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ABSTRACT
Motivated by the importance of floating-point computations, we

study the problem of securely and accurately summing many

floating-point numbers. Prior work has focused on security ab-

sent accuracy or accuracy absent security, whereas our approach

achieves both of them. Specifically, we show how to implement

floating-point superaccumulators using secure multi-party compu-

tation techniques, so that a number of participants holding secret

shares of floating-point numbers can accurately compute their sum

while keeping the individual values private.
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1 INTRODUCTION
Floating-point numbers are the most widely used data type for

approximating real numbers with a wide variety of applications;

see, e.g., [30, 41, 51]. A (radix-2) floating-point number 𝑥 is a tuple

of integers (𝑏, 𝑣, 𝑝) such that

𝑥 = (−1)𝑏 × (1 + 2−𝑚𝑣) × 2𝑝−2
𝑒−1−1, (1)

where 𝑏 ∈ {0, 1} is a sign bit, 𝑣 is the𝑚-bit mantissa (which is also

known as the significand), and 𝑝 is the 𝑒-bit exponent.
A well-known issue with floating-point arithmetic is that it is

not exact. For example, it is known that summing two floating

point numbers can have a roundoff error and these roundoff errors

can propagate and even become larger than a computed result

when performing a sequence of many floating-point additions. For

example, floating-point addition is not associative [37].

Floating-point arithmetic has applications in many areas includ-

ing medicine, defense, economics, and physics simulation (e.g., in

the NVIDIA Omniverse [33]). Thus, there is considerable need in

computing sums of many floating-point numbers as accurately

as possible. For example, the accuracy of any computation that

involves high-dimensional dot products or matrix multiplications,

such as in machine-learning (see, e.g., [26, 32]), depends on the

accuracy of computing the sum of many floating-point numbers.

Similarly, computations in computational geometry involve com-

puting determinants, whose accuracy also depends on computing

the sum of many floating-point numbers; see, e.g., [22, 45, 49].
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In addition, the fact that floating-point addition is not associative

presents problems related to the reproducibility of computations;

see, e.g., [17, 21–23]. For example, a secure contract involving the

summation of floating-point numbers may need to be verified after

it has been signed. And if this depends on the summation of floating-

point values, performing the summation on different computers

could result in different outcomes, which could cause participants

to reject an otherwise valid digital contract.

Competing with this issue is that some applications of floating-

point arithmetic have computer-security requirements, including

integrity, confidentiality, and privacy. For example, computing

the probability of satellites colliding could involve security and

privacy considerations when the satellites belong to competing

companies or adversarial nation-states, e.g., see [36]. Thus, there

is a need for protocols for computing sums of many floating-point

numbers as securely as possible. This holds for other domains

where computation on private data is performed using floating-

point arithmetic including applications in medicine and privacy-

preserving training of machine learning models on distributed

sensitive data.

In spite of the importance of accuracy and security for summing

floating-point numbers, we are not aware of any prior work that

simultaneously achieves both accuracy and security for summing

many floating-point numbers. Aswe review below, there is consider-

able prior work on methods for accurately summing many floating-

point numbers, but the methods used do not lend themselves

to transformations into secure computations. Likewise, as we

also review below, there is considerable prior work on securely

computing sums of pairs of floating-point numbers, but these

prior methods do not consider the propagation of roundoff errors

and can lead to inaccurate results for summing many floating-

point numbers. Such inaccuracies can arise after adding numbers

of significantly different magnitudes, where the values of the

largest magnitude have opposite signs and significantly exceed

other summation operands. Adding the values one at a time using

floating-point addition can therefore leave us with noise, while

implementing addition exactly will retain the necessary number of

summation bits. Thus, in this paper, we are interested in methods

for summing many floating-point numbers that are both secure and

accurate.

Related Prior Work. Neal [42] describes algorithms using a

number representation called a superaccumulator to exactly sum

𝑛 floating point numbers, which is then converted to a faithfully-

rounded floating-point number. Unfortunately, while Neal’s su-

peraccumulator representation reduces carry-bit propagation, it

does not eliminate it, as is needed for the purposes of this work.

A similar idea has been used in ExBLAS [17], an open source
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library for floating point computations. Shewchuck [45] describes

an alternative representation for exactly representing intermediate

results of floating-point arithmetic, but the method also does not

eliminate carry-bit propagation in summations; hence, it also does

not satisfy our accuracy constraints. In addition to these solutions,

there are a number of adaptive methods for exactly summing 𝑛

floating point numbers using various other data structures for

representing intermediate results, which do not consider the secu-

rity or privacy of the data. Further, these methods, which include

ExBLAS [17] and algorithms by Zhu and Hayes [52, 53], Demmel

and Hida [21, 22], Rump et al. [46], Priest [43], Malcolm [39],

Leuprecht and Oberaigner [38], Kadric et al. [35], and Demmel and

Nguyen [23], are not amenable to conversion to secure protocols

with few rounds.

While integer arithmetic in secure multi-party computation has

been extensively investigated, secure floating-point arithmetic has

only gradually attracted attention in the last decade. Catrina and

Saxena [16] extended secure computation from integer pairwise

arithmetic to fixed-point pairwise arithmetic and applied it to

linear programming [15]. Franz and Katzenbeisser [28] proposed a

solution, based on homomorphic encryption and garbled circuits,

for floating-point pairwise operations in the two-party setting

with no implementation or performance results. Aliasgari et al. [3]
designed a set of protocols for basic floating-point operations

based on Shamir secret sharing and developed several advanced

operations such as logarithm, square root and exponentiation of

floating-point numbers. Their solution was improved and extended

for other settings and applications [2, 8, 36, 47] later. Dimitrov et

al. [24] proposed two sets of protocols using new representations

to improve efficiency, but did not follow the IEEE 754 standard

representation. Archer et al. [6] measure performance of floating-

point operations in different instantiations using a varying number

of computation participants and corruption thresholds. Rathee et

al. [44] design secure protocols in the two-party setting and exactly

follow the IEEE standard rounding procedure. In addition to the

above works on improving efficiency of unary/binary floating-point

operations, Catrina [11–13] proposed and improved several multi-

operand operations such as sum, dot-product, and polynomial

evaluation. Nevertheless, because their solutions are still based

on traditional floating-point pairwise addition, round-off errors

accumulate inevitably in each addition operation.

Our Results. In this paper, we develop new secure protocols for

summing many floating-point numbers that outperforms other

approaches. We design a superaccumulator-based solution that

privately and accurately calculates summations of many private

arbitrary-precision floating-point numbers, and we empirically

evaluate the performance of our solution on varying input sizes and

precision. Unlike standard floating-point addition, our approach

performs summation exactly without introducing round-off errors.

Our supperaccumulator-based approach and most of the proto-

cols we develop can be instantiated with building blocks based

on secret sharing in different settings, including computation

with or without honest majority and semi-honest and malicious

adversarial models. Some of the design choices are made in favor of

reducing communication and one efficient low-level building block,

conversion shares of a bit from binary to arithmetic sharing, is in

Algorithm 1 𝑠 ← ExpandAndSum(𝑥1, 𝑥2, . . . , 𝑥𝑛)
1: for 𝑖 = 1, . . . , 𝑛 do
2: 𝑦𝑖 ← ConvertToInt(𝑥𝑖 );
3: end for
4: 𝑣 ← ∑𝑛

𝑖=1 𝑦𝑖 ; // exact addition

5: 𝑠 ← ConvertToFloat(𝑣);
6: return 𝑠;

the three-party setting with honest majority based on replicated

secret sharing in the semi-honest model (as defined below). We

implement the construction in that setting and show that its runtime

is faster than the state of the art implementing floating-point

operations [12, 44]. Thus, we are able to implement exact addition

while simultaneously improving performance.

2 FLOATING-POINT SUMMATION
CONSTRUCTION

2.1 The Expand-and-Sum Solution
There is a simple naïve solution for exactly summing a set of 𝑛

floating-point numbers, {𝑥1, 𝑥2, . . . , 𝑥𝑛}, which we refer to as the

expand-and-sum solution. It is reasonable for low-precision floating-

point representations and is given as Algorithm 1. That is, for each

floating-point number 𝑥𝑖 , we convert the representation of 𝑥𝑖 into

an integer 𝑦𝑖 , with as many bits as is possible based on the floating-

point type being used for the 𝑥𝑖s. Then we sum these values exactly

using integer addition and convert the result back into a floating-

point number.

The 𝑦𝑖s would have the following sizes based on the IEEE 754

formats:

• Half : a half-precision floating-point number in the IEEE 754

format has 1 sign bit, a 5-bit exponent, and a 10-bit mantissa.

Thus, representing this as an integer requires 1+25 +10 = 43

bits.

• Single: a single-precision floating-point number has 1 sign bit,

an 8-bit exponent, and a 23-bit mantissa. Thus, representing

this as an integer requires 1 + 28 + 23 = 280 bits.

• Double: a double-precision floating-point number has 1

sign bit, an 11-bit exponent, and a 52-bit mantissa. Thus,

representing this as an integer requires 1 + 211 + 52 = 2, 101

bits.

• Quad: a quad-precision floating-point number has 1 sign bit,

a 15-bit exponent, and a 112-bit mantissa. Thus, representing

this as an integer requires 1 + 215 + 112 = 32, 881 bits.

Further, there are also even higher-precision floating-point rep-

resentations, which would require even more bits to represent

as fixed-precision or integer numbers; see, e.g., [10, 27, 29, 31, 50].

Implementing a summation using this representation would involve

performing many operations on very large numbers using secure

multi-party computation techniques, thus degrading performance.

Of course, applications with high-precision floating-point numbers

are likely to be applications that require accurate summations;

hence, we desire solutions that can work efficiently for such

applicationswithout requiringways of summing very large integers.

In particular, summing very large integers requires techniques
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for dealing with cascading carry bits during the summations, and

performing all these operations securely is challenging for very

large integers. Thus, we consider this expand-and-sum approach

for summing 𝑛 floating-point numbers as integers to be limited to

low-precision floating-point representations.

2.2 Superaccumulators
An alternative approach, which is better suited for use with conven-

tional secure addition when applied to high-precision floating-point

formats, is to use a superaccumulator to represent floating-point

summands, e.g., see [17, 18, 42]. This approach also uses integer

arithmetic, but with much smaller integers. More importantly, it

can be implemented to avoid cascading carry-bit propagation.

