in the
correct range and will pass verification. Similarly, the distances between two fake vectors
with high probability will fall outside of the checked range, as intended. The distances
between real and fake vectors, however, with high probability will also fall outside of the
checked range and the counts corresponding to their true values will need to be updated.5

If the server knows the Hamming weight distribution in a biometric and sufficiently well
estimates the number of fake vectors with the sum of its coordinates equal to any given
d, the server will be able to update the counts correctly if it can guess the location of the
appropriate counts in C. This is, however, difficult because a large number of locations
needs to be guessed. Furthermore, for each unique count difference, the exact locations in C
must be determined. In the worst-case for the client, the server needs to update all locations
with the same information, in which case the server has to guess u+ ℓ− 1 locations (out of
2m+ ℓ + 1) in C, where u = maxx∈S1∪S2(||x||) −minx∈S1∪S2(||x||) + 1 corresponds to the
difference between the smallest and the largest Hamming weight in a biometric. Because in
the best-case for the server, it does not need to distinguish between the u+ ℓ− 1 locations,
the probability of detecting server’s misbehavior is:

Pr[D] ≥ 1−
u+ℓ−2
∏

i=0

u+ ℓ− 1− i

2m+ ℓ+ 1− i
= 1−

u+ℓ−1
∏

i=1

i

2m− u+ 2 + i
. (17)

5Note that if some partial distances between fake and real vectors fall within the checked range, the server
will have to additionally guess the locations of the counts in which erroneous distances fell and decrease
the counts. We therefore conservatively assume that computed distances between fake and real vectors fall
outside the checked range, and the client’s detection probability will be at least as large as what we compute
based on our analysis.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

If for a particular biometric representation u is small, then the value of ℓ can be increased
to achieve the desired Pr[D] using equation 17.
To summarize, to detecting cheating with the desired probability, the client computes a

set of parameters as follows: (i) n1 using equation 8, (ii) k using equation 10, (iii) n1 and
ℓ using equation 11 and the consecutive analysis (equations 12 through 15), (iv) k using
equation 16, and (v) ℓ using equation 17. For all of n1, k, and ℓ the highest computed value
should be used. The reason for computing multiple values of n1, k, ℓ is to deter different
ways of avoiding cheating detection by the server. In section 4.5 we also show how, based
on our analysis, the values of n1, ℓ, and k can be computed using sample client-supplied n,
m, Pr[D], γ, and a bound on p.

4.4. Combining verification of distances and statistics

When the client needs to verify computation of both the distances and statistics, we next
describe how it can combine the techniques of sections 3 and 4.2: The client adds fake
vectors and artificial coordinates to both real and fake vectors as described in section 4.2
with the difference that, instead of setting the original coordinates of fake vectors to 0,
they are set according to the description in section 3 (to maintain the uniform distribution
of the distances in the cells checked by the client). Then to verify the computation of the
distances (i.e., cells of the matrix), the client as before checks n1(= n2) distances between
pairs of fake vectors. The verification procedure now needs to take into account the offset
introduced by the values assigned to the artificial coordinates. To verify computed statistics
data, the client proceeds as before, with the exception that now to produce expected counts
for the distances in the range [m+ 1, 2m+ ℓ] the client needs to perform work dominated
by 2n1(n − n1)m operations instead of work on the order of nm. As before, the distances
between real and fake vectors fall into the range [m+ 1, 2m+ ℓ] and the distances between
two fake vectors fall outside of the range [0, 2m+ ℓ] with high probability. The computation
is summarized in Figure 5. Steps 1, 2, and 5 of task creation are performed offline once for
all tasks. Step 1 of task verification can be performed during task execution.
To compute the security parameters n1, k, and ℓ, we can use the previously established

bounds. In particular, the client’s success probability in detecting cheating in computing
the distances is at least the probability in equation 7, which on input κ gives us the value of
n1 = n2. To detect cheating in computing statistics with the desired probability, the client
computes n1, k, and ℓ as specified in section 4.3 and takes their maximum values.

4.5. Implementation

To evaluate the performance of our solution, we conducted experiments by implementing
secure and verifiable AllPairs (section 3) and Analyze (section 4.2) functionalities for the
Hamming distance. We first present the results for AllPairs computation outsourcing.
Recall that the client first partitions its job into individual tasks of manageable size

n × n. To securely outsource an individual task, the client sends shares of S1 and S2 to
a number of computational servers N who jointly compute the result using secure multi-
party computation (SMC) techniques based on Shamir secret sharing [Shamir 1979]. Due
to simplicity of function dist(x, y) =

∑m
i=1(xi + yi − 2xiyi), and properties of this type of

SMC techniques, each server can compute its share of dist(x, y) locally and return the result
to the client. In particular, with (N, t)-linear secret sharing, there are N participants, each
of which receives a share of a secret. Then any t + 1 shares can be used to reconstruct it,
while combining t or less shares information-theoretically reveals no information about the
secret. For parties that follow the computation, it is required that t < N/2. Each secret s
is represented by a random polynomial fs(x) of degree t, where fs(0) = s. Party Pi, for
i = 1, . . ., N , obtains its share fs(i). With this representation, any linear combination of
secret shared values is carried out locally with no communication. Multiplication of two
secret shared values, on the other hand, is interactive and involves multiplying two shares

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Given n, m, p, κ, and γ, compute n1 = n2, k, and ℓ.
To create an outsourced task:

(1) Create n1 pairs of m-dimensional fake vectors 〈x̂, ŷ〉 such that within each pair dist(x̂, ŷ) is a random
value from [0,m]. Let F1 and F2 denote the (ordered) sets of all x̂’s and ŷ’s, resp.

(2) Append k coordinates to each fake vector, where the coordinate values are chosen as follows: for each
fake vector, choose d at random from [m + 1, m + ℓ] and set the values of the artificial coordinates

to randomly chosen dj ’s such that
∑k

j=1 dj = d. Compute dist(x, y) for each x ∈ F1 and y ∈ F2;

if some value falls in the range [0, 2m + ℓ], choose new dj ’s for x or y. Store n1 values dist(x̂, ŷ) =
dist(F1[i], F2[i]) for each i. Permute the coordinates in each vector using a random permutation π0.

(3) Given two sets S′

1 and S′

2 of size n− n1 comprised of m-dimensional biometrics, append k artificial
coordinates to each vector, which are set to 0. Permute the coordinates in each vector using π0.

(4) Form S1 of size n by appending the elements of F1 to the set S′

1 and permuting the result using
random permutation π1. Similarly, form S2 using S′

2 and F2 and permuting the resulting set using
random permutation π2. Save S1 and S2.

(5) Create (protected) distances [i], i = 0, . . ., 2m+ ℓ, and permute them using random permutation π3.
(6) Send S1, S2, and π3([0]), . . ., π3([2m + ℓ]) to a server for secure AllPairs and Analyze computation,

where the distances π3([0]), . . ., π3([2m+ ℓ]) will be used to compute C.

To verify an outsourced task:

(1) Compute expected C as follows:
(a) for i = m+ 1, . . ., 2m + ℓ set C[i] = 0 and also set C[0–m] = (n− n1)2.
(b) for i = 1, . . ., n1, compute w1 = dist(F1[i], z) and increment C[w1] by 1 for each z ∈ S′

1; compute
w2 = dist(z, F2[i]) and increment C[w2] by 1 for each z ∈ S′

2.

(2) For each i = 1, . . ., n1 compare stored dist(F1[i], F2[i]) to the returned M [π1(F1[i])][π2(F2[i])] and
output failure if at least one value disagrees.

(3) Add returned counts C[π−1
3 (0)] through C[π−1

3 (m)] and compare them to computed C[0–m]. For

each i = m + 1, . . ., 2m + ℓ compare returned C[π−1
3 (i)] to the expected C[i]. If at least one check

fails, output failure.

