
Provable Bounds for Portable and Flexible
Privacy-Preserving Access Rights ∗

Marina Blanton Mikhail J. Atallah
Department of Computer Science

Purdue University
{mbykova,mja}@cs.purdue.edu

ABSTRACT
In this work we address the problem of portable and flexible
privacy-preserving access rights for large online data repos-
itories. Privacy-preserving access control means that the
service provider can neither learn what access rights a cus-
tomer has nor link a request to access an item to a particular
customer, thus maintaining privacy of both customer activ-
ity and customer access rights. Flexible access rights allow
any customer to choose any subset of items from the repos-
itory and correspondingly be charged only for the items se-
lected. And portability of access rights means that the rights
themselves can be stored on small devices of limited stor-
age space and computational capabilities, and therefore the
rights must be enforced using the limited resources available.

Our main results are solutions to the problem that uti-
lize minimal perfect hash functions and order-preserving
minimal perfect hash functions. None of them use expen-
sive cryptography, all require very little space, and they
are therefore suitable for computationally weak and space-
limited devices such as smartcards, sensors, etc. Perfor-
mance of the schemes is measured as the probability of false
positives (i.e., the probability that access to an unpurchased
item will be permitted) for a given storage space bound. Us-
ing our techniques, for a data repository of size n and sub-
scription order of m � n items, we achieve a probability of
false positives of m−c using only O(cm) bits of storage space,
where c is an adjustable parameter (a constant or otherwise)
that can be set to provide the desired performance. This is
the first time that such provable bounds are established for
this problem, and we believe the techniques we use are of
more general interest through the unusual use we make of
perfect hashing.

∗Portions of this work were supported by Grants IIS-
0325345, IIS-0219560, IIS-0312357, and IIS-0242421 from
the National Science Foundation, Contract N00014-02-1-
0364 from the Office of Naval Research, by sponsors of
the Center for Education and Research in Information As-
surance and Security, and by Purdue Discovery Park’s e-
enterprise Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’05, June 1–3, 2005, Stockholm, Sweden.
Copyright 2005 ACM 1-59593-045-0/05/0006 ...$5.00.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information

Systems]: Security and Protection; E.4 [Data]: Coding
and Information Theory—data compaction and compression;
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems.

General Terms
Security, Design, Algorithms.

Keywords
Portable access rights, compact policy representation, mini-
mal perfect hash functions, order-preserving minimal perfect
hash functions, algorithm analysis.

1. INTRODUCTION
Consider an online data repository that contains a very

large number of objects (i.e., articles, books, magazines,
multimedia objects, or any other type of data items). The
owner of such a data collection allows its customers to sub-
scribe (and consequently obtain access) to items of their
choice. To make the service as convenient to the customers
as possible, the service provider lets the customers subscribe
to any subset of the items from the data repository and
charges them only for the items in that subset. With the re-
cent growth in the number and the level of maturity of online
data collections, this model has emerged as an appropriate
way of addressing customer needs.

Today many customers of online services are concerned
with privacy of their personal information and may not be
willing to use services that do not adequately assure that
personal information will not be misused. For example, ac-
cess patterns to the items that a customer views might be
considered confidential because they permit customer profil-
ing. For that reason, the service provider does not store cus-
tomer configurations on the server, but rather uses tamper-
resistant cards to enforce access control at the user end and
to anonymously send requests to the server. Under this set-
ting, it is not possible for the service provider to link two
access requests made by the same customer and therefore
to profile its customers. However, because the server now
needs to issue many (possibly disposable) cards, their cost
must be kept at a low level. This means that such cards
will be severely limited in their computational capabilities,
as well as in their storage space.

If a card that stores a customer’s subscription set does
not have enough capacity to store at least one bit per item



in the (huge) data repository, then it becomes impossible
for it to exactly represent all possible subsets of the reposi-
tory items. Thus, some items or subset of items will have to
share the same configuration and introduce “false positives”
into the scheme — a false positive is an item that was not
listed in the subscription but which the customer is permit-
ted to access. This model is acceptable if the probability
of a false positive (PFP) is small enough. The goal is then
to design a scheme for computationally efficient access con-
trol enforcement under space constraints that minimizes the
number of false positives implicit to each card. Of course,
false negatives are not tolerated: a customer who has paid
to subscribe to an item must always be granted access to
that item.