In a superaccumulator, instead of representing a floating-point

number as a single expanded (very-large) integer, we represent that

integer as a sum of small components maintained separately. That

is, we represent the expanded integer𝑦, corresponding to a floating-

point number 𝑥 , as a vector of 2𝑤-bit integers ⟨𝑦𝛼 , 𝑦𝛼−1, . . . , 𝑦1⟩,
where 𝑦 =

∑𝛼
𝑖=1 (2

𝑤)𝑖−1𝑦𝑖 and 𝛼 = ⌈ 2𝑒+𝑚𝑤 ⌉, so that we cover all

possible exponent values. Also, note that if we convert a floating-

point number to a superaccumulator, then at most 𝛽 = ⌈𝑚+1𝑤 ⌉ + 1
of the entries will be non-zero. We can choose 𝑤 based on the

underlying mechanism for achieving security and privacy. For

example, if we want to use built-in 64-bit integer addition, we

can choose𝑤 to be 32.

In addition, we say that 𝑠 is regularized if −2𝑤 < 𝑦𝑖 < 2
𝑤

for 𝑖 = 1, . . . , 𝛼 . At a high level, in our scheme, we start with

a regularized representation for each floating-point number 𝑥𝑖 ,

and then we perform summations on an element-by-element basis.

Finally, we regularize the partial sums by shifting “carry” values

to neighboring elements. As we show, this approach allows us to

prevent these carry values from propagating in a cascading fashion

after performing a group of sums, which allows us to achieve

efficiency for our secure summation protocols.

Suppose we are given 𝑛 floating-point numbers, {𝑥1, 𝑥2, . . . , 𝑥𝑛},
each represented as a regularized superaccumulator𝑥𝑖 =

∑𝛼
𝑗=1 (2

𝑤) 𝑗−1𝑦𝑖, 𝑗 .
Further, suppose 𝑛 ≤ 2

𝑤−2
. We sum all the 𝑥𝑖 ’s by

• first summing the corresponding terms, 𝑠 𝑗 =
∑𝑛
𝑖=1 𝑦𝑖, 𝑗 ,

• then splitting the binary representation of each 𝑠 𝑗 into 𝑐 𝑗+1
and 𝑟 𝑗 , so that 𝑠 𝑗 = 𝑐 𝑗+12𝑤−1+𝑟 𝑗 , where−2𝑤−1 < 𝑟 𝑗 < 2

𝑤−1
,

• and lastly, updating each 𝑠 𝑗 as 𝑠 𝑗 ← 𝑟 𝑗 + 𝑐 𝑗 , for 𝑗 = 1, . . . , 𝑛.

As we show, because of the way that we regularize superaccumula-

tors, the “carry” values, 𝑐 𝑗 , will not propagate in a cascading way,

and the result of the above summation will be regularized. This

allows us to complete the sum in a single communication round.

Further, for practical values of𝑤 , the constraint that 𝑛 ≤ 2
𝑤−2

is not restrictive. For example, if𝑤 = 32, this implies we can sum

up to one billion floating-point numbers in a single communication

round. Thus, to sum larger groups of numbers, we can group

the summations in a tree where each internal node has 2
𝑤−2

children, and perform the sums in a bottom-up fashion. The

important property, though, is that performing the above approach

of summing 𝑛 ≤ 2
𝑤−2

regularized superaccumulators and then

adding the carry values, 𝑐 𝑗 (some of which may be negative), to the

neighboring element will result in a regularized superaccumulator.

The following theorem establishes this property.

Theorem 2.1. If 𝑛 ≤ 2
𝑤−2, then summing 𝑛 regularized super-

accumulators using the above algorithm will produce a regularized
result.

Proof. Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 be the set of input superaccumula-

tors to sum, where 𝑛 ≤ 2
𝑤−2

and 𝑥𝑖 =
∑𝛼

𝑗=1 (2
𝑤) 𝑗−1𝑦𝑖, 𝑗 for

𝑖 = 1, 2, . . . , 𝑛. Recall that we sum all the 𝑥𝑖s by summing the

corresponding terms, i.e., 𝑠 𝑗 =
∑𝑛
𝑖=1 𝑦𝑖, 𝑗 . Since each 𝑥𝑖 is regularized,

−2𝑤 < 𝑦𝑖, 𝑗 < 2
𝑤
for all 𝑖, 𝑗 . Thus, −2𝑤𝑛 < 𝑠 𝑗 < 2

𝑤𝑛 for all 𝑗 ; and

hence, −22𝑤−2 < 𝑠 𝑗 < 2
2𝑤−2

since 𝑛 ≤ 2
𝑤−2

.

Recall that we split the binary representation of each 𝑠 𝑗 into 𝑐 𝑗+1
and 𝑟 𝑗 , so that 𝑠 𝑗 = 𝑐 𝑗+12𝑤−1 +𝑟 𝑗 , where −2𝑤−1 < 𝑟 𝑗 < 2

𝑤−1
. Thus,

𝑠 𝑗 = 𝑐 𝑗+12𝑤−1 + 𝑟 𝑗 < 𝑐 𝑗+12𝑤−1 + 2𝑤−1 = (𝑐 𝑗+1 + 1)2𝑤−1 < 2
2𝑤−2

and

𝑠 𝑗 = 𝑐 𝑗+12𝑤−1 +𝑟 𝑗 > 𝑐 𝑗+12𝑤−1−2𝑤−1 = (𝑐 𝑗+1−1)2𝑤−1 > −22𝑤−2 .

Therefore, −2𝑤−1 + 1 < 𝑐 𝑗+1 < 2
𝑤−1 − 1 for each 𝑗 . So, when we

update each 𝑠 𝑗 as 𝑠 𝑗 ← 𝑟 𝑗 + 𝑐 𝑗 , then

𝑠 𝑗 = 𝑟 𝑗 + 𝑐 𝑗 < 2
𝑤−1 + 2𝑤−1 − 1 = 2

𝑤 − 1 and
𝑠 𝑗 = 𝑟 𝑗 + 𝑐 𝑗 > −2𝑤−1 − 2𝑤−1 + 1 = −2𝑤 + 1.

Therefore, the result is regularized. □

3 SECURE COMPUTATION PRELIMINARIES
3.1 Security Setting
We use a conventional secure multi-party setting with 𝑁 parties

running the computation, 𝑡 of which can be corrupt. Given a func-

tion 𝑓 to be evaluated, the computational parties securely evaluate

it on private data such that no information about the private inputs,

or information derived from the private inputs, is revealed. More

formally, a standard security definition requires that the view of

the participants during the computation is indistinguishable from

a simulated view generated without access to any private data.

Most of the protocols developed in this work can be instantiated

in different adversarial models, but our implementation and one

low-level building block are in the semi-honest model, in which the

participating parties are expected to follow the computation, but

might try to learn additional information from what they observe

during the computation. Then the security requirement is that any

coalition of at most 𝑡 conspiring computational parties is unable

to learn any information about private data that the computation

handles. Achieving security in the semi-honest setting first is also

important if one wants to have stronger security guarantees, and

many of the protocols developed in this work would also be secure

in the malicious model when instantiated with stronger building

blocks.

Definition 3.1. Let parties 𝑃1, . . ., 𝑃𝑁 engage in a protocol Π that

computes function 𝑓 (in1, . . ., in𝑁 ) = (out1, . . ., out𝑁 ), where in𝑖
and out𝑖 denote the input and output of party 𝑃𝑖 , respectively. Let

VIEWΠ (𝑃𝑖 ) denote the view of participant 𝑃𝑖 during the execution

of protocolΠ. More precisely, 𝑃𝑖 ’s view is formed by its input and in-

ternal random coin tosses 𝑟𝑖 , as well as messages𝑚1, . . .,𝑚𝑘 passed

between the parties during protocol execution: VIEWΠ (𝑃𝑖 ) =

(in𝑖 , 𝑟𝑖 ,𝑚1, . . .,𝑚𝑘 ). Let 𝐼 = {𝑃𝑖1 , 𝑃𝑖2 , . . ., 𝑃𝑖𝑡 } denote a subset of

the participants for 𝑡 < 𝑁 , VIEWΠ (𝐼 ) denote the combined view
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of participants in 𝐼 during the execution of protocol Π (i.e., the

union of the views of the participants in 𝐼 ), and 𝑓𝐼 (in1, . . . , in𝑁 )
denote the projection of 𝑓 (in1, . . . , in𝑁 ) on the coordinates in 𝐼

(i.e., 𝑓𝐼 (in1, . . . , in𝑁 ) consists of the 𝑖1th, . . ., 𝑖𝑡 th element that

𝑓 (in1, . . . , in𝑁 ) outputs). We say that protocol Π is 𝑡-private in

the presence of semi-honest adversaries if for each coalition of

size at most 𝑡 there exists a probabilistic polynomial time (PPT)

simulator 𝑆𝐼 such that {𝑆𝐼 (in𝐼 , 𝑓𝐼 (in1, . . . , in𝑛)), 𝑓 (in1, . . ., in𝑛)} ≡
{VIEWΠ (𝐼 ), (out1, . . . , out𝑛)}, where in𝐼 =

⋃
𝑃𝑖 ∈𝐼 {in𝑖 } and ≡ de-

notes computational or statistical indistinguishability.

The focus of this work is on precise (privacy-preserving) floating-

point summation, and this operation is typically a part of a larger

computation. For that reason, the inputs into the summation would

be the result of other computations on private data. Therefore, we

assume that the inputs into the summation are not known by the

computational parties and are instead entered into the computation

in a privacy-preserving form. Similarly, the output of the summation

can be used for further computation and is not disclosed to the

parties. In other words, we are developing a building block that can

be used in other computations, where the computational parties

are given privacy-preserving representation of the inputs, jointly

produce a privacy-preserving representation of the output, and

must not learn any information about the values they handle. This

permits our solution to be used in any higher-level computation

and abstracts the setting from the way the inputs are entered into

the computation (which can come from the computational parties

themselves or external input providers).

In our solution, we heavily rely on the fact that composition

of secure building blocks is also secure. As part of this work, we

develop several new building blocks to enable the functionality we

want to support.

3.2 Secret Sharing
To realize secure computation, we utilize (𝑁, 𝑡)-threshold linear se-

cret sharing. Secret sharing offers efficiency due to the information-

theoretic nature of the techniques and consequently the ability to

operate over a small field or ring. Many of the protocols developed

in this work can be realized using any suitable type of secret

sharing (e.g,. with or without honest majority and in the semi-

honest or malicious settings) and by [𝑥] we denote a secret-shared
representation of value 𝑥 , which is an element of the underlying

field or ring. The expected properties are that (i) each of the

𝑁 computational parties 𝑃𝑖 holds its own share such that any

combination of 𝑡 shares reveals no information about 𝑥 and (ii)

a linear combination of secret-shared values can be computed by

each party locally on its shares. SPDZ
2
𝑘 [19] is one example of a

suitable framework.