Fig. 5. Description of preparation and verification procedures for an outsourced task.

locally, after which they are randomized and re-shared. This temporarily raises the degree
of the polynomial representation to 2t, after which it is reduced back to t, and this is the
reason for 2t < N requirement [Ben-Or et al. 1988; Gennaro et al. 1998]. It is important to
notice that a (possibly multi-variate) polynomial of degree k can also be evaluated locally,
as long as kt < N . This fact is exploited in our implementation, where computation of
dist(x, y) is represented as a polynomial of degree 2 over variables xi, yi for i = 1, . . .,m and
t < N/2. This means that the parties compute shares of dist(x, y) without any interaction
(and the result is represented by a polynomial of degree 2t), and the client uses N = 2t+1
shares it receives from them to reconstruct the result. Appendix A describes how this and
other relevant computation can be carried out in this framework.
Our implementation used Java-based SEPIA library [Burkhart et al. 2010] for the under-

lying communication and elementary operations on secret shares with one client and three
servers for a singe task. In particular, SEPIA handled establishment of SSL connections
between the client and the servers and between each pair of servers. We used m = 1000
with a varying number n of vectors per task and arithmetic modulo a 15-bit prime. The
value of m was chosen to be comparable with the length of iris codes in practice.6 The
value of n was chosen so that n2m shares would fit the machines’ memory for performance
reasons. The client and each server were 2.4 GHz Linux machines with 12GB of memory on
a 1Gbps LAN. We used (3, 1)-Shamir secret sharing with N = 3.
Figure 6 reports the results of our experiments. Figure 6(a) measures the time to transmit

2nm shares to a single party, the computation taken by a single party to compute its shares
of n2 distances, and the time for a party to send all n2 shares back to the client. For com-

6For the purposes of the analysis in this work, the exact value of m plays insignificant role assuming that
it is large enough. This will become clear from the discussion below.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

600 800 1000 1200

10
−1

10
0

10
1

10
2

Data set size

T
im

e
(s

)

Share receiving
Computation (private)
Computation (non−private)
Result sending

400 600 800 1000 1200
0

20

40

60

80

Data set size

T
im

e
(s

)

Before Insertion
After Insertion

10.53%

12.82%

14.00%

17.40%

23.39%

4 6 8 10 12
5

10

15

20

25

30

Number of rounds

T
im

e
(s

)

Computation time (400)
Overall time (400)
Computation time (800)
Overall time (800)

(a) task computation and (b) server’s task (c) server’s performance
communication time computation time for a large task

Fig. 6. Performance of secure and verifiable outsourcing of Hamming distance computations.

parison, we also plot the time taken to execute the same task without privacy protection in
a similar environment on shorter representations of the coordinates and implementing XOR
operations directly. (Note that in secure execution, a single task is run by N machines, while
in insecure computation only a single server is needed.) The plot shows notably efficient
performance for secure function evaluation techniques. Also, while our LAN experiment rep-
resents a best-case scenario for communication delay, for this computation communication
is not expected to be a dominating factor even for significantly slower networks.
Figure 6(b) reports on the servers’ overhead caused by the addition of fake vectors to

make the computation verifiable. The curves show the time to compute tasks of size n and
n + n1 for fixed n1 = 50 and variable n. We compute n1 according to equation 7. For a
sample setup of Pr[D] ≥ 0.99 when p ≤ 0.95, we obtain n1 = 90, and for Pr[D] ≥ 0.95
with p ≤ 0.9 we obtain n1 = 29; we then choose n1 = 50 as a medium value. As the figure
indicates, the overhead is only 10–20% for the plotted data set sizes. Furthermore, because
the overhead consists of 2nn1 + n2

1 distance computations, it is clear that it will constitute
a smaller fraction of the task as the value of n increases.
Finally, Figure 6(c) reports on the time for securely computing a large task. The plot

shows average time per sub-task when the overall task is computed using sub-tasks of size
n = 400 and n = 800. It is clear that the time per sub-task is constant. The overall time is
slightly higher than the computation time and includes overhead such as key establishment
and also depends on the worst out of N (vs. average) communication and computation.
From all of the plots, we see that the techniques are efficient and do not substantially
exceed the computation time without security protection or correctness verification.
To evaluate the performance of secure and verifiable Analyze, we start with computing all

necessary parameters. As summarized in section 4.3, we need to compute parameters n1, k,
and ℓ usingm = 1000, variable n, and desired Pr[D], γ, and p. First, notice that computation
of k (parts (ii) and (iv)) is independent of either n1 or ℓ. Furthermore, equation 16 will
result in strictly higher value of k than equation 10 even for very conservative values of
β. Therefore, it is sufficient to consider only equation 16 and compute k as a function of
p, m, and γ. We also note that the value of m has a low impact on k (i.e., similar to
computing the number of fake vectors n1, approximation by binomial distribution can be
used to compute the number of artificial coordinates k when m is large, in which case k is
independent of m). We give the value of k and other parameters for three distinct settings
of security parameters Pr[D], γ, and p in Table I.
Next, we consider parameters ℓ and n1 computed in parts (i), (iii), and (v). First, notice

that the value ℓ = 1 satisfies all analyses with m = 1000. Namely, the probability in
equation 17 is very high even with the lowest u = 1, the probability in equation 12 is very
low with ℓ = s = 1, and the probability in equation 13 is 1 with ℓ = s = t = 1. This gives us
t = 1 for the purposes of equation 11, and all that remains is to compute the higher value
of n1 using equations 8 and 11. Such values of n1 are shown in Table I as a function of data

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

Table I. Values of parameters k, ℓ, and n1 for verification of Hamming distance-based statistics with m = 1000.

Computed parameters
Security setting k ℓ n1

any n any n n = 200 n = 400 n = 600 n = 800 n = 1000 n = 2000
p ≤ 0.9, Pr[D] ≥ 0.95, γ ≤ 0.05 28 1 27 28 28 28 29 29
p ≤ 0.95, Pr[D] ≥ 0.95, γ ≤ 0.05 57 1 51 55 56 57 57 58
p ≤ 0.95, Pr[D] ≥ 0.99, γ ≤ 0.01 87 1 73 81 84 85 86 88

2000 4000 6000 8000
13
14

16

18

20

22
23

Data set size

T
im

e
(m

s)

p = 0.9, Pr[D] = 0.95
p = 0.95, Pr[D] = 0.95
p = 0.95, Pr[D] = 0.99n

1
 ∈ [26, 29]

n
1
 ∈ [83, 90]

n
1
 ∈ [56, 59]

2000 4000 6000 8000
0

2

4

6

8

Data set size

T
im

e
(s

)

n
1
 ∈ [26, 29]

p = 0.90, Pr[D] = 0.95

2000 4000 6000 8000
0

10

20

30

40

50

60

Data set size

T
im

e
(m

s)

(a) one-time precomputation (b) task preparation time (c) expected statistics computation

2000 4000 6000 8000
0

2

4

6

8

Data set size

T
im

e
(s

)

n
1
 ∈ [26, 29]

p = 0.90, Pr[D] = 0.95

2000 4000 6000 8000
0

1

2

3

4

5

Data set size

T
im

e
(s

)

(d) task preparation and verification time (e) communication overhead

Fig. 7. Client’s performance of secure and verifiable outsourcing of Hamming distance-based statistics
computation and communication.