In the rest of this work we use the following notation: the
(very large) data repository contains n items. A customer
can request access to (and accordingly pay for) m items,
1 ≤ m ≤ n. Access rights are stored on a card of limited
capacity of k bits, where k < n and k < m log n.1

In this paper we give schemes that can be used to address
the problem of flexible and privacy-preserving access con-
trol for large data repositories using weak devices. Our first
(preliminary) solution utilizes minimal perfect hash func-
tions. For a subscription order of m documents, it gives
solutions of O(cm) space with probability of false positives
being 2−c, where c is an adjustable parameter. Our second
solution uses order-preserving minimal perfect hash func-
tions to achieve significantly better asymptotic performance:
with O(cm) storage space available, the probability of false
positives is m−c.

The rest of this paper is organized as follows: section 2
gives an overview of related work. In section 3, we describe
the general framework and our design goals, and list nota-
tion used throughout the paper. Section 4 gives the prelim-
inary solution, which should be viewed as a “warmup” for
the asymptotically better solution that is given in section 5.
Section 6 makes further remarks on the relative merits of the
schemes and discusses an approach to completely eliminate
certain items from possible false positives. It also briefly
covers space utilization techniques for hierarchies. Finally,
section 7 concludes the paper.

2. RELATED WORK
Most literature on digital libraries does not explore the

problem of access control, and many deployed systems pro-
vide only a single or otherwise very few subscription types.
Payette and Lagoze [26] acknowledged this problem and in-
troduced a spectrum of policy enforcement mechanisms that
range from system-wide to object-specific. Their work, how-
ever, provides only a general framework and does not ad-
dress the problem of policy assignment.

Work conducted on XML also explores the problem of ac-
cess control for online data repositories, which includes se-
curing access to XML documents and using XML as a tool
for specifying security policies (see, e.g., [6, 7, 8, 16, 17]).
Bertino et al. [5] use binary strings to represent both cus-
tomer policy configurations and document policies, but they
allocate one bit per policy on the assumption that there will
be a limited number of different subscription types. Thus,

1If k ≥ m log n then the card can explicitly store the m
items. So we henceforth assume that k is less than m log n,
i.e., that space on the card is tight.

their approach becomes inefficient as the data repository
grows in size and each customer chooses a customized doc-
ument subscription set.

The idea of achieving space efficiency at the cost of a small
probability of false positives was introduced in Bloom [9].
Bloom filters support approximate membership queries and
are widely used in a broad spectrum of applications ([11, 18,
25], to name a few). Such data structures achieves a better
space utilization than simple hash representation, but the
filter length (which in our case corresponds to the card ca-
pacity) still should be larger than the total number of items
in the set n to result in a reasonable performance. This is
not suitable for cards of small capacity, and even customized
Bloom filters do not appear to provide acceptable results.

Other techniques for concise representation of portable
access rights were used in the context of software license
management [4, 2]. These solutions, however, do not apply
to our problem, mainly because we cannot afford to avail
ourselves of resources external to the card (as was the case
in [4, 2]). The more recent work in [1, 12], on the other hand,
considers the same problem of portable and flexible access
rights for large data repositories. In [12], the authors con-
sider static policy assignment to all repository documents,
which makes addition of new items problematic without per-
forming periodic policy updates (after which all smartcards
must be refreshed) and also makes it possible for dishonest
users to share and use information about false positives. In
[1], similarly to this work, a unique policy representation
is used for each subscription (even for identical subscrip-
tions), but the solution given in that work does not have
a deterministic algorithm and therefore might not be suit-
able in some settings. This paper is the first that describes
solutions with a solid analysis that, given a threshold for
the rate of false positives, are guaranteed to result in access
rights specifications that do not exceed that threshold.

Some of our solutions use minimal perfect hash functions
(MPHF) as their underlying building blocks. MPHFs have
received significant attention, and a number of algorithms
can be found in [21, 20, 15, 19]. There are MPHFs and
order-preserving MPHFs (OPMPHFs) that for random m
strings take a total of O(m) bits to store the functions (and
this is also the lower bound). See [21, 19] for more detail.

