
Multi-Party Replicated Secret Sharing over a Ring with
Applications to Privacy-Preserving Machine Learning
Alessandro Baccarini

University at Buffalo (SUNY)

Buffalo, New York, USA

anbaccar@buffalo.edu

Marina Blanton

University at Buffalo (SUNY)

Buffalo, New York, USA

mblanton@buffalo.edu

Chen Yuan

University at Buffalo (SUNY)

Buffalo, New York, USA

chyuan@buffalo.edu

ABSTRACT
Secure multi-party computation has seen significant performance

advances and increasing use in recent years. Techniques based

on secret sharing offer attractive performance and are a popular

choice for privacy-preserving machine learning applications. Tra-

ditional techniques operate over a field, while designing equivalent

techniques for a ring Z
2
𝑘 can boost performance. In this work, we

develop a suite of multi-party protocols for a ring in the honest

majority setting starting from elementary operations to more com-

plex with the goal of supporting general-purpose computation. We

demonstrate that our techniques are substantially faster than their

field-based equivalents when instantiated with a different number

of parties and perform on par with or better than state-of-the-art

techniques with designs customized for a fixed number of parties.

We evaluate our techniques on machine learning applications and

show that they offer attractive performance.

KEYWORDS
secure multi-party computation, replicated secret sharing, privacy-

preserving machine learning

1 INTRODUCTION
Secure multi-party computation has recently seen notable per-

formance improvements that make privacy-preserving computa-

tion of increasingly complex functionalities on increasingly large

data sets more practical than ever before. Recent significant in-

terest in privacy-preserving machine learning (PPML) has high-

lighted secret sharing techniques which were often previously

overlooked in the literature. Secret sharing (SS) offers superior

performance for arithmetic operations such as matrix multiplica-

tions over other cryptographic tools, and has been extensively used

for privacy-preserving neural network (NN) inference and train-

ing [14, 15, 18, 27, 36, 47, 49, 55, 56]. Because SS offers information-

theoretic security, computation can proceed on short integers, aid-

ing efficiency.

Traditionally, performance of SS techniques has been measured

in terms of two parameters: the number of interactive operations

and the number of sequential interactive operations, or rounds.

However, for some computations such as matrix multiplication local

operations can dominate the overall cost. Traditional techniques

such as Shamir SS [54] carry out computation on protected data

over a field, most commonly set up as Z𝑝 with prime 𝑝 . This makes

frequent use of modulo reduction a necessity, increasing the cost

of the computation. To improve performance and directly utilize

native instructions of modern processors, researchers turned to

computation over ring Z
2
𝑘 [8, 12, 16, 20]. Unfortunately, Shamir

SS – a popular and efficient choice for computation in the honest

majority setting – cannot be used for computation over Z
2
𝑘 , and

we must seek alternatives.

The honest majority setting, which assumes that only a minority

of the parties carrying out the computation can be corrupt, offers

great performance with reasonable trust assumptions relative to

stronger settings, making a good performance-security trade-off.

The techniques we are aware of in this setting which can perform

computation over ring Z
2
𝑘 for some 𝑘 are limited to a fixed number

of parties, most commonly to 3 (see, e.g., [8, 14, 15, 41, 47]) and

cannot tolerate collusion. This means that the techniques do not

easily generalize to a larger number of participants, should there

be a need to change the computation setup, e.g., to permit the use

of a higher collusion threshold. This is the task we set to address in

this work and generalize computation based on replicated secret

sharing (RSS) to support more than 𝑛 = 3 computational parties.

Our contributions can be summarized as follows:

• We design a comprehensive set of elementary building

blocks for RSS over an arbitrary ring in the semi-honest

setting. These building blocks include generating shares of

pseudorandom integers and ring elements, multiplication,

reconstructing a value from shares, multiplication followed

by reconstruction as a single building block, denoted by

MulPub, and inputting private values into computation. We

optimize the solutions to lower communication complexity

by relying on a pseudo-random function. This means that

the techniques are computationally secure, and they also

comewith formal security proofs. Our solutions are efficient

and, for example, the cost of multiplication when instanti-

ated with three parties matches custom results which apply

to the three-party setting only [8, 55].

• We build on the techniques of [20] and [27] to develop

higher-level protocols over Z
2
𝑘 such as random bit genera-

tion, comparisons, conversion between different ring sizes

and more to enable general-purpose computation in this

framework.

• We provide extensive benchmarks to evaluate performance

of the developed techniques. We observe that when 𝑛 = 3

our ring-based techniques can be between 10 and 33 times

faster than their field-based counterparts for different types

of operations. Incorporating recent advances in random

bit generation can yield even more promising results. The

improvement from switching to ring-based techniques de-

creases as the number of parties 𝑛 grows, but with 𝑛 = 7

we can still observe runtime improvements by a factor of 2

or higher for certain operations.

1

Alessandro Baccarini, Marina Blanton, and Chen Yuan

• We improve the techniques of [18] for securely evaluating

quantized NNs and eliminate the need for fixed-point mul-

tiplication and large truncation, which enables us to use a

significantly smaller ring.

• We also evaluate performance of our techniques on ma-

chine learning applications, namely, NN predictions and

quantized NN inference. Similarly, our runtimes are signifi-

cantly faster than similar field-based implementations and

compare favorably to the state of the art designed to work

with a fixed number of parties.

For RSS-based techniques, it is expected that they will be used

with a relatively small 𝑛. This is similar to most efficient techniques

based on Shamir SS (e.g., [11, 13]) which also rely on RSS for certain

operations.

2 RELATEDWORK
Secret sharing [10, 54] is a popular choice for secure multi-party

computation, and common options include Shamir SS [54], addi-

tive SS, and RSS [31] for three parties. Computation over rings, and

specificallyZ
2
𝑘 , has recently gained attention in publications includ-

ing [5, 8, 12, 16, 18, 20, 22, 26, 34, 41]. We can distinguish between

three-party techniques based on RSS such as [5, 8, 12, 22, 26, 34, 41];

multi-party techniques based on additive SS such as [16, 20], often

for the setting with no honest majority; and ad-hoc techniques for

three or four parties that utilize one or more types of rings with

constructions for specific applications such as [33] and others.

The first category is the closest to this work and includes Share-

mind [12], a well-developed framework for three-party computation

with a single corruption using custom protocols; Araki et al. [8]

who use three-party with a single corruption to support arithmetic

or Boolean circuits; and several compilers from passively secure

to actively secure protocols [5, 22, 26, 41]. Dalskov et al. [19] also

studied four-party computation with a single corruption. We are

not aware of existing multi-party techniques with honest major-

ity over a ring which extend beyond three parties or multi-party

protocols based on RSS over a ring. While RSS is meaningful only

for a small number of parties, we still find it desirable to support

more participants and build additional techniques for this setting.

For example, if our matrix multiplication protocol over a ring with

three parties is 100 times faster than field-based computation, it

will remain faster even if the work increases when the number of

parties is larger than 3.

We rely on the results of Damgard et al. [20] for some of our

protocols. While this work is for the SPDZ
2
𝑘 framework [16] in

the malicious setting with no honest majority, once we develop

elementary building blocks, the structure of higher-level protocols

can remain similar. Composite protocols such as comparison, con-

version, and truncation require a large number of random bits. We

leverage the edaBit protocol from [27] to efficiently generate sets

of binary and arithmetic shared bits. Their technique improves

upon the daBit technique [52]. Rabbit [44] builds on daBits [52]

and edaBits [27] and developed an efficient 𝑛-party comparison

protocol by relying on commutativity of addition over fields and

rings. Their protocol offers significant improvement over [27] in

most adversarial settings over a field, but remains comparable with

a passively secure honest majority over a ring.

Framework

Setting Techniques No. of Networks

S-H Mal HE GC SS Parties [42] qMob.

SecureML [48] ✓ ✓ ✓ ✓ 2 ✓
MiniONN [42] ✓ ✓ ✓ ✓ 2 ✓
Gazelle [33] ✓ ✓ ✓ ✓ 2 ✓
DELPHI [46] ✓ ✓ ✓ ✓ 2 ✓
Chameleon [51] ✓ ✓ ✓ 2 ✓
CrypTFflow [50] ✓ ✓ ✓ 2 ✓
CrypTFflow2 [38] ✓ ✓ ✓ 3

SecureNN [55] ✓ ✓ 3 ✓
Falcon [56] ✓ ✓ ✓ 3 ✓
ASTRA [14] ✓ ✓ ✓ 3

BLAZE [49] ✓ ✓ ✓ ✓ 3

ABY3 [47] ✓ ✓ ✓ ✓ 3

SecureQ8 [18] ✓ ✓ ✓ 3, 𝑛∗ ✓ ✓
Trident [15] ✓ ✓ ✓ ✓ 4

Fantastic Four [19] ✓ ✓ ✓ 4

This Work ✓ ✓ 𝑛 ✓ ✓

Table 1: Comparison of state-of-the-art PPML frameworks.
(*) [18] supports𝑛 parties in the semi-honest, honestmajority
setting over a field F𝑝 , but only three parties over a ring. The
two NNs we consider are [42]’s four-layer convolutional NN,
and the quantized version of MobileNets (qMob.) [30].

Literature on PPML is also related to this work, and we present

a high-level comparison of the current state-of-the-art in Table 1.

Each framework is subdivided according to their security assump-

tions (semi-honest or malicious), the cryptographic techniques used,

the number of parties supported, and the methods of evaluation.

We highlight several key works below.

We distinguish between two-party solutions, where one party

holds the model and the other holds the input on which the model

is to be evaluated, and between multi-party (typically, three-party)

solutions. Publications from the first category include MiniONN

[42] and Gazelle [33], both of which studied NN evaluation using

SS, homomorphic encryption (HE), and garbled circuits (GC).

Multi-party constructions provide protocols for training and in-

ference across multiple parties. ABY3 [47] combines techniques

based on replicated and binary SS with GCs in the three-party

setting with honest majority. SecureNN [55] provides three-party

protocols for a variety of NN functions under the same security

assumption as ABY3. Their protocols are asymmetric, where par-

ties have dedicated roles in a computation. This work is improved

upon with FALCON [56] by adding malicious security with honest

majority and combining the techniques from SecureNN and ABY3.

ASTRA [14] is a three-party framework that uses SS over the ring

Z
2
𝑘 under both semi-honest and malicious security assumptions.

Similar to SecureNN, protocols are asymmetric. Abspoel et al. [6]

apply the MP-SPDZ [34] framework for secure outsourced train-

ing of decision trees. Their system operates under the three-party,

honest-majority assumption with RSS. Dalskov et al. [18] were the

first to address quantized NN inference using secure multi-party

computation. Their system is built into MP-SPDZ and benchmarked

on the MobileNets [30] network architecture. Keller et al. [36] con-

ducts quantization-based training and inference with three parties

and one semi-honest corruption.

2

Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning

3 PRELIMINARIES
3.1 Secure Multi-Party Computation
We consider a secure multi-party setting with 𝑛 computational

parties, out of which at most 𝑡 can be corrupt.Wework in the setting

with honest majority, i.e., 𝑡 < 𝑛/2 and semi-honest participants and

use simulation-based security (see Appendix B for detail).

As customary with SS techniques, the set of computational par-

ties does not have to coincide with (and can be formed indepen-

dently of) the set of parties supplying inputs in the computation

(input providers) and the set of parties receiving output of the

computation (output recipients). Then, if a computational party

learns no output, the computation should reveal no information to

that party. Consequently, if we wish to design a functionality that

takes secret-shared input and produces shares of the output, any

computational party should learn nothing from protocol execution.

3.2 Secret Sharing
A SS scheme allows one to produce shares of secret 𝑥 such that

access to a predefined number of shares reveals no information

about 𝑥 . In the context of secure multi-party computation, each of

the 𝑛 participants receives one or more shares 𝑥𝑖 and in the case

of (𝑛, 𝑡) threshold SS schemes, possession of shares stored at any

𝑡 or fewer parties reveals no information about 𝑥 , while access to

shares stored at 𝑡 + 1 or more parties allows for reconstruction of

𝑥 . Of particular importance are linear SS schemes, which have the

property that a linear combination of secret shared values can be

performed locally on the shares. Examples of linear SS schemes

include additive SS with 𝑥 =
∑
𝑖 𝑥𝑖 (as used in Sharemind [12] with

𝑛 = 3 and in SPDZ [23] with any 𝑛), Shamir SS which realizes (𝑛, 𝑡)
secret sharing with 𝑡 < 𝑛/2 and represents a share as evaluation of

a polynomial on a distinct point, and RSS, which we discuss next.

3.3 Replicated Secret Sharing
Our techniques utilize RSS [31] which has an associated access

structure Γ. An access structure is defined by qualified sets 𝑄 ∈ Γ,
which are the sets of participants who are granted access, and the

remaining sets of the participants are called unqualified sets. In

the context of this work we only consider threshold structures in

which any set of 𝑡 or fewer participants is not authorized to learn

information about private values (i.e., they form unqualified sets),

while any 𝑡 + 1 or more participants are able to jointly reconstruct

the secret (and thus form qualified sets). RSS can be defined for any

𝑛 ≥ 2 and any 𝑡 < 𝑛. To secret-share private 𝑥 using RSS, we treat

𝑥 as an element of a finite ring R and additively split it into shares

𝑥𝑇 such that 𝑥 =
∑
𝑇 ∈T 𝑥𝑇 (in R), where T consists of all maximal

unqualified sets of Γ (i.e., all sets of 𝑡 parties in our case). Then each

party 𝑝 ∈ [1, 𝑛] stores shares 𝑥𝑇 for all 𝑇 ∈ T subject to 𝑝 ∉ 𝑇 . In

the general case of (𝑛, 𝑡)-threshold RSS, the total number of shares

is

(𝑛
𝑡

)
with

(𝑛−1

𝑡

)
shares stored by each party, which can become

large as 𝑛 and 𝑡 grow. In what follows, we use notation [𝑥] to mean

that (private) 𝑥 is secret shared among the parties using RSS.

Example. In the (4, 2) setting, T consists of 6 sets T = {{1, 2},
{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} and thus there are 6 correspond-

ing shares for every secret-shared 𝑥 . Then party 1 stores shares

𝑥{2,3} , 𝑥{2,4} , 𝑥{3,4} , party 2 stores 𝑥{1,3} , 𝑥{1,4} , 𝑥{3,4} , etc.

The parties will need to perform computation on secret shared

values. The first important property of RSS is that it is linear. For

example, to add [𝑎] and [𝑏], party 𝑝 computes 𝑎𝑇 + 𝑏𝑇 (in R) for
each 𝑇 ∈ T that 𝑝 stores. A number of other operations, such as

multiplications, reconstructing a value from its shares, etc., are

interactive. We consequently describe in Section 4 the way we

realize these operations. An important optimization on which we

rely is non-interactive evaluation of a pseudo-random function

(PRF) using RSS in the computational (as opposed to information-

theoretic) setting as proposed in [17]; see Section 4 for detail.

In what follows, we use the notation ← to denote output of

randomized algorithms, while the notation = refers to deterministic

assignment.

4 BASIC PROTOCOLS
Recall that RSS enjoys the linear property. In addition to adding

secret-shared values, we use the ability to add/subtract known

integers to a secret-shared value [𝑎] and multiply a secret-shared

value [𝑎] by a known integer. Addition [𝑎] + 𝑏 converts 𝑏 to [𝑏]
without using randomness (e.g., we could set one share to 𝑏 and the

remaining shares to 0 to maintain

∑
𝑇 ∈T 𝑏𝑇 = 𝑏). Multiplication

[𝑐] = [𝑎]·𝑏 sets 𝑐𝑇 = 𝑎𝑇 ·𝑏 (in R) ∀𝑇 ∈ T .
For convenience and without loss of generality, we let 𝑛 = 2𝑡 + 1.

When 𝑛 > 2𝑡 + 1, 2𝑡 + 1 parties can carry out the computation on a

reduced set of shares in such a way that there is no need to involve

the remaining parties in the computation.

4.1 Random Number Generation
We will be using two types of random number generation, which

we discuss here.

PRG. Invocation of [𝑎1], [𝑎2], . . .← PRG([𝑠]) is realized by inde-

pendently executing a PRG algorithm on each share of 𝑠 without

interaction between the parties. Because the output of PRG([𝑠]) is
private, we expect it to produce a sequence of secret-shared values

(represented as ring elements). Furthermore, in our construction we

only call the PRG to obtain random (secret-shared) ring elements.

This means that calling PRG(𝑠𝑇) to produce pseudo-random 𝑎𝑇
will result in PRG([𝑠]) generating [𝑎], where 𝑎 is pseudo-random

as well because 𝑎 =
∑
𝑇 ∈T 𝑎𝑇 (in R). This is similar to evaluating a

PRF on a secret-shared key in the RSS setting without interaction

in [17].