set size n. As can be seen from the table, n1 increases slowly with n and approaches values
independent of n that were computed for the purpose of AllPairs verification experiments.
Observe that the values of k with m = 1000 are very similar to values of n1 with n = 1000.
The results of our experiments for Analyze functionality are given in Figures 7 and 8,

where the former reports on the client’s computation and communication overhead and the
latter shows the server’s performance. For the client, we measured all components necessary
for preparation and verification of an individual task. Figure 7(a) measures the client’s
preparation time for generating the fake vectors to be inserted into a data set. This is a
one-time cost for all possible tasks to be outsourced. We present the client’s overhead for
the three security settings from Table I. Note that the time is very low and grows slowly
with the size of the task, as the value of n1 increases before reaching the ceiling for large n.
Figure 7(b) reports on the client’s time for preparing a task for outsourcing. It includes

reading the input from a locally stored file and inserting fake vectors into random locations
of the data set, where the former amounts for the majority of that time. The curve in the
plot corresponds to the security setting with p = 0.9, Pr[D] = 0.95, and γ = 0.95 and
therefore n1 in the range [26, 29] which increases with the value of n. It is clear that the
time is linear in the data set size, and was the same in our experiments for the three security
setting (i.e., the value of n1 does not play a major role in the task preparation time).
Figure 7(c) reports on the client’s overhead for computing the expected statistics for task

verification. This can be carried out during task computation. Recall that to compute the
expected statistics, the client needs to compute the Hamming weight of each (real) biometric
in its data sets, which necessitates a single round of traversing of all of the vectors (which

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

are already in the memory after task preparation). Thus, the time in Figure 7(c) grows
linearly with the size of the data set. Once again, we report the results for the first security
setting in Table I and performance for other security settings is the same.
The next Figure 7(d) presents the client’s overall time for preparing a task and verifying

the returned result, which combines the times in Figures 7(a)–(c) with task verification time.
The task verification time includes (i) reconstruction of the secret shares received from the
servers and (ii) comparing the result with the expected statistics. Note that both (i) and
(ii) depend only on the size of C and are independent of the data set size n. Therefore,
we observed a constant task verification time around 15 msec. From the figures, we can
conclude that the client’s overhead is dominated by the task preparation time, which is
linear in n and takes about a couple of seconds for data sets of a few thousands of vectors.
Finally, Figure 7(e) measures the time that communication between the client and the

servers takes, which consists of sending shares of the data sets and receiving shares of the
resulting C. Since the size of C is independent of n, the time for receiving shares of the
result is also constant around 10–15 msec. Thus, the communication overhead is dominated
by input transmission and therefore grows linearly with the data set size.
Unlike AllPairs computation, to produce distribution data C the servers need to engage in

interactive computation. In the implementation, we compute the distances using the same
approach as before, after which the servers reduce the degree of each distance representation
from 2t to t and engage in comparison operations as described in section 2. Secure imple-
mentation of this functionality is also given in Appendix A. The fastest known realization of
equality testing in this framework from [Catrina and de Hoogh 2010], but because we build
our prototype using the SEPIA library, our implementation relies on the equality testing
available in SEPIA. This means that faster implementations are possible today.
Performance of an interactive SMC protocol can be improved if the computation can

be parallelized. In our context, all cells in the n × n matrix can be processed in parallel.
In addition, all |C| = 2m + ℓ + 1 comparison operations per cell in the matrix can also
be carried out in parallel. We therefore utilize SEPIA’s limited ability to carry out oper-
ations in parallel: operations are performed in rounds (which differ from the traditional
SMC definition of elementary sequential interactive operations) and all computation and
communication within a single round are synchronized. That is, each party waits until it
receives all intermediate results necessary for the next step for all operations within the
same synchronization round, and then proceeds with the computation for the next step. In
other words, synchronization after each round is mandatory even if it is not required by
the computation itself. We experimented with SEPIA to find out the number of operations
per synchronization round that would minimize the overall runtime. The experiments were
performed using a few million comparison operations, all of which could be carried out in
parallel. Performing 107 comparisons is roughly equivalent to computing statistics C for
n = 100 and |C| = 1000. The results of our experiments are given in Figure 8(a) for N = 3.
As can be seen from the figure, the computation time is the lowest when 5000 comparison
operations are used per synchronization round. We, however, would like to note that this
result is specific to the SEPIA library and faster performance can be achieved by using tools
with more flexible parallelization options.
The time that it takes the servers to carry out an outsourced task is shown in Figure 8(b).

We compare two settings: secure computation of C and secure and verifiable computation
of C. The former guarantees that all information is processed privately, and the latter
additionally ensures that correctness of the computation can be verified by the client. We
use the parameters for the first security setting with p ≤ 0.9, Pr[D] ≥ 0.95, and γ ≤ 0.05
from Table I. The overhead introduced by the addition of fake coordinates to each vector is
k/m for tasks of all sizes n. The overhead due to the addition of fake vectors is n1/n, which
decreases as n grows. Finally, expanding the size of C from m+1 to 2m+ ℓ+1 doubles the
work associated with processing each pair of vectors.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

0.5 1 1.5 2
x 10

4

0

200

400

600

800

Number of comparisons per round
T

im
e

(s
)

6 million operations
4 million operations
2 million operations

200 400 600 800
0

5

10

15x 10
4

Data set size

T
im

e
(s

)

Secure−only computation
Secure and verifiable
computation

(a) performance with varying number of (b) server’s task execution time
operations per synchronization round

Fig. 8. Server’s performance of secure and verifiable outsourcing of statistics computation for Hamming
distance.

5. VERIFICATION OF STATISTICS COMPUTATION FOR EUCLIDEAN DISTANCE

In this section, we use the Euclidean distance as the distance metric for computing dis-
tances between each pair of biometric items. Because the verification mechanism for dis-
tance computation in section 3 works for all distance metrics, we concentrate only on ver-
ification of statistics computation. This time, each biometric item x is represented as a
vector 〈x1, x2, . . . xm〉, which is treated as a point in m-dimensional space and each co-
ordinate xi ∈ [0, h] for 1 ≤ i ≤ m. Unlike the Hamming distance computation which is
carried out following the formula exactly, in this metric, we have the server compute the
distribution of squared distance and send the result back to the client. That is, we define
dist(x, y) =

∑m
i=1(xi − yi)

2. The client then either will produce mapping between regular
and squared distances as it forms a task assignment for the server (recall that the client
supplies protected distances used to collect distribution information), take the square root
of each returned result, or operate directly on squared distances.

5.1. Preliminary solution

Our first solution is very similar to that used for the Hamming distance. To aid the verifi-
cation process, the client, as before, inserts fake vectors into the computation and inserts
fake coordinates into both real and fake vectors. In detail, before outsourcing a task, the
client inserts k fake coordinates into each real vector and the resulting m+k coordinates are
randomly permuted, but consistently across all vectors. As before, we denote the positions
of these extra coordinates by i1, . . . , ik. All artificial coordinates are set to 0 in real vectors.
To form fake vectors, the client chooses a small integer ℓ, which plays role of a security

parameter, and ℓ values larger than mh2 with each of them being used to increase the
distance between real and fake vectors. For concreteness, we set these values to mh2 + 1,
mh2 + 2, . . . , mh2 + ℓ. To form a fake vector, the client first randomly chooses a distance
d out of these ℓ candidates. Next, the client chooses k fake coordinates at random from Zq,

denoted by di for 1 ≤ i ≤ k, so that the constraint
∑k

i=1 di
2 = d is satisfied. In more detail,

the client chooses the first k − 1 values of di’s uniformly at random from Zq, sets (dk)
2 to

d−∑k−1
i=1 di

2, and computes dk. For a prime q, there is about 50% probability that the square
root computation fails (i.e., (q − 1)/2 values from Zq are quadratic nonresidues). In this
case, the client chooses a new dk−1 at random and tries again until dk is successfully found.
Finally, the client sets the remaining m (original) coordinates in that vector to 0. To aid
producing the expected statistics for computation verification purposes, the client records
the number of times each d was used in a fake vector in the set S1 and S2, respectively. Let
the counts be denoted by cji , where i ∈ [mh2 + 1,mh2 + ℓ] and j ∈ [1, 2].
By forming the vectors in S1 and S2 as described above, the distances between two real

vectors will fall into the range [0,mh2], the distances between a real and a fake vectors
will fall into the range [mh2 + 1, 2mh2 + ℓ], and the distances between two fake vectors