Work on unlinkability and untraceability was started by
Chaum [14] and has been explored more extensively in recent
years. In particular, work on unlinkability includes anony-
mous group authentication ([3, 10, 13, 22, 23, 24, 27, 28,
29] and others) and unlinkable serial transactions [30] for
subscription-based services. Prior work, however, does not
account for the fact that descriptions of access rights (or ser-
vice types) may be long and required to be portable, while
we describe schemes that combine compact policy represen-
tation with transaction unlinkability.

3. PROBLEM SPECIFICATION

3.1 General Framework
The general model used in our work is depicted in Fig-

ure 1, and consists of two stages: During the initialization
stage — which can take place in a bookstore or at a public li-
brary — a customer chooses items of his choice, pays for the
items selected, and receives a customized card that subse-
quently permits access to these items. During the card usage
stage — which can be done from a home computer, library,



Initialization

1. Customer chooses m items for purchasing.

2. Server processes the order and creates a card.

3. Customer pays and receives the card.

Operation

Card Server

1. Receives from the
user a request to ac-
cess item i

2. Checks if access can
be granted

3. Anonymously au-
thenticates to the
server and requests
item i on behalf of
the user

−→ Verifies authentica-
tion credentials

4. ←− Sends item i to the
requester

Figure 1: General model.

etc. — the customer can request access to any items from
the repository. If the card permits access, it uses the built-in
anonymous authentication protocol to prove its authenticity
to the server, and obtains the item from the server.

Throughout this work, we assume that a card is authentic
and can anonymously and at low computational cost authen-
ticate itself to the server. A number of solutions that range
from trivial secret key schemes to more complex and prov-
ably secure ones can be used to achieve this goal (see, for
instance, [23]). Card unforgeability is also achieved through
other, standard techniques described in prior literature and
is out of scope of this work.

Here by “server” we do not necessarily mean a remote
server. Instead, it could be a local (trusted) content player
at the client end or any other mechanism used by the content
owners to enforce their policies. In that case, the encrypted
content is available at the client’s end and the server grants
access by decrypting and then displaying it. Therefore the
model does not necessarily assume network connectivity for
data access.

3.2 Design goals
The design goals that we require any solution to have are

as follows:

Low rate of false positives The probability (or rate) of
false positives — the probability of a random docu-
ment to be among the documents to which access is
authorized — is the main evaluation criterion of any
approach, and the goal of this work is to minimize such
a PFP. The PFP depends, of course, on the storage
space available on the card.

Transaction untraceability and unlinkability For cus-
tomer privacy, we require that after a customer buys
an access card and uses it to retrieve an item from
the repository, it is not possible to use the data sent in
the request to tell with probability significantly greater
than a random guess which customer is making this
request. Similarly for transaction unlinkability, we re-

quire that given two access requests it is not possible
to tell with probability significantly greater than a ran-
dom guess whether these two requests originated with
the same user.

Unique policy representation It is also a design require-
ment that every policy representation stored on a card
is unique. More precisely, given two subscription re-
quests that contains identical sets S1 and S2 of items
to be purchased, their representation stored on access
cards C1 and C2 will be different and the false posi-
tives implicit to each card will be different. We require
this to eliminate the possibility of sharing information
about false positives by dishonest customers. When
this is not the case and a fixed set of items triggers
the same set of false positives, dishonest users might
share this information through, possibly, public chan-
nels such as the Internet, making the scheme unusable
to the data provider.

No additional sources of information The schemes we
design are for online data repositories that, using a
card, can be accessed from a number of places such as
terminals at public libraries, bookstores, home work-
stations, and other places connected to the Internet.
Therefore, if a scheme requires some additional infor-
mation to be stored on external storage, in our case
there is no reasonable place at which such information
can be stored (no user information can be stored at
the server itself by the above requirement of untrace-
ability). Thus, the access card itself should contain all
information necessary to perform access verification.

Fast access verification, fast card generation time

These parameters also serve as evaluation criteria of
each scheme, and in general we require card generation
time to be bounded by a low-degree polynomial in n or,
preferably, by a polynomial in m. Access verification
time should be bounded by O(k) (where k is the space
available on the card) because each card is assumed to
be a computationally weak device.

