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Abstract—Secure sketches and fuzzy extractors enable the use
of biometric data in cryptographic applications by correcting
errors in noisy biometric readings and producing cryptographic
materials suitable for authentication, encryption, and other
purposes. Such constructions work by producing a public sketch,
which is later used to reproduce the original biometric and all
derived information exactly from a noisy biometric reading. It has
been previously shown that release of multiple sketches associated
with a single biometric presents security problems for certain
constructions. We continue the analysis to demonstrate that all
other constructions are also prone to similar problems and cannot
be safely reused even in presence of very weak adversaries.
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I. INTRODUCTION

The motivation for this work comes from practical use of

biometric-derived data. Biometrics and derivation of cryp-

tographic material from biometric data for authentication,

encryption, or other purposes is an active research area. Secure

sketches and fuzzy extractors [1], [2] were introduced as

mechanisms of deriving cryptographic material from noisy

biometric data for the purpose of its use in cryptographic

applications. Such constructions allow one to produce a helper

string (secure sketch) — which is viewed as public — from a

biometric and later re-produce the cryptographic string exactly

from a close noisy biometric reading using the helper string.

The goal of such constructions is to keep the biometric itself

hidden, which means that information leakage due to the

release of the helper string must be minimized.

While this is a powerful concept that enables new applica-

tions and can also be attractive to users who no longer need

to maintain secrets to participate in cryptographic protocols,

it has been shown that leakage of information associated with

the biometric in such constructions is unavoidable [3], [4].

Furthermore, this concept was initially proposed and primarily

studied in the context when the construction is applied to a bio-

metric only once. Consecutive publications [5], [6] explored

the security guarantees of such schemes in terms of their

reusability, when a single biometric or its noisy version is used

to produce multiple secure sketches using the same or different

algorithms. Information leakage prevents such constructions

from meeting standard security requirements sought of them

in cryptographic applications such as indistinguishability (or
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inability to link two records to the same biometric) and

irreversibility (inability to reverse the construction and directly

recover information about the biometric). Some of the more

popular constructions for secure sketches (namely, based on

the code offset and permutation groups) has been shown to

have serious security weaknesses with respect to their reusabil-

ity in presence of even very weak adversaries [6]. In this work,

we continue this analysis on a number of other constructions

from the literature and show that they also cannot be safely

reused. In particular, we show that they fail to satisfy standard

security expectations with respect to reusability and therefore

cannot be used in security applications. In our analysis

we study indistinguishability and irreversibility properties of

secure sketches (and the corresponding fuzzy extractors) for

distance metrics such as set difference and edit distance in

presence of weak adversaries who only have access to two

sketches.

As the existing schemes have security weaknesses that

prevent their reuse, in a complement work [7], [8] we suggest

the use of the computational setting, in which storing a

single key for all possible uses of such schemes provably

mitigates any information leakage and enables simple and

flexible secure sketch and fuzzy extractor constructions in

presence of powerful adversaries. We refer the reader to [7],

[8] for further information.

In the rest of this paper, we first provide the necessary back-

ground, define our security model, and list known weaknesses

(section II). We then analyze reusability of set difference and

edit distance constructions (sections III and IV, respectively).

Lastly, we present related work (section V) and conclude the

paper (section VI).

II. MODEL AND DEFINITIONS

A. Secure sketches and fuzzy extractors

Secure (or fuzzy) sketches were introduced by Dodis at

el. [1], [2] as a mechanism of correcting errors in noisy secrets

(e.g., biometrics) by releasing a helper string S that does not

reveal a lot of information about the secret. Let W denote a

random variable and w its value.

Definition 1: A (M,m,m′, t)-secure sketch is a pair of

randomized algorithms:

• SS is a function that, on input w from metric space M
with distance function dist, outputs a sketch S.
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• Rec is a function that, on input w′ ∈M and S = SS(w),
recovers and outputs the original w if dist(w,w′) ≤ t.

Security of a secure sketch is evaluated in terms of entropy

of W before, m, and after, m′, releasing the string S, i.e., the

entropy loss m−m′associated with making S public.

The predictability of a random variable W is maxw Pr[W =
w], and the min-entropy (which can be viewed as the

“worst-case” entropy) of W is defined as H∞(W ) =
− logmaxw Pr[W = w]. Now, if W and S are two ran-

dom possibly correlated variables, releasing that the value

of S was s will affect predictability of W , and the pre-

dictability becomes maxw Pr[W = w|S = s]. On average

(over all choices of S), the success in predicting W is

Es←S [maxw Pr[W = w|S = s]] (i.e., this is the average

case for S and the worst case for W ). Then the average

min-entropy of W given S is defined as the logarithm of the

above H̄∞(W |S) = logEs←S [maxw Pr[W = w|S = s]]. We

obtain that for any W with H∞(W ) ≥ m the probability

of guessing W after observing S is at most 1/2−m
′

, where

m′ ≤ H̄∞(W |S), i.e., the entropy loss due to release of S is

m−m′ (and is unavoidable).

Secure sketches have been constructed for different types of

metric spacesM, for which the distance function dist(a, b) is

defined for all a, b ∈M.

Fuzzy extractors allow one to extract randomness from w (to

use it as cryptographic material) and later reproduce it exactly

using w′ close to the original w.

Definition 2: A (M,m,m′, t, ǫ)-fuzzy extractor is a pair of

algorithms:

• Gen is a function that, on input w ∈ M, outputs extracted

random string R and a helper string P .

• Rep is a function that, on input w′ and P , reproduces

and outputs R that was generated using Gen(w) if

dist(w,w′) ≤ t.

The security requirement is such that, for any W of min-

entropy m, the statistical distance between the distribution of

R and the uniform distribution of strings of the same length is

no greater than ǫ, even after observing the helper data P . The

statistical distance between probability distributions X and Y
is defined as SD(X,Y ) = 1

2

∑

a |Pr(X = a)− Pr(Y = a)|.
A fuzzy extractor can be built from a secure sketch using

the following generic construction given in [1]:

Gen(w):

1) Execute S ← SS(w; r1), where r1 explicitly denotes

random coins used by SS (if any).

2) Use a strong extractor Ext to extract a random string R
from w, i.e., R← Ext(w; r2), where r2 denotes random

coins used by Ext.

3) Output public P = (S, r2) and secret R.

Rep(w′, P = (S, r2))

1) Execute w ← Rec(w′, S). If Rec fails (i.e., when

dist(w,w′) > t such that S = SS(w)), stop.

2) Extract R from w using r2 as R← Ext(w, r2) and output

R.

Strong extractors [9], [10] have been well studied and can

extract at most m−2 log(1ǫ )+O(1) nearly random bits (where

m is min-entropy of W and ǫ is the fuzzy extractor’s security

parameter). One such construction uses universal hash function

and extracts m− 2 log(1ǫ )+2 random bits. Thus, entropy loss

of 2 log(1ǫ ) + 2 is in addition to the entropy loss due to the

release of a sketch S. If a strong extractor is modeled as a

random oracle, there is no additional entropy loss.

Many constructions utilize error-correcting codes. A code C
is a subset of K elements {w0, . . ., wK−1} of M. The mini-

mum distance of C is the smallest d such that dist(wi, wj) ≥ d
for all i 6= j, which implies that the code can detect up to d−1
errors; and the error-correcting distance is t = ⌊(d− 1)/2⌋.

A linear error-correcting code C over field Fq is a k-

dimensional linear subspace of the vector space F
n
q which uses

Hamming distance as the metric, and is denoted as (n, k, t)Fq
-

code. For any linear code C, an (n − k) × n parity-check

matrix H projects any vector v ∈ F
n
q to the space orthogonal

to C. This projection is called the syndrome and denoted by

syn(v) = Hv. Then v ∈ C iff syn(v) = 0. The syndrome

contains all information necessary for decoding. That is, when

codeword c is transmitted and noisy w = c + e is received,

syn(w) = syn(c) + syn(e) = 0 + syn(e), where syn(e) can be

used to determine the error pattern e.

Secure sketch constructions for the Hamming distance (e.g.,

the code-offset construction) have been most heavily analyzed

(see, e.g., [5], [6]). Also, the permutation-based construction,

which is applicable to any transitive metric, has been suffi-

ciently analyzed in [6], [5]. For that reason, in this work we

concentrate on constructions specific to other distance metrics,

specifically the set difference and the edit distance. Recall that

while the Hamming distance is used for biometric data such

as iris codes, the set difference is employed for fingerprints

and the edit distance is relevant to DNA comparisons.