PRG(𝑠𝑇) can be realized internally using any suitable algorithm,

as long as it is consistent among the computational parties. For

example, because of the speed of AES encryption on modern proces-

sors, one might implement PRG(𝑠𝑇) = PRF(𝑠𝑇 , 0) | |PRF(𝑠𝑇 , 1) | |. . .,
where PRF : R × {0, 1}𝜅 → R is a PRF instantiated with AES.

Let G = PRG([𝑠]). When the output of G is not consumed all at

once, we use notation G.next to retrieve the next (secret-shared)

element from G. Similarly, if G𝑇 = PRG(𝑠𝑇), notation G𝑇 .next
refers to the next pseudo-random share output by G𝑇 .

PRandR. [𝑎] ← PRandR() computes a secret-shared random ele-

ment of ringR.We implement this function by executingPRG([𝑘]).next,
where 𝑘 is a system-wide key. The key 𝑘 is set up at the system

initialization time (in the form of secret shares) and does not change

throughout program execution.

3

Alessandro Baccarini, Marina Blanton, and Chen Yuan

4.2 Multiplication
Multiplication [𝑐] ← Mul([𝑎], [𝑏]) (or simply [𝑎]·[𝑏]) is realized
using the fact that [𝑎]·[𝑏] = ∑

𝑇1,𝑇2∈T 𝑎𝑇1
·𝑏𝑇2

(in R). Note that for
any (𝑇1,𝑇2) pair, there will be a party holding shares𝑇1 and𝑇2, and

thus performing this operation involves local multiplication and

addition over different choices of𝑇1,𝑇2. More formally, let mapping

𝜌 : T×T → [1, 𝑛] denote a function that for each pair (𝑇1,𝑇2) ∈ T 2

dedicates a party 𝑝 ∈ [1, 𝑛] responsible for computing the product

𝑎𝑇1
·𝑏𝑇2

(clearly, 𝑝 must possess shares 𝑇1 and 𝑇2). For performance

reasons, we also desire that 𝜌 distributes the load across the parties

as fairly as possible.

As a result of this (local) computation, the parties hold additive

shares of the product 𝑎·𝑏 = 𝑐 , which needs to be converted to RSS

for consecutive computation. This conversion was realized in early

publications [9, 45] by having each party create replicated secret

shares of their result and distribute each share to the parties entitled

to knowing it (i.e., party 𝑝 receives shares from each party for each

𝑇 ∈ T subject to 𝑝 ∉ 𝑇). This results in each participant creating
(𝑛
𝑡

)
shares and sending

(𝑛−1

𝑡

)
of them to each party. Consequentially,

each participant adds the values received for share𝑇 and stores the

sum as 𝑐𝑇 , for each 𝑇 in its possession.

More recentwork, e.g., [8] and others traded information-theoretic

security (in the presence of secure channels) for communication

efficiency by having the parties generate shared (pseudo–) random

values. We pursue this direction as well. However, if this idea is

applied naively, it results in unnecessarily high overhead. In partic-

ular, if we instruct each party 𝑝 to generate all shares for its secret,

some shares will be known to more than 𝑡 participants and thus do

not contribute to secrecy. Instead, our solution eliminates shares

that 𝑝 does not possess and thus do not contribute to secrecy. Thus,

our construction utilizes key material consistent with the setup of

the RSS scheme. In particular, we use the same key setup as in pseu-

dorandom secret sharing, where 𝑘𝑇 is known by all 𝑝 ∉ 𝑇 . Then

when a party needs to generate a pseudo-random share associated

of its value for share 𝑇 , the party will draw it from the PRG seeded

with 𝑘𝑇 .

We, however, note that multiple participants may need to draw

from the PRG seeded with 𝑘𝑇 to produce shares of their values, and

it is generally not safe to use the same secret to protect multiple

values, which is also the case in our application. Instead, multiple

elements might be drawn from the PRG (seeded with 𝑘𝑇) to protect

different values, and consistent use of the PRGwith each seed can be

setup by the participants ahead of time, such that this information

is public knowledge.

In addition to themapping 𝜌 , ourmultiplication protocol requires

another mapping 𝜒 : [1, 𝑛] → T , which specifies for each party 𝑝

the share 𝑇 (subject to 𝑝 ∉ 𝑇) that 𝑝 communicates (with all other

shares of 𝑝’s value being produced as pseudo-random elements). As

before, we desire to choose the values of 𝜒 (𝑝) as to evenly distribute
the load and communication.

The above intuition leads us to the optimized 𝑛-party multiplica-

tion protocol given as Protocol 1. After computing its private value

𝑣 (𝑝) according to 𝜌 , each party 𝑝 distributes it into

(𝑛−1

𝑡

)
additive

shares (one of which is communicated while others are computed

using PRGs). Afterwards, each party sets its 𝑐𝑇 as a sum of 𝑡 + 1

Protocol 1 [𝑐] ← [𝑎]·[𝑏]
// pre-distributed values are [𝑘] and public maps 𝜌 and 𝜒

1: each 𝑝 ∈ [1, 𝑛] does the following
2: let 𝑆𝑝 = {𝑇 ∈ T | 𝑝 ∉ 𝑇 };
3: 𝑣 (𝑝) =

∑
𝑇1,𝑇2∈T,𝜌 (𝑇1,𝑇2)=𝑝 𝑎𝑇1

𝑏𝑇2
;

4: 𝑣
(𝑝)
𝜒 (𝑝) = 𝑣 (𝑝) ;

5: for 𝑇 ∈ 𝑆𝑝 do 𝑐𝑇 = 0;

6: for 𝑝′ ∈ [1, 𝑛] in order do
7: for 𝑇 ∈ 𝑆𝑝 do
8: if (𝑝′ ≠ 𝑝) ∧ (𝑝′ ∉ 𝑇) ∧ (𝜒 (𝑝′) ≠ 𝑇) then
9: 𝑐𝑇 = 𝑐𝑇 + G𝑇 .next;
10: else if (𝑝′ = 𝑝) ∧ (𝜒 (𝑝) ≠ 𝑇) then
11: 𝑧 = G𝑇 .next;
12: 𝑐𝑇 = 𝑐𝑇 + 𝑧;
13: 𝑣

(𝑝)
𝜒 (𝑝) = 𝑣

(𝑝)
𝜒 (𝑝) − 𝑧;

14: end if
15: end for
16: end for
17: send 𝑣

(𝑝)
𝜒 (𝑝) to each 𝑝′ ∉ 𝜒 (𝑝) (other than itself);

18: for 𝑝′ ∈ [1, 𝑛] such that 𝑝 ∉ 𝜒 (𝑝′) do
19: receive 𝑣

(𝑝′)
𝜒 (𝑝′) from 𝑝′, set 𝑐𝜒 (𝑝′) = 𝑐𝜒 (𝑝′) + 𝑣

(𝑝′)
𝜒 (𝑝′) ;

20: end for
21: 𝑐𝜒 (𝑝) = 𝑐𝜒 (𝑝) + 𝑣

(𝑝)
𝜒 (𝑝) ;

22: return [𝑐];

shares (computed or received) of values 𝑣 (𝑝
′)
for each party 𝑝′ enti-

tled to shares 𝑐𝑇 . This matches the fact that each share 𝑎𝑇 of secret

𝑎 is maintained by 𝑡 +1 parties. Correctness is achieved by ensuring

that in Protocol 1 two different participants 𝑝 and 𝑝′ with access to

shares 𝑇 consistently associate the values that they draw from G𝑇

with shares belonging to different parties by always processing the

values in the increasing order of participants’ IDs. Preparation of

the shares in Protocol 1 is done on lines 10–16, where a participant

either masks its share with a pseudo-random value because it is

used by another party or forms its own shares and the value to be

transmitted.

In this protocol, each party on average sends 𝑡 ring elements and

draws

(𝑛−1

𝑡

)
− 1 + (𝑛 − 1)

(𝑛−2

𝑡

)
− 𝑡 pseudo-random ring elements

(which is (𝑡 + 1) (
(𝑛−1

𝑡

)
− 1) when 𝑛 = 2𝑡 + 1). The latter can be

explained by using

(𝑛−1

𝑡

)
− 1 pseudo-random shares for its value

being re-shared and

(𝑛−2

𝑡

)
shares that it has in common with any

other party except the 𝑡 values that it receives with a symmetric

communication pattern. (Recall that each party maintains

(𝑛−1

𝑡

)
shares of a secret and has

(𝑛−2

𝑡

)
shares in common with any other

party). When the communication pattern is not symmetric, the

overall amount of work and communication remains unchanged,

but it may be distributed differently. Thus, we refer to the average

work and communication in that case.

Compared to other results, the three-party version of our pro-

tocol matches communication of recent multiplication from [8],

which is available only for three parties and improves on commu-

nication of Sharemind’s three-party multiplication from [37] by

a factor of 2. For multi-party multiplication it can be desirable to

4

Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning

mappings:

1

3

2

𝑢 = 𝑎{3}𝑏{3} + 𝑎{1}𝑏{3} + 𝑎{3}𝑏{1}

2→ {3}
3→ {1}{1}, {3} → 2

{2}, {1} → 3

{3}, {1} → 2

{1}, {2} → 3

{2}, {2} → 1

{2}, {3} → 1

{3}, {2} → 1

{3}, {3} → 2

𝜌 : {1}, {1} → 3

𝑣{2}

𝑢{3}

𝑤{1}

output:

𝑐{2} = 𝑣{2} + G2.next
𝑐{3} = 𝑣{3} + 𝑢{3}

𝑣{3} = G3.next, 𝑣{2} = 𝑣 − 𝑣{3}
𝑣 = 𝑎{2}𝑏{2} + 𝑎{2}𝑏{3} + 𝑎{3}𝑏{2}
computation:

G2 = PRG(𝑘{2}),G3 = PRG(𝑘{3})
𝑎{2}, 𝑎{3}, 𝑏{2}, 𝑏{3}
input:

G1 = PRG(𝑘{1}),G2 = PRG(𝑘{2})
𝑎{1}, 𝑎{2}, 𝑏{1}, 𝑏{2}

computation:

𝑤 = 𝑎{1}𝑏{1} + 𝑎{1}𝑏{2} + 𝑎{2}𝑏{1}
𝑤{2} = G2.next,𝑤{1} = 𝑤 −𝑤{2}
output:

𝑐{1} = G1.next +𝑤{1}
𝑐{2} = 𝑣{2} +𝑤{2}

input:

G1 = PRG(𝑘{1}),G3 = PRG(𝑘{3})

input:

𝑎{1}, 𝑎{3}, 𝑏{1}, 𝑏{3}

computation:

𝑢{1} = G1.next, 𝑢{3} = 𝑢 − 𝑢{1}
output:

𝑐{1} = 𝑢{1} +𝑤{1}
𝑐{3} = 𝑢{3} + G3.next

𝜒 : 1→ {2}

Figure 1: Sample three-party multiplication [𝑎]·[𝑏]; arith-
metic is in R.

use a different communication pattern when a designated party

reconstructs a protected value and communicates it to others (as

in, e.g., [21]) which scales better as 𝑛 grows. However, our version

has lower communication when 𝑛 = 3, uses fewer rounds, and 𝑛 is

typically small with RSS.

Example.With three parties, we could have party 1 (in posses-

sion of shares {2} and {3}) compute (and add) products 𝑎{2}𝑏{2} ,
𝑎{2}𝑏{3} , and 𝑎{3}𝑏{2} , party 2 (in possession of shares {1} and
{3}) compute products 𝑎{3}𝑏{3} , 𝑎{1}𝑏{3} , and 𝑎{3}𝑏{1} , and party
3 (in possession of shares {1} and {2}) compute products 𝑎{1}𝑏{1} ,
𝑎{1}𝑏{2} , and𝑎{2}𝑏{1} . This definesmapping 𝜌 . Also let 𝜒 (1) = {2},
𝜒 (2) = {3}, and 𝜒 (3) = {1}. This, for example, means that when

party 1 divides its computed value 𝑣 (1) into shares 𝑣
(1)
{2} and 𝑣

(1)
{3} ,

the latter is computed using a PRG, while the former is being sent

to party 3 (i.e., the other party entitled to have that share). An illus-

tration of the multiplication protocol with these mappings in the

three-party setting is given in Figure 1.

We state security of multiplication as follows, with its proof

available in Appendix B:

Theorem 1. Multiplication [𝑐] ← [𝑎]·[𝑏] is secure according
to definition 1 in the (𝑛, 𝑡) setting with 𝑛 = 2𝑡 + 1 in the presence
of secure communication channels and assuming PRG is a pseudo-
random generator.

Our multiplication protocol shares conceptual similarities with

(optimized) multiplication from [35]. In particular, both sample

pseudorandom secret shares according to the access structure and

communicate a single (properly protected) element to a number of

other participants. Our solution explicitly defines all maps and the

computation associated with computing each share of the output,

while the latter appears to be under-specified in [35].

The computation associated with multiplication can be gener-

alized to compute the dot-product of two secret-shared vectors

DotProd(⟨[𝑎1], . . . , [𝑎𝑁]⟩, ⟨[𝑏1], . . . , [𝑏𝑁]⟩), or evaluate any other

multi-variate polynomial of degree 2, using the same communica-

tion and the same number of cryptographic operations as in multi-

plication. For that purpose, we only need to change the computation

in step 3 of the multiplication protocol. For example, for DotProd,
wemodify step 3 to compute 𝑣 (𝑝) =

∑
𝑇1,𝑇2∈T,𝜌 (𝑇1,𝑇2)=𝑝

∑𝑁
𝑖=1

𝑎𝑖
𝑇1

𝑏𝑖
𝑇2

(in R), while the rest of the steps remain unchanged.

Table 2 shows performance of these and other basic protocols for

the general (𝑛, 𝑡) and the (3,1) settings. Communication is measured

as the number of ring elements sent by each party and computation

is the number of cryptographic operations (i.e., retrieval of the next

pseudo-random element using a PRG) per party.

4.3 Revealing Private Values
Open. Reconstruction of a secret shared value 𝑎 = Open([𝑎])
amounts to communicating missing shares to each party such that

the value could be reconstructed locally from all shares. Recall that

there are

(𝑛
𝑡

)
total shares and each party holds

(𝑛−1

𝑡

)
of them. Thus,

each party receives 𝑑 =
(𝑛
𝑡

)
−

(𝑛−1

𝑡

)
missing shares during this

operation.

Our next observation is that when 𝑛 is not small (such as when

𝑛 = 7), the value of 𝑑 will exceed 𝑛 and transmitting 𝑑 messages to

each party is not needed. Since the value is reconstructed as the

sum of all shares, it is sufficient to communicate sums of shares

instead of the individual shares themselves. Recall that [𝑎] can be

reconstructed by 𝑡 + 1 parties. This means that it is sufficient for

a participant to receive one element (i.e., a sum of the necessary

shares) from 𝑡 other parties.

As before, we would like to balance the load between the parties

and ideally have each party transmit the same amount of data. This

means that we instruct each party to send information to 𝑡 other

parties according to another agreed upon mapping 𝜈 : [1, 𝑛] →
(T , [1, 𝑛])𝑑 . For each party 𝑝 , this mapping will specify which of 𝑝’s

shares should be communicated to which other party. The mapping

𝜈 will then define computation associated with this operation: each

𝑝 computes

∑
𝑇,𝜈 (𝑝)=𝑇,𝑝′ 𝑎𝑇 (in R) for each 𝑝′ ≠ 𝑝 present in the

mapping and sends the result to 𝑝′.
Similar to other SS frameworks, simply opening the shares of 𝑎

maintains security of the computation (in the sense that no infor-

mation about private values is revealed beyond the opened value

𝑎). This is because we maintain that at the end of each operation

secret-shared values are represented using random shares. In par-

ticular, it is clear that the result of PRG([𝑠]).next and PRandR()
produces random shares; shares are properly re-randomized during

multiplication of [𝑎] and [𝑏], and shares of [𝑎] + [𝑏] and [𝑎] − [𝑏]
are random if the shares of [𝑎] and [𝑏] are random themselves.

Example. With 𝑛 = 3, we could have 𝜈 (1) = ({3}, 3), 𝜈 (2) =
({1}, 1), and 𝜈 (3) = ({2}, 2), which corresponds to 𝜈 (𝑝) = ({𝑝 −
1}, 𝑝 − 1) (where 𝑝 − 1 = 3 for 𝑝 = 1), which corresponds to the

communication pattern in Figure 2.