Forward compatibility In any proposed solution, if a card
is created at time t1 when the data repository con-
tained n1 documents, it also should stay operational at
time t2 > t1 when the data repository contains n2 > n1

documents. In other words, the scheme should stay
operational as new documents are added to the data
repository.

The above requirements make our problem very different
from a mere data compression one. Another difference from
data compression, is that here each representation on the
card must be usable “as is” without uncompressing it first:
There is no room in the card for that, and using server mem-
ory to uncompress would reveal enough about the card to
make profiling of the card’s usage patterns possible (because
two cards’ contents are different even if both have the same
subscription set. They are in some sense an implicit ID for
the card and should therefore not be revealed to the server).
Client memory cannot be trusted either.

3.3 Notation
Throughout this work, we use the following notation. The

data repository contains n items that are numbered 1 through



n. A customer subscription order contains m items and is
denoted as {i1, . . ., im} where 1 ≤ i1 < . . . < im ≤ n.

A hash function h : X → Y that is 1–1, i.e. ∀x1, x2 ∈
X, h(x1) 6= h(x2) iff x1 6= x2, is called a perfect hash func-
tion. In other words, perfect hash functions never result in
collisions. A hash function h : X → Y that is 1–1 and for
which |X| = |Y | is a minimal perfect hash function (MPHF).
An order-preserving MPHF (OPMPHF) also has the prop-
erty that it maps the ith smallest element of X into the
integer i.

In what follows we use f to denote a minimal perfect
hash function that maps {i1, . . ., im} into {1, . . ., m} with-
out collisions. Also, functions f ′, f ′′ denote order-preserving
MPHFs each of which maps {i1, . . ., im} into {1, . . ., m}
without collisions and in an order-preserving manner (i.e.,
f ′(ij) = j).

4. A PRELIMINARY SOLUTION
Given a card that can store k = O(cm) bits, this first

approach gives us: (i) card creation time polynomial in m,
and (ii) probability of false positives 2−c. Note that it is
reasonable to assume that cards can store cm bits. The
reason is that this space will be small for relatively small
orders; for larger, more expensive orders one can use cards
of larger capacity, the cost of which can be offset by the
amount charged for the subscription order.

In what follows, H is a keyed cryptographic one-way hash,
whose key is unique to each card (this is so as to make false-
positive information sharing impossible); the key’s purpose
is not cryptographic security, but rather making each card
unique. The k bits available do not include the bits needed
for storing the key for the hash H , which would be small
in practice. For instance, a 20-bit key would result in a
million different cards that can request identical m items
yet be different; and the possibility of such sharing when
the two cards correspond to different sets of m documents
significantly decreases. An alternative to a keyed H would
be that H is the same hash function for all cards, but the
random choices made during the computation of a suitable
minimal perfect hash function would vary from card to card.

4.1 Card creation

1. Compute a minimal perfect hash function f for {i1,
. . . , im}. Store f in the card, using O(m) bits (ac-
cording to [20], a MPHF for m random strings can be
stored using bm bits, where b is a constant and can
normally be 2). This leaves k′ = O(cm) bits available
for what follows.

2. Partition these k′ bits into m blocks of c bits each; call
them blocks Bi (i = 1, . . . , m).

3. Let the hash function H(x) produce a c bits long hash
of x (e.g., by considering only c of the 160 bits it pro-
duces in case of SHA-1). For every item i from the m
items (i ∈ {i1, . . ., im}), if f(i) = j, then set the bits
of block Bj on the card equal to H(i).

4.2 Access verification
Every time a customer uses his card to request access to

an item i, the card performs the following:

1. Compute f(i), assume f(i) = j.

2. Compare the c bits of the card’s block Bj to the cor-
responding computed c bits of H(i).

3. Access is allowed if these c bits match, denied other-
wise.

4.3 Analysis

Theorem 1. Given k = O(cm) storage space, the above
MPHF-based approach produces in time polynomial in m a
solution with the properties of (a) transaction unlinkability
and untraceability, (b) unique policy representation, (c) no
additional sources of information, (d) forward compatibility,
and (e) probability of false positives 2−c.

Proof Card creation takes time polynomial in m because
a MPHF can be generated in polynomial time [21]. Given
k = (c + b)m = O(cm) space, the probability of a false
positive is less than 2−c (see, e.g., [20] for more detail).