B. Constructions for set difference

This distance metric is defined as symmetric difference

between two unordered sets w and w′, denoted by w∆w′, as

dist(w,w′) = w∆w′ = {x ∈ w∪w′ | x 6∈ w∩w}. Throughout

this work, we use notation a
R
← A to denote that the value of

a is chosen uniformly at random from the set A.

1) Fuzzy vault: The fuzzy vault scheme designed by Juels

and Sudan [11] can be used as a secure sketch when the

biometric data is comprised of unordered elements w =
{w1, . . ., ws} (e.g., minutiae points in fingerprints). The main

idea is to disguise the points in w by adding a large number of

chaff points. The genuine points then carry information that

allows w to be reconstructed from its noisy version w′. In

what follows, we assume that t ∈ [1, s] and r ∈ [s + 1, n]
are system-wide parameters, where n is the set of all possible

points or the universe. Work is over field Fn, where n is a

prime power.

To compute SS(w):

1) Choose a random polynomial p(·) of degree at most s−
t− 1 over Fn.

2) For each wi ∈ w, let xi = wi and yi = p(xi).
3) Choose r−s distinct points xs+1, . . ., xr at random from

Fn \ w and set yi
R
← Fn \ {p(xi)} for i = s+ 1, . . ., r.
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4) Output SS(w) = {(x1, y1), . . ., (xr , yr)} sorted by the

value of xi’s.

To compute Rec(w′, S = (x1, y1), . . ., (xr , yr)):

1) Create the set D of pairs (xi, yi) such that xi ∈ w′.
2) Run Reed-Solomon decoding on D to recover the poly-

nomial p(·).
3) Output s points of the form (xi, p(xi)) from S.

Privacy of the biometric depends on the number and dis-

tribution of points in S (i.e., the difficulty of identifying

the original points and the number of spurious polynomials

created by the chaff points). The entropy loss due to the

release of S is determined in [1] to be upper bounded by

t logn+ log
(

n
r

)

− log
(

n−s
r−s

)

+ 2.

2) Improved fuzzy vault: Dodis et al. [2] observed that the

polynomial in the above construction does not need to be

random, which allows for a secure sketch with significantly

lower entropy loss, namely t logn.

To compute SS(w):

1) Compute unique monic polynomial p(x) =
∏

wi∈w
(x −

wi) of degree s.

2) Output the coefficients of p(·) of degree s − 1 down to

s− t, which will form SS(w) = (cs−1, . . ., cs−t).

To compute Rec(w′, S = (cs−1, . . ., cs−t)):

1) Create a new polynomial phigh of degree s that shares

the top t+1 coefficients with p(·), i.e., phigh(x) = xs +
∑s−1

i=s−t cix
i.

2) Evaluate phigh on points of w′ to obtain pairs (a1, b1),
. . . , (as, bs).

3) Use Reed-Solomon decoding to find a polynomial plow
of degree s − t − 1 such that plow(ai) = bi for at least

s− t/2 values of ai’s. If none can be found, output fail.

4) Output the roots of the polynomial phigh − plow.

3) Pinsketch: This next construction works when the uni-

verse size n is large (or could not be enumerated) and thus

all computation is polynomial in logn. Pinsketch also allows

the biometric w to have a variable number of points, which

makes the construction particularly attractive. In what follows,

support supp(w) is used as an alternative representation of

small weight w by listing the positions at which it is non-

zero. This allows decoding complexity to be a function of

logn instead of n.

To compute SS(w):

1) Let sj =
∑

wi∈w
(wi)

j (in F2λ where n = 2λ − 1).

2) Output SS(w) = (s1, s3, . . ., s2t−1).

To compute Rec(w′, S = (s1, s3, . . ., s2t−1)):

1) Compute SS(w′) = (s′1, s
′
3, . . ., s

′
2t−1).

2) Let σi = s′i−si and compute supp(v) such that syn(v) =
(σ1, σ3, . . ., σ2t−1) and |supp(v)| ≤ t.

3) If dist(w,w′) ≤ t, then supp(v) = w∆w′; therefore,

output w = w′∆supp(v).

This construction uses BCH codes (which are linear) and

results in entropy loss of t log(n+ 1).

C. Constructions for edit distance

Now w and w′ are strings of arbitrary lengths over some

alphabet and the distance between w and w′ is defined as

the smallest number of character insertions and deletions that

transform w into w′.
To the best of our knowledge, the only known constructions

for the edit distance first use an embedding of the edit distance

metric into a transitive metric (e.g., the Hamming distance) of

larger dimension and apply a secure sketch construction to

the target metric. A construction for the edit distance then can

proceed as follows:

To compute SS(w):

1) Embed w into v in a transitive metric space (the Hamming

distance or set difference) as v = f(w).
2) Compute and output SS(v) = syn(v).

To compute Rec(w′, S):

1) Embed w′ into v′ in a transitive metric space.

2) Execute v = Rec(v′, S) and output the reverse embedding

of v w = f−1(v).

The entropy loss of this construction depends on the properties

of the embedding and the secure sketch scheme in the target

metric. When f−1 is not efficiently computable, the output of

an additional function g(w) can be stored in S which helps in

recovering w from v.

D. Security notions

The original security definitions of secure sketches and

fuzzy extractors quantify information leakage about the bio-

metric due to the release of public helper data and ensure

that the output of fuzzy extractors is indistinguishable from

random. They were formulated for a single instance of a

secure sketch or fuzzy extractor in isolation [1]. Consecutive

literature [5], [6] considered a stronger (and more realistic)

adversarial model where such constructions can be invoked

multiple times and therefore the security guarantees must hold

when the constructions are reused. Furthermore, the power

granted to the adversary can greatly differ. In this work we

use weak adversaries to analyze existing constructions, i.e., to

show that they do not provide sufficient security guarantees

even in presence of weak adversaries. In a nutshell, a weak

adversary is given two secure sketches and tries to determine

whether they were produced using the same biometric (distin-

guishability) and what that biometric was (reversibility), while

in a stronger adversarial model the adversary might be able to

adaptively ask for secure sketches and private key that fuzzy

extractors output.

Let t be the maximum amount of errors that the biometric

system can tolerate. We define ∆t to be the set of all

perturbation functions that represent differences in sampling

biometric data; we then have ∆t = {δ :M →M such that

dist(w, δ(w)) ≤ t}. In this work, we only define a security

game for weak adversaries with access to public sketches. A

solution that we propose in [7], [8], however, is shown secure

in presence of strong adversaries. Two security properties for

weak adversaries defined in [6] are sketch indistinguishability

and irreversibility.
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2-Indistinguishability game ([6]):

1) The challenger chooses a random variable W ∈ M and

samples it to obtain w ∈ M. The challenger computes

S1 = SS(w) and gives S1 to adversary A.

2) The challenger chooses a bit b at random. If b = 1,

the challenger chooses δ
R
← ∆t, and produces a related

biometric w′ = δ(w). Otherwise, if b = 0, the challenger

samples W to obtain a different biometric w′. The

challenger then computes S2 = SS(w′) and gives S2 to

A.

3) The adversary A eventually produces a bit b′ and wins if

b′ = b.

The adversary A’s advantage in the above game is defined as:

AdvindA = 2

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

= 2

∣

∣

∣

∣

Pr[b′ 6= b]−
1

2

∣

∣

∣

∣

Definition 3: An (M,m,m′, t)-secure sketch (SS, Rec) is

ǫ-indistinguishable in ∆t if for any adversary A it holds that

AdvindA ≤ ǫ, and the secure sketch is reusable when ǫ is

negligible.

The irreversibility property of secure sketch constructions

means that an adversary who obtains access to multiple

sketches which have been generated from the same noisy input

is unable to recover the original input. The sketches could

be generated using different sketching functions, and this is

what the irreversibility game below models. The adversary’s

goal is then to recover the original input. For the purposes

of this game, we define a family F = {(SSi,Reci)} of

(M,m,m′i, ti)-secure sketches.

Irreversibility game ([6]):

1) The challenger chooses a random variable W ∈ M and

samples it to obtain w ∈ M. The challenger chooses

(SSi1 ,Reci1) at random from F , computes S1 = SSi1(w)
and gives S1 to A.

2) The challenger chooses δ
R
← ∆t, where t = min{ti},

and (SSi2 ,Reci2) at random from F \ {(SSi1 ,Reci1)}.
The challenger produces a related biometric w′ = δ(w),
computes S2 = SS(w′) and gives S2 to A.

3) The adversary eventually produces output ŵ ∈ M and

wins if ŵ = w.