MulPub. Functionality 𝑐 = MulPub([𝑎], [𝑏]) refers to multiplying

two secret-shared [𝑎] and [𝑏] and opening their product 𝑐 . We

discuss this functionality because in the past, this operation could

be implemented more efficiently than multiplication followed by an

opening in alternative SS frameworks (e.g., see [13]), and we pursue

a similar direction here. In the protocol we present here,MulPub is
realized using a single round without increasing communication

5

Alessandro Baccarini, Marina Blanton, and Chen Yuan

Operation Rounds

(3, 1) setting (𝑛, 𝑡) setting
Comm Crypto ops Comm Crypto ops

PRG([𝑠]).next, PRandR() 0 0 2 0

(𝑛−1

𝑡

)
Mul([𝑎], [𝑏]) 1 1 2 𝑡 (𝑡+1)

((𝑛−1

𝑡

)
− 1

)
Open([𝑎]) 1 1 0 𝑡 0

MulPub([𝑎], [𝑏]) 1 2 2 𝑛 − 1

(𝑛−1

𝑡

)
DotProd(⟨[𝑎1], . . . , [𝑎𝑁]⟩, ⟨[𝑏1], . . . , [𝑏𝑁]⟩) 1 1 2 𝑡 (𝑡 + 1)

((𝑛−1

𝑡

)
− 1

)
Table 2: Performance of basic RSS operations with computation and communication per party.

1

3

mappings:

2

𝑎 = 𝑎{1} + 𝑎{2} + 𝑎{3}

2→ ({1}, 1)
3→ ({2}, 2)

𝑎{3}

𝑎{2}

output:

input:

𝑎{2}, 𝑎{3}

𝑎 = 𝑎{1} + 𝑎{2} + 𝑎{3}

𝑎{1}, 𝑎{2}
output:

input:

output:

𝑎 = 𝑎{1} + 𝑎{2} + 𝑎{3}

input:𝑎{1}, 𝑎{3}

𝑎{1}

𝜈 : 1→ ({3}, 3)

Figure 2: Sample three-party Open([𝑎]); arithmetic is in R.

cost. Executing multiplication followed by Open would double the

number of rounds.

In multiplication, after computing a product, each locally calcu-

lated value is no longer random and must be re-randomized prior to

opening it. In our RSS setting, this is realized by relying on parties

locally computing pseudo-random values. Specifically, we associate

a secret key 𝑘𝑇 with each 𝑇 ∈ T (i.e., this is the same key shares

used with PRandR() and multiplication) and use pseudo-random

values G𝑇 .next to protect the share of the product that each party

locally computes, prior to that party revealing its randomized value

to all others. We require all blinding pseudo-random values sum to

0 to ensure the reconstructed product is correct. In the three-party

case, this can be achieved by adding some pseudo-random values

and subtracting others, as illustrated in Figure 3.

With larger 𝑛 and 𝑡 , we must be careful to draw new elements

from each PRG to ensure that values released by different parties

are protected using proper randomness without reusing them. This

is similar to the logic used in multiplication. Then to realize this

logic and ensure that all blinding factors add to 0, when multiple

values are sampled from G𝑇 , the last blinding value is set to the

sum of all previously drawn elements multiplied by −1 (in R). We

provide a detailed description of MulPub in Protocol 2. G𝑇 and 𝑆𝑝
are defined as in multiplication.

In this protocol, each party draws the same number of elements

from each G𝑇 in its possession to ensure that after a single protocol

execution all parties are in the same state (but a party may discard

some computed values). Similar to the computation in multiplica-

tion, we order the parties based on the values of their IDs. Because

any given share 𝑇 is stored at 𝑡 + 1 parties, there are 𝑡 calls to each

G𝑇 per invocation of this operation. Then the participant with the

lowest ID among the parties with access to 𝑇 (𝑗 = 0) uses the first

element of G𝑇 to protect its value 𝑣 (𝑝) and disregards the 𝑡 − 1

mappings:

1

3

2

𝑐 = 𝑐 (1) + 𝑐 (2) + 𝑐 (3)

input:

𝑎{1}, 𝑎{3}, 𝑏{1}, 𝑏{3}

computation:

𝑣 (2) = 𝑎{3}𝑏{3} + 𝑎{1}𝑏{3} + 𝑎{3}𝑏{1}
𝑐 (2) = 𝑣 (2) + G1.next − G3.next
output:

𝑐 = 𝑐 (1) + 𝑐 (2) + 𝑐 (3)

{1}, {3} → 2

{2}, {1} → 3

{3}, {1} → 2

{1}, {2} → 3

{2}, {2} → 1

{2}, {3} → 1

{3}, {2} → 1

{3}, {3} → 2

𝜌 : {1}, {1} → 3

𝑐 (1)

𝑐 (2)

𝑐 (2)

𝑐 (1)

𝑐 (3)

𝑐 (3)

𝑣 (1) = 𝑎{2}𝑏{2} + 𝑎{2}𝑏{3} + 𝑎{3}𝑏{2}
computation:

𝑐 (1) = 𝑣 (1) + G2.next + G3.next
output:

𝑐 = 𝑐 (1) + 𝑐 (2) + 𝑐 (3)

𝑎{2}, 𝑎{3}, 𝑏{2}, 𝑏{3},G2,G3

input:

input:

𝑎{1}, 𝑎{2}, 𝑏{1}, 𝑏{2},G1,G2

computation:

𝑣 (3) = 𝑎{1}𝑏{1} + 𝑎{1}𝑏{2} + 𝑎{2}𝑏{1}
𝑐 (3) = 𝑣 (3) − G1.next − G2.next
output:

G1,G3

Figure 3: Sample three-partyMulPub([𝑎], [𝑏]); arithmetic is
in R.

Protocol 2 𝑐 ← MulPub([𝑎], [𝑏])
// pre-distributed values are [𝑘] and public map 𝜌

1: each 𝑝 ∈ [1, 𝑛] does the following:
2: 𝑣 (𝑝) = 𝑐 (𝑝) =

∑
𝑇1,𝑇2∈T,𝜌 (𝑇1,𝑇2)=𝑝 𝑎𝑇1

𝑏𝑇2
;

3: for 𝑇 ∈ 𝑆𝑝 do
4: let 𝑗 be the number of parties 𝑝′<𝑝 for 𝑝′∉𝑇 ;

5: for 𝑖 = 0 to 𝑡 − 1 do
6: 𝑧 = G𝑇 .next;
7: if 𝑗 = 𝑡 then 𝑐 (𝑝) = 𝑐 (𝑝) − 𝑧;
8: else if 𝑖 = 𝑗 then 𝑐 (𝑝)=𝑐 (𝑝)+𝑧;
9: end if
10: end for
11: end for
12: send 𝑐 (𝑝) to all other parties, and set 𝑐 = 𝑐 (𝑝) ;
13: for 𝑖 = 1 to 𝑛 − 1 do
14: receive 𝑐 (𝑝

′)
from distinct 𝑝′, set 𝑐 = 𝑐 + 𝑐 (𝑝′) ;

15: end for
16: return 𝑐;

other elements, the participant with the next lowest ID uses the

second element, etc. The participant with the highest ID among

those with access to 𝑇 (𝑗 = 𝑡) computes the sum of all 𝑡 elements

drawn from G𝑇 and subtracts the sum from its 𝑣 (𝑝) . Correctness
6

Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning

follows from the fact that the sum of all blinding values over all

parties and all shares is equal to 0, i.e., 𝑐 =
∑
𝑝 𝑐
(𝑝) =

∑
𝑝 𝑣
(𝑝)

(in

R).
To show security, we prove the following result:

Theorem 2. The protocolMulPub([𝑎], [𝑏]) is secure according to
definition 1 in the (𝑛, 𝑡) setting with 𝑛 = 2𝑡 + 1 assuming PRG is a
pseudo-random generator.

Before proceeding with the proof, we demonstrate intuition behind

it on the three-party example in Figure 3. Let 𝑧𝑇 denote the output

of G𝑇 .next. Then party 1 transmits 𝑐 (1) = 𝑣 (1) + 𝑧{2} + 𝑧{3} , party
2 transmits 𝑐 (2) = 𝑣 (2) + 𝑧{1} − 𝑧{3} , and party 3 transmits 𝑐 (𝑝) =
𝑣 (3) − 𝑧{1} − 𝑧{2} , where 𝑐 = 𝑣 (1) + 𝑣 (2) + 𝑣 (3) and each 𝑣 (𝑖) needs
to be protected (arithmetic is in R). Without loss of generality, let

party 3 be corrupt. Then party 3 (with access to 𝑧{1} and 𝑧{2}) can
compute 𝑣 (1) +𝑧{3} , 𝑣 (2) −𝑧{3} , and the output of the computation

𝑐 , but no information about 𝑣 (1) or 𝑣 (2) (assuming security of the

PRG) other than their sum 𝑣 (1) +𝑣 (2) . The latter, however, is already
computable by party 3 using the output 𝑐 and its share 𝑣 (3) , which
reveals no extra information about 𝑎 and 𝑏 beyond their product.

The full proof is given in Appendix B.

Similar to multiplication,MulPub can be generalized to evaluate

any (multi-variate) polynomial of degree 2 and open the result.

4.4 Inputting Private Values
There will be a need to enter private values into the computation

in subsequent protocols, and we defer two variants of this function-

ality – when input is provided by an external party and one of the

computational parties – to Appendix A.

5 COMPOSITE PROTOCOLS
While the previous operations can be instantiated to work with any

finite ring, the techniques in this section work only in a ring Z
2
𝑘

for some 𝑘 . Ring Z
2
𝑘 is the primary reason for supporting secure

computation over rings because it enables utilization of native CPU

instructions for ring operations.

The goal of this work is to enable efficient general-purpose com-

putation over ringsZ
2
𝑘 , we therefore focus onmajor building blocks

which can be consequentially used to compose a protocol for arbi-

trary functionalities including machine learning tasks. Of central

importance to this effort is the development of comparison proto-

cols (for both less-than comparison and equality testing function-

alities), which are known to be difficult to design in a framework

where the elementary techniques are based on arithmetic gates.

Others include bit decomposition and truncation (i.e., division by

a power of 2). Combined, these techniques can enable Boolean,

integer, fixed-point, and even floating-point arithmetic, as well as

array and related operations, giving the ability to compose general-

purpose protocols.

Because a number of protocols for common operations over Z
2
𝑘

have already been developed, some of the constructions that we

mention in these sections are adaptations of prior protocols to our

setting and we defer their specification to the appendix. In partic-

ular, Appendix A provides specification of random bit generation

protocol, RandBit, that produces a bit shared in Z
2
𝑘 and a more

recent version from [27], edaBit, that generates a number (𝑘 in

our case) of random bits 𝑟𝑖 shared in Z2 together with a represen-

tation of the bits as an integer 𝑟 =
∑𝑘
𝑖=1

2
𝑖𝑟𝑖 shared in Z

2
𝑘 . The

former can be computed in a single round, while the latter uses

noticeably lower communication per bit, but the round complexity

is logarithmic in 𝑘 and 𝑡 .

We also describe a comparison algorithm for computing [𝑎] ≤
[𝑏], which is commonly implemented by determining the most

significant bit of the difference between 𝑎 and 𝑏 and denoted by

MSB. Performance of these protocols is summarized in Tables 3

and 13.

Truncation is a necessary building block when working with

fixed-point values or simulating fixed-point computation using

integer arithmetic and permits us to minimize the ring size. Starting

from [13], probabilistic truncation of input 𝑎 by𝑚 bits that produces

⌊𝑎/2𝑚⌋ + 𝑢, where 𝑢 is a bit, is significantly faster than precise

truncation that rounds down. It is biased towards rounding to

the nearest integer to 𝑎/2𝑚 and is sufficient for our purpose. The

protocol we present, TruncPr([𝑎],𝑚), is a constant-round solution

that combines the approach from [18] with edaBits from [27] and

inherits from [27] the requirement that input 𝑎 is 1 bit shorter than

the ring size, i.e., MSB(𝑎) = 0. We use notation [𝑥]ℓ to denote that

SS is over Z
2
ℓ .

The truncation protocol, given as Protocol 3, uses related ran-

dom values 𝑟 and 𝑟 , bit decomposition of which are known, where

𝑟 =
∑𝑘−1

𝑖=0
2
𝑖𝑟𝑖 is a full-size random value and 𝑟 =

∑𝑘−1

𝑖=𝑚 2
𝑖𝑟𝑖 is the

portion remaining after truncating𝑚 bits. We thus modify the ed-
aBit protocol to produce those values simultaneously. Each [𝑟] and
[𝑟] is computed as a sum of 𝑡 + 1 integers, so we must compensate

for two types of carries: (i) addition of𝑚 least significant bits in 𝑟

will produce carry bits into the next bits which are not accounted

for in 𝑟 and (ii) while the carry bits past the 𝑘 bits are automatically

removed in the ring when computing 𝑟 , these bits remain in 𝑟 due to

its shorter length. Because we compute the bitwise representation

of 𝑟 using bitwise addition protocol BitAdd, we can also extract the

carry bit into any desired position which is already computed dur-

ing the addition. The logic of the truncation protocol necessitates

the removal of the (𝑘 − 1)th bit. For this reason, we capture carries

into the𝑚th and (𝑘 − 1)th positions and denote those bits from

the 𝑖th call to BitAdd as cr𝑖,𝑚 and cr𝑖,𝑘−1
, respectively (line 10).

We subsequently convert the 2 log(𝑡 + 1) carry bits and the most

significant bit of 𝑟 , denoted as 𝑏𝑘−1
, from shares over Z2 to Z

2
𝑘

using binary-to-arithmetic sharing protocol B2A (from [20]). All

interactive operations except the last one (line 20) can be precom-

puted. Security follows from the protocol logic as specified in prior

work and from security of the building blocks.

It is also possible to use the above protocol to truncate an input

[𝑎] by a private number of bits [𝑚] as outlined in [18]: Let 𝑀 be

some public upper bound on 𝑚. Protocol TruncPriv([𝑎], [𝑚], 𝑀)
then needs to securely compute [2𝑀−𝑚] · [𝑎] and can subsequently

call TruncPr([2𝑀−𝑚 · 𝑎], 𝑀). A performance summary is given in

Table 3.

6 NEURAL NETWORK APPLICATIONS
Today it is typical to benchmark secure multi-party frameworks

on machine learning applications, e.g., NN inference. We briefly

7

Alessandro Baccarini, Marina Blanton, and Chen Yuan

Protocol Rand. Protocol Rounds Communication

MSB([𝑎]𝑘)
RandBit log(𝑘 − 1) + 3 2𝑡 (𝑘 + 3)
edaBit log(𝑡 + 1) (log(𝑘) + 1) + log(𝑘 − 1) + 4 𝑡2 (log(𝑘) + 1) + 7𝑡 + 1/2

TruncPr([𝑎]𝑘 ,𝑚)
RandBit 2 𝑡 (2𝑘 + 1)
edaBit log(𝑡 + 1) (log(𝑘) + 1) + 4 𝑡2 (log(𝑘) + 2/𝑘 + 4) + 𝑡 (1/𝑘 + 4) + 1/2

Convert([𝑎]𝑘 , 𝑘, 𝑘′)
RandBit log(𝑘) + 4 2𝑡 (𝑘 + 𝑘′) + 𝑡 (log(𝑘) + 2)
edaBit log(𝑡 + 1) (log(𝑘) + 1) + log(𝑘) + 3 𝑡2 (log(𝑘) + 1) + 𝑡 (2𝑘′ + log(𝑘) + 3)

Table 3: Performance of composite protocols with communication measured in the number of ring elements sent per party
over Z

2
𝑘+2 for RandBit and Z

2
𝑘 for edaBit(𝑘).