Transaction untraceability is achieved because the card
anonymously authenticates to the server and then every-
thing else it sends is a request for a specific data item with
no personal or card-specific information. By the same argu-
ment, any two transactions are also unlinkable.

Unique policy representation is achieved through the use
of the keyed hash function H or, alternatively, by random-
izing f itself. Each card will also stay operational as we
add more items to the data repository because the card is
dependent on the purchased items and contains no informa-
tion about other items or the size of the data repository.
This means that the forward compatibility requirement is
satisfied. Finally, by design this scheme does not use any
additional sources of information. 2

4.4 Case wherec = log m

If in the above c = c′ log m where c′ is constant, then the

scheme has k = O(c′m log m) bits of storage and an m−c′

probability of false positive. In such a case, however, the fol-
lowing simpler scheme that achieves the same bounds can be
used. We use a keyed hash function F (not a perfect one —
collisions can occur) that maps items in the range [1, n] into

[1, mc′+1]. An example of such a function that we use in our

further discussion is F (i) = H(i) mod mc′+1, where H is a
keyed cryptographic one-way hash function. What the card

stores is the (at most m) elements of [1, mc′+1] to which
the subscription items map. It allows access to a requested
item i iff F (i) is stored on the card. Since each of the (at
most) m numbers stored is (1 + c′) log m bits long, the to-
tal space needed is O(c′m log m) bits. The probability of

a false positive is no greater than m/mc′+1 = m−c′ . This
matches the MPHF scheme’s performance if k = m log m,
but it cannot be used if k = o(m log m). When it can be
used, however, it has the potential for the following heuris-
tic improvement in its space usage: The m stored elements

from [1, mc′+1] could be such that the trie implied by their
bit representations makes further space savings possible (by
storing common prefixes or other common bit patterns only
once). The expected space needed to store the trie remains
O(m log m) bits, however, so the savings are by no more than
a constant factor, and the multiplicative factor of log m in
the space complexity remains.

The scheme in the next section achieves the same false
positives probability performance of m−c but without the
multiplicative factor of log m in the space used.



5. AN ASYMPTOTICALLY BETTER
SOLUTION

Given k = O(cm) space available on the card, the ap-
proach described in this section and which is based on usage
of order-preserving MPHFs gives us: (i) card creation time
polynomial (in fact, linear) in m, and (ii) probability of false
positives m−c, where c is an integer parameter that can be
chosen so as to achieve a desired PFP. For large enough m
(which we assume is the case since m > k/ log n), however,
it is sufficient to have c = 1. We start with describing the
c = 1 version of the scheme, after which we extend it to
larger values of c.

5.1 Card creation
As usual, we deal with a subscription order {i1, . . . , im}

where i1 < i2 < . . . < im. We use two order-preserving
minimal perfect hash functions f ′ and f ′′, each computed
for this subscription order: f ′(ij) = j and f ′′(ij) = j for
all j ∈ [1, m]. To see why we use different functions f ′ and
f ′′, we first need to recall that the construction of an order-
preserving minimal perfect hash function involves many ran-
dom choices along the way, and f ′ and f ′′ will differ through
those different random choices. While the effect of such func-
tions on the elements of the set {i1, . . ., im} is fixed and well
known for all ij (i.e., f ′(ij) = f ′′(ij) = j), their effect on ele-
ments not in the set {i1, . . ., im} is arbitrary. Consequently,
we use two different functions f ′ and f ′′ for their different
effects on randoms r that are not in set {i1, . . ., im}. This
is an unusual use of such functions because we care about
their random effect on an r that is not in the set, as much
as about their predictable effect on an ij from the set. The
card hence stores f ′ and f ′′, which take O(m) bits of space.

While the effect of those random choices on a random r 6∈
{i1, . . ., im} has not been investigated in the literature, we
postulate that the existing OPMPHF schemes can be used
to hash such an r uniformly on the interval [1, m]. That is,
each of f ′(r) and f ′′(r) is random and uniformly distributed
over [1, m]. What follows is subject to this assumption2.