For performance reasons, many recent publications utilize com-

putation over ring Z
2
𝑘 for some 𝑘 ≥ 1, which permits the use of

native CPU instructions for performing ring operations. This is also

the setting that we utilize for our experiments and use to inform

certain protocol optimizations. Conventional techniques such as

Shamir secret sharing [48] cannot operate over Z
2
𝑘 and thus we

rely on replicated secret sharing [34] with a small number of parties.

Specifically, we use the setting with honest majority, i.e., where

𝑡 < 𝑁 /2, and are primarily interested in the three-party setting,

i.e., 𝑁 = 3. All parties 𝑃1, . . . , 𝑃𝑁 are assumed to be connected by

pair-wise secure authenticated channels.

There is a need to secret share both positive and negative integers

and the space is used to naturally represent all values as non-

negative ring/field elements. In that case, the most significant bit

of the representation determines the sign.

For efficiency reasons, portions of the computation proceed on

secret shared values set up over a different ring, most commonly

Z2. Thus, we use notation [𝑥]ℓ to denote secret sharing over Z
2
ℓ

when ℓ differs from the default 𝑘 .

3.3 Building Blocks
In a linear secret sharing scheme, a linear combination of secret-

shared values can be performed locally on the shares without com-

munication. This includes addition, subtraction, and multiplication

by a known element. Multiplication of secret-shared values requires

communication and the cost varies based on the setting. We use the

multiplication protocol from [7] that works with any number of

parties in the honest majority setting and communicates only one

element in one round in the three-party setting, i.e., when 𝑛 = 3,

it matches the cost of three-party protocols such as [5]. Realizing

the dot product operation can also often be performed with the

communication cost of a single multiplication, regardless of the

size of the input vectors.

Our computation additionally relies on the following common

building blocks:

• Equality. An equality to zero protocol [𝑏]1 ← EQZ( [𝑎])
takes a private integer input [𝑎] and returns a private bit

[𝑏], which is set to 1 if 𝑎 = 0 and is 0 otherwise. Equality

of private integers [𝑥] and [𝑦] can be computed by calling

the protocol on input [𝑎] = [𝑥] − [𝑦]. We use a variant of

the protocol from [20] that produces the output bit secret

shared over Z2 (i.e., skips the conversion of the result to the

larger ring).

• Comparisons. [𝑏] ← MSB( [𝑎]) outputs the most signifi-

cant bit [𝑏] of its input [𝑎]. When working with positive and

negative values,MSB computes the sign and is equivalent to

the less-than-zero operation. For that reason, the operation

can also be used to compare two integers [𝑥] and [𝑦] by
supplying their difference as the input into the function. We

use the protocol from [7].

• Bit decomposition. [𝑥ℓ−1]1, . . . , [𝑥0]1 ← BitDec( [𝑥], ℓ)
performs bit decomposition an ℓ-bit input [𝑥] and outputs

ℓ secret-shared bits. Our implementation uses the protocol

from [20], with a modification that random bit generation is

based on edaBits (see below) and the output bits are secret

shared over Z2 by skipping their conversion to Z
2
𝑘 .

• Truncation. Truncation [𝑦] ← Trunc( [𝑥], ℓ, 𝑢) takes a

secret-shared input [𝑥] at most ℓ bits long and realizes a right

shift by 𝑢 bits. It outputs 𝑦 = ⌊ 𝑥
2
𝑢 ⌋. We invoke this function

only on non-negative inputs 𝑥 . Our implementation aug-

ments randomized truncation TruncPr from [7] with BitLT
implemented using a generic carry propagation mechanism.

• Prefix AND. On input [𝑥1]1, . . . , [𝑥𝑛]1, PrefixAND outputs

[𝑦1]1, . . . , [𝑦𝑛]1, where 𝑦𝑖 =
∏𝑖

𝑗=1 𝑥 𝑗 . This is the same

as 𝑦𝑖 =
∧𝑖

𝑗=1 𝑥 𝑗 when 𝑥𝑖s are binary. PrefixAND can be

4
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realized as described in [14] using a generic prefix operation

procedure (when operating over a ring). As the inputs are

bits, for performance reasons this protocol is carried out in

Z2.
• PrefixOR. Protocol [𝑦1]1, . . . , [𝑦𝑛]1 ← PrefixOR( [𝑥1]1, . . .,
[𝑥𝑛]1) produces 𝑦𝑖 =

∨𝑖
𝑗−1 𝑥 𝑗 . This operation can also be

implemented using a generic prefix operation mechanism

and executed over Z2.
• All OR. [𝑦0]1, . . . , [𝑦2𝑛−1]1 ← AllOr( [𝑥𝑛−1]1, . . . , [𝑥0]1)
takes 𝑛 bits and produces 2

𝑛
bits 𝑦 𝑗 of the form

∨𝑛−1
𝑖=0 𝑐𝑖 ,

where each 𝑐𝑖 is either 𝑥𝑖 or its complement ¬𝑥𝑖 and the pro-
tocol enumerates all possible combinations. The important

property is that only one element at position 𝑥 =
∏𝑛−1

𝑖=0 2
𝑖𝑥𝑖

in the output array will be set to 1, while the remaining

elements will be 0. The protocol is described in [9], which

we implement over a ring.

• Random bit generation. Generation of random bits is a

lower-level component of many common building blocks

including comparisons, bit decomposition, etc. In this work,

we use edaBit from [25] for this purpose. The protocol

[𝑟 ], [𝑟𝑛−1]1, . . . , [𝑟0]1 ← edaBit(𝑛) produces random bits

[𝑟𝑖 ] shared inZ2 and the integer they represent 𝑟 =
∏𝑛−1

𝑖=0 2
𝑖𝑟𝑖

in Z
2
𝑘 .

• Share reconstruction. Another lower-level protocol on

whichwe rely is 𝑥 = Open( [𝑥], ℓ) for reconstructing a secret-
shared value to the computation participants. To achieve

security guarantees, we use a variant that reconstructs 𝑥 ∈
Z
2
ℓ from [𝑥] where ℓ ≤ 𝑘 . This is achieved by reducing each

share modulo 2
ℓ
prior to the reconstruction to guarantee

that no information beyond the ℓ bits is exchanged during

the reconstruction.

• Ring conversion. [𝑥]𝑘′ ← Convert( [𝑥]𝑘 , 𝑘, 𝑘 ′) starts with
𝑥 secret-shared over Z

2
𝑘 and produces shares of the same

value secret-shared over Z
2
𝑘′ , where 𝑘

′ > 𝑘 , i.e., the target

ring is larger. We use the Convert protocol from [7].

We also develop several other building blocks as described in Sec-

tion 4. Note that many of these building blocks can be implemented

using different variants, where the mechanism for random bit

generation plays a particular role. Using the edaBit approach as

described above lowers communication cost of protocols compared

to generating each random bit separately with shares in Z
2
𝑘 , but

incurs a higher number of communication rounds. We make design

choices in favor of lowering communication, but the alternative is

attractive when summing a small number of inputs or when the

latency between the computational nodes is high.

Notation← is used for functionalities that draw randomness

(to produce randomized output or to compute a deterministic

functionality that internally uses randomization) and notation = is

used for deterministic computation.

4 SECURE LARGE-PRECISION
CONSTRUCTION

We are now ready to proceed with our solution for secure and

accurate floating-point number summation based on the super-

accumulator structure of Section 2.2. As before, a floating-point

number 𝑥𝑖 is represented as a tuple ⟨𝑏𝑖 , 𝑣𝑖 , 𝑝𝑖 ⟩. Our solution takes a

Algorithm2 [𝑠] ← FLSum(⟨[𝑏1], [𝑣1], [𝑝1]⟩, . . . , ⟨[𝑏𝑛], [𝑣𝑛], [𝑝𝑛]⟩)

1: let 𝛼 = ⌈ 2𝑒+𝑚𝑤 ⌉ and 𝛽 = ⌈𝑚+1𝑤 ⌉ + 1;
2: for 𝑖 = 1, . . . , 𝑛 in parallel do
3: ⟨[𝑦𝑖,𝛼 ], . . . , [𝑦𝑖,1]⟩ ← FL2SA( [𝑏𝑖 ], [𝑣𝑖 ], [𝑝𝑖 ], 𝛼, 𝛽);
4: end for
5: ⟨[𝑦𝛼 ], . . . , [𝑦1]⟩ ← SASum(⟨[𝑦1,𝛼 ], . . . , [𝑦1,1]⟩, . . . , ⟨[𝑦𝑛,𝛼 ], . . .,
[𝑦𝑛,1]⟩);

6: ⟨[𝑏], [𝑣], [𝑝]⟩ ← SA2FL( [𝑦𝛼 ], . . . , [𝑦1]);
7: return ⟨[𝑏], [𝑣], [𝑝]⟩;

sequence of 𝑛 secret-shared floating-point inputs ⟨[𝑏𝑖 ], [𝑣𝑖 ], [𝑝𝑖 ]⟩
and produces a secret-shared floating-point sum. At high level, it

proceeds by first converting the inputs into superaccumulators,

then computing the sum of the superaccumulators, regularizing

the result, and converting the resulting superaccumulator to a

floating-point number. The protocol, denoted as FLSum, is given in

Algorithm 2 (superaccumulator summation and regularization are

combined into SASum). Data representation parameters 𝑒 ,𝑚, and

𝑤 are fixed throughout the computation (as given in Equation 1)

and are implicit inputs.

When constructing a privacy-preserving solution, the computa-

tion that we perform must be data-independent or data-oblivious,

as not to disclose any information about the underlying values. In

the context of working with the superaccumulator representation,

we need to be accessing all superaccumulator slots in the same way

regardless of where the relevant data might be located. In particular,

when converting a floating-point value to a superaccumulator,

at most 𝛽 slots will contain non-zero values, but their location

cannot be disclosed. Similarly, when converting a regularized

superaccumulator corresponding to the sum to its floating-point

representation, only most significant non-zero slots are of relevance,

but we need to hide their position within the superaccumulator.

It is important to note that, unless specified otherwise, the

computation is performed over 2𝑤-bit shares (or ring Z
2
2𝑤 in

our implementation) to facilitate superaccumulator operations. We

denote the default element bitlength by 𝑘 . This default bitlength

is sufficient to represent all values with a single exception: the

bitlength 𝑚 mantissa 𝑣 in the floating-point representation can

often exceed the value of 2𝑤 . For that reason, we represent mantissa

𝑣 as as a sequence of ⌈𝑚+1𝑤 ⌉, or 𝛽−1, secret-shared blocks storing𝑤
bits of 𝑣 per block. For clarity of exposition, each 𝑣𝑖 is written as a

single shared value in FLSum, while in the more detailed protocols

that follow we make this representation explicit.