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

could be anywhere in Zq . Because the range of distances between two fake vectors might
now overlap with the range of distances between two real (or real and fake) vectors, for
verification purposes, the client needs to precompute the distribution of distances between
two fake vectors that fall into the range [0, 2mh2 + ℓ], and subtract it from the statistics
returned by the server. Notice that the fake vectors could be reused for each task without
lowering the detection probability, thus the overhead is one-time.
Before the client is able to verify the result of returned computation using S1 and S2,

the client needs to compute additional information as follows: for each real vector x in
S1 and S2, the client computes the sum of squares of its coordinates

∑m

i=1 x
2
i , and counts

the number of instances of each occurred value across all vectors. Let s1i (s2i) denote the
number of vectors with computed value i in S1 (resp., S2). After acquiring this distribution,
the client computes the expected statistics and verifies the results returned by the servers
using the algorithm in Figure 3 with the following inputs:

[lr, ur] = [0,mh2], [lf , uf] = [mh2 + 1, 2mh2 + ℓ], do = mh2

If all checks in the algorithm succeed, the client treats the obtained distribution as correct.
Next, notice that if we now compute the security parameters using the analyses in sec-

tion 4.3, the necessary security guarantees will hold. (The only obvious exception is that we
replace the total number of distances 2m+ ℓ + 1, i.e., the size of C, with 2mh2 + ℓ + 1 in
equations 8, 12 and 17.) In particular, for given p, Pr[D] and γ, the values of parameters n1,
ℓ, and k are determined from equations 11–17. There are, however, two major differences
from the setting for the Hamming distance that influence the values of these parameters:

(1) The number of dimensions m in biometrics that rely on the Euclidean distance (such
as faces) is often significantly lower, e.g., not exceeding 50.

(2) If the server misses at least a single fake vector in the computation (either from S1 or
S2), it will have to correctly adjust several counts in C. Recall that in the case of the
Hamming distance it was realistic to assume that all original biometric vectors might
have the same Hamming weight (e.g., m/2), in which case all distances between a given
fake vector and all real vectors from the other set would be the same. In the case of
the Euclidean distance, however, it is not realistic to assume that all

∑m
i=1 x

2
i for each x

would result in exactly the same value.

A direct consequence of item 2 above is that u > 1 for the purposes of equation 17, where u
is now the number of unique values

∑m

i=1 x
2
i across all original x in S1 and S2. Furthermore,

when the server needs to guess locations in C corresponding to s fake rows (red rows in
Figure 4), the number of locations to guess now is at least s+ u. This changes equation 12

to Pr[D] ≤ 1/
(

2mh2+ℓ+1
s+u

)

, which means that lower s and ℓ can be used for the Euclidean
distance than the Hamming distance for comparable sizes of C. This gives us that ℓ = 1 will
be sufficient for the Euclidean distance as well, and we obtain that the client will be able
to use the same values of n1 and ℓ as given in section 4.5 and compute k from equation 16.
Also note that when item 1 does not hold, i.e., m is large, the analysis of this solution

is closer to that of the Hamming distance and will result in lower security parameters (and
thus lower overhead) compared to when m is not large.

5.2. Improved solution

Now notice that, while the above solution meets the security goals, it can be become inef-
ficient due to the large size of C and therefore a large number of comparisons per pair of
vectors. In particular, this happens when m and/or h are not small. Under such circum-
stances, the client might be interested in learning aggregate statistics, where the computed
distances are rounded with the desired precision or, more generally, the distances are placed
in specific ranges and the aggregate count for the entire range is reported instead of indi-
vidual counts for each distance in the range. While the client can clearly compute this

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

information using the current solution, having the server compile the necessary information
directly will result in significant reduction of its computational load and therefore the speed
with which a task is performed. In what follows, we describe a modified solution that allows
us to improve the computational load of the servers while still maintaining security.
When the client sends to the server a task in the form of S1 and S2, it now supplies a list

of ranges [li, ui] for 0 ≤ i < v which are not known to the server. The server’s task becomes
to compute the number of distances between the vectors in S1 and S2 that fall within each
range. The sets S1 and S2 themselves are formed as previously described. Therefore, within
the v different ranges, some ranges will correspond to the distances between real and real
vectors, and others will corresponds to the distances between real and fake vectors.
To compute the count for each range, the server obliviously compares a computed distance

to all possible ranges and increments the one that matched. As before, the counts are stored
in C = 〈c0, c1, . . . , cv−1〉, where ci corresponds to the number of distances in the range [li, ui].
Initially, all ci’s are set to 0 and are updated as follows, where b1 and b2 are bits:

[d] := dist([x], [y]);

for i = 0, . . ., v − 1: [b1] := ([li]
?
≤ [d]); [b2] := ([d]

?
≤ [ui]); [ci] := [ci] + [b1][b2];

By adjusting the granularity of the ranges, the client has a lot of flexibility to express
its preference. That is, the ranges can aggregate a different number of distances, and the
client can use fine granularity for the regions that convey a lot of information and coarse
granularity for other regions.
Note that now processing each distance requires performing two comparisons for each

range instead of a single equality test for each possible distance. This means that this
solution results in computational savings for the server only when the number of ranges is
less than one half of the number of original distances. Furthermore, because this approach
can lead to accuracy reduction for the client, the client should choose a level of granularity
that is guaranteed to preserve the utility of the data.
The above solution reduces both the server’s work and the size of C. This in particular

means that the security analysis must be revisited to ensure that the parameters provide
the necessary guarantees. As described in section 5.1, however, despite smaller |C| the same
security parameters are sufficient for the Euclidean distance as for the Hamming distance.
That is, because u (which now corresponds to the number of ranges in which values

∑m

i=1 x
2
i

fall for all original x) will still be larger than 1, the same security parameters should be
sufficient, which the client will need to verify.
This setting also provides new opportunities for security enhancements. In particular,

the client can use overlapping ranges, which can be valuable for setting distances between
real and fake vectors. In this case, the need to update a single count by a cheating server
translates into the need to update (i.e., correctly guess) multiple locations in C.
We combine verification of distance and statistics computation in Appendix C.1.

6. VERIFICATION OF STATISTICS COMPUTATION FOR SET INTERSECTION

CARDINALITY

We next proceed with the description of our solution for statistics verification when the
set intersection cardinality is used as the distance metric (and, as before, the solution from
section 3 is used for verification of distance computation). Now each original item is a set
composed of m elements7 from the range [0, h]. Given S1 and S2, the server is to compute
the cardinality of set intersection of elements in x and y, |x∩ y|, for each x ∈ S1 and y ∈ S2

and compile the distribution of the distances in the form of C. Note that this metric is

7Note that biometric representations that rely on the set intersection cardinality can have a variable length.
For our purposes, each biometric is not required to be of length exactly m. Both correctness and security
of our solution hold if each item is of length at most m, i.e., m is the upper bound on the size of items.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

equivalent to symmetric set difference, which can be expressed in terms of set intersection
as dist(x, y) = 2m− |x ∩ y|.