Note that requiring the adversary to produce w is equivalent

to requiring it to produce w′, since knowledge of one of them

is equivalent to knowledge of both in presence of sketches S1

and S2.

The adversary A’s advantage in the above game is:

AdvirrevA =
2min(m′

i1
,m′

i2
)

2min(m′

i1
,m′

i2
) − 1

∣

∣

∣

∣

Pr[ŵ = w]−
1

2min(m′

i1
,m′

i2
)

∣

∣

∣

∣

.

Definition 4: A family F of (M,m,m′i, ti)-secure sketches

{(SSi,Reci)} is ǫ-irreversible in ∆t if for any adversary A it

holds that AdvirrevA ≤ ǫ, and the family is just irreversible when

ǫ is negligible.

E. Known Privacy Weaknesses

Simoens et al. [6] show that two popular secure sketch con-

structions – namely, the code offset construction with a linear

error-correcting code (i.e., the syndrome construction) and the

construction based on permutation groups – do not withstand

the requirements of indistinguishability and irreversibility. In

other words, the adversary can win such experiments with

overwhelming probability. The former construction is applica-

ble to the Hamming distance metric (and is among the most

popular and widely studied schemes) and the latter can be used

for any transitive distance metric. For that reason, in this work

we concentrate on the analysis of schemes for other distance

metrics (namely, set difference and edit distance), some of

which are related to the previously analyzed constructions.

III. ANALYSIS OF SET DIFFERENCE CONSTRUCTIONS

A. Fuzzy vault

1) Attacking indistinguishability: Before proceeding with

the analysis, we note that the basic idea for the strategy in

attacking the fuzzy vault scheme when two or more sketches

are available – computing the intersection of the points – is

straightforward and is not new. This attack appeared in [12],

[13], [14]. Our analysis is different from what has been done

before because all previous publications assume that given

sketches are related and proceed with identifying original

points. Our work, however, assumes a significantly weaker

(and perhaps more realistic) adversary that would like to

determine if two given sketches are related or not, which is

a much more difficult task. Therefore, we present a rigorous

new analysis that shows weaknesses of the scheme even in the

presence of the weakest adversary.

The adversary receives two secure sketches S1 =
{(x1, y1), . . ., (xr , yr)} and S2 = {(x′1, y

′
1), . . ., (x

′
r, y
′
r)}, and

the adversary’s goal is to determine the coin flip, i.e., whether

the biometrics w and w′ are related or not. Let πx(Si) denote

projection of Si onto the x-axis, i.e., πx(S1) = {x1, . . ., xr}
and πx(S2) = {x′1, . . ., x

′
r}. The idea behind the attack

strategy here is to compute the intersection of πx(S1) and

πx(S2) and use its size to make a distinction between related

and unrelated biometrics. Related sketches will overlap in at

least s− t original biometric points, while unrelated sketches

will have fewer original biometric points overlap. In addition, a

number of chaff points in πx(S1) can collide with chaff points

in πx(S2) or points in w′ \ (w ∩ w′) (similarly, points from

w \ (w ∩ w′) can collide with chaff points in πx(S2)). Thus,

the size of πx(S1)∩πx(S2) follows a certain distribution, but

the expected overlap size is larger for related sketches. Before

presenting the exact attack strategy, we analyze the properties

of such a distribution.

Let α = |w ∩w′| denote the number of biometric points in

the intersection, i.e., α ≥ s−t/2 for related biometric samples

and α ≤ s− t/2− 1 otherwise. Let a = r−α and b = n−α,

i.e., a is the number of sketch points that do not correspond to

the overlapping biometric points and b is the overall space for

such points. As customary in the literature, we assume that the

biometric points of w are distributed uniformly at random in

the space; the chaff points are also drawn uniformly at random
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from the remaining space. Then to determine how many points

from S′1 = πx(S1) \ (w ∩ w′) will collide with points from

S′2 = πx(S2) \ (w ∩ w′), suppose there are b = n − α bins

and points from S′1 occupy a = r − α of them, i.e., there are

a random bins with a ball in them. We now throw another a
balls (i.e., points from S′2) into the bins without replacement

and count the number of bins with two balls in them (i.e., if

a bin has two balls, it is removed, so that no bin has more

than two balls; this is dictated by the requirement that all r
points in a sketch are different). The above can be modeled as

hypergeometric experiment.1 Let X be a random variable that

corresponds to the number of collisions in πx(S1) and πx(S2)
(i.e, its size is |(πx(S1) ∩ πx(S2)) \ (w ∩w′)|). We obtain:

Pr[X = k] =

(

a

k

)(

b− a

a− k

)

/

(

b

a

)

(1)

where X can take values between 0 and a. The mean value

of this distribution is E[X ] = a · ab .

This analysis leads to the attack strategy given in Figure 1,

where the value of β is set to E[X ] for two related biometrics

w and w′ with the largest distance, i.e., with α = s− t/2.

Let αauth denote a random variable corresponding to the

distribution of |w∩w′| when w and w′ are related (authentic),

and αimp denote a random variable corresponding to the size

of such overlap when w and w′ are unrelated (impostor).

The adversary has the smallest probability of distinguishing

between authentic and impostor sketches when the values of

αauth and αimp are as close as possible, i.e, αauth = s − t/2
and αimp = s− t/2− 1. According to the indistinguishability

definition, we have AdvindA = 2
∣

∣Pr[b′ = b]− 1
2

∣

∣. If we let

X1 denote the random variable distributed according to the

hypergeometric distribution above with α1 = s− t/2 and X2

denote a similar random variable with α2 = s − t/2 − 1,

we obtain that the adversary is successful with at least the

following probability:

Pr[b′ = b] = Pr[b′ = 1 | b = 1]Pr[b = 1] (2)

+ Pr[b′ = 0 | b = 0]Pr[b = 0]

≥
1

2

(

Pr[X1 ≥ z − α1] + Pr[X2 < z − α2]
)

=
1

2

(

Pr[X1 ≥ β] + Pr[X2 < β + 1]
)

=
1

2

( r−s+t/2
∑

i=β

(

r−s+t/2
i

)(

n−r
r−s+t/2−i

)

(n−s+t/2
r−s+t/2

)

+

β
∑

i=0

(

r−s+t/2+1
i

)(

n−r
r−s+t/2+1−i

)

(n−s+t/2+1
r−s+t/2+1

)

)

.

We obtain the following result:

Claim 1: The advantage AdvindA of adversary A in the 2-

indistinguishability game for the fuzzy vault scheme (SS(w),
Rec(w′, S)) with w consisting of s elements from Fn, a sketch

S consisting of r points, and dist(w,w′) ≤ t required for

1When a ≪ b, the requirement that we sample without replacement can
be dropped and the result modeled as a simpler binomial experiment. In this
application, however, a in general is not guaranteed to be much smaller than
b.

On input sketches S1 = (x1, y1), . . ., (xr, yr) and S2 =
(x′1, y

′
1), . . ., (x

′
r, y
′
r):

1) Compute πx(S1), πx(S2), and z = |πx(S1) ∩ πx(S2)|.
2) Let β = ⌊(r − s+ t/2)2/(n− s+ t/2)⌉.
3) If z ≥ (s− t/2 + β), output 1, otherwise, output 0.

Fig. 1. Attacking indistinguishability of fuzzy vault scheme.

reconstruction is:

AdvindA ≥

∣

∣

∣

∣

u
∑

i=β

(

u
i

)(

n−r
u−i

)

(

n−s+t/2
u

)
+

β
∑

i=0

(

u+1
i

)(

n−r
u+1−i

)

(

n−s+t/2+1
u+1

)
− 1

∣

∣

∣

∣

where β = ⌊(r−s+ t/2)2/(n−s+ t/2)⌉ and u = r−s+ t/2.

The probability of success Pr[b′ = b] and advantage AdvindA
can be easily computed for a given set of parameters n, r, s,

and t. In reality, each parameter n, s, t, and r has limitations

placed on it by the behavior of the actual biometric data. In

particular, Clancy et al. [15] study applicability of the fuzzy

vault construction to fingerprint data and determine optimal

parameters to use in order to achieve adequate resistance of

the construction against brute force search (when an adversary

is given a sketch and tries to determine sensitive information

by searching through polynomials). While the fuzzy vault

construction was not used exactly as a secure sketch in [15]

and was generalized, we nevertheless obtain information about

the parameters that would be used for fingerprint data.