Protocol 3 [𝑎/2𝑚]𝑘 ← TruncPr([𝑎]𝑘 ,𝑚)
1: for 𝑝 = 1, . . . , 𝑡 + 1 in parallel do
2: party 𝑝 samples 𝑟

(𝑝)
0

, . . . , 𝑟
(𝑝)
𝑘−1
∈ Z2 and computes 𝑟 (𝑝) =∑𝑘−1

𝑗=0
𝑟
(𝑝)
𝑗

2
𝑗
and 𝑟 (𝑝) =

∑𝑘−1

𝑗=𝑚 𝑟
(𝑝)
𝑗

2
𝑗
;

3: simultaneously execute [𝑟 (𝑝)]𝑘 ← Input(𝑟 (𝑝) , 𝑘),
[𝑟 (𝑝)]𝑘 ← Input(𝑟 (𝑝) , 𝑘), and [𝑟 (𝑝)

𝑖
]1←Input(𝑟 (𝑝)

𝑖
, 1) for

𝑖=1, . . ., 𝑘 , with 𝑝 being the input owner;

4: end for
5: [𝑟]𝑘 =

∑𝑡+1
𝑝=1
[𝑟 (𝑝)]𝑘 ; [𝑟]𝑘 =

∑𝑡+1
𝑝=1
[𝑟 (𝑝)]𝑘 ;

6: 𝑠 = 𝑡 + 1;

7: for 𝑖 = 1, . . . , ⌈log(𝑡 + 1)⌉ do
8: for 𝑗 = 1, . . . , ⌊𝑠/2⌋ in parallel do
9: ℓ = 𝑗 + 𝑠 ·(𝑖 − 1);
10: ⟨[𝑟 (𝑗)

1
]1, . . ., [𝑟 (𝑗)𝑘−1

]1⟩, [crℓ,𝑚−1]1, [crℓ,𝑘]1←BitAdd(⟨[𝑟 (2𝑗−1)
1

]1,
. . ., [𝑟 (2𝑗−1)

𝑘−1
]1⟩, ⟨[𝑟 (2𝑗)

1
]1, . . ., [𝑟 (2𝑗)𝑘−1

]1⟩);
11: if 𝑠 mod 2 = 0 then 𝑠 = 𝑠/2;

else
12: ⟨[𝑟 (

𝑠+1
2
)

1
]1, . . . , [𝑟

(𝑠+1
2
)

𝑘−1
]1⟩=⟨[𝑟 (𝑠)

1
]1, . . ., [𝑟 (𝑠)𝑘−1

]1⟩;
13: 𝑠 = (𝑠 + 1)/2;
14: end if
15: end for
16: end for
17: [𝑏0]1, . . ., [𝑏𝑘−1

]1 = [𝑟 (1)
0
]1, . . ., [𝑟 (1)𝑘−1

]1;
18: [𝑏𝑘−1

]𝑘 , ⟨[crℓ,𝑚]𝑘 , ⟩, ⟨[crℓ,𝑘−1
]𝑘 ⟩←B2A([𝑏𝑘−1

]1, ⟨[crℓ,𝑚]1⟩,
⟨[crℓ,𝑘−1

]1⟩) for ℓ=1, . . . , 𝑡 ;

19: [𝑟]𝑘 = [𝑟]𝑘 − [𝑏𝑘−1
]𝑘 ·2𝑘−𝑚−1 + ∑𝑡

ℓ=1
([crℓ,𝑚]𝑘 −

[crℓ,𝑘−1
]
𝑘

2
𝑘−𝑚−1);

20: 𝑐 ← Open([𝑎]𝑘 + [𝑟]𝑘);
21: 𝑐′ = (𝑐/2𝑚) mod 2

𝑘−𝑚−1
;

22: [𝑏]𝑘 = (𝑐/2𝑘−1) + [𝑏𝑘−1
]𝑘 − 2(𝑐/2𝑘−1) [𝑏𝑘−1

]𝑘 ;
23: return 𝑐′ − [𝑟]𝑘 + [𝑏]𝑘 · 2𝑘−𝑚−1

;

introduce NN basics and describe two mechanisms for improving

efficiency of secure NN inference.

A neural network is a series of interconnected layers consist-

ing of neurons. Each neuron has an associated weight and bias

used for computation on some input data and outputs a predic-

tion based on that data. A NN network layer takes the form y =

𝑔(xW + b), where x is the input vector from the previous layer,

W is the weight tensor, b is the bias vector, and 𝑔 is some activa-

tion function. Sample activation functions are Rectified Linear Unit

Protocol 4 [𝑎]𝑘 ′ ← Convert([𝑎]𝑘 , 𝑘, 𝑘′), where 𝑘′ > 𝑘

1: [𝑟]𝑘 , [𝑟0]1, . . . , [𝑟𝑘−1
]1 ← edaBit(𝑘);

2: 𝑐 ← Open([𝑎]𝑘 − [𝑟]𝑘);
3: [𝑎0]1, . . . , [𝑎𝑘−1

]1 ← BitAdd(𝑐, [𝑟0]1, . . . , [𝑟𝑘−1
]1);

4: for 𝑖 = 0 to 𝑘 − 1 in parallel [𝑎𝑖]𝑘 ′ ← B2A([𝑎𝑖]1, 𝑘′);
5: return [𝑎]𝑘 ′ =

∑𝑘−1

𝑖=0
[𝑎𝑖]𝑘 ′2𝑖 ;

(ReLU), which on input x = (𝑥1, . . . , 𝑥𝑁) computes y = (𝑦1, . . . , 𝑦𝑁)
where each 𝑦𝑖 = max(0, 𝑥𝑖), and its variant ReLU6 which computes

𝑦𝑖 = min(max(0, 𝑥𝑖), 6).

6.1 Share Conversion
Conventional NN evaluation uses floating-point arithmetic, while

secure evaluations for performance reasons typically employ fixed-

point computation or emulate it on integers. If inputs are repre-

sented in the form of fixed-length integers, the values will grow

with each layer that performsmatrixmultiplication. This can impact

on performance because comparison-based activation and pooling

operations have cost linear in the bitlength of ring elements. For

this reason, it can be advantageous to start with a smaller ring size

and increase it mid-computation to accommodate longer values.

This approach involves converting secret-shared [𝑎]𝑘 over Z
2
𝑘

to a different representation [𝑎]𝑘 ′ over Z2
𝑘′ for 𝑘

′ > 𝑘 . Conversion

techniques between certain types of fields are known [24], but they

do not apply to our case. Simply casting 𝑘-bit shares to 𝑘′-bit shares
for 𝑘′ > 𝑘 affects correctness because the overflow due to share

addition is not reduced modulo 2
𝑘
. Thus, the task is to leave 𝑘

least significant bits of the value and erase the remaining bits in a

longer share representation. One way to achieve this is to invoke

truncation as ([𝑎]·2𝑘 ′−𝑘) ≫ 2
𝑘 ′−𝑘

or [𝑎] − ([𝑎] ≫ 𝑘)2𝑘 . However,
because computing precise truncation is costlier for rings than fields,

we design a more efficient version based on bit decomposition. In

particular, we perform bit decomposition of [𝑎]𝑘 into shares of bits

in Z2, convert the bit shares to Z
2
𝑘′ , and reassemble [𝑎]𝑘 ′ .

This procedure is denoted by Convert and given as Protocol 4

using edaBits. An equivalent version can be constructed using

RandBit. It is based on bit decomposition from [20] and uses Boolean

to arithmetic conversion, B2A, from Z2 to Z
2
𝑘′ and bitwise integer

addition, BitAdd. Performance is summarized in Table 3.

6.2 Quantized Neural Networks
To improve efficiency of NN inference, it is common to employ quan-

tization, which makes the resulting models suitable for deployment

8

Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning

in constrained environments and is a well-studied field (see, e.g.,

[29]). We outline the standard quantization approach from [32] and

its privacy-preserving realization from [18] for quantized TFLite

models and consequently describe our optimizations.

For a vector x, each real-valued 𝑥𝑖 is represented as 𝑥𝑖 =𝑚(𝑥𝑖−𝑧),
where𝑚 ∈ R is the scale and 𝑧 and 𝑥𝑖 are 8-bit integers with 𝑧 being

the zero point. Given an input column vector x = (𝑥1, . . . , 𝑥𝑁) and
a row vector w = (𝑤1, . . . ,𝑤𝑁) ofW with quantization parameters

(𝑚1, 𝑧1) and (𝑚2, 𝑧2), respectively, the dot product of x and w,

𝑦 =
∑𝑁
𝑖=1

𝑥𝑖𝑤𝑖 , is specified with quantization parameters (𝑚3, 𝑧3).
Since 𝑦 ≈ 𝑚3·(𝑦 − 𝑧3), 𝑥𝑖 ≈ 𝑚1·(𝑥𝑖 − 𝑧1), and 𝑤𝑖 ≈ 𝑚2·(�̄�𝑖 − 𝑧2),
quantized 𝑦 is computed as 𝑦 ≈ 𝑧3 +𝑚1𝑚2/𝑚3·

∑𝑁
𝑖=1
(𝑥𝑖 +𝑧1)·(�̄�𝑖 −

𝑧2) = 𝑧3 +𝑚·𝑠 . Computing 𝑠 requires integer-only arithmetic and

is guaranteed to fit in 16 + log𝑁 bits. The scale𝑚 =𝑚1𝑚2/𝑚3 is a

small real number. It can be written as𝑚 = 2
−𝑒𝑚′ with normalized

𝑚′ ∈ [0.5, 1) which informs the value of 𝑒 and represented as a

32-bit integer𝑚′′, where𝑚′ ≈ 2
−31𝑚′′.

Two-dimensional convolutions typically add a quantized bias

¯𝑏 once the dot product is computed. This is handled by setting

the scale of the bias to 𝑚1𝑚2 and the zero-point to 0, such that

the bias can be added to 𝑠 prior to scaling. The last step of a con-

volution layer is to apply an activation function such as ReLU6.

In a quantized NN, this functions as a clamping operation which

eliminates values outside of range [0, 255] and uses𝑚3 = 6/255

and 𝑧3 = 0. This guarantees correct range while maximizing pre-

cision with 8-bit quantized values. Going forward, 𝑚3 becomes

𝑚1 for the next layer and thus all intermediate layers share the

same𝑚1 =𝑚3 = 6/255. Other activation functions such as sigmoid

would be handled differently, but we only consider clamping-based

functions like [18].

Computing the convolution layer securely requires the model

owner to enter private quantization parameters into the computa-

tion, including all zero points 𝑧𝑖 , modified scale𝑚′′, and integer

scale adjustment 2
𝑀−𝑒−31

, where 𝑀 is an upper bound set to 63.

After privately computing the dot product [𝑠] and adding the bias

vector [¯𝑏], the result is multiplied by [𝑚′′] and need to be trun-

cated by private amount 31 + 𝑒 . The truncation is accomplished by

multiplying the scaled dot product by [2𝑀−𝑛−31] and [𝑚·𝑠] and
consequently truncating by𝑀 bits. Lastly, after adding [𝑧3] locally,
clamping the result to the interval [0, 255] is performed using two

comparisons.

A limitation of [18]’s approach is it required large scaling factors

and consequently a large ring size of 𝑘 = 72 for working with

real numbers, using𝑀-bit truncation with𝑀 = 63. We propose a

modified approach where scales are folded into other aspects of the

layer computation and conduct smaller truncation at the end of each

layer, which guarantees compact representation of intermediate

results.

Let superscript ⟨𝑖⟩ denote the layer number. Starting from layer

0, the entire layer computation (dot product, scaling, and clamping)

can be interpreted as computing 0 ≤ 𝑦 ⟨0⟩ ≤ 255, where

𝑦 ⟨0⟩ =
𝑚
⟨0⟩
1

𝑚
⟨0⟩
2

𝑚
⟨0⟩
3

((
𝑁∑︁
𝑖=1

(𝑥 ⟨0⟩
𝑖
−𝑧 ⟨0⟩

1
)·(�̄� ⟨0⟩

𝑖
−𝑧 ⟨0⟩

2
)
)
+ ¯𝑏 ⟨0⟩

)

and 𝑧
⟨𝑖 ⟩
3

was set to 0, as prescribed by the clamping operation, for

all layers except the last one. Because𝑚
⟨0⟩
3

= 6/255, we scale the

equation to redefine 𝑦 ⟨0⟩ as

𝑦 ⟨0⟩ =
𝑁∑︁
𝑖=1

(
𝑥
⟨0⟩
𝑖
−𝑧 ⟨0⟩

1

)
·
(
�̄�
⟨0⟩
𝑖
−𝑧 ⟨0⟩

2

)
+¯𝑏 ⟨0⟩ ,

where 0 ≤ 𝑦 ⟨0⟩ ≤ 6/𝑚⟨0⟩
1

𝑚
⟨0⟩
2

. Now, our clamping operation can

use these bounds, with the upper bound being privately entered

by the model owner to avoid division. As before, the output of this

layer becomes the input for the subsequent layer, i.e., 𝑥 ⟨𝑖 ⟩ = 𝑦 ⟨𝑖−1⟩
.

Our modified incoming vector, denoted 𝑥 ⟨1⟩ , is coupled with an

additional scaling factor of (255𝑚
⟨0⟩
1

𝑚
⟨0⟩
2
)/6, such that 𝑥 ⟨1⟩ =

255𝑚
⟨0⟩
1

𝑚
⟨0⟩
2

𝑥 ⟨1⟩/6 = 𝛿 ⟨1⟩𝑥 ⟨1⟩ . Using 𝑥 ⟨1⟩ = 𝛿 ⟨1⟩𝑥 ⟨1⟩ gives us

𝑦 ⟨1⟩ =

(
𝑁∑︁
𝑖=1

(𝑥 ⟨1⟩
𝑖
− 𝑧 ⟨1⟩

1
/𝛿 ⟨1⟩)·(�̄� ⟨1⟩

𝑖
− 𝑧 ⟨1⟩

2
)
)
+ ¯𝑏 ⟨1⟩/𝛿 ⟨1⟩

with 0 ≤ 𝑦 ⟨1⟩ ≤ 6/(𝛿 ⟨1⟩𝑚⟨1⟩
1

𝑚
⟨1⟩
2
). This expression can be evalu-

ated securely without needing fixed-point multiplication or large

truncation, and all bounds are computed by the model owner prior

to privately entering them in the computation.

Evaluating subsequent layers in this fashion causes the outputs

to grow by factor 𝛿 ⟨𝑖+1⟩ = 𝛿 ⟨𝑖 ⟩255𝑚
⟨𝑖 ⟩
1

𝑚
⟨𝑖 ⟩
2
/6 with 𝛿 ⟨0⟩ = 1. How-

ever, we can ensure values remain small by truncating the output

𝑦 ⟨𝑖+1⟩ by ℓ ⟨𝑖 ⟩ bits. With the right choice of ℓ ⟨𝑖 ⟩ we are able to

maintain the necessary accuracy, and the value of 𝛿 ⟨𝑖+1⟩ conse-
quently becomes 𝛿 ⟨𝑖+1⟩ = 𝛿 ⟨𝑖 ⟩ ·255𝑚

⟨𝑖 ⟩
1

𝑚
⟨𝑖 ⟩
2
/(6·2ℓ ⟨𝑖⟩). The maxi-

mum number of bits we can truncate in a layer needs to comply

with constraint 𝛿 ⟨𝑖 ⟩ · 255𝑚
⟨𝑖 ⟩
1

𝑚
⟨𝑖 ⟩
2
/(6·2ℓ ⟨𝑖⟩) ≥ 1, which leads to

ℓ ⟨𝑖 ⟩ ≤
⌊
log

2
(255𝛿 ⟨𝑖 ⟩𝑚⟨𝑖 ⟩

1
𝑚
⟨𝑖 ⟩
2
/6)

⌋
. Once again, these values are

independent of the input data and become a part of the model. We

thus can use TruncPriv outlined in Section 5 for truncation by a pri-

vate amount. The net result is that we are able to use a significantly

smaller bound𝑀 and consequently substantially shorter ring size

𝑘 . In practice, the coefficients introduced in our methodology can

reasonably be folded into the scaling factors𝑚 themselves.

Other layers such as average pooling can be approximated by sub-

stituting the division by some integer 𝑑 with truncation by ⌊log𝑑⌋
bits, and softmax can be replaced with argmax when computing

the final prediction. These changes can slightly impact the scaling

factors, but have no impact on the accuracy since we leverage basic

algebraic properties, without changing the fundamental calculation

itself.

7 PERFORMANCE EVALUATION
We implemented the protocols described in this work and evaluate

their performance. We run micro-benchmarks to evaluate the indi-

vidual operations as well as offer evaluation of machine learning

applications.

The implementation was done in C++ and is available at [4]. We

use AES from the OpenSSL cryptographic library [1] to instantiate

the PRF and also to implement secure communication channels

between each pair of the computational parties. We report the av-

erage execution time of 1000 executions for the micro-benchmark

9

Alessandro Baccarini, Marina Blanton, and Chen Yuan

Setup

Batch Size

Comm.