6.1. Preliminary solution

Similar to prior solutions, the client inserts n1 fake biometric sets into both S1 and S2 and
k fake elements into real and fake sets to aid the verification process. Note that unlike the
previous distance metrics, the fake elements are not required to be positioned consistently
across all sets. All artificial elements are set to 0 in the real sets.
To generate fake sets, the client produces 2n1 values larger than t and assigns one of them

to a single fake set. We use di to denote the value assigned to the ith fake set. To form
the ith fake set, the client randomly chooses a value d from the range [0, k − 1], and sets d
randomly chosen elements of it to 0 and sets the remaining m+ k− d elements to di. Each
resulting real or fake set is now a multiset, and we assume that the distance computation
function will produce correct output when the inputs are multisets. The client also records
the number of times each d was used in a fake set in S1 and S2, respectively, and we denote
such counts by cjd, where d ∈ [0, k − 1] and j ∈ [1, 2].
This setup gives us that the distances between any two real sets fall into the range

[k,m+ k] due to the use of k zero elements, the distances between real and fake sets into
the range [0, k), and the distances between any two fake sets into the range [0, k). Because
of the overlap of the last two ranges, the client will need to precompute the statistics for
the distances between any two fake sets, add it to the expected statistics for the distances
between real and fake sets, and then compare the result to the statistics returned by the
server. The rest of the verification process uses the algorithm in Figure 3 with inputs:

[lr, ur] = [k,m+ k], [lf , uf] = [0, k − 1], do = 0

As far as security analysis goes, note that parameter k now serves the role of both k and ℓ
in section 4.3, and the size of C is m+k. Also, the value of m is relatively small in biometric
types that use this distance metric (e.g., fingerprints). Furthermore, the distances between
a single fake set and all real sets are always the same depending merely on the value of d
for that fake set, which means that equation 12 does not change. Then for given m and k,
the quantity in equation 12 might not be sufficiently low when s = 1, which implies that
higher s and therefore higher n1 than what is reported in section 4.5 might be necessary.
With respect to the analysis for the value of k (equation 17), we have that when the server

skips at least one artificial element, the verification associated with the distances between
real sets will be successful, but the counts associated with the distances in the range [0, k−1]
will need to be updated by the server to pass verification. Skipping one artificial element
will cause some, but not all, of the distances in that range to decrease depending on the
value of the element at that position (this affects distances between real and fake sets as
well as between two fake sets). This will result in at least two incorrect counts due to the
distances between real and fake sets (the count for distance k − 1 will need to be increased
and the count for distance 0 will need to be decreased in the best-case for the server when
all counts consistently shift down), the locations of which must be guessed correctly. This
will also invalidate any number of counts from this range due to the distances between two
fake sets, and we should expect the server to have to guess the locations and update at least
half of them with the exact differences. Equation 17 then becomes Pr[D] ≥ 1−∏u−1

i=0
1

m+k−i
,

where u can be set to k/2 or to a more conservative lower value.

6.2. Improved solution

As shown above, when the server misses distance computation for a single fake set (either a
row or column), to remain undetected it only needs to correctly guess and update one loca-
tion in C. When the size of C is not large, to guarantee that the probability of misbehavior

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

detection is sufficiently high, the parameters will have to be increased resulting in larger
overheads. For that reason, we propose an improved solution that remedies this problem.
The modification to the current solution is as follows: the client defines a small integer ℓ

as the security parameter which will correspond to the number of additional elements which
in fake sets will be from the range [0, h]. The ith fake set now consists of three components:
(i) d elements with value 0, where d is now from the range [0, k − ℓ − 1]; (ii) ℓ elements
with the values in the range [0, h], which we term offset elements; and (iii) m + k − ℓ − d
elements with values di greater than h. The purpose of these ℓ offset elements is to introduce
differences in the distances between a single fake set and a number of real sets. In particular,
the values of the ℓ elements in the fake sets will be such that they will overlap with certain
elements in real sets, causing the distances between a single fake set and real sets to be in
the range [d, d + ℓ] instead of always d. The values of the ℓ offset elements are set to 0 in
all real sets. For simplicity, we will use the same set of ℓ offset elements for each fake set.
Notice that the above setup does not change the range of distances between any pair

of real sets or the range of distances between a fake set and either fake or real set. The
difference is that one fake set can now affect the counts corresponding to ℓ+ 1 distances in
C. To guarantee that a single fake set indeed affects ℓ+1 locations in C, the values for the
ℓ offset elements must be properly chosen. That is, in the worst case, the values selected for
the ℓ offset elements might not share any elements with any real set in S1 and S2, resulting
in no benefit from this approach. For that reason, when the client chooses candidate values
for the offset elements, it should scan S1 and S2 to ensure that there are real sets that
overlap with the candidate offset elements by everything between 0 and ℓ elements.
Before the client is able to verify the computations performed by the server using S1 and

S2, the client needs to compute additional information as follows: for all real sets in S1 and
S2, compute the number of sets that share i values in common with the ℓ offset elements.
Let s1i (s2i) denote this number in S1 (resp., S2) for 0 ≤ i ≤ ℓ. Now the client can produce
the expected statistics by executing the algorithm in Figure 3 with the inputs:

[lr, ur] = [k,m+ k], [lf , uf] = [1, k − 1], do = ℓ

Finally, the client needs to incorporate the precomputed statistics for the distances between
each pair of fake sets into the expected statistics, and compare it with the results returned
by the server. If all checks succeed, the client treats the obtained result as correct.
With this modified solution, certain portions of the security analysis change and we obtain

that now equation 12 becomes Pr[D] ≤ 1/
(

m+k
s+ℓ

)

. This means that even by setting ℓ to a
low value such as 1 or 2, having s = 1 will be sufficient to meet the necessary security
guarantees even when m is not large. This will imply that the value of parameter n1 will
not increase over the values reported in section 4.5 for a range of security settings.
We describe the strategy for combined verification of distance and statistics computation

in Appendix C.2.

7. RELATED WORK AND CONCLUSIONS

Research on verifiable or uncheatable computation was initiated in [Golle and Stubblebine
2001; Golle and Mironov 2001] using techniques such as redundant task execution and in-
sertion of so-called ringers in search for rare events (in particular, performing inversion of a
one-way function). In this context, it is crucial that the parties carrying out the computation
are unable to distinguish ringers from other components of a task. Consequently, Szajda et
al. [Szajda et al. 2003] extended the idea to optimization problems and sequential executions
(while still relying on parallel and redundant task execution). Other publications in this di-
rection include [Du and Goodrich 2005; Goodrich 2008; Karame et al. 2009] that inject
chaff sub-tasks or verify portions of the result for computations of certain structure (e.g.,
NP-complete problems); [Kim et al. 2007; Watanabe et al. 2009] use redundant scheduling.
[Du et al. 2004] suggest the use of commitment to the result of massively-parallel server’s

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

computation using a Merkle hash tree, where the client verifies the computation by chal-
lenging the server on a number of individual sub-tasks which must match the commitment.
Finally, in [Kuhn et al. 2008] distributed checking is used where (possibly malicious) servers
perform checks on each other. We note that often the existing techniques can achieve a
high probability of cheating detection only when p is rather low (i.e., not close to 1). While
redundant task execution can be used to detect cheating by lazy servers, there is an extra
computational overhead compared to our solution still remains. Also, one has to assume
that one of the chosen servers always returns correct results (which is a stronger assumption
than what we make).
There are also a number domain-specific computation verification techniques [Benjamin

and Atallah 2008; Atallah and Frikken 2010; Wang et al. 2011]. Such techniques are known
for algebraic computations [Benjamin and Atallah 2008; Atallah and Frikken 2010] and
linear programming [Wang et al. 2011], where verification can be performed faster than the
computation itself. This work is thus unique in its scope, as it assumes a certain structure
of the computation, but the developed techniques are applicable to different instantiations
of the distance function. In particular, the general solutions listed above would not work in
the context of this work even for verifying AllPairs computation, as distance computation
consists of many elements and should not be treated as an integral function.
Lastly, the line of work on integrity verification of remote storage that goes under the