The field Fp2 , for prime p, is used for representing finger-

print features in 2-D and the value of p is set to 251 giving us

n = 2512 = 63001 (this value of p also provides many choices

for the decoding algorithm). The number of biometric points in

a fingerprint is often in the range 20–50 (this value can greatly

vary based on the equipment used and quality of data). Using

the analysis and empirical data from [15], [16] as guidelines

for achieving good distinguishing capability, low error rate,

and difficulty of brute force attack on the fuzzy vault scheme,

we set s = 30 and t = 16. Finally, the value of r is constrained

in that the complexity of decoding for legitimate users can

grow as r increases (this is caused by spurious polynomials

introduced by the chaff points). In particular, at the decoding

time, when a legitimate user computes w′ ∩ πx(S), where

S = SS(w), the decoding complexity can grow when points

from w′ \ (w′ ∩ w) coincide with chaff points in S. Since

|w′ \ (w′ ∩ w)| ≤ t/2 for legitimate users, we can model

this as another hypergeometric experiment which now consists

of throwing t/2 points in b = n − s + t/2 bins, where

a = r − s + t/2 bins already have a ball in them. We then

want r to be such that the expected (integer-valued) number

of collisions t
2 ·

a
b is zero.

Figure 2 plots the adversary’s advantage AdvindA for the

above parameters n, s, and t as a function of r near the

suggested in [15] value of r of about 300. As evident from

the figure, the advantage is significant even in the worst (for

the adversary) case when only one extra overlapping point

separates authentic data from impostor. The jumps in the plot

correspond to the places where the (integer-valued) mean of

the distribution increases by 1.
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Fig. 2. Adversary advantage Advind
A

with parameters n = 2512, s = 30,
t = 16, and varying r.

In practice, the above model is more complex due to the

need of quantizing the data and the ability to handle white

noise (small differences in the positions of the feature points).

As a result, this imposes a maximum packing density of points

in the vault. In particular, points normally cannot be placed

very close to other points, but given the acceptable distance d,

they can lie anywhere in the space as long as they are at least

distance d from other points. This means that the total number

of elements r in a sketch cannot exceed 4ρp2

d2π with packing

density ρ (i.e., packing non-overlapping circles of radius d/2).

The optimal density for packing circles is unachievable and

instead [15] gives ρ ≈ 0.45 in which case the packing is

guaranteed to be random. When, for instance, p = 251, d =
10, and ρ = 0.45, r ≤ 361.

Relating this point placement constraint to our problem of

estimating the adversary’s advantage in distinguishing related

and unrelated sketches, we as before assume that α genuine

points overlap. While a point can overlap with more than one

other points, it is considered a match only with one of them

(often the closest), and the remaining points can still overlap

(and be considered a match) with other points. When packing

non-overlapping balls in the area, the radius of each ball is

d/2. When, however, computing the useful area, where points

can be placed given a number of points already in the area, we

have that a point cannot land within the distance d of another

point and for that reason we model existing points as balls of

radius d′ = d− δ for some negligibly small δ.

The above means that two points within (Euclidean) dis-

tance of less than d from each other will be considered

a match even if their positions differ. We can then take

this modification into account and recompute the adversary’s

advantage assuming that each point occupies an area of

radius d′ = d − δ < d. Then to determine the number of

collisions caused by the chaff points (as in equation 1), we

need to compute the space in which such points land. Given

α = |w ∩ w′| overlapping biometric points, they occupy an

area between α ·CA(d′) and α · 2CA(d′), where CA(r) = πr2

represents the circle area of radius r. Fortunately, we can

estimate such an area more precisely as follows. Because

the points are always placed at discrete locations, for any

particular value of d, it is not difficult to compute the average

area occupied by two overlapping balls of radius d′. Let

Dd = {(i, j) | i = 0, . . ., d − 1, j = 1, . . ., d − 1 and
√

i2 + j2 < d}. This set represents relative coordinates of a
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Fig. 3. The ratio of the average area covered by two overlapping points to
the area of two circles of diameter d′ ≈ d.

quarter of all points (excluding the perfect overlap) that would

cause two points to overlap. Then the average area occupied

by two overlapping balls of radius d′ is:

AA(d) =
(

4
∑

(i,j)∈Dd

(2CA(d′)− IA(d′,
√

i2 + j2))

+ CA(d′)
)

/ (4|Dd|+ 1)

where IA(a, b) denotes the area of the intersection of two

circles of radius a placed at distance b (the formula for which

is well known). The average is computed using the distances

for all overlapping points in four quarters and the perfect

overlap with 0 distance.

Figure 3 plots the ratio of the average overlapping points

area AA(d) to the area 2CA(d′) occupied by two circles of

radius d′ for different values of d. It is clear that the ratio

remains constant, despite discretization of point locations,

which could introduce an error in the computation. This means

that we can approximate the area occupied by two overlapping

points in our analysis by scaling 2CA(r) by a constant factor.

Going back to modeling the distribution that would allow

us to determine the adversary’s advantage in distinguishing

related and unrelated sketches, as before we assume that

α = |w ∩w′| points from the original biometrics overlap. Let

wo denote the α points from w that are in the intersection,

and similarly w′o denote the corresponding α points from w′.
The area occupied by the overlapping 2α points wo ∪ w′o on

average is αAA(d), while the α points from wo and w′o occupy

αCA(d′) space each. This means that when we throw the

remaining r− α points of w′ uniformly at random, the space

at which they are to land is slightly different from the space

where points in πx(S1)\wo can reside. Let c be a constant such

that AA(d) = c·2CA(d′) (i.e., 0.5 < c < 1). Also let space(A)
denote the space occupied by set A and space(all) denote the

overall space of size p × p. We obtain that |space(wo)| =
|space(w′o)| = αCA(d′) and |space(wo ∪ w′o)| = 2cαCA(d′).
Then when we throw the first point from πx(S2) \ w

′
o into

space(all)\ space(wo), it has a regular probability of overlap-

ping with a (random) point from πx(S1)\wo if it lands in the

space space(all) \ (space(wo ∪ w′o)), and that probability is

lowered if it lands in the space space(wo \ w
′
o). In the latter

case, the landing point has fewer options for intersection (as a

number of points in close proximity of it cannot contribute to

an overlap) and the probability is lowered by a factor 2c− 1
on average from the former case (the factor 2c − 1 is the
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fraction of the thrown ball’s area that can overlap with another

point in w). Similar logic applies to other points that we throw

with the difference that the areas occupied by existing points

increase. Note that this model is still an approximation, as

each ball can overlap with several balls near it. Since taking

into account all possible overlaps will result in a significantly

more complex model, we instead use this approximation as

the lower bound on the attacker’s advantage. That is, because

we underestimate the remaining space at which we throw

points, this results in greater probability of overlap of two

balls, and the adversary’s distinguishing probability is better

when the number of spurious overlaps is small. Also note that

the probability that a ball of radius d′ overlaps with more than

a single ball near it grows as the number of chaff points in a

sketch increases.

To determine the number of overlapping points between

πx(S1) and πx(S2), we might wish to rewrite equation 1 in a

similar form. First observe that when we throw the first point

after the α overlapping points from the original biometrics

have been determined, the probability of overlap with the

remaining a = r − α points from S1 is

n− 2cαCA(d′)

n− αCA(d′)
·

aCA(d′)

n− αCA(d′)
+
(2c− 1)αCA(d′)

n− αCA(d′)
·

(2c− 1)aCA(d′)

n− αCA(d′)
(3)

Here the factors
n−2cαCA(d′)
n−αCA(d′) and

(2c−1)αCA(d′)
n−αCA(d′) correspond

to the probabilities that the ball falls within the space

space(all)\(space(wo∪w
′
o)) and space(wo\w

′
o), respectively,

from the total available space n−αCA(d′) (corresponding to

space(all) \ space(wo)). Then for the first case, the proba-

bility of overlap is
aCA(d′)

n−αCA(d′) , and it is lowered by a factor

2c− 1 in the second case as described above. When we next

throw the second point, the probability of overlap with the

remaining points in S1 (which do not already overlap with

points from S2) becomes
n−2c(α+1)CA(d′)
n−(α+1)CA(d′) ·

(a−1)CA(d′)
n−(α+1)CA(d′) +

(2c−1)(α+1)CA(d′)
n−(α+1)CA(d′) · (2c−1)(a−1)CA(d′)

n−(α+1)CA(d′) or
n−2cαCA(d′)−CA(d′)

n−(α+1)CA(d′) ·
aCA(d′)

n−(α+1)CA(d′) +
(2c−1)αCA(d′)
n−(α+1)CA(d′) ·

(2c−1)aCA(d′)
n−(α+1)CA(d′) , depending on

whether the previous point resulted in a hit or miss, respec-

tively.