1 10 10
2

10
3

10
4

10
5

10
6

3PC

FG
30 0.081 0.0893 0.245 1.47 12.1 120 1,236 4

60 0.082 0.0912 0.255 1.61 12.9 127 1,289 8

R 30 0.075 0.079 0.097 0.153 0.606 5.87 59.6 4

60 0.075 0.076 0.108 0.320 1.096 9.68 113 8

5PC

FG
30 0.124 0.158 0.384 2.37 16.8 159 1,550 8

60 0.129 0.167 0.439 2.45 17.9 173 1,669 16

FD
30 0.224 0.267 0.836 3.74 34.1 23.5 2,227 6.4

∗

60 0.229 0.278 0.924 4.01 36.4 25.4 2,436 12.8
∗

R 30 0.184 0.170 0.278 0.711 4.00 41.3 377 8

60 0.221 0.224 0.326 0.943 6.36 63.9 579 16

7PC

FG
30 0.168 0.198 0.497 3.17 24.5 238 2,353 12

60 0.174 0.224 0.541 3.47 27.7 257 2,520 24

FD
30 0.275 0.327 1.18 7.69 60.4 502 4,829 6.9

∗

60 0.281 0.354 1.34 8.01 67.8 534 5,186 13.7
∗

R 30 0.254 0.37 0.72 2.84 25.2 266 2,536 12

60 0.285 0.40 0.81 4.13 34.9 365 3,490 24

Table 4: Runtime of multiplication protocols in ms and com-
munication is per party per operation in bytes (* means
average for asymmetric communication patterns). FG and
FD refer to the optimized GRR and DN field multiplication
from [11], resp., and R is our ring realization. 30 and 60 are
integer bitlengths.

experiments and the average time of 5 executions for the appli-

cation experiments. The runtimes are also averaged across the

computation parties.

All experiments use identical 2.4 GHz virtual machines with

26 GB of RAM. They were connected via 10 Gbps Ethernet links,

which we throttled to 1 Gbps using the tc command. Two-way

latency was measured to be 0.106 ms. All experiments use a single

core. WAN benchmarks can be found in Appendix D.

7.1 Micro-benchmarks
In this section we report performance of individual operations such

as multiplication, matrix multiplication, random bit generation

(RandBit and edaBit) and comparison (MSB). The experiments

used two bitlengths, 𝑘 = 30 and 𝑘 = 60, which allows us to use the

uint32_t and uint64_t integer types, respectively, to implement

ring operations.

Tables 4 and 5 report performance of multiplication and matrix

multiplication, respectively. As we strive to measure performance

improvement when we switch computation from a field to a ring,

we compare performance of our protocols to those using Shamir SS

in the same setting (i.e., semi-honest security with honest majority)

using PICCO implementation [57] with recent improvements to

multiplication from [11]. The field size is set to accommodate 30-

and 60-bit integers. Batch size denotes how many operations were

executed at the same time in a single batch.

We measure runtime and communication with a number of par-

ties ranging from 3 to 7. For field multiplication, we measure per-

formance of two variants: GRR-based with higher asymptotic com-

munication and 1 round (FG) and DN-based with lower asymptotic

communication and 2 rounds (FD) as described in [11]. The former

is strictly better in the three-party setting. The latter, despite its

Setup

Matrix Size

10 × 10 100 × 100 500 × 500 1000 × 1000

3PC

F (30) 0.318 91.6 1,025 8,289

F (60) 0.319 94.2 1,187 8,723

R (30) 0.187 2.83 212 1567

R (60) 0.288 3.82 226 1638

5PC

FG (30) 0.457 95.2 1,145 8,927

FG (60) 0.462 97.9 1,321 10,134

FD (30) 1.07 97.4 1,273 9,995

FD (60) 1.09 102 1,493 11,964

R (30) 0.253 11.7 720 5,224

R (60) 0.331 12.5 813 5,939

7PC

FG (30) 0.891 97.7 1,272 9,953

FG (60) 0.904 101 1,478 10,864

FD (30) 1.29 99.8 1,483 11,569

FD (60) 1.35 104 1,536 13,742

R (30) 0.658 48.0 5,880 48,793

R (60) 0.705 59.0 7,509 71,234

Table 5: Runtime of matrix multiplication in ms.

lower communication, does not lead to better performance as the

number of parties increases as it internally relies on RSS. However,

the difference in performance of the two variants is not substantial

enough to play a major role in larger computations, as is demon-

strated in Table 5. We therefore proceed with FG with 3 parties and

FD with 5–7 parties in other experiments where multiplication is

used.

From Table 4 we observe that our RSS performance is up to 20

times faster with a sufficiently large batch size in the 3-party setting

compared to the field and some performance advantage is main-

tained even with 7 parties despite the need to compute with a much

larger number of shares. Note that the performance gain is due to

faster instructions because communication is comparable across

different variants. This indicates that using native CPU instructions

for secure arithmetic has remarkable advantage.

Matrix multiplication in Table 5 is performed in a single round

using the necessary number of dot-products. Because local work

is the bottleneck, we see performance improvement by up to a

factor of 32.3 after switching to a ring with 3 parties. Performance

improvement with 5 parties is by up to a factor of 8.3 and up to a

factor of 2.1 with 7 parties. The ring performance is superior for all

configurations evaluated except for the two largest matrices with 7

parties.

Tables 6 and 7 provide random bit generation results. To support

𝑘-bit integers, ring-based RandBit requires ring Z
2
𝑘+2 . Field-based

RandBit from [13] does not increase the field size; however, all uses

of RandBit we are aware of are for operations such as comparisons

that utilize statistical hiding and, as a result, increase the field

size by a statistical security parameter 𝜅 (typically set to 48 in

implementations). For this reason, our field-based RandBit andMSB
benchmarks utilize 79- and 109-bit fields. Both versions of RandBit
in Table 6 communicate the same number of field or ring elements;

however, the performance gain of the ring version grows as we

increase the batch size, reaching 10 to 12-fold improvement with

3 and 5 parties and indicating that local field-based computation

is the bottleneck. This is in large part due to the need to perform

10

Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning

Setup

Batch Size

Comm.

1 10 10
2

10
3

10
4

10
5

10
6

3PC

F (30) 0.104 0.158 0.457 2.87 25.4 259 2,637 20

F (60) 0.107 0.164 0.546 3.47 32.8 336 3,480 28

R (30) 0.124 0.111 0.156 0.330 2.37 21.8 249 8

R (60) 0.112 0.124 0.170 0.555 4.57 43.9 477 16

5PC

F (30) 0.175 0.281 0.815 5.97 50.8 506 4,985 40

F (60) 0.171 0.291 0.869 6.75 65.4 66.1 6,794 56

R (30) 0.169 0.178 0.234 0.595 4.50 45.9 468 16

R (60) 0.262 0.244 0.356 1.252 8.39 88.1 854 32

7PC

F (30) 0.249 0.369 1.15 8.14 70.6 684 6,842 60

F (60) 0.264 0.412 1.34 9.42 84.9 824 8,251 84

R (30) 0.255 0.268 0.472 1.53 10.4 117 1,134 24

R (60) 0.237 0.288 0.508 2.15 18.3 217 2,092 48

Table 6: Runtime of RandBit protocols in ms and communi-
cation is per party per operation in bytes.

Protocol

Batch Size

Comm.

1 10 10
2

10
3

10
4

10
5

10
6

3PC

R (30) 0.564 0.577 0.832 2.96 20.5 207 1,978 32

R (60) 0.622 0.737 1.111 5.66 43.2 405 4,175 68

[3] (32) 19.7 15.9 16.2 16.7 20.0 138 1,368 –

[3] (64) 22.8 25.5 25.2 24.4 30.6 254 2,201 –

Table 7: Runtime of edaBit protocols in ms compared to MP-
SPDZ implementation. Communication for our solution is
per party per operation in bytes.

modulo exponentiations (see [13]). That is, even though field-based

RandBit also relies on RSS, other non-RSS computation such as

modulo exponentiation is significant and the overall slowdown

with the number of parties is not as large. In the 7-party setting the

improvement of the ring-based variant is by up to a factor of 6.

The concept of edaBit is recent and for that reason in Table 7

we compare our implementation to that reported in the original

publication [27], available through MP-SPDZ repository [3]. Note

that each edaBit corresponds to generating 𝑘 random bits together

with the corresponding 𝑘-bit random integer. It is clear from the

table that MP-SPDZ’s implementation is optimized for large sizes

and fast networks. In particular, it gives comparable runtime for

batches of size 1 and 1,000. For the same reason, we were unable

to accurately report communication cost per operation from the

experiments and refer the reader to the original publication [27]

for that information. Note that the times we measured for MP-

SPDZ are very different from those originally provided in [27],

which reported the ability to generate 7.18 million 64-bit edaBits

per second. This is over 15 times faster than the fastest time per

operation we record and stems from the differences in hardware. In

particular, experiments in [27] were runmulti-threaded on powerful

AWS c5.9xlarge instances with 36 cores and a 10 Gbps link. This

distinction highlights the need to reproduce experiments on similar

hardware to draw meaningful comparisons about performance of

different algorithms.

Protocol

Batch Size

Comm.

1 10 10
2

10
3

10
4

10
5

10
6

3PC

F (30) 1.29 3.71 23.7 206 2,051 21.8s 222s 624

F (60) 1.97 7.51 54.7 471 4,654 46.7s 487s 864

R+rB (30) 0.71 0.74 1.54 9.23 88.7 0.85s 8.25s 265

R+rB (60) 0.76 1.01 3.92 29.2 322 3.04s 30.0s 1009

R+eB (30) 1.23 1.24 1.51 4.14 30.7 0.27s 2.77s 57

R+eB (60) 1.31 1.46 1.88 7.88 60.6 0.56s 5.71s 117

[3]+eB (32) 23.3 23.1 22.9 23.5 27.3 0.18s 1.31s –

[3]+eB (64) 34.2 31.6 33.4 32.5 35.9 0.25s 2.15s –

[3]+ABY3 (32) 8.51 8.97 9.05 13.6 52.1 0.39s 3.66s –

[3]+ABY3 (64) 9.09 9.06 8.88 14.2 58.5 0.41s 3.87s –

5PC

F (30) 2.12 6.17 37.5 349 3,219 32.2s 333s 1248

F (60) 3.32 11.9 84.0 738 7,021 68.8s 701s 1728

R+rB (30) 1.62 1.83 3.87 21.0 197 1.82s 18.6s 530

R+rB (60) 2.09 2.59 8.08 70.7 644 6.10s 60.5s 2018

R+eB (30) 3.77 4.02 6.33 27.1 203 1.97s 19.1s 162

R+eB (60) 4.16 4.71 10.1 56.3 447 4.24s 41.1s 338

7PC

F (30) 3.08 9.14 48.4 452 4.42s 43.2s 447s 1872

F (60) 4.55 13.1 101 943 9.36s 94.2s 959s 2592

R+rB (30) 2.08 2.74 7.38 56.1 0.62s 5.95s 65.4s 795

R+rB (60) 2.39 3.93 18.6 190 1.75s 17.6s 179s 3027

R+eB (30) 5.52 7.64 25.8 186 1.65s 16.8s 165s 316

R+eB (60) 6.31 10.6 45.3 371 3.57s 36.3s 356s 663

Table 8: Runtime of MSB protocols in ms unless marked oth-
erwise. Communication is per party per operation in bytes.
rB and eB indicate variants using RandBit and edaBit, respec-
tively.

Table 8 reports performance of multiple MSB protocols: (i) field-

based protocol from [13] using PICCO’s implementation with opti-

mizations from [11], our ring implementations (ii) using RandBit
and (iii) using edaBit, and ring-based implementations from MP-

SPDZ [3] (iv) using edaBit and (v) using ABY3. The last two support
only three-party computation.

The gap between the first two shows performance improvement

due to switching from field-based to ring-based arithmetic. Both

of them make a linear in 𝑘 number of calls to RandBit, but our
implementation executes BitLT over Z2, while field-based uses a

fixed field for all operations. As a result, our ring RandBit-based
MSB is up to 26.9 times faster than the field version with 3 parties,

up to 17.9 times with 5 parties, and up to 7.2 times with 7 parties.

If we compare our RandBit and edaBit MSB implementations,

the use of the edaBit version becomes advantageous starting from

batch sizes of 100 with 3 parties, 1000–10000 with 5 parties, but

is not beneficial with 7 parties. This can be explained by the need

to perform a larger number of bitwise additions during edaBit
generation as the number of computational parties increases.

MP-SPDZ’s edaBit-based implementation in the three-party set-

ting generally took longer to run than our edaBit-based implemen-

tation until the batch size becomes large. As explained earlier, this is

due to different performance emphases in the two implementations.

ABY3 (three-party) implementation is slower than what we obtain

except for the largest batch sizes with the longer bitlengths.

11

Alessandro Baccarini, Marina Blanton, and Chen Yuan

0 1 2 3 4 5 6

Batch Size 10𝒙

10
−4

10
−3

10
−2

10
−1

T
im

e/
B
at
ch

Si
ze

(m
s)

Ring 𝑘 = 30

Ring 𝑘 = 60

Field 𝑘 = 30

Field 𝑘 = 60

(a) Mult([𝑎], [𝑏])

0 1 2 3 4 5 6

Batch Size 10𝒙

10
−3

10
−2

10
−1

Ring 𝑘 = 30

Ring 𝑘 = 60

Field 𝑘 = 30

Field 𝑘 = 60

(b) RandBit()

0 1 2 3 4 5 6

Batch Size 10𝒙

10
−2

10
0

Ring 𝑘 = 30

Ring 𝑘 = 60

MP-SPDZ 𝑘 = 32

MP-SPDZ 𝑘 = 64

(c) edaBit(𝑘)

0 1 2 3 4 5 6

Batch Size 10𝒙

10
−2

10
−1

10
0

randBit 𝑘 = 30

randBit 𝑘 = 60

edaBit 𝑘 = 30

edaBit 𝑘 = 60

(d)MSB([𝑎])

Figure 4: Three-party micro-benchmarks results.

We also visualize time per operation with variable batch sizes

in Figure 4 using three parties. Multiplication and RandBit sub-
figures compare ring vs. field protocols, indicating a substantial

gap as expected; edaBit sub-figure compares our and MP-SPDZ

implementations in the same setting; andMSB sub-figure compares

RandBit and edaBit variants.
It is also informative to compare our field vs. ring results with

those of SPDZ.While SPDZ [23] and its ring version SPDZ
2
𝑘 [16, 20]

use a much stronger adversarial model and different type of SS,

we would like to know whether similar savings are achievable in

different settings. [20] reports that performance improved by a

factor of 4.6–4.9 for multiplication and by a factor of 5.2–6.0 for

RandBit-based comparison on a 1Gbps LAN. The results are only

provided as throughput improvement and do not report different

batch sizes. In our experiments we observed greater improvements,

up to 20 times for multiplication and up to 26.9 improvement for

MSB. This may be explained by the fact that our techniques are

more lightweight and perhaps switching to faster arithmetic makes

less of an impact in the SPDZ setting.

7.2 Machine Learning Applications
We next evaluate our protocols on machine learning applications

and show that they exhibit good performance. We consider NNs

and quantized NNs, in part to facilitate comparison to prior work.

Neural Networks. There are many types of NNs, and for our

standard benchmarking we chose the NN from MiniONN [42] for

the MNIST dataset [39] (Figure 12 in [42], Network B in [55], and

Network C in [56]), because it is a popular choice for evaluating

privacy-preserving NN inference. The MNIST NN evaluation uses

convolution, fully-connected layers, an ReLU activation function,

and max pooling of a window 2 × 2 to compute the maximum

element in that window.

We use MiniONN’s implementation choices and, in particular,

run the computation on integer inputs. To avoid using floating-point

arithmetic, [42] scaled inputs by a factor of 1000 and rounded to the

nearest integer. To compensate for the bitlength of the intermediate

results growing with each multiplication, [42]’s implementation

ran the computation using a 37-bit modulus and avoided the use

of truncation. However, we determined that this size is too small,

and 49 bits are needed to correctly evaluate the model, which we

subsequently use. Our implementation achieves the same 99.0%

precision as reported for this model in [43] (which corrects [42]).

While it is possible to perform the entire computation in Z
2

49 , we

observe that the initial steps are of the largest size and use signifi-

cantly shorter integers than 49 bits. Because the cost of comparisons

is linear in the bitlength of the ring elements, we can substantially

improve performance by starting computation on shorter values

and converting the intermediate results to a larger ring prior to

multiplication, which increases the size of the intermediate results.

Therefore, we start computation with 20-bit integers and increase

the ring size by 10 bits prior to subsequent matrix multiplications.

Performance of MNIST NN inference with three parties (total

time) is presented in Table 9. We also ran the same computation

over a field (using [11, 57]), which required an 89-bit modulus. To

closely mimic our ring-based implementation, this implementa-

tion computes with integers of increasing sizes, but uses the same

modulus throughout the computation.