For most protocols in this paper, including FLSum in Algorithm 2,

security follows as a straightforward composition of the building

blocks assuming that the sub-protocols are themselves secure. Then

using a standard definition of security that requires a simulator

without access to private data to produce corrupt parties’ view

indistinguishable from the protocol’s real execution, we can invoke

the simulators corresponding to the sub-protocols and obtain secu-

rity of the overall construction. Thus, in the remainder of this work

we discuss security of a specific protocol only when demonstrating

its security involves going beyond a simple composition of its

sub-protocols. In addition, for some protocols it is important to

ensure that they are data-oblivious (i.e., data-independent) such
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Algorithm 3 ⟨[𝑦𝛼 , . . . , [𝑦1]⟩ ← FL2SA( [𝑏], ⟨[𝑣𝛽−1], . . . , [𝑣1]⟩,
[𝑝], 𝛼, 𝛽)

1: [𝑝high] ← Trunc( [𝑝], 𝑒, log𝑤);
2: [𝑝 low] = [𝑝] − [𝑝high] ·𝑤 ;

3: [𝑧]1 ← EQZ( [𝑝]);
4: [𝑣𝛽−1] = [𝑣𝛽−1] + 2𝑚−𝑤 (𝛽−2) · B2A(1 − [𝑧]1);
5: ⟨[𝑣𝛽 ], . . . , [𝑣1]⟩ ← Shift(⟨[𝑣𝛽−1], . . . , [𝑣1]⟩, [𝑝 low],𝑤);
6: for 𝑖 = 1, . . . , 𝛽 in parallel do
7: [𝑣𝑖 ] ← ([1] − 2 · [𝑏]) · [𝑣𝑖 ];
8: end for
9: ⟨[𝑑𝛼 ], . . . , [𝑑1]⟩ ← B2U( [𝑝high] + 1, 𝛼);
10: for 𝑖 = 1, . . . , 𝛼 in parallel do
11: if 𝑖 < 𝛽 then
12: [𝑦𝑖 ] ←

∑𝑖
𝑗=0 [𝑑𝑖−𝑗 ] · [𝑣 𝑗 ];

13: else if 𝑖 ≤ 𝛼 − 𝛽 + 1 then
14: [𝑦𝑖 ] ←

∑𝛽−1
𝑗=0
[𝑑𝑖−𝑗 ] · [𝑣 𝑗 ];

15: else
16: [𝑦𝑖 ] ←

∑𝛼−1−𝑖
𝑗=0 [𝑑𝑖−𝛽+1+𝑗 ] · [𝑣𝛽−1−𝑗 ];

17: end if
18: end for
19: return ⟨[𝑦𝛼 ], . . . , [𝑦1]⟩;

that the executed instructions and accessed memory locations are

independent of private inputs. Data obliviousness is necessary for

achieving security because we need the ability to simulate corrupt

parties’ view without access to private data.

4.1 Floating-Point to Superaccumulator
Conversion

The first component is to convert floating-point inputs to their

superaccumulator representation. Because this operation is rather

complex and needs to be performed for each input, it dominates the

cost of the overall summation and thus it is important to optimize

the corresponding computation. The conversion procedure takes a

floating point value ( [𝑏], ⟨[𝑣𝛽−1], . . . , [𝑣1], [𝑝]) representing nor-

malized 𝑥 = (−1)𝑏 · (1 + 2−𝑚𝑣) · 2𝑝−2𝑒−1−1 and needs to produce

a regularized superaccumulator as a vector of 𝛼 2𝑤-bit integers,

where 𝛼 = ⌈ 2𝑒+𝑚𝑤 ⌉.

4.1.1 The Overall Construction. To perform the conversion, the

computation needs to determine the position within the superaccu-

mulator where the mantissa is to be written based on exponent [𝑝],
represent the mantissa as 𝛽 superaccumulator blocks, and write

the blocks in the right locations without disclosing what locations

within the superaccumulator those are. The protocol details are

given as protocol FL2SA (Algorithm 3), which we consequently

explain.

Recall that the superaccumulator’s step is 2
𝑤
. This means that

𝑒 − log𝑤 most significant bits of the exponent [𝑝] represent the
index of the first non-zero slot in the accumulator. The log𝑤 least

significant bits of the exponent are used to shift the mantissa so that

it is aligned with the block representation of the superaccumulator.

Thus, in the beginning of FL2SA we divide the exponent [𝑝] into
two parts: the most significant 𝑒 − log𝑤 are denoted by 𝑝high and

the remaining log𝑤 bits are denoted by 𝑝 low (lines 1–2).

The next task is to use the mantissa (represented as 𝛽 − 1 blocks)
and [𝑝 low] to generate 𝛽 superaccumulator blocks. First, recall that

normalized floating-point representation assumes that the most

significant bit of themantissa is 1 and is implicit in the floating-point

representation. Thus, we need to prepend 1 as the (𝑚 + 1)st bit of 𝑣 .
In FL2SA we do this conditionally only when the exponent is non-

zero (lines 3–4) because when 𝑝 = 0, normalization might not be

possible (e.g., if the floating-point value represents a zero). Second,

we need to shift the updated mantissa blocks by a private log𝑤-bit

value 𝑝𝑙𝑜𝑤 to be aligned with the boundaries of superaccumulator

blocks and update each value to be𝑤 bits by carrying the overflow

into the next block.

To perform re-partitioning, we considered solutions based on

bit decomposition and truncation for re-partitioning the blocks,

and the second approach was determined to be faster. Our final

solution – a protocol called Shift that takes the original mantissa

blocks – left shifts the values by private [𝑝 low] positions, where𝑤
is the upper bound on the amount of shift, and re-aligns the blocks

to contain 𝑤 bits each using truncation. The details of the Shift
protocol are deferred to the next sub-section. After producing the

superaccumulator blocks (line 5), we update the sign of each block

using bit [𝑏] (lines 6–8). The desired superaccumulator representa-

tion is depicted in Figure 1, where the produced superaccumulator

blocks are intended to be written in positions 𝑝high + 1 through

𝑝high + 𝛽 .
The last task is to write the generated 𝛽 superaccumulator blocks

[𝑣𝑖 ]s into the right positions of our 𝛼-block superaccumulator, as

specified by the value of [𝑝high]. Because the computation must

be data-oblivious, the location of writing cannot be revealed and

the access pattern must be the same for any value of 𝑝high. To

accomplish the task, we considered two possible solutions: (i)

turning the value of 𝑝ℎ𝑖𝑔ℎ into a bit array of size 𝛼 with the 𝑝high

value set to 1 and all others set to 0 and using the bit array to

create superaccumulator blocks and (ii) creating a bit array with a

single 1 in the first location and rotating the bit array by a private

amount 𝑝high. The first approach was determined to be faster and

we describe it next.

The conversion of [𝑝high] +1, the value of which ranges between

1 and 𝛼 , to a bit array of private bits with the (𝑝high+1)th bit set

to 1 can be viewed as binary to unary conversion, denoted by

B2U. Prior work considered this building block, and specifically

in the context of secure floating-point computation [3], but prior

implementations were over a field. Because computation over a ring

of the form Z
2
𝑘 can be substantially faster, we design a new protocol

suitable over a ring using recent results, as described later in this

section. After the binary-to-unary conversion of 𝑝high + 1 (line 9
of FL2SA), each slot of the superaccumulator [𝑦𝑖 ] is computed as

the dot product of the previously computed data blocks [𝑣𝑖 ]s and
at most 𝛽 bits [𝑑 𝑗 ]s (lines 10–18) because the data blocks need to

be written at positions 𝑝high − 𝛽 + 1 through 𝑝high. In particular,

for the middle superaccumulator blocks, there are 𝛽 bits and data

blocks to consider when creating each superaccumulator block [𝑦𝑖 ],
while the boundary blocks would iterate over fewer options. For

example, the block [𝑦1] will be updated to [𝑣1] only if [𝑑1] = [1],
while block [𝑦2] will be updated to [𝑣1] or [𝑣2] in the case of

6
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[𝑣1]

Superaccumulator [𝑠]:

Mantissa [𝑣]:

· · · · · ·[𝑦𝛼] [𝑦1]

[𝑝𝑙𝑜𝑤]

[𝑦[𝑝ℎ𝑖𝑔ℎ]+1]

· · ·[𝑣𝛽]

Figure 1: Illustration of floating-point to superaccumulator conversion.

Algorithm 4 ⟨[𝑣𝛽 ], . . . , [𝑣1]⟩ ← Shift(⟨[𝑣𝛽−1], . . . , [𝑣1]⟩, [𝑝],𝑤)

1: let 𝛾 = log𝑤 ;

2: ⟨[𝑝𝛾 ]1, . . . , [𝑝1]1⟩ ← BitDec( [𝑝], 𝛾);
3: for 𝑗 = 1, . . . , 𝛾 in parallel do
4: [𝑝 𝑗 ] ← B2A( [𝑝 𝑗 ]1);
5: end for
6: [𝑠] ←∏𝛾

𝑗=1
(22𝑗−1 [𝑝 𝑗 ] + 1 − [𝑝 𝑗 ]);

7: for 𝑖 = 1, . . . , 𝛽 − 1 in parallel do
8: [𝑢𝑖 ] ← [𝑣𝑖 ] [𝑠];
9: [𝑑𝑖 ] ← Trunc( [𝑢𝑖 ], 2𝑤,𝑤);
10: end for
11: for 𝑖 = 2, . . . , 𝛽 − 1 in parallel do
12: [𝑣𝑖 ] = [𝑢𝑖 ] − 2𝑤 [𝑑𝑖 ] + [𝑑𝑖−1];
13: end for
14: [𝑣1] = [𝑢1] − 2𝑤 [𝑑1];
15: [𝑣𝛽 ] = [𝑑𝛽−1];
16: return ⟨[𝑣𝛽 ], . . . , [𝑣1]⟩;

[𝑑1] = [1] or [𝑑2] = [1], respectively. All superaccumulator blocks

are updated in parallel with communication cost equivalent to that

of 𝛼 multiplications.