As it can be seen from the formulas, there are non-trivial

changes to the probabilities after throwing a point depending

on whether it resulted in a hit or a miss. That is, the

probability of k hits after throwing a (> k) balls in this

model is determined not only by the values of k, a, and

the available space for the points, but also by the order of

the hits among the a thrown points. While given a complete

specification of the problem (namely, the parameters p, d, s,

r, and α), we can compute the probability of the quantity

z = |πx(S1) ∩ πx(S2)| taking on any given value, a lack of

complete characterization of this distribution prevents us from

determining its mean value and therefore clearly defining a

strategy for the distinguishing attack.

To mitigate the issue, we propose to determine the necessary

mean value by additionally simplifying the model. We proceed

with the hypergeometric distribution analyzed in equation 1

for exact (rather than approximate) point overlaps. Note that

when matching is approximate and each point occupies an

area of size CA(d/2) = π(d/2)2, we need to use bins of

size CA(d/2) instead of previous size 1. This means that b
becomes b = n − αCA(d/2) and each hit removes the area

CA(d/2) from the available space. If we let X ′ denote a

random variable that corresponds to the number of collisions

between the elements of πx(S1) and πx(S2) in this modified

setting, we obtain the mean value E[X ′] = a2CA(d/2)
b , where

a = r − α, b = n − αCA(d/2), and α ≥ s − t/2 for

related biometric samples and α ≤ s − t/2 − 1 otherwise.

Then based on this estimate of E[X ′], the adversary’s success

probability can be computed using the modified equation 1

similar to equation 2 or using equation 3. We obtain that the

number of spurious overlaps between chaff and other biometric

points without a match would increase by approximately a

multiplicative factor of CA(d/2) compared to the case when

the points had to be matched exactly. While this lowers the

adversary’s distinguishing probability (compared, for instance,

to the probabilities in Figure 2), it also substantially increases

the cost of Rec(w′, S) that reconstructs w from its sketch S
and a legitimate related biometric w′. Therefore, to maintain

usability of the secure sketch scheme, when approximate point

matching is used, either the granularity of the available space

n needs to be increased or the number of chaff points r − s
needs to be decreased. This will allow us to keep the number

of spurious overlaps low, as desired. This means that we go

back to the range of adversary’s success probabilities depicted

in Figure 2, which are clearly unacceptably high for a security

construction.

2) Attacking irreversibility: Now the adversary is given

two sketches S1 and S2 for related biometrics w and w′,
respectively, and its goal is to recover information about w
beyond what can be learned due to the release of the sketch.

We analyze the case when both S1 and S2 are produced using

the fuzzy vault scheme. The attack strategy in this case consists

of first computing the x-coordinates common to both S1 and

S2, i.e., πx(S1)∩πx(S2). Recall that the resulting set contains

at least s− t/2 genuine points from w∩w′ as well as spurious

points (i.e., other than points in w∩w′). The expected number

of the latter is (r−s+t/2)2/(n−s+t/2) for related biometrics

with distance t.

To attempt to recover biometric w, the adversary’s attack

strategy at high level is to try every subset of size s−t/2 from

the intersection πx(S1)∩ πx(S2), reconstruct the polynomials

that those points form in S1 and S2, and use the remaining

points of S1 and S2 to test whether the recovered polynomials

could be the original polynomials that determine w and w′.
In more detail, any s − t points from S1 uniquely define a

polynomial of degree s − t − 1, which can be reconstructed

from the x and y-coordinates included in the sketch. Then

if this polynomial was the original polynomial chosen at the

time of S1 creation, there will be exactly t other points in

S1 lying on this polynomial, at least t/2 of which must be

in the intersection πx(S1) ∩ πx(S2). The attack strategy then

consists of choosing s − t/2 points from πx(S1) ∩ πx(S2),
reconstructing the polynomial using the first s− t points and

their coordinates in S1, and checking whether the rest of

the selected points (t/2 of them) lie on that polynomial and

exactly t/2 points from the remaining r − s + t/2 points of
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On input related sketches S1 = (x1, y1), . . ., (xr , yr) and

S2 = (x′1, y
′
1), . . ., (x

′
r, y
′
r):

1) Compute πx(S1) ∩ πx(S2).
2) For each subset C of πx(S1)∩ πx(S2) of size s− t/2:

a) Reconstruct the two unique polynomials p1(·) and

p2(·) of degree s− t− 1 using the first s− t points

and their y-coordinates in S1 and S2, respectively.

b) Test whether all remaining t/2 points lie on p1(·)
and p2(·) as well. If not, proceed with the next set;

otherwise, continue.

c) Use S1 to compute the number of points from

πx(S1) \ C lying on p1(·). Similarly, use S2 to

compute the number of points from πx(S2)\C lying

on p2(·). If both numbers equal to t/2, store C as a

potential set that represents the original polynomials.

3) Choose one of the stored sets C at random and out-

put the s points of S1 that lie on the corresponding

polynomial p1(·) as the guess for w.

Fig. 4. Attacking irreversibility of fuzzy vault scheme.

S1 lie on that polynomial as well. The same steps are then

repeated for the second sketch S2. More formally, the attack

steps are given in Figure 4.

To quantify the success of this attack, let for the sake of the

current description assume that dist(w,w′) = t (i.e., |w∩w′| =
s − t/2) and let ℓ = |πx(S1) ∩ πx(S2)| − (s − t/2). First

note that there are s − t/2 + ℓ points common to S1 and S2

and therefore there are
(s−t/2+ℓ

s−t/2

)

=
(

s−t/2+ℓ
ℓ

)

subsets C of

size s − t/2 that an attacker needs to try. Because the given

sketches are related, there is at least one set C that passes

verification in step 2 of Figure 4. The attacker can only fail if

there are more than one pair of candidate polynomials and the

attacker chooses a wrong pair. In fact, if the number of such

polynomial pairs is k ≥ 1, then the attacker can fully recover

the biometric with probability 1/k. This gives us:

AdvirrevA =
2m

′

2m′ − 1

(

1

k
−

1

2m′

)

. (4)

We know that k is always at least 1, and we next argue that k
is small. To show this, suppose that a set C is not from w∩w′

(i.e., some points of C are not genuine biometric points), but

passes verification in step 2 of the attack. Both p1 and p2
generated by the points in C have to pass through all remaining

t/2 points of C and exactly t/2 points of the remaining r−s+
t/2 points of S1 and S2, respectively. The probability that each

of these t points falls on a given polynomial is at most 1
n−1 .

This is because the chaff points are chosen at random from

n−1 options out of n. This means that if the polynomial falls

on one of those options, the probability is 1
n−1 ; otherwise, if

the polynomial happens to fall on the remaining field value, the

probability of success is 0. Then the probability that t/2 points

of C happen to lie on the polynomial is at most ( 1
n−1 )

t/2 and

the probability that any t/2 points from r− s+ t/2 happen to

lie on the polynomial is at most
(r−s+t/2

t/2

)

( 1
n−1 )

t/2. To pass

the verification in step 2, it must also be the case that the rest

of the points from the sketch (i.e., r−s of them) do not fall on

the reconstructed polynomials. Because the latter probability

might not be significantly smaller than 1, we bound it by 1

from the above. This allows us to compute the expected value

of k as follows:

E[k] < 1 +

(

(

s− t/2 + ℓ

ℓ

)(

r − s+ t/2

t/2

)(

1

n− 1

)t
)2

(5)

where the square is due to the fact that the verification must

pass for both polynomials simultaneously. Because s≪ r ≪
n, the expected value of k is small. For example, using the

parameters n = 63001, s = 30, t = 16, and r = 300 suggested

in [15] with dist(w,w′) = t and therefore E[ℓ] = 1, we obtain

E[k] < 1 + 8.9 · 10−122 = 1.

When, dist(w,w′) < t, there will be multiple sets C of

size s − t/2 that pass verification in step 2 of the attack.