5.2 Access verification
To verify a request for access to an item i, the card needs

to perform the following steps:

1. It computes f ′(i) and f ′′(i).

2. Access is granted if f ′(i) = f ′′(i), denied otherwise.

5.3 Extension to higher values ofc
To obtain versions of the scheme with c > 1, instead of

using two functions f ′ and f ′′, we use c + 1 such functions:
access to i is granted if all c+1 functions map i into the same
value, and is denied otherwise. Of course different random
parameters are selected when constructing each of these c+1
functions, and the space complexity becomes O(cm) bits.

2It is possible that OPMPHF representations that use an
optimally small number of bits bm will not involve many
random choices for certain elements of the set {i1, . . ., im}.
This means that f ′(r) and f ′′(r) might not be truly inde-
pendent for some values of r. To magnify the randomization
effect of the functions on such r’s, we might want to increase
the space occupied by the functions by increasing the value
of the constant b, and make sure that the number of random
choices during function generation is large. Obviously, this
topic deserves further investigation and formal treatment.

Note that if the value of c is relatively large compared
to m, it might be difficult or even impossible to generate
c + 1 different functions for those m items. In such a case,
either the value of c might be lowered, or the space needed
to store these c + 1 functions might have to be increased
(each function will still require O(m) bits but with a larger
than optimal constant).

5.4 Analysis

Theorem 2. Given k = O(cm) space, the above OPMPHF-
based approach produces in time polynomial in m a solution
with the properties of (a) transaction unlinkability and un-
traceability, (b) unique policy representation, (c) no addi-
tional sources of information, (d) forward compatibility, and
(e) probability of false positives m−c.

Proof Sketch Each of the c+1 functions can be computed
in linear time and space [19], whence the claimed card cre-
ation time. We now argue that the probability of a false pos-
itive is m−c. First we note that, for an r /∈ {i1, . . ., im} to
be a false positive, all of the c+1 functions must map r into
the same value. Recall from our above assumption that the
choices of different random parameters for each such func-
tion f ′ randomizes f ′(r) uniformly over [1, m], and choosing
the different functions’ random parameters independently
effectively makes this f ′(r) independent of the other f ′′(r)
values. The probability that the c + 1 functions map r into
the same value is therefore m−c.

Property (b) is ensured through the random choices in
selection of the functions, and properties (a), (c), and (d)
are by the same arguments as in the proof of Theorem 1. 2

6. FURTHER REMARKS
The k = O(m log m) space approach described in Sec-

tion 4.4 is the simplest to implement, and its space usage
can be heuristically lowered as described in that section.
This approach, however, cannot be used if k = o(m log m),
whereas the MPHF-based scheme can work in cases when
k = o(m log m), e.g., when k = O(m). In general, both
of these approaches give the same rate of false positives of
m−c if k = O(cm log m). The OPMPHF-based approach of
Section 5 achieves the same false positives rate of m−c, but
with an asymptotically lower requirement for space: O(cm)
bits.

6.1 Decreasing the value of false positives
The performance of any of the schemes we described can

be further improved with respect to the cost of false posi-
tives if we make sure that certain unpurchased but generally
popular items are not among the false positives. We refer
to such items in high demand as “hot” items, and for each
customer they can be either system-wide (the same for ev-
eryone), card-specific (based on the subscription order at
card-creation time), or both.

Note that, from the privacy point of view, it is acceptable
for the data owner to determine the hot items for a card
based on the card’s subscription order (which must be given
anyway at the time of purchase, e.g., during anonymous card
purchase at a vending machine or bookstore). Later on, as
the card is used, the card does not give away data about the
subscription order or the card-specific forbidden hot items.

There are various ways of ensuring that such hot items
are not among the false positives of a customer order. One



approach is to map them to a region different from the legit-
imate subscription items on the card, or to place a special
mark on where they map to indicate that access to them
should be denied. We could in fact use all of the techniques
described in this paper for the hot items, as long as we con-
sider them to be a “negative subscription list” in the sense
that access is denied for any item on that list. This of course
increases the space needed to represent a subscription order,
but the increase in the space may be worthwhile if it is less
than the cost associated with the hot items being among the
false positives.

Another way of isolating such hot items is by weaving
their isolation into the random choices made in the schemes
we described: After we make random choices, we can evalu-
ate the card encoding by counting how many hot items are
among the false positives as the result, and make another
set of random choices if necessary.