4.1.2 New Building Blocks. What remains is to describe our Shift
and B2U protocols. The Shift protocol takes an integer value

(mantissa in the context of this work) stored in 𝛽 − 1 blocks

[𝑣𝛽−1], . . . , [𝑣1], shifts the value left by a private amount specified

by the second argument [𝑝], where the value of 𝑝 ranges between

0 and𝑤 specified by the third argument, and outputs 𝛽 new blocks

[𝑣𝛽 ], . . . , [𝑣1]. It is implicit in the interface specification that each

original block representation has (at least)𝑤 unused bits, so that the

content of each block can be shifted by up to𝑤 positions without

losing information. In particular, we assume that each block has𝑤

bits occupied, so that after the shift the intermediate result can grow

to 2𝑤 bits before being reorganized to occupy𝑤 bits per block.

The computation, given inAlgorithm 4, starts by bit-decomposing

the private amount of shift [𝑝] and converting the resulting bits to

ring elements (lines 1–5). The content of each block [𝑣𝑖 ] is shifted
left (as multiplication by a power of 2) by the appropriate number

of positions depending on the value of each bit of the amount of

shift: when bit [𝑝 𝑗 ] is 0, the value is multiplied by 1; otherwise it is

multiplied by a power of 2 that depends on the index 𝑗 (lines 6–8).

We then truncate each shifted block (line 9) to split the value into

the least significant𝑤 bits that the block will retain and the most

significant𝑤 bits which will are the carry for the next block. Each

block is consequently updated by taking the carry from the prior

block and keeping its𝑤 least significant bits (lines 11–15). Because

Algorithm 5 ⟨[𝑏1], . . . , [𝑏ℓ ]⟩ ← B2U( [𝑎], ℓ)
1: 𝑞 = ⌈log ℓ⌉;
2: [𝑟 ], [𝑟𝑞−1]1, . . . , [𝑟0]1 ← edaBit(𝑞);
3: ⟨[𝑑0]1, . . . , [𝑑2𝑞−1]1⟩ ← AllOr( [𝑟𝑞−1]1, . . . , [𝑟0]1);
4: 𝑐 = Open( [𝑎] − 1 + [𝑟 ], 𝑞);
5: for 𝑖 = 0, . . . , ℓ − 1 in parallel do
6: [𝑏𝑖+1] ← B2A(1 − [𝑑 (𝑐−𝑖) mod 2

𝑞 ]1);
7: end for
8: return ⟨[𝑏1], . . . , [𝑏ℓ ]⟩;

we shift all blocks in the same way, this operation corresponds to a

shift with block re-aligning on the boundary of𝑤 bits per block.

Our ring-based solution for binary-to-unary conversion B2U
takes a private integer [𝑎] and public range, where 0 < 𝑎 ≤ ℓ , and

produces a bit array ⟨[𝑏1], . . . , [𝑏ℓ ]⟩ with the 𝑎th bit set to 1 and

all other bits set to 0. Our goal is to have a variant suitable for

computation over ring Z
2
𝑘 using most efficient currently available

tools. Our solution, shown as Algorithm 5, is based on ideas used

for retrieving an element of an array at a private index in [9].

The high-level idea consists of generating ⌈log ℓ⌉ random bits

[𝑟𝑖 ] that collectively represent a random ⌈log ℓ⌉-bit integer [𝑟 ],
generating ⌈log ℓ⌉-ary ORs of [𝑟 ]−𝑖 for all log ℓ-bit 𝑖 and flipping the
resulting bits. This creates a bit array with all values set to 0 except

the element at private location [𝑟 ] set to 1. The ORs are computed

simultaneously for all values using protocol AllOr. Consequently,
the algorithm opens the value of 𝑐 = 𝑟 +𝑎 (modulo 2

⌈log ℓ ⌉
) and uses

the disclosed value to position the only 1 bit of the array in location

𝑎 (i.e., the bit will be set at position 𝑖 for which 𝑐 − 𝑖 = 𝑟 + 𝑎 − 𝑖 = 𝑟 ).

Note that the protocol explicitly calls edaBit for random bit

generation (and inherits its properties) and there are alternatives.

We enhance performance by carrying out the most time-consuming

portion of the computation, namely AllOr, over a small ring Z2
because the computation uses Boolean values. This means that

after producing 2
⌈log ℓ ⌉

bits through a sequence of calls to edaBit,
AllOr, andOpen and array rotation, we need to convert their shares

from Z2 to Z
2
𝑘 , which we do using binary-to-arithmetic share

conversion B2A (line 6). In addition, reconstruction of 𝑐 = 𝑟 + 𝑎 on

line 4 needs to be performed using 𝑞-bit shares to enforce modulo

reduction and prevent information leakage, where share truncation

prior to the reconstruction is performed by Open itself using the

modulus specified as the second argument.

As far as security goes, we note that besides composing sub-

protocols the protocol also reconstructs a value which is a function

of private input [𝑎] on line 8. Security is still achieved because [𝑟 ]
is a private value uniformly distributed in Z2𝑞 . Thus, the value of
[𝑎] is perfectly protected and the opened element of Z2𝑞 is also

7
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Protocol Communication Rounds

[20] 6(𝑘 + 2) 2

[4] 6𝑘 2

[40] 6𝑘 1

Ours 3𝑘 2

Table 1: Comparison of three-party B2A protocols in the
honest majority setting with target ring Z

2
𝑘 . Total protocol

communication is reported in bits.

uniformly distributed over the entire range. This means that the

view is easily simulatable by choosing a random element of Z2𝑞

as the output of Open and getting the parties to reconstruct that

value.

The last component that we would like to discuss is the B2A
protocol. Solutions for converting a bit𝑏 secret shared overZ2 to the
same value secret shared over larger ring Z

2
𝑘 , [𝑏]𝑘 ← B2A( [𝑏]1, 𝑘),

appear in the literature. Conventional solutions that use square

root computation to generate a random bit (e.g., [20]) temporarily

increase the ring to be Z
2
𝑘+2 for computing intermediate results. In

the context of this work, this effectively doubles the size of the ring

elements during the computation when we use a ring Z
2
32 or Z

2
64 .

When the number of participants is not large, an alternative is to

cast each local share in Z2 as a share in Z2𝑘 and have the parties

compute XOR of those values over Z
2
𝑘 . This approach is used in

Araki et al. [4] in the three-party setting with honest majority

based on replicated secret sharing (RSS) that costs two consecutive

multiplications. The approach of Mohassel and Rindal [40] would

also require the same communication in two rounds, but the use of

the three-party OT procedure in that work reduces the number of

rounds to one.

In this work, we design a new solution in the three-party setting

using RSS that does not increase the ring size and lowers the cost

of prior protocols as illustrated in Table 1. Unlike many protocols

in this work that can be adapted to different types of underlying

arithmetic and the number of computational parties, this is the only

protocol that specifically uses RSS with 𝑁 = 3 and threshold 𝑡 = 1.

With RSS when 𝑁 = 3, there are three shares representing any

secret-shared [𝑥] which we denote as [𝑥] (1) , [𝑥] (2) , and [𝑥] (3) .
Each computational party 𝑃𝑖 holds two shares with indices different

from 𝑖 . For example, 𝑃2 holds shares [𝑥] (1) and [𝑥] (3) . We use

notation [𝑥] (𝑖)
𝑘

to denote a share in ring Z
2
𝑘 . In addition, each

participant with access to shares indexed by 𝑖 holds a (sufficiently

long) key key𝑖 used as the seed to a pseudorandom generation. For

clarity, we refer to a PRG keyed by key𝑖 as G𝑖 . A call to G𝑖 .next
produces a pseudorandom ring element.

The input to B2A is a bit secret-shared over Z2 and we need to

convert the bit to the shares over Z
2
𝑘 as specified by the second

argument. The protocol is given as Algorithm 6. The high-level

idea behind the solution is that 𝑥 = [𝑥] (1)
1
⊕ [𝑥] (2)

1
⊕ [𝑥] (3)

1
and

we use the knowledge of the input shares by the parties to evaluate

the two XOR operations in the target ring. In particular, we can

conceptualize the bit shares [𝑥] (𝑖)
1

as secret-shared values over

Z
2
𝑘 represented as [𝑎]𝑘 = ⟨[𝑥] (1)

1
, 0, 0⟩, [𝑏]𝑘 = ⟨0, [𝑥] (2)

1
, 0⟩, and

[𝑐]𝑘 = ⟨0, 0, [𝑥] (3)
1
⟩. If we securely evaluate [𝑎]𝑘 ⊕ [𝑏]𝑘 ⊕ [𝑐]𝑘 , we

Algorithm 6 [𝑥]𝑘 ← B2A( [𝑥]1, 𝑘)
Setup: Party 𝑃𝑖 holds shares and has access to PRGs Gj with

indices 𝑗 ≠ 𝑖 .

1: set [𝑎]𝑘 = ⟨[𝑥] (1)
1

, 0, 0⟩, [𝑏]𝑘 = ⟨0, [𝑥] (2)
1

, 0⟩, and [𝑐]𝑘 =

⟨0, 0, [𝑥] (3)
1
⟩;

2: evaluate [𝑠]𝑘 = [𝑎]𝑘 · [𝑏]𝑘 as follows:

(a) 𝑃3 computes [𝑠] (2)
𝑘

= G2 .next, [𝑠] (1)𝑘
= [𝑎] (1)

𝑘
· [𝑏] (2)

𝑘
−

[𝑠] (2)
𝑘

(in Z
2
𝑘 ), and sends [𝑠] (1)

𝑘
to 𝑃2;

(b) 𝑃2 sets [𝑠] (1)𝑘
to the received value and [𝑠] (3)

𝑘
= 0;

(c) 𝑃1 computes [𝑠] (2)
𝑘

= G2 .next and sets [𝑠] (3)
𝑘

= 0;

3: [𝑠]𝑘 = [𝑎]𝑘 + [𝑏]𝑘 − 2[𝑠]𝑘 ;
4: evaluate [𝑢]𝑘 = [𝑠]𝑘 · [𝑐]𝑘 as follows:

(a) 𝑃2 computes [𝑢] (1)
𝑘

= G1 .next, 𝑢 ′ = [𝑠] (1)𝑘
· [𝑐] (3)

𝑘
− [𝑢] (1)

𝑘

(inZ
2
𝑘 ), sends𝑢 ′ to 𝑃1, and computes [𝑢] (3)

𝑘
= 𝑢 ′+G3 .next

(in Z
2
𝑘 ).

(b) 𝑃1 receives 𝑢
′
, computes 𝑢 ′′ = G3 .next, [𝑢] (2)𝑘

= [𝑠] (2)
𝑘
·

[𝑐] (3)
1
− 𝑢 ′′, and [𝑢] (3)

𝑘
= 𝑢 ′ + 𝑢 ′′ (all computation is in

Z
2
𝑘 ), and sends [𝑢] (2)

𝑘
to 𝑃3;

(c) 𝑃3 sets [𝑢] (2)𝑘
to the received value and [𝑢] (1)

𝑘
= G1 .next.