These sets correspond to the same original polynomials p1(·)
and p2(·) of S1 and S2, respectively. The number of such

sets is
( s−dist(w1,w2)/2
t/2−dist(w1,w2)/2

)

, while the number of spurious sets

and the corresponding polynomials that pass the verification

can be characterized using a generalization of the quantity in

equation 5. We obtain:

E[k] <

(

s− dist(w1, w2)/2

t/2− dist(w1, w2)/2

)

+

(((

s− t/2 + c

c

)

−

(

s− dist(w1, w2)/2

t/2− dist(w1, w2)/2

))(

r − s+ t/2

t/2

)(

1

n− 1

)t
)2

(6)

This analysis suggests a slight modification to the attack

in Figure 4: if multiple sets C that correspond to the same

polynomials p1 and p2 pass the verification in step 2, instead of

choosing one of the sets at random, choose a set corresponding

to the repeated polynomials p1 and p2. In this case, the

attacker’s success probability approaches 1 regardless of the

number of spurious sets C that pass the verification. In general,

we then have that AdvirrevA is greater or equal to the quantity

given in equation 4. To summarize, we have:

Claim 2: The advantage AdvindA of adversary A in the

irreversibility game for the fuzzy vault scheme (SS(w),
Rec(w′, S)) with parameters m, m′, and t, w consisting of

s elements from Fn, and a sketch S consisting of r points is:

AdvirrevA ≥
2m

′

2m′ − 1

(

1

k
−

1

2m′

)

where the expected value of k, E[k], is as in equation 6.

The complexity of our attack is bounded from the above by
(

s−t/2+ℓ
ℓ

)

(r− s+ t/2) operations. Because ℓ must be low for

the fuzzy vault scheme to be practical, this amount of work is

not expected to result in a large computational burden.

B. Improved fuzzy vault

1) Attacking indistinguishability: An important observation

in designing an attack strategy for this construction is that

it is deterministic. This immediately implies that the same

biometric will always produce the same secure sketch, giving

the adversary the ability to distinguish between the sketches.

Thus, as an important special case we first consider the

adversary’s ability to win the indistinguishability game when
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On input sketches S1 = (cs−1, cs−2, . . ., cs−t) and S2 =
(c′s−1, c

′
s−2, . . ., c

′
s−t):

1) If cs−i = c′s−i for each i = 1, . . ., t, output 1;

otherwise, output 0.

Fig. 5. Attacking indistinguishability of improved fuzzy vault scheme with
w = w′.

no noise affects multiple sketches of the same w (this arises

in several applications, where multiple keys are issued using

the same copy of w). Thus, when A obtains challenge S2, it

outputs 1 if S2 = S1 and 0 otherwise. This attack strategy is

summarized in Figure 5.

The above means that when b = 1, A will always guess the

bit correctly, but when b = 0 it might still sometimes output 1

if the two sketches happened to be the same. The probability

of the latter, however, is small and we next provide a bound

on its value.

Recall that sketch S consists of t coefficients of a poly-

nomial p(x) = xs + cs−1x
s−1 + . . . + c1x + c0, where for

biometric w = {w1, . . ., ws} the coefficients are cs−1 =
∑

i

wi,

cs−2 =
∑

i6=j

wiwj , . . . , cs−t =
∑

C⊂[1,s],|C|=t

(
∏

i∈C

wi). We next

give analysis of each of the coefficients ci’s in S2 for an

unrelated biometric coinciding with the respective coefficients

in S1.

First, for an unrelated random biometric ŵ, the probability

that
∑

i ŵi = cs−1 is 1
n . That is, without any restrictions, there

are
∏s−1

i=0 (n − i) choices for s elements without repetitions

from the set of n elements, and when the sum of the elements

is fixed (in Fn), the number reduces to
∏s−1

i=1 (n− i).
Now let us consider cs−2. We start with a simpler function

x1x2 = b in Fn for a fixed value of b and treat the common

case when n = p2 for a prime p. We enumerate all possible

solutions x1 and x2 for this function such that x1 6= x2 (since

all points in a biometric are different). When b is the zero

element, there are n−1 unordered pairs (x1, x2) with x1 6= x2

whose product equals to b (one value is zero and the other can

take n−1 remaining values). All elements other than zero form

a cyclic multiplicative group. Thus, if b 6= 0 there are either
n−1
2 or n−1

2 − 1 pairs (x1, x2) with distinct x1 and x2, when

b is a quadratic non-residue or quadratic residue, respectively.

This gives us that the number of pairs (x1, x2) satisfying the

congruence for any value of b is at most n−1 from the overall

space of
n(n−1)

2 such pairs, giving us the fraction 2
n .

Now recall that cs−2 is composed of a summation of

products wiwj for each i 6= j. Then when there is only one

product w1w2 (i.e., s = 2), we obtain that it is equal to 0

more frequently than to other values. When, however, s > 2
the distribution of product values drastically changes. Because

all wi have to be unique and each wi appears in a number of

products wiwj , the value of the sum tends to be distributed

more evenly as s increases. This means that the frequency of

the most common value of cs−2 approaches 1
n when s grows.

To illustrate this phenomenon, we plot empirical data for small

values of n = p2. In particular, for s = 2, 4, and 6 and all

possible w = (w1, . . ., ws) ∈ F
s
n we find a value of the sum

which occurs the highest number of times. Let that value be
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Fig. 6. The ratio of the fraction of most frequent value of the sum cs−2 to
1

n
for different values of n and s.

denoted by countmax and the fraction of all biometrics w that

results in such value by fmax = countmax/
(

n
s

)

. To evaluate

how the value of fmax compares to 1
n , we plot their ratio

fmax/
1
n in Figure 6. For s = 2, fmax = 2

n is constant; for

s > 2 it is clear that fmax rapidly approaches 1
n from the

above even for very small values of s. This means that 2
n

is a generous upper bound on the probability that cs−2 of a

randomly chosen ŵ will coincide with a specific value of that

coefficient for an unrelated biometric w.

Extending this analysis to cs−3 =
∑

wiwjwk, where i, j,

and k are pairwise distinct, we obtain that the most frequently

occurring value of cs−3 is 0 and when s = 3 (i.e., there is

only one product). In that case, the number of possibilities that

result in that product is
(n−1)(n−2)

2 out of
n(n−1)(n−2)

2·3 total

choices (and the number of possibilities when the product is

non-zero is at most n−3
2 ·

n−1
2 ). This gives us that the fraction

of triples that can result in any given product from the overall

space is ≤ 3
n . For cs−4, the maximum fraction is ≤ 4

n ; for

cs−5, it is ≤ 5
n , etc. Therefore, the adversarial error is at most

t!
nt , and in practice will be close to 1

nt because s > t. Both

of these quantities are very low even for small values of t
(e.g., 2). This gives us that the probability with which the

adversary can mistakenly consider two unrelated biometrics

to be related is very small. The adversary’s advantage in the

2-indistinguishability game then is:

AdvindA = 2
∣

∣

∣
Pr[b′ = b]−

1

2

∣

∣

∣
= 2
∣

∣Pr[b′ = 1|b = 1]Pr[b = 1]

+ Pr[b′ = 0|b = 0]Pr[b = 0]−
1

2

∣

∣

∣

=
∣

∣

∣
2Pr[b′ = 1|b = 1]

1

2
+ 2Pr[b′ = 0|b = 0]

1

2
− 1
∣

∣

∣

=
∣

∣Pr[b′ = 1|b = 1] + 1− Pr[b′ = 1|b = 0]− 1
∣

∣

=
∣

∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣

∣ > 1−
t!

nt
.

We obtain the following result:

Claim 3: The advantage AdvindA of adversary A in the 2-

indistinguishability game for the improved fuzzy vault scheme

(SS(w), Rec(w′, S)) with w consisting of s elements from Fn

and dist(w,w′) ≤ t required for reconstruction for the special

case when related sketches are produced using the same w is:

AdvindA > 1−
t!

nt
.

To address the problem of distinguishability in the general

case, we are now given two sketches S1 = (cs−1, cs−2, ...,
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On input sketches S1 = (cs−1, cs−2, . . ., cs−t) and S2 =
(c′s−1, c

′
s−2, . . ., c

′
s−t):

1) Assume that the corresponding biometrics w and w′

have s− t/2 elements in common.

2) Construct t equations generated by the coefficients in

S1 and S2 and attempt to solve them.

3) If at least one solution is found, output 1; otherwise,

output 0.

Fig. 7. Attacking indistinguishability of improved fuzzy vault scheme in the
general case.

cs−t) and S2 = (c′s−1, c
′
s−2, ..., c

′
s−t). Suppose that the two

biometrics w and w′ corresponding to the sketches S1 and

S2, respectively, have s − k elements in common, where k
can take any integer value from 0 up to s. That is, k elements

of w are different from some other k elements of w′. In our

case, k is unknown, and our goal is to determine its value,

which will allow us to decide whether these two biometrics

are related or not.