We also include runtimes of two-party MiniONN [42], two-party

Gazelle [33], two-party FALCON [40], SecureNNwith custom three-

party arithmetic [55], three-party FALCON [56], and three-party

Dalskov et al. [18] with two types of truncation (TruncPr and
TruncPrSp, respectively). Many of those solutions were executed

on more powerful hardware which would not lead to a meaning-

ful performance comparison. For that reason, we reproduced the

implementations except for MiniONN, Gazelle, and two-party FAL-

CON [40] on our machines. From those, only Gazelle was executed

on more powerful AWS instances with multi-threading at the time

of original publication, but its performance even with that setup is

not competitive with what we achieve. Furthermore, the solution

was consequently surpassed in SecureNN, which we execute on

our hardware.

Table 9 shows the time for a single inference and for executing

multiple inferences in a batch where available. We can see that our

single prediction time is lower than in other publications despite

the fact that the solution is generalizable to a larger number of

parties with a larger collusion threshold. Our communication is

also low and the only construction that improves the time when

executing multiple predictions in parallel is FALCON [56]. While

their implementation benefits from larger batching through multi-

threading and lower communication due to small moduli, FALCON

is limited to three parties. Our solution, however, can be invoked

12

Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning

Field MiniONN
∗

Gazelle
∗

SecureNN FALCON
∗
[40] FALCON [56] [18] Ours, 3PC

Batch Size 1 1 1 1 1 1 128 1 1 5 10 50

Latency 1328 9320 810 1228 840 123 20.4 279, 196 82.5 68.8 67.4 67.6

Comm. 8.12 657.5 70.0 37.9 92.5 0.55 15.6, 9.7 2.76

Table 9: Runtime of MNIST NN prediction in ms and communication in MB. (*) denotes results taken from the original
publications.

Field, 5PC Ours, 5PC

Batch Size 1 1 5 10 25

Latency (ms) 2047 414 370 367 355

Comm. (MB) 16.2
∗

6.34

Table 10: Performance of MNIST NN prediction in 5-party
configuration. (*) means average for asymmetric communi-
cation.

Ours MP-SPDZ Z
2
𝑘 , [18]

𝛼 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

𝜌

128 3.19 6.47 9.92 13.3 3.19 6.26 9.88 14.0

160 4.94 10.0 15.1 20.7 4.15 8.17 13.6 19.3

192 7.17 14.3 22.0 29.7 5.00 11.0 17.8 26.7

224 9.71 19.9 30.0 40.9 6.57 14.1 23.1 34.9

Table 11: Performance of 3PC quantized MobileNets predic-
tion in seconds. MP-SPDZ results are over a ring Z

2
𝑘 .

with a larger number of parties as demonstrated in Table 10 with

𝑛 = 5.

Several other publications benchmarked NN predictions [7, 14,

15, 38, 46, 47, 49–51]. However, because they do not support or

do not run MiniONN’s MNIST NN evaluation, we cannot directly

compare our performance. For example, while ABY
3
[47] is said

to use MiniONN’s MNIST NN, evaluation is actually based on a

different, simpler model used in Chameleon [51].

Quantized Neural Networks. Benchmarks for quantized NNs

were based on the MobileNets [30] architecture, which consists of

28 layers and 1000 output classes. The network alternates between

3 × 3 depthwise convolutions and 1 × 1 pointwise convolutions.

A resolution multiplier 𝜌 (128–224) scales the dimensions of the

input image, and a width multiplier 𝛼 (0.25–1.0) scales the size of

the input and output channels. The models we used are hosted

on TensorFlow’s online repository [2] and are trained on the Ima-

geNet [25] dataset. We experimentally determined that an upper

bound of 𝑀 = 16 is sufficient for truncation by a private value,

since all computed ℓ ⟨𝑖 ⟩s are ≤ 9 for all model configurations.

Performance of quantized MobileNets inference is presented in

Tables 11 and 12 with 3 and 5 parties, respectively. Our methodol-

ogy from Section 6.2 allowed us to reduce the ring size from 𝑘 = 72

to 𝑘 = 30 or less, potentially reducing the time by a factor of 2. For

accurate comparison, we executed [18]’s implementation on our

machines using the same setting. Since a 5-party honest-majority

ring implementation is not available in [18], or more generally in

MP-SPDZ, we use a field-based implementation for the 5-party

Ours MP-SPDZ F𝑝 , [18]

𝛼 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

𝜌

128 23.7 48.0 73.1 98 442 688 992 1343

160 37.4 75.1 113 151 904 1414 2031 2765

192 52.8 107 162 219 1398 2182 3156 4269

224 72.7 145 220 297 1919 3005 4324 5877

Table 12: Performance of 5PC quantized MobileNets predic-
tion in seconds. MP-SPDZ results are over a field F𝑝 .

case from MP-SPDZ. Recall that the ability to generalize ring-based

honest-majority protocols to more participants is our main objec-

tive.

The results our 3-party solution achieves are comparable to those

in [18] despite ring reduction and can be explained by the differ-

ences in the algorithms. That is, Escudero et al. [28] experimentally

determined that [18]’s implementation with ABY3’s local conver-

sion was superior to edaBits (which we use) only in one setting that

we use (semi-honest, honest majority setting over Z
2
𝑘). In addition,

MP-SPDZ’s optimization for large computation also aids its effi-

ciency. This demonstrates that our quantized NN solution can aid

efficiency. Furthermore, our gain in the 5-party case is significant,

leading to the reduction in time by a factor of 13–26.

8 CONCLUSIONS
In this work we study multi-party threshold secret sharing over

a ring in the semi-honest model with honest majority with the

goal of improving performance compared to field-based computa-

tion. We design low-level operations for 𝑛-party replicated secret

sharing over any ring and consequentially build on them to en-

able general-purpose protocols over ring Z
2
𝑘 . Our implementation

results demonstrate that ring-based implementations of different

operations are significantly faster than their field-based equiva-

lents with 3, 5, and even 7 parties. This allows us to improve per-

formance of different applications including privacy-preserving

machine learning tasks. We specifically test performance of neural

network and quantized neural network classification and determine

that performance of our techniques is on par with the best custom

three-party protocols for those functions.

ACKNOWLEDGMENTS
The authors would like to thank Jian Liu for help with under-

standing and reproducing the computation associated with the

MNIST neural network evaluation in MiniONN [42]. The authors

also would like to thank Marcel Keller for help with MP-SPDZ

experiments and several constructions included in MP-SPDZ. This

work was supported in part by a Google Faculty Research Award,

13

Alessandro Baccarini, Marina Blanton, and Chen Yuan

Buffalo Blue Sky Initiative, and US National Science Foundation

grant 2213057. Any opinions, findings, and conclusions or recom-

mendations expressed in this publication are those of the authors

and do not necessarily reflect the views of the funding sources.

REFERENCES
[1] OpenSSL – Cryptography and SSL/TLS toolkit. https://www.openssl.org/. Ver-

sion: 1.1.1.

[2] Tensorflow repository. https://tensorflow.org/lite/guide/hosted_models. Last

accessed: 6/14/22.

[3] MP-SPDZ repository. https://github.com/data61/MP-SPDZ, 2021. Commit:

5ab8c702dde2f25ae7f2f2d0e4d47f5d716fa621.

[4] Replicated secret sharing over a ring. https://github.com/anbaccar/RSS_ring_

ppml, 2022. Commit: d921581401301c35660e15aaf329f41436699389.

[5] M. Abspoel, A. Dalskov, D. Escudero, and A. Nof. An efficient passive-to-active

compiler for honest-majority MPC over rings. In International Conference on
Applied Cryptography and Network Security (ACNS), pages 122–152, 2021.

[6] M. Abspoel, D. Escudero, and N. Volgushev. Secure training of decision trees with

continuous attributes. Proceedings on Privacy Enhancing Technologies (PoPETs),
2021(1):167–187, 2021.

[7] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón. QUOTIENT:

Two-party secure neural network training and prediction. In ACM Conference
on Computer and Communications Security (CCS), pages 1231–1247, 2019.

[8] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-

honest secure three-party computation with an honest majority. In ACM Confer-
ence on Computer and Communications Security (CCS), pages 805–817, 2016.

[9] D. Beaver and A. Wool. Quorum-based secure multi-party computation. In

Advances in Cryptology – EUROCRYPT, pages 375–390, 1998.
[10] G. R. Blakley. Safeguarding cryptographic keys. In International Workshop on

Managing Requirements Knowledge (MARK), pages 313–318, 1979.
[11] M. Blanton, A. Kang, and C. Yuan. Improved building blocks for secure multi-

party computation based on secret sharing with honest majority. In International
Conference on Applied Cryptography and Network Security (ACNS), pages 377–397,
2020.

[12] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-

preserving computations. In European Symposium on Research in Computer
Security (ESORICS), pages 192–206, 2008.

[13] O. Catrina and S. De Hoogh. Improved primitives for secure multiparty integer

computation. In International Conference on Security and Cryptography for
Networks (SCN), pages 182–199, 2010.

[14] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh. ASTRA: High throughput

3PC over rings with application to secure prediction. In ACMWorkshop on Cloud
Computing Security (CCSW), pages 81–92, 2019.

[15] H. Chaudhari, R. Rachuri, and A. Suresh. Trident: Efficient 4PC framework for

privacy preserving machine learning. In Network and Distributed System Security
Symposium (NDSS), 2020.

[16] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing. SPDZ
2
𝑘 : Efficient

MPC mod 2
𝑘
for dishonest majority. In Advances in Cryptology – CRYPTO, pages

769–798, 2018.

[17] R. Cramer, I. Damgård, and Y. Ishai. Share conversion, pseudorandom secret-

sharing and applications to secure computation. In Theory of Cryptography
Conference (TCC), pages 342–362, 2005.

[18] A. Dalskov, D. Escudero, and M. Keller. Secure evaluation of quantized neural

networks. Proceedings on Privacy Enhancing Technologies (PoPETs), 2020(4):355–
375, 2020.

[19] A. Dalskov, D. Escudero, andM. Keller. Fantastic four: Honest-majority four-party

secure computation with malicious security. In USENIX Security Symposium,

pages 2183–2200, 2021.

[20] I. Damgård, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and N. Volgushev.

New primitives for actively-secure MPC over rings with applications to private

machine learning. In IEEE Symposium on Security and Privacy, pages 1102–1120,
2019.

[21] I. Damgård and J. Nielsen. Scalable and unconditionally secure multiparty

computation. In Advances in Cryptology – CRYPTO, pages 572–590, 2007.
[22] I. Damgård, C. Orlandi, and M. Simkin. Yet another compiler for active security

or: Efficient MPC over arbitrary rings. In Advances in Cryptology – CRYPTO,
pages 799–829, 2018.

[23] I. Damgard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation

from somewhat homomorphic encryption. In Advances in Cryptology – CRYPTO,
pages 643–662, 2012.

[24] I. Damgård and R. Thorbek. Efficient conversion of secret-shared values between

different fields. IACR Cryptology ePrint Archive Report 2008/221, 2008.

[25] J. Deng, W. Dong, R. Socher, L. Li, K Li, and L. Fei-Fei. ImageNet: A large-scale

hierarchical image database. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 248–255, 2009.

[26] H. Eerikson, M. Keller, C. Orlandi, P. Pullonen, J. Puura, and M. Simkin. Use your

brain! arithmetic 3PC for any modulus with active security. In Conference on
Information-Theoretic Cryptography (ITC), pages 5:1–5:24, 2020.

[27] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved primitives

for MPC over mixed arithmetic-binary circuits. In Advances in Cryptology –
CRYPTO, pages 823–852, 2020.

[28] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved primitives

for MPC over mixed arithmetic-binary circuits. IACR Cryptology ePrint Archive

Report 2020/338, 2020.

[29] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey

of quantization methods for efficient neural network inference. In Low-Power
Computer Vision, pages 291–326. 2022.

[30] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam. MobileNets: Efficient convolutional neural networks for

mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[31] M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access

structures. In IEEE Global Telecommunication Conference (Globecom), pages
99–102, 1987.

[32] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and

D. Kalenichenko. Quantization and training of neural networks for efficient

integer-arithmetic-only inference. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2704–2713, 2018.

[33] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. GAZELLE: A low latency

framework for secure neural network inference. In USENIX Security Symposium,

pages 1651–1669, 2018.

[34] M. Keller. MP-SPDZ: A versatile framework for multi-party computation. InACM
Conference on Computer and Communications Security (CCS), pages 1575–1590,
2020.

[35] M. Keller, D. Rotaru, N. P. Smart, and T.Wood. Reducing communication channels

in MPC. In International Conference on Security and Cryptography for Networks
(SCN), pages 181–199, 2018.

[36] M. Keller and K. Sun. Secure quantized training for deep learning. In International
Conference on Machine Learning, pages 10912–10938, 2022.

[37] L. Kerik, P. Laud, and J. Randmets. Optimizing MPC for robust and scalable

integer and floating-point arithmetic. In International Conference on Financial
Cryptography and Data Security Workshops, pages 271–287, 2016.

[38] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma. CrypT-

Flow: Secure tensorflow inference. In IEEE Symposium on Security and Privacy,
pages 336–353, 2020.

[39] Y. LeCun and C. Cortes. MNIST handwritten digit database. http://yann.lecun.

com/exdb/mnist/, 2010.

[40] S. Li, K. Xue, B. Zhu, C. Ding, X. Gao, D. Wei, and T. Wan. FALCON: A fourier

transform based approach for fast and secure convolutional neural network

predictions. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8705–8714, 2020.

[41] Y. Lindell and A. Nof. A framework for constructing fast MPC over arithmetic

circuits with malicious adversaries and an honest majority. In ACM Conference
on Computer and Communications Security (CCS), pages 259–276, 2017.

[42] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network predictions via

MiniONN transformations. InACMConference on Computer and Communications
Security (CCS), pages 619–631, 2017.

[43] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network predictions via

MiniONN transformations. IACR Cryptology ePrint Archive Report 2017/452,

2017.

[44] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh. Rab-

bit: Efficient comparison for secure multi-party computation. In International
Conference on Financial Cryptography and Data Security, pages 249–270, 2021.

[45] U. Maurer. Secure multi-party computation made simple. In Security in Commu-
nication Networks (SCN), pages 14–28, 2002.

[46] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa. DELPHI:

A cryptographic inference service for neural networks. In USENIX Security
Symposium, pages 2505–2522, 2020.

[47] P. Mohassel and P. Rindal. ABY
3
: A mixed protocol framework for machine

learning. In ACM Conference on Computer and Communications Security (CCS),
pages 35–52, 2018.

[48] P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-preserving

machine learning. In IEEE Symposium on Security and Privacy, pages 19–38, 2017.
[49] A. Patra and A. Suresh. BLAZE: Blazing fast privacy-preservingmachine learning.

In Network and Distributed System Security Symposium (NDSS), 2020.
[50] D. Rathee,M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma.

CrypTFlow2: Practical 2-party secure inference. In ACM Conference on Computer
and Communications Security (CCS), pages 325–342, 2020.

[51] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and

F. Koushanfar. Chameleon: A hybrid secure computation framework for ma-

chine learning applications. In Asia Conference on Computer and Communications
Security (ASIACCS), pages 707–721, 2018.

14

https://www.openssl.org/
https://tensorflow.org/lite/guide/hosted_models
https://github.com/data61/MP-SPDZ
https://github.com/anbaccar/RSS_ring_ppml
https://github.com/anbaccar/RSS_ring_ppml
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning

Protocol 5 [𝑎1], . . . , [𝑎𝑚] ← Input(𝑎1, . . . , 𝑎𝑚)
1: for 𝑇 ∈ T \ {𝑇 ∗} do
2: input owner generates random 𝑘𝑇 and sends it to each 𝑝 ∈ 𝑇 ;
3: end for
4: for 𝑖 ∈ [1,𝑚] do
5: for 𝑇 ∈ T \ {𝑇 ∗} do
6: each 𝑝 ∉ 𝑇 sets share 𝑎𝑖,𝑇 = PRG(𝑘𝑇) .next;
7: end for
8: input owner computes 𝑎𝑖,𝑇 ∗ = 𝑎𝑖 −∑

𝑇 ∈T\{𝑇 ∗ } PRG(𝑘𝑇) .next (in R) and sends it to 𝑝 ∉ 𝑇 ∗;
9: each 𝑝 ∉ 𝑇 ∗ sets share 𝑎𝑖,𝑇 ∗ to the value received from input

owner;

10: end for
11: return [𝑎1], . . . , [𝑎𝑚];

[52] D. Rotaru and T. Wood. Marbled circuits: Mixing arithmetic and boolean circuits

with active security. In INDOCRYPT, pages 227–249, 2019.
[53] SecureSCM. Deliverable D9.2, EU FP7 Project Secure Supply Chain Manage-

ment (SecureSCM). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

221.393&rep=rep1&type=pdf, 2009.

[54] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,

1979.