In general, in our schemes the rate of false positives is
very small (e.g., for m = 100 and c = 3 the PFP is one
in a billion), and therefore even if the list of hot items is
long, only a tiny fraction of them will be among the false
positives to be isolated. This permits us to use the above
special treatment for those few items, if we want absolutely
no hot items to be among the false positives.

6.2 Improving space utilization for hierarchies
Hierarchically structured data repositories provide addi-

tional possibilities for efficiently utilizing storage space on
the cards and therefore minimizing the rate of false posi-
tives. For tree-like hierarchies, the objects in the repository
corresponds to the leaves of the tree. In addition, all inter-
nal nodes are marked with unique identifiers. Then great
space savings can be achieved if now instead of storing all
m items we store nodes of the tree the entire sub-trees of
which are among the m items.

Our techniques trivially apply to such hierarchical repos-
itories if we assume that for every item i its “path to the
root” can be obtained from the server. This, however, means
more interaction with the server. It is not clear how to avoid
this extra interaction: While it is well known that ancestral
relationships in a tree are completely described by two lin-
ear listings of its nodes (e.g., preorder and postorder), this
is not immediately exploitable because of the randomiza-
tion introduced by the hashes. This clearly deserves further
investigation.

An additional difficulty is that, in hierarchically struc-
tured objects, care must be exercised to ensure that certain
nodes are not among the false positives. For instance, dur-
ing the card creation process we must ensure that the root
of the tree and other nodes high in the hierarchy are not
among the false positives. Techniques of section 6.1 then
can be applied to this case as well to exclude the special
items from the possible false positives.

7. CONCLUSIONS
In this paper, we presented schemes for minimizing space

requirements to permit user access to items of their choice
from a large data repository in a privacy-preserving man-
ner. Our schemes are based on the use of minimal perfect
hash functions and comply with the design goals of: trans-
action untraceability and unlinkability, unique policy repre-
sentation, single storage device, fast operation, and forward
compatibility of the scheme. The primary goal is to mini-

k = k =
Scheme Space

O(cm) O(cm log m)

Scheme I (MPHF-based) 2−c m−c

Scheme II (OPMPHF-based) m−c m−c log m

Table 1: The rates of false positives of the schemes

for different storage space bounds. Here m is the

number of items in the subscription, k is the storage

space, and c is a constant.

mize the rate of false positives; and for both of our schemes,
given the bounds on the available storage space, we proved
bounds on the false positives rates. These properties of the
schemes are summarized in Table 1.

The solutions presented in this work can be used for differ-
ent applications, with the most intuitive ones being digital
libraries that might contain books, articles, magazines, and
also music, video, and other objects. With such systems in
place, a customer can purchase a subscription to the items of
interest from home, stores, or libraries, and have anonymous
access to the media from many convenient locations (that
support the model) as well. Other usages include access to
locally stored (encrypted) objects, where trusted software
plays the role of the server and on demand decrypts the
objects that the user is authorized to access.

Our approach can also be combined with access mech-
anisms based on temporal constraints, but this topic is a
direction of future research.

8. REFERENCES
[1] M. Atallah and M. Bykova. Portable and flexible

document access control mechanisms. In Computer
Security – ESORICS 2004, volume 3193, pages
193–208. Springer–Verlag, September 2004.

[2] M. Atallah and J. Li. Enhanced smart-card based
license management. In IEEE International
Conference on E-Commerce (CEC’03), pages 111–119,
June 2003.

[3] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A
practical and provably secure coalition-resistant group
signature scheme. In Advances in Cryptology –
CRYPTO’00, volume 1880 of LNCS, pages 255–270,
2000.

[4] T. Aura and D. Gollmann. Software license
management with smart cards. In USENIX Workshop
on Smart Card Technology, May 1999.

[5] E. Bertino, B. Carminati, E. Ferrari,
B. Thuraisingham, and A. Gupta. Selective and
authentic third-party distribution of XML documents.
Working Paper, Sloan School of Management, MIT,
2002. http://papers.ssrn.com/sol3/papers.cfm?
abstract id=299935.

[6] E. Bertino, S. Castano, and E. Ferrari. On specifying
security policies for web documents with an
XML-based language. In ACM Symposium on Access
Control Models and Technologies (SACMAT’01), May
2001.