name of Proofs of Retrievability (POR) or Provable Data Possession (PDP) is related to
this work ([Ateniese et al. 2007; Juels and Kaliski 2007] and others). At high level, a client
partitions its data into data blocks and stores them together with meta-data at a remote
server. Periodically, the client issues integrity verification queries and checks a number of
data blocks at unpredictable to the server indices using the meta-data. The probability that
the client can detect problems is computed as 1− ((n− r)/n)c, where n is the total number
of stored blocks, r is the number of corrupted blocks, and c is the number of verified blocks.
We achieve similar guarantees for distance computation verification.
In this work we develop techniques for verifiable outsourcing of large-scale biometric

computations on protected data consisting of distance and statistical data computation
and provide their rigorous security analysis. Our techniques for the distance computation
are general and can be applied to any distance metric, while the techniques for statistics
computation are distance-metric dependent and we treat several popular distance metrics
such as the Hamming distance, Euclidean distance, and set intersection cardinality. We also
provide experimental results using linear secret sharing as the underlying data protection
mechanism that show that the overhead introduced by our techniques is reasonable. We
expect that the design insights that emerged as a result of studying this problem will
inform design decisions for verifiable computation in other domains as well.

REFERENCES

Afrati, F., Das Sarma, A., Menestrina, D., Parameswaran, A., and Ullman, J. 2012. Fuzzy joins
using MapReduce. In IEEE International Conference on Data Engineering. 498–509.

Atallah, M. and Frikken, K. 2010. Securely outsourcing linear algebra computations. In ACM Symposium
on Information, Computer and Communications Security. 48–59.

Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., and Song, D. 2007.
Provable data possession at untrusted stores. In CCS. 598–609.

Barni, M., Bianchi, T., Catalano, D., Di Raimondo, M., Labati, R., Failla, P., Fiore, D., Lazzeretti,
R., Piuri, V., Scotti, F., and Piva, A. 2010. Privacy-preserving fingercode authentication. In ACM
Workshop on Multimedia and Security (MM&Sec). 231–240.

Ben-Or, M., Goldwasser, S., and Wigderson, A. 1988. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In ACM Symposium on Theory of Computing (STOC). 1–10.

Benjamin, D. and Atallah, M. 2008. Private and cheating-free outsourcing of algebraic computations. In
Annual Conference on Privacy, Security, and Trust (PST). 240–245.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

Blanton, M. and Aguiar, E. 2012. Private and oblivious set and multiset operations. In ACM Symposium
on Information, Computer and Communications Security.

Blanton, M. and Aliasgari, M. 2012. Secure outsourced computation of iris matching. Journal of Com-
puter Security 20, 2–3, 259–305.

Blanton, M. and Gasti, P. 2011. Secure and efficient protocols for iris and fingerprint identification. In
European Symposium on Research in Computer Security (ESORICS). 190–209.

Blanton, M., Zhang, Y., and Frikken, K. 2011a. Secure and verifiable outsourcing of large-scale biomeric
computations. Tech. Rep. 2011-04, Department of Computer Science and Engineering, University of
Notre Dame.

Blanton, M., Zhang, Y., and Frikken, K. 2011b. Secure and verifiable outsourcing of large-scale biometric
computations. In IEEE International Conference on Information Privacy, Security, Risk and Trust
(PASSAT). 1085–1091.

Bui, H., Kelly, M., Lyon, C., Pasquier, M., Thomas, D., Flynn, P., and Thain, D. 2009. Experience
with BXGrid: A data repository and computing grid for biometrics research. Journal of Cluster Com-
puting 12, 4, 373–386.

Burkhart, M., Strasser, M., Many, D., and Dimitropoulos, X. 2010. SEPIA: Privacy-preserving ag-
gregation of multi-domain network events and statistics. In USENIX Security Symposium. 223–240.

Catrina, O. and de Hoogh, S. 2010. Improved primitives for secure multiparty integer computation. In
International Conference on Security and Cryptography in Networks (SCN). 182–199.

Chor, B., Goldwasser, S., Micali, S., and Awerbuch, B. 1985. Verifiable secret sharing and achieving
simultaneity in the presence of faults. In FOCS. 383–395.

Du, W. and Goodrich, M. 2005. Searching for high-value rare events with uncheatable grid computing. In
Applied Cryptography and Network Security. 122–137.

Du, W., Jia, J., Mangal, M., and Murugesan, M. 2004. Uncheatable grid computing. In ICDCS. 4–11.

Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., and Toft, T. 2009. Privacy-
preserving face recognition. In Privacy Enchancing Technologies Symposium (PETS). 235–253.

Gennaro, R., Gentry, C., and Parno, B. 2010. Non-interactive verifiable computing: Outsourcing com-
putation to untrusted workers. In Advances in Cryptography – CRYPTO. 465–482.

Gennaro, R., Rabin, M., and Rabin, T. 1998. Simplified VSS and fast-track multiparty computations
with applications to threshold cryptography. In PODC. 101–111.

Gens, F. 2008. IT cloud services user survey, pt. 2: Top benefits & challenges. http://bit.ly/oUCbY.

Goldwasser, S., Micali, S., and Rackoff, C. 1985. Knowledge complexity of interactive proof systems.
In STOC. 291–304.

Golle, P. and Mironov, I. 2001. Uncheatable distributed computations. In RSA Conference. 425–440.

Golle, P. and Stubblebine, S. 2001. Secure distributed computing in a commercial environment. In
International Conference on Financial Cryptography. 289–304.

Goodrich, M. 2008. Pipelined algorithms to detect cheating in long-term grid computations. Theoretical
Computer Science 408, 2–3, 199–207.

Goodrich, M. 2010. Randomized Shellsort: A simple oblivious sorting algorithm. In SODA. 1262–1277.

Juels, A. and Kaliski, B. 2007. PORs: Proofs of retrievability for large files. In CCS. 584–597.

Kahney, L. 2001. Cheaters bow to peer pressure. WIRED Magazine. http://bit.ly/ZVuXCJ.

Karame, G., Strasser, M., and Capkun, S. 2009. Secure remote execution of sequential computations.
In International Conference on Information and Communications Security (ICICS). 181–197.

Kim, H., Gil, J., Hwang, C., Yu, H., and Joung, S. 2007. Agent-based autonomous result verification
mechanism in desktop grid systems. In Agents and Peer-to-Peer Computing (AP2PC). 72–84.

Kuhn, M., Schmid, S., and Watterhofer, R. 2008. Distributed asymmetric verification in computational
grids. In IEEE International Symposium on Parallel and Distributed Processing. 1–10.

Okcan, A. and Riedewald, M. 2011. Processing theta-joins using MapReduce. In ACM SIGMOD Inter-
national Conference on Management of Data. 949–960.

Shamir, A. 1979. How to share a secret. Communications of the ACM 22, 11, 612–613.

Szajda, D., Lawson, B., and Owen, J. 2003. Hardening functions for large scale distributed computations.
In IEEE Symposium on Security and Privacy. 216–224.

Wang, C., Ren, K., and Wang, J. 2011. Secure and practical outsourcing of linear programming in cloud
computing. In INFOCOM.

Watanabe, K., Fukushi, M., and Horiguchi, S. 2009. Collusion-resistant sabotage-tolerance mechanisms
for volunteer computing systems. In ICEBE. 213–218.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

A. PRIVATE DISTANCE AND STATISTICS COMPUTATION

Here we describe solutions for private distance and statistics computation in the multi-
server outsourced context, where the computation takes the form of secure multi-party
computation. Let servers P1, . . ., PN carry out the computation. The client secret-shares all
data items among the servers using an (N, t) linear threshold secret sharing scheme as such
as [Shamir 1979], and the computation proceeds on their shares. This means that t < N/2
participants information-theoretically learn no information about shared values, and the
computation is secure in presence of collusion of size at most t. We use [x] to denote that
value x is secret-shared among the servers. Any linear combination of shared values can be
computed locally by each server, but multiplication [x][y] requires interaction. Complexity
is measured in the number of interactive operations.
Our protocols rely on the following building blocks:

— [c] ← Inner([a1], . . ., [am], [b1], . . ., [bm]), on input of two vectors A and B of equal size,
returns the inner product of the elements ofA andB. The cost is one interactive operation
(multiplication).