[55] S. Wagh, D. Gupta, and N. Chandran. SecureNN: 3-party secure computation for

neural network training. Proceedings on Privacy Enhancing Technologies (PoPETs),
2019(3):26–49, 2019.

[56] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin. Fal-

con: Honest-majority maliciously secure framework for private deep learning.

Proceedings on Privacy Enhancing Technologies (PoPETs), 2021(1):188–208, 2021.
[57] Y. Zhang, A. Steele, and M. Blanton. PICCO: A general-purpose compiler for

private distributed computation. In ACM Conference on Computer and Commu-
nications Security (CCS), pages 813–826, 2013.

A ADDITIONAL PROTOCOLS
A.1 Inputting Private Values
We start with a general case when a participant who is not a com-

putational party supplies their input into the computation and

consequently discuss an optimized version when the input owner

is one of the computational parties. The input owner holds a private

value 𝑎 which will be represented as an element of ring R. The
input owner will need to generate replicated shares that correspond

to 𝑎 and send them to the computational parties. This will be the

easiest way to proceed when there is only one element to share.

However, when someone is sharing a vector of elements, we can

save on communication by using pseudo-random shares. All shares

except one for any element can be pseudo-random and computed

locally by computational parties after obtaining a PRG seed. This

means that among all shares𝑇 ∈ T , one is marked as special and is

denoted as 𝑇 ∗. The corresponding share is computed by the input

owner and is communicated to all parties with access to that share.

The construtcion is given as Protocol 5.

When the input owner is one of the computational parties, we can

capitalize on the fact that the parties already have pre-distributed

PRG seeds. We denote the input party as 𝑝∗. Note that 𝑝∗ has access
to a subset of the PRG seeds corresponding to the shares it is entitled

to have access to, but not to all seeds. While we could generate new

seeds for each𝑇 such that 𝑝∗ ∈ 𝑇 and make it available to all 𝑝 ∉ 𝑇

and 𝑝∗, these seeds will be accessible to more than 𝑡 parties and do

not contribute to security. Therefore, we instead choose to set such

shares to 0 and use only shares accessible to 𝑝∗. As a result,𝑇 ∗ will

Protocol 6 [𝑏] ← RandBit()
1: [𝑢]𝑘+2 ← PRandR(𝑘 + 2);
2: [𝑎]𝑘+2 = 2[𝑢]𝑘+2 + 1;

3: 𝑒 ← MulPub([𝑎]𝑘+2, [𝑎]𝑘+2);
4: compute the smallest root of 𝑒 modulo 2

𝑘+2
and denote it by 𝑐 ;

compute the inverse of 𝑐 modulo 2
𝑘+2

and denote it by 𝑐−1
;

5: [𝑑]𝑘+2 = 𝑐−1 [𝑎]𝑘+2 + 1;

6: for each 𝑇 ∈ T , let share 𝑏𝑇 = 𝑑𝑇 /2;
7: return 𝑘 least significant bits of each 𝑏𝑇 as [𝑏]𝑘 ;

be such that 𝑝∗ ∉ 𝑇 ∗, the parties will set shares 𝑎𝑇 = PRG(𝑘𝑇) .next
for each 𝑇 such that 𝑝 ∉ 𝑇 and 𝑇 ≠ 𝑇 ∗, share 𝑇 ∗ will be computed

as 𝑎𝑇 ∗ = 𝑎 −∑
𝑇 s.t. 𝑝∉𝑇 ∧𝑇≠𝑇 ∗ 𝑎𝑇 (in R) by 𝑝∗ and communicated

to all 𝑝 ∉ 𝑇 ∗, and all remaining shares 𝑎𝑇 are set to 0.

All variants use a single round. When a single input is shared by

an external party, the input owner simply generates all

(𝑛
𝑡

)
shares

and communicates them to the computational parties (each share

is stored by 𝑡 + 1 participants). This cost (which becomes sharing of

a PRG seed) is amortized among all inputs when sharing multiple

inputs. The additional cost per input for the input owner becomes

generation

(𝑛
𝑡

)
−1 pseudorandom ring elements and communicating

the last, computed share to 𝑡 +1 computational parties, i.e., the total

communication is 𝑡 + 1 ring elements. Each computational party

needs to generate

(𝑛−1

𝑡

)
or

(𝑛−1

𝑡

)
− 1 pseudo-random ring elements.

When the input is shared by a computational party, there is no

setup cost. The input owner need to generate

(𝑛−1

𝑡

)
− 1 pseudo-

random elements (i.e., similar to the number of shares it stores

per shared value) and communicate the computed share to 𝑡 other

parties. Each other party computes

(𝑛−2

𝑡

)
(i.e., the number of shares

it has in common with the data owner) or

(𝑛−2

𝑡

)
− 1 pseudo-random

ring elements. As will be relevant later, when a computational

party is sharing a ring element in the (3,1) setting, the input owner

communicates a single ring element to another party (and only one

pseudo-random element is computed by the input owner and the

remaining computational party). The security proof can be found

in Appendix B.

Theorem 3. Input is secure according to definition 1 in the (𝑛, 𝑡)
setting with 𝑛 = 2𝑡 + 1 in the presence of secure communication
channels and assuming PRG is a pseudo-random generator.

A.2 Random Bit Generation
Random bit generation is a crucial component of a variety of proto-

cols including different types of comparisons, bit decomposition,

division, etc. Therefore, it is of paramount importance to support

this functionality for general-purpose computation. In this work

we examine two variants: (i) generating shares of a single bit as full-

size ring elements and (ii) generating shares of 𝑘-bit random 𝑟 as

full-size ring elements together with generating shares of individual

bits of 𝑟 in Z2.

The first variant, denoted RandBit, originated in [13] for field-

based SS and was modified in [20] to work in Z
2
𝑘 . We use the logic

of [20] and adjust the algorithm to work in our setting. The result

is shown as Protocol 6.

To achieve 50% probability of each outcome of the output bit, the

computation uses a larger ring Z
2
𝑘+2 for most steps of the protocol

15

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.393&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.393&rep=rep1&type=pdf

Alessandro Baccarini, Marina Blanton, and Chen Yuan

Protocol 7 ([𝑟]𝑘 , [𝑏0]1, . . . , [𝑏𝑘−1
]1) ← edaBit(𝑘)

1: for 𝑝 = 1, . . . , 𝑡 + 1 in parallel do
2: party 𝑝 samples 𝑟

(𝑝)
0

, . . . , 𝑟
(𝑝)
𝑘−1
∈ Z2 and computes 𝑟 (𝑝) =∑𝑘−1

𝑗=0
𝑟
(𝑝)
𝑗

2
𝑗
;

3: simultaneously execute [𝑟 (𝑝)]𝑘 ← Input(𝑟 (𝑝) , 𝑘) and

[𝑟 (𝑝)
𝑖
]1 ← Input(𝑟 (𝑝)

𝑖
, 1) for 𝑖 = 1, . . . , 𝑘 with 𝑝 being the

input owner;

4: end for
5: [𝑟]𝑘 =

∑𝑡+1
𝑝=1
[𝑟 (𝑝)]𝑘 ;

6: 𝑠 = 𝑡 + 1;

7: for 𝑖 = 1, . . . , ⌈log(𝑡 + 1)⌉ do
8: for 𝑗 = 1, . . . , ⌊𝑠/2⌋ in parallel do
9: ⟨[𝑟 (𝑗)

1
]1, . . . , [𝑟 (𝑗)𝑘−1

]1⟩ ← BitAdd(⟨[𝑟 (2𝑗−1)
1

]1, . . .,
[𝑟 (2𝑗−1)
𝑘−1

]1⟩, ⟨[𝑟 (2𝑗)
1
]1, . . . , [𝑟 (2𝑗)𝑘−1

]1⟩);
10: if 𝑠 mod 2 = 0 then
11: 𝑠 = 𝑠/2;
12: else
13: ⟨[𝑟 ((𝑠+1)/2)

1
]1, . . . , [𝑟 ((𝑠+1)/2)𝑘−1

]1⟩ = ⟨[𝑟 (𝑠)
1
]1, . . .,

[𝑟 (𝑠)
𝑘−1
]1⟩;

14: 𝑠 = (𝑠 + 1)/2;
15: end if
16: end for
17: end for
18: [𝑏0]1, . . . , [𝑏𝑘−1

]1 = [𝑟 (1)
0
]1, . . . , [𝑟 (1)𝑘−1

]1
19: return ([𝑟]𝑘 , [𝑏0]1, . . . , [𝑏𝑘−1

]1)

when the remaining computation uses ring Z
2
𝑘 . Consequently, we

use notation [𝑥]ℓ with variable ℓ to denote that shares and com-

putation are over ring Z
2
ℓ . We also parameterize function PRandR

by the desired bitlength and PRandR(ℓ) denotes that the function
returns a random ring element from Z

2
ℓ .

Correctness of Protocol 6 follows from [20] and security follows

from the logic. That is, because the protocol only discloses random

𝑒 and otherwise uses secure building blocks, no information about

private values can be leaked. The protocol runs in one round using

the same communication as MulPub over Z
2
𝑘+2 . To improve per-

formance, in our implementation we compute the square root and

inverse operations on line 4 simultaneously.

The second variant of random bit generation is based on the

computation described in [27] and is denoted as edaBit(𝑘), where
the parameter 𝑘 specifies the number of generated random bits as

well as the bitlength of their representation as integer 𝑟 . It produces

secret-shared 𝑘-bit integer 𝑟 together with shares of the individ-

ual bits of 𝑟 in Z2. We use a simplified version with 𝑘 being equal

to the bitlength of the ring elements (i.e., the ring is Z
2
𝑘), which

eliminates certain operations for dealing with carry after addition.

The construction is given as Protocol 7. The idea consists of 𝑡 + 1

parties (without loss of generality, we chose the first 𝑡 + 1 parties

for this role) each locally generating 𝑘 random bits and computing

representation of those bits as a 𝑘-bit integer (line 2). The bits are

input into the computation using SS over Z2, while the integers

are entered using shares in Z
2
𝑘 (line 3). Because we use Input to

Protocol Rounds Communication

RandBit() 1 𝑛 − 1

edaBit(𝑘) log(𝑡+1) (log(𝑘)+1)+1 𝑡2 (log(𝑘)+1)+𝑡+1/2
Table 13: Performance of random bit generation protocols
with communication measured in the number of ring el-
ements sent per party over Z

2
𝑘+2 for RandBit and Z

2
𝑘 for

edaBit(𝑘).

Protocol 8 [𝑎𝑘−1
]𝑘 ← MSB([𝑎]𝑘), where 𝑎 =

∑𝑘−1

𝑖=0
𝑎𝑖2

𝑖 ∈ Z
2
𝑘

1: [𝑟]𝑘 , [𝑟0]1, . . . , [𝑟𝑘−1
]1 ← edaBits(𝑘);

2: [𝑏]𝑘 ← RandBit();
3: [𝑟 ′]𝑘 = [𝑟]𝑘 − [𝑟𝑘−1

]12
𝑘−1

;

4: 𝑐 ← Open([𝑎]𝑘 + [𝑟]𝑘);
5: 𝑐′ = 𝑐 mod 2

𝑘−1
;

6: [𝑢]1 ← BitLT(𝑐′, [𝑟0]1, . . . , [𝑟𝑘−2
]1);

7: [𝑎′]𝑘 = 𝑐′ − [𝑟 ′]𝑘 + 2
𝑘−1 [𝑢]1;

8: [𝑑]𝑘 = [𝑎]𝑘 − [𝑎′]𝑘 ;
9: 𝑒 ← Open([𝑑]𝑘+2

𝑘−1 [𝑏]𝑘) and let 𝑒𝑘−1
be themost significant

bit of 𝑒;

10: [𝑎𝑘−1
]𝑘 = 𝑒𝑘−1

+ [𝑏]𝑘 − 2𝑒𝑘−1
[𝑏]𝑘 ;

11: return [𝑎𝑘−1
]𝑘 ;

generate shares over different rings, we specify the second argu-

ment ℓ , which indicates that the shares need to be produced in

Z
2
ℓ . The output that the protocol produces is the sum of the 𝑡 + 1

random integers (without the carry bits) and its bit decomposition

is computed using bitwise addition BitAdd from [53] of the 𝑡 + 1

integers represented as bits in a tree-like manner.

A.3 Comparisons
Less-than comparisons, [𝑎] < [𝑏], are traditionally computed using

SS by determining the most significant bit of the difference between

𝑎 and 𝑏. Starting from [13], comparison protocols blind the differ-

ence by adding a random integer bit decomposition of which is

known, open the sum, truncate all but one bit, and compensate for

any carry caused by the addition. This logic was adapted to the

ring setting in [20] by using building blocks that work over Z
2
𝑘 .

In the solution that we present as Protocol 8, we incorporate the

edaBit protocol from [27] for efficient random bit generation into

the construction of [20] adopted to the semi-honest setting. The

presence of carry is determined using sub-protocol BitLT which

performs comparison of two bit-decomposed values, one of which

is given in the clear, using binary computation over Z2.

Security of the algorithm follows from prior work and the fact

that we use a composition of secure building blocks. In particu-

lar, the only values revealed in the protocol (in steps 4 and 9) are

information-theoretically protected using freshly generated ran-

domness. The complexity of this protocol and its prior version that

makes calls to RandBit is given in Table 3.

To correctly implement comparison of two 𝑘-bit integers over

ring Z
2
𝑘 , one would need to invoke the MSB protocol 3 times.

However, correctness is also guaranteed if we compare two (𝑘 −
1)-bit integers over ring Z

2
𝑘 using a single call to MSB. We use

16

Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning

the latter approach in our implementation of machine learning

algorithms.

There are noteworthy differences in the design of protocols devel-

oped for a ring as opposed to original protocols for a field. Certain

operations such as prefix multiplication are not available in a ring,

and we resort to logarithmic round building blocks when protocols

over a field achieve constant round complexity. In the context of

comparison, a typical tool for realizing them was truncation (i.e.,

right shift), the cost of which was linear in the number of bits trun-

cated, but the modulus had to be increased by a statistical security

analysis to support such operations. In a ring, on the other hand,

there is no significant increase in the ring size, but the commu-

nication cost is linear in the bitlength of the ring and not in the

bitlength of the truncated portion. This brings different trade-offs,

but the availability of faster arithmetic in a ring will still lead to

significant savings.

B SECURITY DEFINITIONS AND PROOFS
Definition 1. Let parties 𝑃1, . . ., 𝑃𝑛 engage in a protocol Π that

computes function 𝑓 (in1, . . ., in𝑛) = (out1, . . ., out𝑛), where in𝑖 and
out𝑖 denote the input and output of party 𝑃𝑖 , respectively. Denote
VIEWΠ (𝑃𝑖) as the view of participant 𝑃𝑖 during the execution of proto-
col Π. More precisely, 𝑃𝑖 ’s view is formed by its input and internal ran-
dom coin tosses 𝑟𝑖 , as well as messages𝑚1, . . .,𝑚𝑘 passed between the
parties during protocol execution: VIEWΠ (𝑃𝑖) = (in𝑖 , 𝑟𝑖 ,𝑚1, . . .,𝑚𝑘) .
Let 𝐼 = {𝑃𝑖1 , 𝑃𝑖2 , . . ., 𝑃𝑖𝑡 } denote a subset of the participants for 𝑡 < 𝑛,
VIEWΠ (𝐼) denote the union of the views of the participants in 𝐼 , and
𝑓𝐼 (in1, . . . , in𝑛) denote the projection of 𝑓 (in1, . . . , in𝑛) on the co-
ordinates in 𝐼 . We say that protocol Π is 𝑡-private in the presence
of semi-honest adversaries if for each coalition of size at most 𝑡
there exists a probabilistic polynomial time simulator 𝑆𝐼 such that
{𝑆𝐼 (in𝐼 , 𝑓𝐼 (in1, . . . , in𝑛)), 𝑓 (in1, . . ., in𝑛)} ≡ {VIEWΠ (𝐼), (out1, . . . ,
out𝑛)}, where in𝐼 =

⋃
𝑃𝑖 ∈𝐼 {in𝑖 } and ≡ denotes computational or

statistical indistinguishability.

Proof of Theorem 1. Let 𝐼 denote the set of corrupt parties. We

consider themaximal amount of corruptionwith |𝐼 | = 𝑡 . Because the

computation proceeds on secret shares and the parties do not learn

the result, no information should be revealed to the computational

parties as a result of protocol execution.