From Vieta’s formulas, we know the relation between the

roots of a normalized polynomial (i.e., when the leading coef-

ficient is 1) and its coefficients. For example, the summation

of the roots is equal to the negative of the second leading

coefficient. Using that information, we can easily derive equa-

tions for the elements not common to the biometrics and the

coefficients in the given sketches by subtracting coefficients

of the sketches. The first two equations are:

cs−1 − c′s−1 =

i=k
∑

i=1

wi −

i=k
∑

i=1

w′i

cs−2 − c′s−2 = (cs−1 −
i=k
∑

i=1

wi)
i=k
∑

i=1

wi +

i,j=k
∑

i,j=1,i6=j

wiwj

− (c′s−1 −

i=k
∑

i=1

w′i)

i=k
∑

i=1

w′i −

i,j=k
∑

i,j=1,i6=j

w′iw
′
j

where wi’s and w′i’s are the elements that do not appear in w′

and w, respectively, and are therefore the roots not common

to the polynomials in S1 and S2.

Similar to the above equations, we can construct all t
equations generated by the first known t coefficients of the

two sketches. To be able to do so, however, we will have to

guess the value of k. Here, the adversary’s strategy is to set

the value of k to t/2. Then if these two sketches are in fact

related with dist(w,w′) = t, the equations can be solved for

wi’s and w′i’s. This attack strategy is described in Figure 7.

If the sketches are related and the distance between them

is less than t, the adversary is overestimating their difference

(i.e., k < t/2), yet the equations will lead to an acceptable

solution. That is, in case of dist(w,w′) < t, some roots in

the equations corresponding to the elements of w will be

equal to roots corresponding to the elements of w′. Therefore,

if the biometrics are indeed related, the adversary will find

acceptable and valid solutions for the equations and with

probability 1 will output a correct guess that the biometrics

are related.

If the sketches, however, are not related, the adversary will

do her best to solve the equations. There are two possible

cases: (i) the adversary does not find any valid solution in the

field for this equation set and thus outputs that the biometrics

are not related or (ii) the adversary in fact finds a valid and

acceptable solution set to these equations and outputs that the

biometrics are related. Because in the latter case the adversary

makes a wrong guess, we need to find the probability that two

non-related sketches lead to a set of equations that will result

in a valid solution in the field.

To do so, we re-write the adversary’s advantage in the 2-

indistinguishability game as

AdvindA = 2 |Pr[b′ 6= b]− 1/2| = 2 |Pr[b′ 6= b|b = 1]Pr[b = 1]

+ Pr[b′ 6= b|b = 0]Pr[b = 0]− 1/2|

We also know that Pr[b′ 6= b|b = 1] = 0 and let Pr[b′ 6= b|b =
0] = q. Then we obtain AdvindA = 2 |(1/2)q − 1/2| = 1 − q.

To find a bound for probability q, we use the fact that each

sketch is a set of coefficients of an s-degree polynomial.

This means that the total number of biometrics in this rep-

resentation is
(

n
s

)

and the total number of related biometrics

is R =
∑t/2

i=0

(

s
i

)(

n−s
i

)

, where i represents the number of

elements in a biometric that are different from the original

one. This give us the total number of non-related biometrics

NR =
(

n
s

)

− R. We can see that R is dominated mainly by

the last factor, i.e.,
(

s
t/2

)(

n−s
t/2

)

.

When we reveal t coefficients, we are looking at a space

of size nt since each coefficient can take any value from the

field. In total, we could have nt possibilities for sketches. On

the other hand, we can have up to R related sketches for any

given biometric. To determine how closely the above analysis

corresponds to the numbers that can be empirically observed,

we performed experiments for different values of s and t with

fixed p and counted the number of unique sketches that related

and non-related biometrics generate. In our experiments, we

observed that each related biometric generates a different set

of coefficients and thus produces a unique sketch among the

sketches corresponding to related biometrics. Therefore, from

the overall possible space (of size nt), sketches for biometrics

related to any given biometric w occupy a subset of size R.

The next step is to determine the distribution of non-related

sketches over the entire possible set of sketches, which will

allows us to find the probability of error. That is, the distribu-

tion of the non-related sketches of a given biometric will allow

us to determine the number of them colliding with the related

sketches. Our experiments (detailed below) suggest that this

distribution is uniform over the entire range of possibilities that

non-related sketches can take. This information tells us that

the expected number of non-related biometrics which generate

sketches that are the same as one of the related sketches

will be approximately (R/(nt) · NR); we call this number

“the error count.” The error count allows us to compute the

probability that the adversary fails to determine the answer

correctly. That is, given non-related sketches S1 and S2, the

adversary declares them as related when another sketch related

to S1 is the same as S2. This probability is the ratio of the

error count and the total number of sketches produced in this
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TABLE I
THE TOTAL NUMBER OF COLLISIONS BETWEEN RELATED AND

UNRELATED SKETCHES (ERROR COUNT) BASED ON THEORETICAL

ANALYSIS (DENOTED “COMPUTED”) AND EXPERIMENTAL VALIDATION

(DENOTED “OBSERVED”).

Biometric t = 2 t = 4 t = 6

size computed observed computed observed computed observed

s = 6 32, 565 32, 221 1, 196 1, 080 N/A N/A

s = 7 97, 652 97, 429 4, 081 4, 392 58 0

s = 8 237, 050 236, 972 10, 883 11, 577 179 34

setting,
(

n
s

)

, which gives us (R/(nt) · (NR/
(

n
s

)

). We can see

that NR is fairly close to
(

n
s

)

when t is not large, giving us

an approximation of the failure probability q ≈ R/(nt).
To confirm this analysis, we show our experimental results.

In the experiments, we counted the total number of collisions

between related and non-related sketches to produce the value

of the error count and compared it to the value computed

according to the formula. The experiments were run for

s = 6, 7, 8 when p was set to 5. We provide the error count

values both computed according to the formula and empirically

counted (observed) in Table I. It is clear that there is a small

difference between the two types of values.

To simplify the expression for q and find a lower bound

on the adversary’s advantage, we use an approximation of

the formula q ≈
(

s
t/2

)(

n−s
t/2

)

/(nt) where we replace
(

n
k

)

with ≤ nk/(k!) and obtain q . (s(n − s))t/2/((t/2)!2nt).
The maximum of this function happens when s = n/2 and

t = 2 which leads to q taking the value 1/4. We obtain

that AdvindA & 3/4 regardless of the values of n, s, or t. We

summarize this result as:

Claim 4: The advantage AdvindA of adversary A in the 2-

indistinguishability game for the improved fuzzy vault scheme

(SS(w), Rec(w′, S)) with w consisting of s elements from Fn

and dist(w,w′) ≤ t required for reconstruction is:

AdvindA & 3/4.

Note that the adversary’s computation is mainly dominated

by methods for solving the equations. The first equation has

degree 1 and each consecutive equation’s degree increases

by one from the one before. Overall, we have t variables

and the last equation has degree t. Solving this equation

set of multivariate polynomials is generally an NP-complete

problem [17]. In our case, however, we can eliminate some

possibilities and determine the complexity of the search space.

In particular, we know that the variables wi are different from

each others and so are w′i. The total number of possibilities

for assigning values to these variables from a field of n = p2

elements is
(

n
t/2

)2
, which is roughly ( 1

πt )(
2en
t )t. Therefore,

for small values of n and t this attack is quite feasible for a

computationally bounded adversary. On the other hand, when

n and t increase, existing publications such as [17] show

how to approach the general problem of solving multivariate

polynomial equations over a finite field. One can apply these

methods to reduce the complexity of the proposed attack. We

can therefore conclude that the improved fuzzy vault scheme

is computationally resistant to our attack for very large values

of n and t. However, in reality, the more common case is

On input sketches S1 = (s1, s3, . . ., s2t−1) and S2 = (s′1, s
′
3,

. . ., s′2t−1):

1) Let σi = s′i − si for each i = 1, 3, . . ., 2t− 1.

2) Compute |supp(v)| such that syn(v) = (σ1, σ3, . . .,
σ2t−1).

3) If |supp(v)| ≤ t, output 1; otherwise, output 0.

Fig. 8. Attacking indistinguishability of Pinsketch scheme.

when the difference between biometrics is fairly small. We

have seen when t = 0 this attack becomes relatively simple to

be performed. Also when t is a small number, the computation

complexity of O(nt) can be affordable.