5: [𝑥]𝑘 = [𝑠]𝑘 + [𝑐]𝑘 − 2[𝑢]𝑘 ;
6: return [𝑥]𝑘 ;

will obtain secret-shared [𝑥]𝑘 in the desired ring, which could be

generically accomplished by two sequential multiplications (i.e.,

[𝑎] ⊕ [𝑏] = [𝑎] + [𝑏] − 2[𝑎] · [𝑏]). This is also the logic used in [4].

However, given that our shares of 𝑎, 𝑏, and 𝑐 have a special

form, the cost of that computation can be reduced. In particular,

a typical implementation of the multiplication operation involves

multiplying accessible shares locally and re-sharing the products

with other parties using fresh randomization to hide patterns.

Because in our case some shares are set to 0, their product will be 0

as well, and no re-sharing is needed. For example, when computing

[𝑎]𝑘 · [𝑏]𝑘 , the only contributing term to the product is the product

of [𝑎] (1)
𝑘

and [𝑏] (2) , which is computable by 𝑃3 in its entirety. As a

result of such optimizations, the communication cost of the overall

protocol is one ring element per party.

Referring to Algorithm 6, as mentioned above, the product of

[𝑎] and [𝑏] (step 2) can be computed locally by 𝑃3, after which the

product is re-shared. The re-sharing uses proper 𝑘-bit elements to

hide information about the product and is split by 𝑃3 in two shares

to which it has access, namely [𝑠] (1) and 𝑠 (2) . This is similar to the

re-sharing in regular multiplication (see, e.g., [7]) and involves 𝑃3
communicating a single ring element.

After turning the product into XOR (line 3), the parties need

to compute the product of [𝑠]𝑘 and [𝑐]𝑘 , where [𝑠]𝑘 has two non-

empty shares ([𝑠] (1)
𝑘

and [𝑠] (2)
𝑘

) and [𝑐]𝑘 has one non-empty share

([𝑐] (3)
𝑘

). This involves 𝑃2 computing the product [𝑠] (1)
𝑘
· [𝑐] (3)

𝑘
and

re-sharing by splitting it into two shares and 𝑃1 computing the

product [𝑠] (2)
𝑘
· [𝑐] (3)

1
and also re-sharing it. As described in step 4

of Algorithm 6, 𝑃2’s product is split into [𝑢] (1)𝑘
and value 𝑢 ′, which

8
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becomes a part of [𝑢] (3)
𝑘

. Similarly, 𝑃1’s product is split into [𝑢] (2)𝑘

and value𝑢 ′′, which becomes the second component of [𝑢] (3)
𝑘

. Both

𝑃1 and 𝑃2 communicate one ring element each to finish re-sharing

and let everyone obtains the shares of the product𝑢. The party then

finish the computation by turning the product into XOR (line 5). The

total communication is equivalent to that of a single multiplication.

We prove the following result:

Claim 1. B2A protocol in Algorithm 6 is 1-private in the semi-
honest model in the three-party setting in the presence of a single
computationally-bounded corrupt party assuming G is a pseudo-
random generator.

Proof. We prove that our B2A protocol in Algorithm 6 is secure

in the presence of a single corrupt party. We consider corruption

of party 𝑃1, 𝑃2, and 𝑃3 in turn and build a corresponding simulator

for each case.

Party 𝑃1 is corrupt. We first assume that party 𝑃1 is corrupt,

and build the corresponding simulator 𝑆1 to simulate its view in

the ideal model. The simulator 𝑆1 is constructed as follows:

• In step 4(a), 𝑆1 draws a uniformly random element𝑢 ′ ← Z
2
𝑘

and sends it to party 𝑃1 on behalf of party 𝑃2.

• In step 4(b), 𝑆1 receives [𝑢] (2)𝑘
from 𝑃1 on behalf of 𝑃3.

We next compare the view of 𝑃1 that the simulator 𝑆1 produces

with the view of the corrupt party 𝑃1 in the real execution. In the

beginning of the protocol, 𝑃1 holds [𝑏] (2)𝑘
= [𝑥] (2)

1
and [𝑐] (3)

𝑘
=

[𝑥] (3)
1

and has access to G2 and G3. The simulated view consists of

𝑃1 receiving a randomly generated 𝑢 ′ in step 4(a), while in the real

execution it was computed as 𝑢 ′ = [𝑠] (1)
𝑘
· [𝑐] (1)

𝑘
− G1 .next. Now

because 𝑃1 does not have access to G1, the pseudo-random pad

G1 .next information-theoretically protects the value of the product

[𝑠] (1)
𝑘
· [𝑐] (1)

𝑘
. Thus, the value of 𝑢 ′ in the real execution is pseudo-

random. Then because by definition of a pseudo-random generator

its output is indistinguishable from a truly random string of the

same size to a computationally-bounded adversary, we obtain that

the simulated and real views are indistinguishable.

Party 𝑃2 is corrupt. Next, consider the case that party 𝑃2 is

corrupt. We construct simulator 𝑆2 as follows:

• In step 2(a), 𝑆2 draws a uniformly random [𝑠] (1)
𝑘
← Z

2
𝑘 and

sends it to 𝑃2 on behalf of party 𝑃3.

• In step 4(b), 𝑆2 receives 𝑢
′
from 𝑃2 on behalf of 𝑃1.

At computation initiation time, 𝑃2 holds [𝑎] (1)
𝑘

= [𝑥] (1)
1

and

[𝑐] (3)
𝑘

= [𝑥] (3)
1

and has access to G1 and G3. Similar to the

case of corrupt 𝑃1, 𝑆2 only communicates a random value as

[𝑠] (1)
𝑘

to 𝑃2 in step 2(a). In a real execution, [𝑠] (1)
𝑘

is computed

as [𝑎] (1)
𝑘
· [𝑏] (2)

𝑘
−G2 .next, where G2 is inaccessible to 𝑃2 and thus

its output information-theoretically protects the product. Because

the PRG’s output is computationally indistinguishable from a

truly random string to a computationally-bounded adversary, 𝑃2’s

simulated view is computationally indistinguishable from the view

in the real execution.

Party 𝑃3 is corrupt. Finally, we construct simulator 𝑆3 for the

case that party 𝑃3 is corrupt:

Algorithm 7 ⟨[𝑦𝛼 ], . . . , [𝑦1]⟩ ← SASum(⟨[𝑦1,𝛼 ], . . . , [𝑦1,1]⟩, . . .,
⟨[𝑦𝑛,𝛼 ], . . . , [𝑦𝑛,1]⟩)
1: for 𝑖 = 1, . . . , 𝛼 in parallel do
2: [𝑠𝑖 ] =

∑𝑛
𝑗=1 [𝑦 𝑗,𝑖 ];

3: [𝑏𝑖 ] ← MSB( [𝑠𝑖 ]);
4: [𝑦𝑖 ] ← [𝑠𝑖 ] · (2[𝑏𝑖 ] − 1);
5: [𝑐𝑖+1] ← Trunc( [𝑦𝑖 ], 2𝑤,𝑤);
6: [𝑟𝑖 ] = [𝑦𝑖 ] − [𝑐𝑖+1] · 2𝑤 ;
7: [𝑦𝑖 ] ← [𝑟𝑖 ] · [𝑏𝑖 ] + [𝑐𝑖 ] · [𝑏𝑖−1]
8: end for
9: return ⟨[𝑦𝛼 ], . . . , [𝑦1]⟩;

• In step 2(a), 𝑆3 receives [𝑠] (1)
𝑘

from party 𝑃3 on behalf of

party 𝑃2.

• In step 4(b), 𝑆3 draws a uniformly random value [𝑢] (2)
𝑘
←

Z
2
𝑘 and sends it to 𝑃3 on behalf of 𝑃1.

In the beginning of the computation, 𝑃3 has access to [𝑎] (1)
𝑘

=

[𝑥] (1)
1

, [𝑏] (2)
𝑘

= [𝑥] (2)
1

,G1, andG2. It then receives a random [𝑢] (2)𝑘
from 𝑆3 in the simulated view, while in the real execution the value

is computed as 𝑢 ′ +𝑢 ′′, where 𝑢 ′′ = G3 .next. Due to security of the
PRG, its output is pseudo-random and information-theoretically

protects 𝑢 ′. We obtain that the value 𝑃3 is indistinguishable from

a truly random string to a computationally-bounded 𝑃3. Thus,

we obtain that 𝑃3’s views in real execution and simulation are

computationally indistinguishable.

We conclude that our B2A protocol is secure in the presence of

a single semi-honest adversary. □

B2A is an important building blocks of many other protocols

including truncation, ring conversion, bit decomposition, etc. Thus,

the above efficient three-party B2A impact performance of the

computation. For that reason, we analyze performance of building

blocks and our protocols in the three-party setting using RSS

as given in Table 2. Note that we separate input-independent

computation that can be pre-computed and the remaining (input-

dependent) computation.

Random bit generation [𝑟 ] ← RandBit (as used, e.g., in MSB) is
implemented by using local randomness to generate shares of [𝑟 ]1
over Z2 and converting them to the larger ring using B2A. We favor

the use of edaBit in sub-protocols in place of conventional RandBit
random bit generation. This lowers the amount of communication,

but increases the number of rounds.

The cost of AllOr as specified in [9] varies based on the size given
as an input. For that reason, in Table 2 we list a range of constants

for values 𝛼 used with single and double precision in this work (the

smallest 𝛼 = 9 with single precision and𝑤 = 32 results in constant

1.5 and the largest 𝛼 = 132with double precision and𝑤 = 16 results

in constant 1.2).

4.2 Superaccumulator Summation
Once we convert the floating-point inputs into superaccumulators,

the next step is to do the summation and regularize the result.