[7] E. Bertino, S. Castano, and E. Ferrari. Securing XML
documents with author-X . IEEE Internet Computing,
5(3):21–31, 2001.



[8] E. Bertino and E. Ferrari. Secure and selective
dissemination of XML documents. ACM Transactions
on Information and System Security, 5(3):290–331,
August 2002.

[9] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[10] D. Boneh and M. Franklin. Anonymous authentication
with subset queries. In ACM Conference on Computer
and Communication Security (CCS’99), pages
113–119, November 1999.

[11] A. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. Allerton
Conference, 2002.

[12] M. Bykova and M. Atallah. Succinct specifications of
portable document access policies. In ACM
Symposium on Access Control Models and
Technologies (SACMAT’04), June 2004.

[13] J. Camenisch and M. Michels. A group signature
scheme with improved efficiency. In Advances in
Cryptology – ASIACRYPT’98, volume 1514 of LNCS,
pages 160–174, 1998.

[14] D. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 24(2):84–88, February 1981.

[15] Z. Czech, G. Havas, and B. Majewski. An optimal
algorithm for generating minimal perfect hash
functions. Information Processing Letters,
43(5):257–264, October 1992.

[16] D. Damiani, S. De Capitani Di Vimercati,
S. Paraboschi, and P. Samarati. A fine-grained access
control system for XML documents. ACM
Transactions on Information and System Security,
5(2):169–202, May 2002.

[17] P. Devanbu, M. Gertz, A. Kwong, C. Martel, and
G. Nuckolls. Flexible authentication of XML
documents. In ACM Conference on Computer and
Communications Security (CCS’01), November 2001.

[18] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary
cache: A scalable wide-area web cache sharing
protocol. IEEE/ACM Transactions on Networking,
8(3):281–293, 2000.

[19] E. Fox, Q. Chen, A. Daoud, and L. Heath.
Order-preserving minimal perfect hash functions and
information retrieval. ACM Transactions on
Information Systems, 9(3):281–308, July 1991.

[20] E. Fox, Q. Chen, and L. Heath. A faster algorithm for
constructing minimal perfect hash functions. In
Annual International ACM SIGIR, pages 266–273,
1992.

[21] E. Fox, L. Heath, Q. Chen, and A. Daoud. Practical
minimal perfect hash functions for large databases.
Communications of the ACM, 35(1):105–121, January
1992.

[22] J. Kilian and E. Petrank. Identity escrow. In Advances
in Cryptology – CRYPTO’98, volume 1462 of LNCS,
pages 169–185, August 1998.

[23] J. Kim, S. Choi, K. Kim, and C. Boyd. Anonymous
authentication protocol for dynamic groups with
power-limited devices. In Symposium on Cryptography
and Information Security (SCIS’03), volume 1/2,
pages 405–410, January 2003.

[24] C. Lee, X. Deng, and H. Zhu. Design and security
analysis of anonymous group identification protocols.
In Public Key Cryptography (PKC’02), volume 2274 of
LNCS, pages 188–198, February 2002.

[25] M. Mitzenmacher. Compressed bloom filters. In ACM
Symposium on Principles of Distributed Computing,
August 2001.

[26] S. Payette and C. Lagoze. Policy-carrying,
policy-enforcing digital objects. In European
Conference on Research and Advanced Technology for
Digital Libraries (ECDL’00), volume 1923, pages
144–157, 2000.

[27] P. Persiano and I. Visconti. A secure and private
system for subscription-based remote services. ACM
Transactions on Information and System Security,
6(4):472–500, November 2003.

[28] A. Santis, G. Cresenzo, and G. Persiano.
Communication-efficient anonymous group
identification. In ACM Conference on Computer and
Communication Security (CCS’98), pages 73–82,
November 1998.

[29] S. Schechter, T. Parnell, and A. Hartemink.
Anonymous authentication of membership in dynamic
groups. In Financial Cryptography, volume 1648 of
LNCS, pages 184–195, 1999.

[30] S. Stubblebine, P. Syverson, and D. Goldschlag.
Unlinkable serial transactions. ACM Transactions on
Information and System Security, 2(4):354–389,
November 1999.