— [b]← Eq([x], [y]), on input two integers x and y, outputs a bit which is set to 1 iff x = y.
The most efficient existing implementations we are aware of [Catrina and de Hoogh 2010]
uses ℓ+ 4 log ℓ interactive operations, where ℓ is the bitlength of x and y, operations in
4 rounds (where some of the computation is input-independent and can be performed in
advance).

— [b1], . . ., [bm]← Sort([a1], . . ., [am]), given a set of elements, outputs the values in a sorted
order. The sorting must be data-oblivious (i.e., the same sequence of comparisons is ex-
ecuted regardless of the input) to preserve privacy of values. Existing algorithms achieve
this using O(m logm) comparisons (see, e.g., [Goodrich 2010]). A comparison operation,
for example, “less than” LT([x], [y]), can be implemented using 4ℓ− 2 interactive opera-
tions in 4 rounds, where, as before, ℓ is the length of x and y and some of the computation
is input-independent.

All of the protocols we provide are information-theoretically secure in presence of servers
that follow the computation (or do not maliciously change the computation) and achieve
perfect secrecy (unless the invoked building blocks are only statistically secure). We present
protocols for computing the distance between two biometrics separately from computing
statistics based on the computed distances since the statistics computation is the same for
each distance metric.
The protocol for the Hamming distance is very simple:

Protocol 1. [d]← HD([x1], . . ., [xm], [y1], . . ., [ym])

(1) [d]← Inner([x1], . . ., [xm], [y1], . . ., [ym]);
(2) return [d];

The Euclidean distance can be securely computed similarly:

Protocol 2. [d]← ED([x1], . . ., [xm], [y1], . . ., [ym])

(1) for i = 1 to m do in parallel [zi]← [xi]− [yi];
(2) [d]← Inner([z1], . . ., [zm], [z1], . . ., [zm]);
(3) return [d];

The cost of both of the above protocols is equivalent to one multiplication. The set in-
tersection cardinality of X and Y of size m1 and m2, respectively, is computed according
to [Blanton and Aguiar 2012] as follows:

Protocol 3. [d]← SIC([x1], . . ., [xm1], [y1], . . ., [ym2])

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

(1) [z1], . . ., [zm1+m2]← Sort([x1], . . ., [xm1], [y1], . . ., [ym2]);
(2) for i = 1 to m1 +m2 − 1 do in parallel [ui]← Eq([zi], [zi+1]);

(3) [d]←∑m1+m2−1
i=1 [ui];

(4) return [d];

The protocol above works correctly only when all elements of each input set is unique (i.e.,
the inputs are sets rather than multisets). For the (more complex) protocol that correctly
works on multisets, we refer the reader to [Blanton and Aguiar 2012]. The cost of both the set
and multiset intersection cardinality protocols is dominated by O((m1 +m2) log(m1+m2))
invocations of a comparison protocol.
Finally, for each computed distance [d], the servers update counts in C as follows:

Protocol 4. [c0], . . ., [cv−1]← Stat([d], [c0], . . ., [cv−1], [d0], . . ., [dv−1])

(1) for i = 0 to v − 1 do
(2) [bi]← Eq([d], [di]);
(3) [ci]← [ci] + [bi];
(4) return [c0], . . ., [cv−1];

B. COMPARISON OF SERVER’S STRATEGIES FOR ALLPAIRS COMPUTATION

In this section, we provide additional analysis of the server’s strategies for AllPairs com-
putation from Section 3.1 with the goal of determining the best one (i.e., with the lowest
detection probability) for the adversary. Our analysis covers (i) determining detection prob-
ability for a server’s strategy that combines strategies 2 and 3 in Section 3.1 (recall that
strategy 1 is a special cases of strategy 2 and does not need to be considered separately); (ii)
determining parameters under which the probability of detection for strategy 2 is minimized;
and (iii) comparing all strategies to determine the best one for the adversary.

B.1. Analysis of combined server’s strategy

To complete the analysis of the server’s strategies in avoiding detection during dishonest
AllPairs computation, we analyze a combination of server’s strategies 2 and 3 from Sec-
tion 3.1. This strategy combines partial rows with randomly chosen cells within each se-
lected row. Now the server first chooses prn rows, and within each chosen row it chooses pcn
cells at random positions, independently for each row. As before, we have pcpr = p. Then
for any given row that the client checks, the server’s behavior is not detected if either (i)
the row was among partially computed and the server either computed or guessed correctly
values of n2 checked cells in that row or (ii) the row was not among partially computed
rows and the server guessed all n2 checked cells in that row. The probability of (i) equals to
pr (pc + α (1− pc))

n2 (where pc + α (1− pc) is the probability that one cell was computed
or its value was guessed correctly), and the probability of (ii) equals to (1 − pr)α

n2 . We
obtain that the probability of detection after checking all n1 rows is:

Pr[D] = 1− (pr (pc + α (1− pc))
n2 + αn2 (1− pr))

n1

i.e., the same as for strategy 2.

B.2. Analysis of strategy 2

The goal of this section is to analyze server’s second strategy to determine under which
set of parameters pc and pr its detection probability is the lowest. Because strategy 1 is a
special case of strategy 2, this will also answer the question of how important strategy 1 is
for further consideration.
In the current analysis, we treat pc and pr as variables, constrained by the condition

pcpr = p, and the rest of the parameters as fixed. The detection probability for strategy 2

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

is given in equation 5, and we start the analysis by substituting pr with p/pc, which gives
us a function of a single variable pc, whose values range from p to 1. We obtain:

Pr[D] = 1− ((p/pc) (pc + α (1− pc))
n2 + αn2 (1− p/pc))

n1

To determine the function’s critical point, we take its derivative and after rearranging the
terms obtain:

f ′(pc) = − n1p

(pc)2
((p/pc) (pc + α (1− pc))

n2 + αn2 (1− p/pc))
n1−1 ×

×((pc + α(1 − pc))
n2−1(pc(n2 − 1)(1− α)− α) + αn2)

Now notice that the sign of this expression is determined by the term pc(n2− 1)(1−α)−α,
and the remaining terms are all positive when pc ∈ [p, 1]. We thus consider two cases:

(1) If p ≥ α
(n2−1)(1−α) , the term pc(n2 − 1)(1 − α) − α is non-negative, which results in a

negative value for f ′(pc). This means that the function Pr[D] is strictly monotonically
decreasing and its minimum value is at the endpoint pc = 1, which corresponds to
strategy 1.

(2) If p < α
(n2−1)(1−α) , the term pc(n2−1)(1−α)−α is either always negative for pc ∈ [p, 1]

or changes its sign from negative to positive within that interval (i.e., it is a linearly
increasing function). This means that the factor ((pc+α(1−pc))

n2−1(pc(n2−1)(1−α)−
α)+αn2) may also change its sign, which implies that there exists a critical point within
the interval [p, 1]. Since the sign of f ′(pc) can only change from positive to negative within
[p, 1], in that case the function for Pr[D] has a relative maximum and no other extrema,
which means that the minimum value of Pr[D] is either at pc = p or pc = 1, which
correspond to strategy 1. If the sign of f ′(pc), however, does not change, the function is
strictly monotone and likewise we obtain that the minimum value of Pr[D] is at either
pc = p or pc = 1.