This corresponds to the protocol SASum given in Algorithm 7. The

summation of superaccumulators is straightforward, where we sum

each superaccumulator block as [𝑠𝑖 ] =
∑𝑛
𝑖=1 [𝑦𝑖, 𝑗 ] for 𝑖 = 1, . . . , 𝛼

9
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Protocol

Precomputable After precomputation

Communication Rounds Communication Rounds

Mult 0 0 3𝑘 1

Open(ℓ), ℓ ≤ 𝑘 0 0 3ℓ 1

B2A 0 0 3𝑘 2

RandBit 3𝑘 2 0 0

edaBit(𝑘) 3𝑘 log(𝑘) + 7𝑘 log(𝑘) + 2 0 0

edaBit(ℓ), ℓ < 𝑘 3ℓ log(ℓ) + 5ℓ + 5𝑘 log(ℓ) + 4 0 0

PrefixOr(𝑛) (in Z2) 0 0 1.5𝑛 log(𝑛) log(𝑛)
PrefixAnd(𝑛) (in Z2) 0 0 1.5𝑛 log(𝑛) log(𝑛)
MSB(𝑘) 3𝑘 log(𝑘) + 10𝑘 log(𝑘) + 2 12𝑘 − 12 log(𝑘) + 2
EQZ(𝑘) 3𝑘 log(𝑘) + 7𝑘 log(𝑘) + 2 6𝑘 − 3 log(𝑘) + 1
Trunc(ℓ,𝑢) 3𝑘 log(𝑘) + 18𝑘 log(𝑢) + 3 3𝑘 + 3ℓ + 6𝑢 − 6 log(𝑢) + 3
BitDec(ℓ), ℓ < 𝑘 3ℓ log(ℓ) + 5ℓ + 5𝑘 log(ℓ) + 4 3ℓ log(ℓ) + 3ℓ log(ℓ) + 1
Convert(𝑘, 𝑘 ′) 3𝑘 log(𝑘) + 7𝑘 log(𝑘) + 2 3𝑘 ′𝑘 + 3𝑘 log(𝑘) + 3𝑘 log(𝑘) + 3

Shift(𝛽,𝑤) (𝛽 − 1) (3𝑘 log(𝑘) + 18𝑘)+ max(log(𝛾) + 4, 6(𝛽 − 1) (2𝑘 +𝑤 − 1)+
𝛾 + 2 log(𝛾) + 7

3𝛾 log(𝛾) + 5𝛾 + 5𝑘 𝛾 + 3) 3𝛾 (𝑘 + log(𝛾) + 1) − 3𝑘
B2U(𝛼) [1.2–1.5]3 · 2𝛿 + 3𝛿 log(𝛿) + 5𝛿 + 5𝑘 2 log(𝛿) + 4 3𝛼𝑘 + 3𝛿 3

Normalize(𝛽,𝑤)
𝛽 (3𝑘 log(𝑘) + 7𝑘)+ max(log(𝑘) + 2, 3𝑘 (𝛽𝑙 + 𝛽 log(𝑘) + 𝑙 + 𝛽 +𝑚 + 1)+ 2 log(𝑙) + log(𝑘)+

6𝑙 log(𝑙) + 17𝑙 log(𝑙) + 2) 1.5(𝑙 −𝑚 − 2) log(𝑙 −𝑚 − 2)+ log(𝑙 −𝑚 − 2) + 10
3𝑙 (log(𝑙) + 6) − 12

Table 2: Performance of protocols in the three-party setting based on RSS using ring Z
2
𝑘 (bit-level operations are over Z2).

Protocol parameters affecting performance are listed. Total communication across all parties in bits. 𝛾 = ⌈log(𝑤)⌉, 𝛿 = ⌈log(𝛼)⌉,
and 𝑙 = 𝑤𝛽; 𝛼 , 𝛽 ,𝑤 , and𝑚 are computation parameters.

(line 2). The remaining computation regularizes the resulting

superaccumulator. We first compute the absolute value of each

block 𝑦𝑖 (lines 3–4) and then split the result into𝑤 most significant

bits (carry for the next block [𝑐𝑖+1]) and𝑤 least significant bits ([𝑟𝑖 ])
using truncation (lines 5–6). The final block value is assembled from

the carry of the prior block and the remaining portion of the current

block using their corresponding signs (line 7). The carry into block

1 is 0.

Recall that each superaccumulator block is represented as a 2𝑤-

bit integer and we can add at most 𝑛 = 2
𝑤−2

inputs without an

overflow. If one needs to sum more than 2
𝑤−2

inputs, the compu-

tation will proceed in layers, where we first sum accumulators in

batches of 2
𝑤−2

, regularize the result and then do another layer

of summation and regularization to arrive at the final regularized

superaccumulator.

4.3 Superaccumulator to Floating-Point
Conversion

What remains to discuss is the conversion of the regularized

superaccumulator representing the summation to the floating-

point representation. To maintain security, our protocols needs

to obliviously select 𝛽 superaccumulator blocks starting from the

first non-zero block without disclosing the location of the selected

blocks. In the event that there are fewer than 𝛽 blocks to extract,

the solution will still return 𝛽 blocks.

The superaccumulator to floating-point conversion protocol

SA2FL is given as Algorithm 8 and proceeds as follows. Let ind
denote the (private) index of the first non-zero superaccumulator

block. We restrict the value we work with to be in the range 𝛼, . . . , 𝛽

Algorithm 8 ⟨[𝑏], [𝑣𝛽−1], . . . , [𝑣1], [𝑝]⟩ ← SA2FL( [𝑦𝛼 ], . . . , [𝑦1])

1: for 𝑖 = 𝛽, . . . , 𝛼 in parallel do
2: [𝑐𝑖 ]1 ← EQZ( [𝑦𝑖 ]);
3: end for
4: ⟨[𝑑𝛼 ]1, . . . , [𝑑𝛽+1]1⟩ ← PrefixAND( [𝑐𝛼 ]1, . . ., [𝑐𝛽+1]1);
5: for 𝑖 = 𝛽, . . . , 𝛼 in parallel do
6: [𝑑𝑖 ] ← B2A( [𝑑𝑖 ]1);
7: end for
8: for 𝑖 = 𝛽 + 1, . . . , 𝛼 − 1 in parallel do
9: [𝑢𝑖 ] = [𝑑𝑖+1] − [𝑑𝑖 ];
10: end for
11: [𝑢𝛼 ] = 1 − [𝑑𝛼 ];
12: [𝑢𝛽 ] = [𝑑𝛽+1];
13: for 𝑖 = 1, . . . , 𝛽 in parallel do
14: [𝑣𝑖 ] ←

∑𝛼−𝛽+𝑖
𝑗=𝑖

[𝑢 𝑗+𝛽−1−𝑖 ] · [𝑦 𝑗 ];
15: end for
16: ⟨[𝑏], [𝑣𝛽−1], . . . , [𝑣1], [𝑝]⟩ ← Normalize( [𝑣𝛽 ], . . . , [𝑣1]);
17: [𝑝] = [𝑝] +∑𝛼−𝛽+1

𝑖=1
[𝑢𝑖+𝛽−1] · 𝑖 ·𝑤 ;

18: return ⟨[𝑏], [𝑣𝛽−1], . . . , [𝑣1], [𝑝]⟩;

to ensure that we can always extract 𝛽 blocks, i.e., ind = 𝛽 even

if the first non-zero block has the index smaller than 𝛽 . Given

a regularized superaccumulator [𝑦𝛼 ], . . . , [𝑦1], we first test each
block with the index between 𝛽 and 𝛼 for equality to zero. Once it

is determined which blocks are zero, we need to compute the prefix

AND of the computed bits (or, equivalently, the prefix OR of their

complements) to determine the first non-zero block. Recall that

10
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PrefixAND, on input [𝑥1], . . . , [𝑥𝑛] outputs [𝑦1], . . . , [𝑦𝑛], where
𝑦𝑖 =

∏𝑖
𝑗=1 𝑥 𝑗 . Also, for performance reasons, we do not convert

the resulting bits of equality comparisons to full ring element and

instead proceed with prefix computation on bits.

For prefix AND, we start with the highest index and thus the

output will be a sequence of 1s followed by 0s starting from the high

indices. The first 0 is the value we want to mark differently from

others, indicating the first non-zero block. This is accomplished by

computing the difference between two adjacent block values (lines

8–12) and we obtain the first non-zero block marked with 1, while

all other blocks are as 0. It is important to note that the 𝛽th block

will be marked even if all of the blocks 𝛼, . . . , 𝛽 are 0, because in that

case we still need to retrieve 𝛽 blocks with the smallest values, i.e.,

ind is set to 𝛽 and the actual content of the 𝛽th block is irrelevant.

The next step is to extract 𝛽 blocks starting from the marked

block, i.e., using the previously introduced notation, we extract

the blocks [𝑦ind], . . . , [𝑦ind−𝛽+1] (lines 13–15). We consequently

normalize the block using a sub-protocol Normalize that returns a
floating-point representation of the blocks, which is consequently

updated on line 17 to modify the exponent according to the position

of the extracted blocks in the superaccumulator.

The next protocol, Normalize, corresponds to the conversion of

𝛽 extracted superaccumulator blocks to a normalized floating-point

value. As before, each block [𝑣𝑖 ] is assumed to contain𝑤 bits and

we normalize the value by finding the first non-zero bit and creating

an𝑚-bit mantissa with the (𝑚 + 1)st bit set to 1 and the remaining

bits partitioned among the output blocks [𝑣𝛽−1], . . . , [𝑣1].
The protocol is given as Algorithm 9 and proceeds as follows. The

first portion of the computation is concerned with assembling the

input blocks as a single integer and consequently determining the

first non-zero bit. A complicating factor is that different blocks can

have different signs, which makes it non-trivial to work at the level

of individual blocks. Therefore, the first step of the computation is

to convert the shares of the input blocks from the ring with 𝑘 = 2𝑤-

bit elements to longer 𝑙 = 𝑤𝛽-bit elements (lines 2–4). The blocks

are consequently added together as [𝑠]𝑙 (line 5) and the absolute

value of [𝑠]𝑙 is computed as [𝑣]𝑙 (lines 6–7). We next bit-decompose

the computed value (line 8) and from this point on the computation

can return to shorter 𝑘-bit shares, but we additionally optimize

the computation to run skip immediate conversion of bits to 𝑘-bit

shares and run the next step on bit shares as well.

Given the bits of the value we need to normalize, we determine

the first non-zero bit and grab the next𝑚 bits (as the (𝑚 + 1)st bit
is 1 and is implicit). If there are fewer than𝑚 + 1 non-zero bits, the

value must correspond to the lowest blocks of the superaccumulator

(as otherwise, the𝑤𝛽 bits are guaranteed to contain𝑚 + 1 non-zero
bits) and cannot be represented in the properly normalized form.