2) Attacking irreversibility: Now the goal is to extract the

original biometric w, given its secure sketch S1 and a sketch

S2 of a related biometric w′. Note that the strategy in attacking

indistinguishability of the improved fuzzy vault scheme recov-

ers biometric points in order to determine whether w and w′

are related or not. It is important to notice, however, that the

points that the adversary recovers are those by which w and w′

differ from each other. Therefore, even though the adversary

can learn t/2 points of w and t/2 points of w′ (including

some points common to them if dist(w,w′) < t), this strategy

does not lead to the recovery of sufficient information to

gain a non-negligible advantage in the irreversibility game.

In particular, the entropy loss of this type of secure sketch is

t logn, which is the same as recovering t biometric points.

We thus obtain that if the adversary uses t recovered points

and guesses the remaining s − t points it cannot win the

irreversibility game with a sufficiently large probability. The

success probability, however, can substantially grow when

the adversary is able to obtain more than two sketches that

correspond to related biometrics. After recovering t points

from each pair of sketches, the adversary will likely be able

to obtain a larger number of points of w and thus gain a non-

negligible advantage in recovering information about w which

is not available from its single sketch S1.

C. Pinsketch

1) Attacking indistinguishability: The adversary receives

two secure sketches S1 = syn(w1) = (s1, s3, . . ., s2t−1)
and S2 = syn(w2) = (s′1, s

′
3, . . ., s

′
2t−1), and its goal is to

determine the coin flip, i.e., whether the biometrics w and

w′ are related or not. Because the reconstruction procedure

requires computation of the syndrome of the (noisy) biometric,

the adversary’s strategy in this case is simple and shown in

Figure 8.

To analyze the success probability of A, we first note that

the adversary will always guess correctly when w and w′

are related. When w and w′ are not related, the resulting

syn(v) can either be decodable or not decodable. Because a

linear code (i.e., BCH) is used, the success probability of the

adversary is exactly the success probability in distinguishing

sketches in the syndrome construction with linear codes ana-

lyzed in [6]. The analysis of [6] shows that the probability of

decoding syn(v) when w and w′ are unrelated is small, and

the adversary wins the game with overwhelming probability.
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We refer the reader to [6] for additional definitions regarding

linear codes and their analysis.

2) Attacking irreversibility: Given a secure sketch S1 for

biometric w produced using a (n, k1, d1)-linear code C1 in

a secure sketch construction with parameters m, m′1, and

t1 and a secure sketch S2 for biometric w′ produced using

a (n, k2, d2)-linear code C2 in a secure sketch construction

with parameters m,m′2, t2, [6] shows that when w = w′,
the adversary’s advantage in recovering w for the syndrome

construction is

AdvirrevA =
1

2min(m′

1
,m′

2
) − 1

(

2min(m′

1
,m′

2
)

2k1+k2 − Rank(G1,2)
− 1

)

where G1,2 denotes the (k1 + k2) × n matrix

[

G1

G2

]

and G1

(resp., G2) is the generator matrix of C1 (resp., C2). For

Pinsketch construction, we have k1 = n− t1λ, k2 = n− t2λ,

d1 = 2t1 + 1, and d2 = 2t2 + 1 with binary codes (i.e., over

F2), where n = 2λ − 1 [2]. When, however, w 6= w′, the

adversary will need to iterate over all possible error patterns

and verify its guess, which becomes large when t is large. We

refer the reader to [6] for additional details.

IV. ANALYSIS OF EDIT DISTANCE CONSTRUCTION

Dodis et al. [2] describe two alternative ways of realizing

the secure sketch construction for the edit distance given in

Section II-C. The first consists of applying an existing low-

distortion embedding (that does not significantly change the

distance between two biometrics after the mapping) of the edit

distance into the Hamming distance and then using a syndrome

construction for the Hamming distance to produce the public

data. The second includes the application of a specially

designed embedding of the edit distance into the set difference

metric using so-called c-shinglings. After the embedding of a

biometric is performed, the Pinsketch construction is applied

to the resulting representation to compute the sketch. Note

that in both of the above cases linear error-correcting codes

are used, which means that the strategy and the analysis of [6]

is applicable to both cases. We conclude that constructions for

the edit distance metric do not achieve the indistinguishability

and irreversibility properties.

V. RELATED WORK

The overall literature on secure sketches and fuzzy extrac-

tors is very extensive, especially in biometric-related venues,

and its overview is beyond the scope of this work. We therefore

highlight the most fundamental results and the analysis related

to this work.

Davida et al. [18] first proposed an off-line biometric au-

thentication scheme, where a user authenticates by presenting

a signed output of a hash function over her biometric and

other attributes tied to her. Error-correcting codes are used to

reconstruct the original biometric from its noisy consecutive

readings. Juels and Wattenberg [19] developed a so-called

fuzzy commitment scheme, which became the basis of the

code-offset secure sketch construction for the Hamming dis-

tance. Juels and Sudan proposed a fuzzy vault scheme in [11],

which is a secure sketch construction for the set difference

metric. Dodis et al. formalized the notion of secure sketches

and fuzzy extractors in their seminal work [1], [2]. That work

proposed a generic conversion from a secure sketch to a

fuzzy extractor, and developed a number of new or improved

schemes for three distance metrics (the Hamming distance,

set difference, and edit distance), most of which are outlined

earlier in this work.

Security requirements for adequate use of fuzzy sketches

and extractors in cryptographic applications have been de-

veloping over time. Boyen [5] showed that a number of the

original constructions cannot be safely applied multiple times

to the same biometric, significantly limiting their usability in

practice. That work developed improved constructions using a

certain type of error-correcting codes and permutation groups

that satisfy the reusability requirements. Later Scheirer and

Boult [12] proposed three classes of attacks on secure sketches

and fuzzy vault in particular: (1) the record multiplicity attack

which takes advantage of a link between related helper data

(similar to multiple uses above), (2) the surreptitious key-

inversion attack, where the adversary tries to recover the

biometric based on any revealed key and corresponding helper

data, and (3) the blended substitution attack which considers

the problem of injecting false data into the stored records

of helper data. The above record multiplicity (or correlation)

attack has been empirically evaluated by Kholmatov and

Yanikoglu [13] on the fuzzy vault scheme using a database

of 400 fuzzy vault sketches (200 matching pairs). The authors

were able to unlock (i.e., reconstruct the polynomial) 118 out

of 200 pairs within a short period of time using two related

vaults. The fuzzy vaults were constructed using polynomials

of degree 8 and 200 chaff points. We note that this evaluation

was performed on a specific set of parameters already knowing

that two stored sketches are related. Our analysis, on the

other hand, is more general and can be applied to a wide

variety of parameters. Furthermore, it does not assume prior

knowledge of related sketches, but rather helps to identify

those records. Poon and Miri [14] also describe collusion

attacks on the fuzzy vault scheme assuming that the sketches

are related. Finally, Simoens et al. [6] introduced the notions

of indistinguishability and irreversibility for reusable sketches

and showed weaknesses of code-offset and permutation groups

constructions. Here we analyze other existing constructions

with respect to the indistinguishability and irreversibility prop-

erties. The follow-up work [20] investigates similar issues in

the continuous domain.

More recently, Simoens et al. [21] provide three different

attack strategies for an internal adversary. The approach is gen-

eral, although it require a considerable number of queries and

thus can be prevented by limiting such queries. In a two-part

series of papers [22], [23], Lai et al. study for any key-binding

or key-generating biometric cryptosystem the fundamental

trade-offs among security (the length of the generated key),

privacy (conditional entropy of the biometric measurements

given the helper data), and key protection (conditional entropy

of the key given the helper data) in two different cases. The

first case [22] is when the biometric sample is used in only

one system and the second study [23] considers the case
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when the same biometric information is used in multiple

systems and the attacker will try to combine the data stored

in different databases to gain information about either the

biometric measurements or the generated keys. In both studies,

the authors propose schemes that achieve any point on the

chosen trade-off curve. Lastly, Wang et al. provide in [24]

an information-theoretic analysis of information leakage and

revocability for error-correcting code based implementation of

fuzzy commitments and secure sketches. Both [24] and our

work [7] show that if the stored data is padded with a one-

time key, then the system is resistant against linkage attacks

across multiple enrollments.

VI. CONCLUSIONS

This work investigates the security properties of a number

of constructions for secure sketches and corresponding fuzzy

extractors. We show that, in addition to the constructions that

have been previously shown to have security weaknesses, other

existing constructions do not meet our security expectations

when they are reused on related biometrics. In particular,

we analyze a number of secure sketch constructions from

the literature for the set difference and edit distance metrics

with respect to their indistinguishability and irreversibility in

presence of very weak adversaries. Our analysis indicates that

none of the schemes can be safely reused.
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