We obtain that, regardless of the parameter values, it is advantageous for an adversary
who wishes to minimize the detection probability to use the special case of strategy 2 that
corresponds to strategy 1.

B.3. Comparison of strategies 1 and 3

What remains is to compare server’s strategies 1 and 3 to determine if one of them always
results in a lower probability of detection than the other and thus will be preferred by an
adversary. To ensure that the result holds for any values of security parameters n1 and n2

that the client chooses, we treat the detection probabilities (given in equations 3 and 6,
respectively) as functions of variables n1 and n2 with fixed α and p. Because both of these
strategies have the same format, namely, 1 − Xn1 for some X , we need to compare only
the expressions corresponding to X in the two strategies, which we denote by X1 and X3

in strategies 1 and 3, respectively. From equations 4 and 6 we obtain X1 = p+ (1− p)αn2

and X3 = (p+ α(1 − p))n2 .
To compare the values of X1 and X3, we compute their difference

f(n2) = X1 −X3 = p+ (1− p)αn2 − (p+ α(1 − p))n2 (18)

and then take its derivative to obtain

f ′(n2) = (1− p)(logα)αn2 − log(p+ α(1 − p))(p+ α(1− p))n2 (19)

Setting f ′(n2) = 0 allows us to obtain the function’s critical point at value n′

2 =

log (1−p) logα

log(p+α(1−p))/ log
p+α(1−p)

α
. Because p + α(1 − p) > α for any 0 < α < 1, log p+α(1−p)

α

is always positive, and the sign of the value that n′

2 takes is determined by the dividend

log (1−p) logα

log(p+α(1−p)) .

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

In our application, n2 is always positive with its values lying in the range [0,+∞]. At
the endpoints 0 and +∞, the expression in equation 18 evaluates to 0 and p, respectively
(as both α and p + (1 − p)α are less than 1). Therefore, if the critical point at n′

2 does
not correspond to a relative extremum, we know that within the interval [0,+∞] X1 −X3

will always take a positive value. This means that strategy 1 leads to a lower detection
probability. If, on the other hand, n′

2 corresponds to a local extremum, based on the sign
of n′

2, two situations may occur:

(1) n′

2 < 0: To determine whether n′

2 corresponds to the function’s minimum or max-
imum value, we need to evaluate the sign of f ′(n2) near the point n′

2. From equa-

tion 19, we have that (p+α(1−p)
α

)n
′

2 = (1−p) logα

log(p+α(1−p)) . For any n2 < n′

2, we also have that

(p+α(1−p)
α

)n2 < (p+α(1−p)
α

)n
′

2 as p+α(1−p)
α

> 1 and therefore (p+α(1−p)
α

)n2 < (1−p) logα

log(p+α(1−p)) .

After multiplying both sides of this inequality by negative αn2 log(p+ α(1 − p)), we ob-
tain that f ′(n2) < 0. Using the same approach, we obtain that f ′(n2) > 0 for n2 > n′

2,
and thus n′

2 corresponds to a local minimum. Based on the fact that there is a single
extremum, this analysis gives us that f(n2) is strictly monotonically increasing on the
interval [0,+∞]. This function’s behavior is also in compliance with the fact that equa-
tion 18 evaluates to 0 at the endpoint 0 and to p at the endpoint +∞. We obtain that
when n′

2 < 0, strategy 1 always leads to a smaller detection probability than strategy 3.
What remains to determine is under what circumstances n′

2 < 0. In order for n′

2 to have

a negative value, we must have log (1−p) logα

log(p+α(1−p)) < 0 and thus (1−p) logα

log(p+α(1−p)) < 1. This is

true when α and p satisfy α1−p > p+ α(1 − p).
(2) n′

2 ≥ 0: Applying the same analysis as in case 1, we obtain that the critical point at
n′

2 corresponds to a local minimum. This implies that X1 − X3 = 0 at both n2 = 0
and another point greater than n′

2 which we denote by n′′

2 . We obtain that the value of
f(n2) is negative on the interval (0, n′′

2), and it is positive on the interval (n′′

2 ,+∞]. This
gives us that under a certain set of parameters strategy 3 will result in lower detection
probability than strategy 1 and therefore will be superior for the adversary.

To summarize:

— When α1−p > p+ α(1− p), strategy 1 is superior for an adversary to use to strategy 3.
— If α1−p < p+ α(1 − p) and n2 > n′′

2 , strategy 1 is also superior for an adversary to use
to strategy 3.

— If α1−p < p + α(1 − p) and n2 < n′′

2 , strategy 3 is superior for an adversary to use to
strategy 1.

C. COMBINING VERIFICATION OF DISTANCES AND STATISTICS

Here we describe how the verification of distances and statistics can be combined for the
edit distance and set intersection cardinality (this was done for the Hamming distance in
section 4.4).

C.1. Edit Distance

The techniques for combining verification of AllPairs and Analyze computation remain largely
unchanged from the techniques for the Hamming distance. That is, the algorithm in Figure 5
can be used with minimal changes. In particular, during creation of an outsourced task,
the client generates n1 pairs of m-dimensional fake vectors with the distance uniformly
distributed in the range [0,mh2]. It then chooses the values of d in step 2 from the range
[mh2 +1,mh2 + ℓ] and creates protected distances in step 5 for i = 0, . . ., 2mh2 + ℓ. During
verification of an outsourced task, the range of distances between two real vectors in steps
1(a) and 3 changes from [0,m] to [0,mh2] and the range of distances between real and fake
vectors in steps 1(a) and 3 changes from [m+ 1, 2m+ ℓ] to [mh2 + 1, 2mh2 + ℓ].

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:35

C.2. Set Intersection Cardinality

The technique for combining verification procedures for distance and statistics computation
for the set intersection cardinality metric differs from those for the Hamming and Euclidean
distances. This time, the real sets are generated in the same way as for verification of
statistics computation, but there are small changes in the way the fake sets are produced.
In particular, instead of setting d elements to 0 in a given fake set, where d is chosen
uniformly from a range [0, k−ℓ−1], we coordinate the values of d in a pair of fake elements.
That is, we create n1 pairs of fake elements 〈x̂, ŷ〉, where the distance between them is a
randomly chosen value from [0, k−ℓ−1]. This is accomplished by having k−ℓ−1−dist(x̂, ŷ)
0 elements in common between x̂ and ŷ. All other elements in both x̂ and ŷ are set as before.
In other words, the values of d for x̂ and ŷ are chosen in a coordinated manner, but otherwise
the process is the same as before. This gives us that the number of 0 elements among the
fake sets in either S1 or S2 is no longer guaranteed to be uniform in the range [0, k− ℓ− 1],
but this does not pose a security problem for the following reason: Because the solution
is designed in such a way that by missing the computation associated with a single fake
set the server will have to guess multiple locations in C and this is what guarantees the
necessary probability of detection, this will be true if any fake set has been missed, regardless
of the overall distribution of the distances associated with the set of fake sets in general.
The procedure for verifying correctness of an outsourced task is therefore the same as for
verifying the statistics computation as described in section 6.2, followed by verification of
the distances dist(x̂, ŷ) for n1 pairs of fake elements 〈x̂, ŷ〉.
This modification does influence a portion of the security analysis. In particular, because

the distances between two fake sets are now in the range [ℓ, k − 1], the probability of
detection of incorrect computation of distances in equation 7 now becomes Pr[D] = 1 −
(

p(k−ℓ−1)+1
k−ℓ

)n1

. If (k− ℓ− 1) < m and Pr[D] is insufficiently high, either the value of n1 or

k can be increased until a desired probability of detection is achieved, where changing n1

will have a significantly larger impact on the value of Pr[D] than changing k.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