In that case we store the𝑚 least significant bits in the mantissa and

the floating-point value’s exponent will be 0. Thus, we first call the

prefix OR operation on the most significant ≈ 𝑙 −𝑚 bits (line 9) and

compute the difference between the adjacent bits. As a result, the

most significant non-zero bit of 𝑣 will be set to 1 in [𝑧𝑖 ]s, with all

others set to 0 (lines 13–16). If the first non-zero bit is at position

𝑚 (when counting from 0) or a lower index, 𝑧𝑚 is set to 1 to permit

retrieval of𝑚 least significant bits (line 17). Then the𝑚 bits after

the marked bit are extracted (lines 18–20) and are stored in 𝛽 − 1

Algorithm 9 ⟨[𝑏], [𝑣𝛽−1], . . . , [𝑣1], [𝑝]⟩ ← Normalize( [𝑣𝛽 ], . . .,
[𝑣1])
1: let 𝑙 = 𝑤 · 𝛽 ;
2: for 𝑖 = 1, . . . , 𝛽 in parallel do
3: [𝑣𝑖 ]𝑙 ← Convert( [𝑣], 𝑘, 𝑙);
4: end for
5: [𝑠]𝑙 =

∑𝛽

𝑖=1
2
𝑤 (𝑖−1) [𝑣𝑖 ]𝑙 ;

6: [𝑏]𝑙 ← 1 − 2 ·MSB( [𝑠]𝑙 );
7: [𝑣]𝑙 ← [𝑏]𝑙 · [𝑠]𝑙 ;
8: ⟨[𝑐𝑙−1]1, . . . , [𝑐0]1⟩ ← BitDec( [𝑣]𝑙 , 𝑙);
9: ⟨[𝑐𝑙−2]1, . . . , [𝑐𝑚+1]1⟩ ← PrefixOR( [𝑐𝑙−2]1, . . . , [𝑐𝑚+1]1);
10: for 𝑖 = 0, . . . , 𝑙 − 1 in parallel do
11: [𝑐𝑖 ] ← B2A( [𝑐𝑖 ]1);
12: end for
13: [𝑧𝑙−1] = [𝑐𝑙−1];
14: for 𝑖 =𝑚, . . . , 𝑙 − 2 in parallel do
15: [𝑧𝑖 ] = [𝑐𝑖 ] − [𝑐𝑖+1];
16: end for
17: [𝑧𝑚] = 1 − [𝑐𝑚+1];
18: for 𝑖 = 0, . . . ,𝑚 − 1 in parallel do
19: [𝑢𝑖 ] ←

∑𝑙−1−𝑚+𝑖
𝑗=𝑖 [𝑧𝑖+𝑚−𝑖 ] · [𝑐 𝑗 ];

20: end for
21: for 𝑖 = 1, . . . , 𝛽 − 2 do
22: [𝑣𝑖 ] =

∑𝑤−1
𝑗=0 [𝑢 𝑗+𝑖 ·𝑤] · 2

𝑗
;

23: end for
24: [𝑣𝛽−1] =

∑𝑚−1
𝑖=𝑤 (𝛽−2) [𝑢𝑖 ] · 2

𝑖−𝑤 (𝛽−2)
;

25: [𝑧𝑚] ← [𝑧𝑚] · [𝑐𝑚];
26: [𝑝] = ∑𝑙−𝑚−1

𝑖=0 𝑖 · [𝑧 𝑗+𝑚]
27: return ⟨[𝑏], [𝑣𝛽−1], . . . , [𝑣1], [𝑝]⟩;

blocks (lines 21–24).

What remains is to form the exponent based on the position of

the first non-zero bit. This time we need to distinguish between

normalized (𝑚 + 1)-bit mantissas that start from position𝑚 and

mantissas with fewer than𝑚 + 1 non-zero bits. For that reason, we

update the bit [𝑧𝑚] (line 25) prior to computing the exponent [𝑝]
(line 26).

5 PERFORMANCE EVALUATION
In this section, we evaluate performance of our construction and

compare it to the state-of-the-art secure floating-point summation

protocols. Our implementation is in C++ using RSS over a ring

Z
2
𝑘 and is available at [1]. We run all experiments in a three-party

setting using machines with a 2.1GHz CPU connected by a 1Gbps

link with one-way latency of 0.08ms. All experiments are single

threaded and are not optimized for round complexity with respect

to pre-processing. Instead, randomness generation is performed

inline as specified in the protocols and the actual number of rounds

in the implementation is higher than what is possible and what

is reported in Table 2. Each experiment was executed at least 100

times, and the average runtime is reported.

To evaluate the impact of our new three-party B2A protocol,

in Figure 2 we provide performance comparison of a common

square root based solution from [20] and our solution described in

Algorithm 6. Because the former requires a slightly larger ring

11
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Prot.

Input size

𝑤 = 16 𝑤 = 32

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

FL2SA 6.81 9.06 16.9 45.4 136 529 2160 8403 6.02 8.13 17.5 46.4 142 585 2324 9036

SASum 3.22 3.14 3.81 3.68 3.56 4.37 20.5 85.1 3.1 3.17 3.68 3.71 3.89 4.17 18.4 79.2

SA2FL 6.82 6.75 6.74 6.67 6.48 6.74 6.87 6.71 7.83 7.84 7.84 7.86 7.74 7.89 7.91 7.74

Total 16.8 18.9 27.4 55.7 146 540 2187 8495 16.9 19.1 28.7 57.9 154 598 2351 9124

(a) Single floating-point precision.

Prot.

Input size

𝑤 = 16 𝑤 = 32

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

FL2SA 9.09 14.3 36.2 114 413 1668 6688 24805 9.32 14.3 32.9 106.9 384 1517 6247 23486

SASum 4.43 4.87 4.91 4.93 6.29 10.4 17.4 57.4 4.78 4.87 5.17 5.07 6.39 9.71 14.7 45.0

SA2FL 8.78 8.49 8.41 8.31 8.12 8.22 8.25 8.24 9.31 9.14 9.13 8.97 9.04 8.87 8.71 9.23

Total 22.3 27.7 49.5 127 427 1687 6714 24871 23.4 28.3 47.2 121 399 1536 6271 23540

(b) Double floating-point precision.

Table 3: Performance FLSum in ms.
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Figure 2: Performance comparison of B2A protocols.

size Z
2
𝑘+2 , we set the computation over Z

2
𝑘 = Z

2
60 and thus

portion of the computation for the protocol from [20] are over

Z
2
62 . The implications are that both protocols can internally use

64-bit arithmetic and the increase in the ring size does not impact

communication in bytes. Therefore, communication and the number

of rounds of the protocol from [20] are also the same as those

numbers for the protocol from [4]. Had we chosen 𝑘 = 32 or

𝑘 = 64, the gap in performance between our protocol and that

from [20] would increase due to the need of the later to increase the

communication size and use a longer data type for the computation.

As we see from Figure 2, for smaller input sizes, both solutions

exhibit similar performance due to their equivalent round complex-

ity. However, as input size increases beyond 2
6
and communication

and computation become dominant factors in overall performance,

our solution outperforms [20] by a significant margin. For instance,

the performance gap between the two approaches is as large as a

factor of four for input size 2
20
, demonstrating the advantage of

our B2A protocol even beyond savings in communication.

Performance of our superaccumulator-based floating-point sum-

mation for single and double floating-point precision is provided

in Table 3. The performance is additionally visualized in Figures

3 and 4. We see that the bottleneck of the summation for both

single and double precision is the conversion FL2SA, particularly
when the input size 𝑛 is large. This is expected because we need

to convert all 𝑛 inputs into the superaccumulator representation.

In contrast, superaccumulator to floating-point conversion SA2FL
has a constant runtime for all input sizes because we only need to

convert a single result and the workload does not change. Although

summation SASum has communication complexity independent of

𝑛, its local computation linearly depends on the input size, which

makes its runtime increase with 𝑛.

If we compare the runtimes for different values of 𝑤 , using

𝑤 = 16 results in lower overall runtime with single precision,

while 𝑤 = 32 is superior for double precision. The difference in

performance mainly stems from the impact of the choice of𝑤 on

the performance of FL2SA and its dependence on parameters 𝛼 and

𝛽 (which𝑤 directly influences).

We also compare performance of our superaccumulator-based

solution with floating-point summations from [11, 12, 44]. We

execute SecFloat’s [44] pairwise addition in a tree-like manner to

realize floating-point summation and measure the performance on

our setup. Note that SecFloat is for the two-party setting (dishonest

majority) and was implemented only for single precision. We

also include published runtimes of the best performing solution,

SumFL2, from [12] as the implementation has not been released.

The experiments in [12] were run using three 3.6GHz machines

connected via a 1Gbps LAN, where the round-trip time (RTT)

measured via ping was reported to be 0.35ms (our RTT measured

via ping averaged at 0.25ms). We also calculate the communication

cost of SumFL2 using the specified formula.
1
. The results are given

1
In [12], communication measured from the implementation differed from commu-

nication derived from the analysis and the implementation’s communication is 9.3%

lower of the analytical cost. Because the measurement included only one data point

with 10 operands, we report results computed according to the formula

12
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Figure 3: Performance comparison with related work for single precision. [9]’s runtime uses different hardware.
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Figure 4: Performance of double precision protocol with𝑤 =

32.

Prot.

Input size

Single Double

10 20 50 100 10 20 50 100

Ours 16.5 17.4 18.6 21.2 22.3 24.1 27.3 30.5

[12] 14.5 25.3 56.1 107.5 26.5 43.8 95.4 158

Table 4: Runtime comparison with SumFL2 from [12] in ms.

in Figure 3, where our single-precision solution uses𝑤 = 16.

As shown in the figure, our protocol has better runtime and

communication costs than the other two solutions. Although [44]

states that their implementation is not optimized for batch sizes

smaller than 2
10
, our protocol is still 5 times faster and uses 17

times less communication than [44] with 2
18

inputs. For input sizes

larger than 2
14
, both solutions demonstrate the same trend. We

expect our advantages would be larger in the WAN setting where

bandwidth is limited and communication is the bottleneck.

Compared to [12], our best performing configuration has a

better runtime despite running on slower machines, as additionally

shown in Table 4. In [12], performance is reported with at most

100 inputs. When 𝑛 = 100, our solution demonstrates the largest

improvement, being 5 times faster than SumFL2 from [12] for both

single and double precisions. We expect the improvement to be

even larger as the number of inputs increases. Furthermore, we

note that our solution enjoys higher precision, as the goal of this

work was to provide better precision than what is achievable using

conventional floating-point addition. Lastly, while [13] discussed

additional optimizations to floating-point polynomial evaluation, it

is difficult to extract times that would correspond to the summation.

6 CONCLUSIONS
The goal of this work is to develop secure protocols for accurate

summation of many floating-point values that avoid round-off

errors of conventional floating-point addition. Our solution uses

the notion of a superaccumulator and the computation proceeds by

converting floating-point inputs into superaccumulator representa-

tion, performing exact summation, and converting the computed

result back to a floating-point value. Despite providing higher

accuracy, we demonstrate that our solution outperforms state-of-

the-art secure floating-point summation.
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