We build a simulator 𝑆𝐼 that interacts with the parties in 𝐼 as

follows: when a party 𝑝 ∈ 𝐼 expects to receive a value from another

party 𝑝′ ∉ 𝐼 in step 5 of the computation according to function 𝜒 ,

𝑆𝐼 chooses a random element of R and sends it to 𝑝 . 𝑆𝐼 preserves

consistency of the view and ensures that when the same value is

to be sent by 𝑝′ to multiple parties in 𝐼 , all of them receive the

same random value. This is the only portion of the protocol where

corrupt parties can receive values (that the simulator produces),

and the only portion of the protocol when a corrupt party 𝑝 may

send a value to an honest party 𝑝′ is step 4, which 𝑆𝐼 receives on

behalf of 𝑝′. All other computation is local, in which 𝑆𝐼 does not

participate.

We next argue that the simulated view is computationally indis-

tinguishable from the real view. First, note that the corrupt parties

in 𝐼 collectively hold shares 𝑎𝑇 , 𝑏𝑇 and keys 𝑘𝑇 (and thus can com-

pute values G𝑇 .next) for each 𝑇 ∈ T such that ∃𝑝 ∈ 𝐼 and 𝑝 ∉ 𝑇 .

This entitles the corrupt parties to computing the corresponding

shares 𝑐𝑇 , but the rest of the shares must remain unknown, so that

they are unable to compute 𝑐 . Next, notice that when |𝐼 | = 𝑡 , there

is only one share𝑇 ∗ = 𝐼 such that all parties 𝑝 ∈ 𝐼 have no access to
𝑘𝑇 ∗ and 𝑐𝑇 ∗ , while all parties 𝑝′ ∉ 𝐼 store those values. Then there

are two cases to consider: (1) If one or more parties 𝑝 ∈ 𝐼 receive
𝜒 (𝑝′)’s share of 𝑣𝑝′ from another party 𝑝′ ∉ 𝐼 (it must be the case

that 𝜒 (𝑝′) ≠ 𝑇 ∗), the received share has been masked by a fresh

pseudo-random element from G𝑇 ∗ , is therefore pseudo-random

and indistinguishable from random by any 𝑝 ∈ 𝐼 . (2) If no party

𝑝 ∈ 𝐼 receives a value from any given 𝑝′ ∉ 𝐼 , indistinguishability is

trivially maintained. □

Proof of Theorem 2. As before, let 𝐼 denote the set of corrupt

parties with |𝐼 | = 𝑡 . We build a simulator 𝑆𝐼 that interacts with the

parties in 𝐼 as follows: after 𝑆𝐼 extracts shares 𝑎𝑇 , 𝑏𝑇 , 𝑘𝑇 (𝑇 ∈ T
such that ∃𝑝 ∈ 𝐼 and 𝑝 ∉ 𝑇) from the corrupt parties and receives

the output 𝑐 from the trusted party, 𝑆𝐼 computes 𝑣 (𝑝) as prescribed
by the protocol for each 𝑝 ∈ 𝐼 and also their sum 𝑣𝐼 =

∑
𝑝∈𝐼 𝑣

(𝑝)

(in R). 𝑆𝐼 sets 𝑣 (𝑝) values for the remaining 𝑛 − 𝑡 parties to random
elements of R subject to

∑
𝑝∉𝐼 𝑣

(𝑝) = 𝑐 − 𝑣𝐼 (in R). 𝑆𝐼 , acting on

behalf of party 𝑝 ∉ 𝐼 , sends the corresponding 𝑣 (𝑝) to each party in

𝐼 .

To show that this simulation is indistinguishable from the real

protocol execution, recall that there will be at least one 𝑇 , denoted

by 𝑇 ∗ = 𝐼 , to which the parties in 𝐼 have no access (and thus

correspondingly cannot distinguish the output G𝑇 ∗ from random

elements of the ring). During real protocol execution the parties in

𝐼 receive 𝑡 + 1 values 𝑐 (𝑝) , one per 𝑝 ∉ 𝐼 . With the knowledge that

the corrupt parties collectively have, they can remove the effect of

all randomization except the use of the output of G𝑇 ∗ . If we let 𝑧𝑖,𝑇 ∗

denote the 𝑖th call to G𝑇 ∗ .next during the execution of MulPub
in Protocol 2, then the corrupt parties can recover 𝑡 values of the

form 𝑣 (𝑝) + 𝑧𝑖,𝑇 ∗ with unique 𝑝 and 𝑖 and one value of the form

𝑣 (𝑝) −∑𝑡
𝑖=1

𝑧𝑖,𝑇 ∗ for another 𝑝 . The next thing to notice is that any

𝑡 (out of 𝑡 + 1) of these values are pseudo-random and computation-

ally protect the corresponding 𝑣 (𝑝) values. The introduction of the

remaining value reveals the sum of all 𝑣 (𝑝) s, but not other infor-
mation (i.e., the last value corresponds to the difference to make

the sum equal to 𝑐 − 𝑣𝐼). This means that substituting these values

with random elements subject to

∑
𝑝∉𝐼 𝑣

(𝑝) = 𝑐 − 𝑣𝐼 provides the
same information to the corrupt parties and achieves computational

indistinguishability of the views. □

Proof of Theorem 3. It is straightforward to show security of the

full version of Inputwhen the input owner is different from the com-

putational parties. That is, the input owner creates proper shares

according to the SS scheme using a PRG. Thus, as long as security

of the PRG holds, the real view is computationally indistinguishable

from a simulated view created without the use of any secrets.

However, when the input owner is one of the computational

parties, only a reduced set of shares is produced. Thus, we need to

evaluate the combined view of each coalition of 𝑡 corrupt partici-

pants. There are two important cases to consider: (i) input owner

𝑝∗ is a part of the coalition and (ii) it is not.

When 𝑝∗ is a corrupt participant, building a simulator is trivial:

the simulator simply receives shares from the input owner on be-

half of honest participants and terminates. Because inputs 𝑎𝑖 are

17

Alessandro Baccarini, Marina Blanton, and Chen Yuan

available to the corrupt parties, no information need to be protected

and the real and simulated views use identical values.

When there are 𝑡 corrupt participants who are different from

𝑝∗, we simulate the view by choosing a random value for 𝑎𝑖,𝑇 ∗ and

sending it to each corrupt 𝑝 ∉ 𝑇 ∗. What remains to show is that

the 𝑡 corrupt parties do not possess enough shares to reconstruct

the secret and, as a result, cannot learn any information about it.

In more detail, 𝑝∗ distributes its secrets using only shares 𝑇 such

that 𝑇 ∈ T \ {𝑇 ∗}. However, because we use (𝑛, 𝑡) threshold SS,

there will be a share𝑇 possessed by 𝑝∗ which is not available to any

of the 𝑡 corrupt parties 𝐼 . Specifically that share is available to all

participants except corrupt minority 𝐼 . This means that the corrupt

parties will not be able to reconstruct information about the private

inputs and the real and simulated views are indistinguishable as

long as PRG’s security holds. □

C 5PC AND 7PC MULTIPLICATION MAPS
We define the necessary mappings for our multiplication protocol

[𝑎] · [𝑏] (Protocol 1). Since 𝜌 is substantially larger for 5 and 7

parties, we instead give one possible expression to calculate 𝑣 (𝑝)

for an arbitrary party 𝑝 . All index calculations are performed mod

𝑛.

For the 5-party configuration, we assign a unique index (𝑖) to
each 𝑇 ∈ 𝑆𝑝 for party 𝑝:

(1) = {𝑝 + 1, 𝑝 + 2}
(2) = {𝑝 + 1, 𝑝 + 3}
(3) = {𝑝 + 1, 𝑝 + 4}

(4) = {𝑝 + 2, 𝑝 + 3}
(5) = {𝑝 + 2, 𝑝 + 4}
(6) = {𝑝 + 3, 𝑝 + 4}

such that we use 𝑎 (𝑖) , 𝑏 (𝑖) in place of 𝑎𝑇1
, 𝑏𝑇2

in the expression for

𝑣 (𝑝) . Then, the product of all shares can be computed by party 𝑝:

𝑣 (𝑝) = 𝑎 (1)

(
6∑︁

𝑖=1

𝑏 (𝑖)

)
+ 𝑎 (2)

(
6∑︁

𝑖=1

𝑏 (𝑖)

)
+ 𝑎 (3)

(
𝑏 (2) + 𝑏 (4)

)
+ 𝑎 (4)

(
𝑏 (1) + 𝑏 (3)

)
+ 𝑎 (5)

(
𝑏 (1) + 𝑏 (2)

)
+ 𝑎 (6)

(
𝑏 (1) + 𝑏 (5)

)
.

Lastly, we define the mapping 𝜒 (𝑝) = {𝑝 + 1, 𝑝 + 2}.
For the 7-party configuration, we once again assign a unique

index (𝑖) to each 𝑇 ∈ 𝑆𝑝 for party 𝑝 such that:

(1) = {𝑝 + 1, 𝑝 + 2, 𝑝 + 3}
(2) = {𝑝 + 1, 𝑝 + 2, 𝑝 + 4}
(3) = {𝑝 + 1, 𝑝 + 2, 𝑝 + 5}
(4) = {𝑝 + 1, 𝑝 + 2, 𝑝 + 6}
(5) = {𝑝 + 1, 𝑝 + 3, 𝑝 + 4}
(6) = {𝑝 + 1, 𝑝 + 3, 𝑝 + 5}

(7) = {𝑝 + 1, 𝑝 + 3, 𝑝 + 6}
(8) = {𝑝 + 1, 𝑝 + 4, 𝑝 + 5}
(9) = {𝑝 + 1, 𝑝 + 4, 𝑝 + 6}
(10) = {𝑝 + 1, 𝑝 + 5, 𝑝 + 6}
(11) = {𝑝 + 2, 𝑝 + 3, 𝑝 + 4}
(12) = {𝑝 + 2, 𝑝 + 3, 𝑝 + 5}

(13) = {𝑝 + 2, 𝑝 + 3, 𝑝 + 6}
(14) = {𝑝 + 2, 𝑝 + 4, 𝑝 + 5}
(15) = {𝑝 + 2, 𝑝 + 4, 𝑝 + 6}
(16) = {𝑝 + 2, 𝑝 + 5, 𝑝 + 6}

(17) = {𝑝 + 3, 𝑝 + 4, 𝑝 + 5}
(18) = {𝑝 + 3, 𝑝 + 4, 𝑝 + 6}
(19) = {𝑝 + 3, 𝑝 + 5, 𝑝 + 6}
(20) = {𝑝 + 4, 𝑝 + 5, 𝑝 + 6}

The product of all shares can be computed by party 𝑝:

𝑣 (𝑝)=𝑎 (1)

(
20∑︁
𝑖=1

𝑏 (𝑖)

)
+𝑎 (2)

(
20∑︁
𝑖=1

𝑏 (𝑖)

)
+𝑎 (3)

(
20∑︁
𝑖=1

𝑏 (𝑖)

)
+𝑎 (4)

(
20∑︁
𝑖=1

𝑏 (𝑖)

)
+𝑎 (5)

(
𝑏 (1)+𝑏 (2)+𝑏 (3)+𝑏 (4)+𝑏 (11)+𝑏 (12)+𝑏 (13)+𝑏 (14)+𝑏 (16)

)
+𝑎 (6)

(
20∑︁
𝑖=1

𝑏 (𝑖)

)
+𝑎 (7)

(
𝑏 (3)+𝑏 (6)+𝑏 (8)+𝑏 (10)+𝑏 (12)+𝑏 (14)

)
+𝑎 (8)

(
𝑏 (1)+𝑏 (5)+𝑏 (6)+𝑏 (7)+𝑏 (11)+𝑏 (12)+𝑏 (13)

)
+𝑎 (9)

(
𝑏 (1)+𝑏 (5)+𝑏 (6)+𝑏 (11)+𝑏 (12)+𝑏 (17)

)
+𝑎 (10)

(
𝑏 (2)+𝑏 (5)+𝑏 (8)+𝑏 (9)+𝑏 (11)+𝑏 (14)

)
+𝑎 (11)

(
𝑏 (1)+𝑏 (2)+𝑏 (3)+𝑏 (4)+𝑏 (5)+𝑏 (6)+𝑏 (10)

)
+𝑎 (12)

(
𝑏 (1)+𝑏 (2)+𝑏 (5)+𝑏 (7)+𝑏 (8)+𝑏 (9)

)
+𝑎 (13)

(
𝑏 (1)+𝑏 (2)+𝑏 (3)+𝑏 (5)+𝑏 (6)+𝑏 (8)

)
+𝑎 (14)

(
𝑏 (1)+𝑏 (5)+𝑏 (6)+𝑏 (7)

)
+𝑎 (15)

(
𝑏 (3)+𝑏 (5)+𝑏 (6)

)
+𝑎 (16)

(
𝑏 (2)+𝑏 (5)

)
+𝑎 (17)

(
𝑏 (1)+𝑏 (2)+𝑏 (3)+𝑏 (4)+𝑏 (16)

)
+𝑎 (18)

(
𝑏 (1)+𝑏 (2)+𝑏 (3)

)
+𝑎 (19)

(
𝑏 (2)+𝑏 (9)

)
+𝑎 (20)

(
𝑏 (1)+𝑏 (6)+𝑏 (7)

)
.

Lastly, we define the mapping 𝜒 (𝑝) = {𝑝 + 1, 𝑝 + 2, 𝑝 + 3}.

D WANMICRO-BENCHMARKS
The experimental configuration for WAN micro-benchmarks use

the same servers as the LAN micro-benchmarks, with an added

23 ms one-way latency and the bandwidth throttled to 76 Mbps.

18

Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning

Setup

Batch Size

1 10 10
2

10
3

10
4

10
5

10
6

3PC

FG
30 23.5 23.5 23.7 25.9 40.9 291 2669

60 23.5 23.6 23.7 26.3 70.8 438 4187

R 30 23.5 23.5 23.5 23.6 24.6 169 1525

60 23.6 23.6 23.5 23.6 52.7 311 2994

5PC

FG
30 23.5 23.5 23.7 27.1 49.7 448 4285

60 23.5 23.5 23.8 27.4 79.6 724 6927

FD
30 47.1 47.1 47.2 52.3 91.2 518 4678

60 47.1 47.1 47.3 52.8 115 758 6957

R 30 47.0 46.9 47.0 47.5 54.2 482 4934

60 46.9 47.0 46.8 47.9 105 981 9443

7PC

FG
30 23.5 23.5 23.9 28.6 85.6 661 6109

60 23.5 23.6 24.1 29.1 116 1035 9843

FD
30 47.1 47.1 47.9 57.7 126 860 7513

60 47.1 47.2 48.1 58.4 162 1235 10972

R 30 70.5 70.4 70.8 74.9 174 1484 11503

60 70.4 70.4 70.7 76.1 253 2426 21083

Table 14: WAN runtime of multiplication protocols in ms. FG
and FD refer to the optimized GRR and DN field multiplica-
tion from [11], resp., and R is our ring realization. 30 and 60
are integer bitlengths.

Setup

Matrix Size

10 × 10 100 × 100 500 × 500 1000 × 1000

3PC

F (30) 23.8 116 1,278 9,462

F (60) 23.8 119 1,556 10,292

R (30) 23.3 28.3 582 2,842

R (60) 23.3 57.2 968 4,489

5PC

FG (30) 23.9 119 1,375 10,313

FG (60) 24.0 123 1,733 12,163

FD (30) 47.5 146 1,692 12,492

FD (60) 47.5 153 2,185 14,952

R (30) 46.7 63.1 2,103 10,155

R (60) 46.7 116 3,297 15,938

7PC

FG (30) 24.3 121 1,483 11,296

FG (60) 24.3 126 1,845 12,923

FD (30) 48.2 147 1,886 15,389

FD (60) 48.2 155 2,443 16,598

R (30) 71.1 206 8,200 58,142

R (60) 71.3 301 12,018 98,145

Table 15: WAN runtime of matrix multiplication in ms.

Setup

Batch Size

1 10 10
2

10
3

10
4

10
5

10
6

3PC

F (30) 23.5 23.5 24.1 28.4 58.8 495 4475

F (60) 23.5 23.5 24.2 30.1 101 743 6870

R (30) 23.6 23.5 23.5 23.9 32.8 232 2120

R (60) 23.6 23.6 23.5 24.9 67.5 430 4173

5PC

F (30) 23.5 23.6 24.7 33.9 95.7 944 9157

F (60) 23.5 23.6 24.9 35.1 142 1382 12781

R (30) 23.5 23.5 23.6 24.3 41.6 386 3803

R (60) 23.5 23.5 23.5 25.1 83.0 763 7493

7PC

F (30) 23.7 23.7 23.9 26.1 81.6 626 6201

F (60) 23.7 23.7 23.9 27.0 123 1111 11105

R (30) 23.6 23.6 23.8 25.6 79.7 627 6017

R (60) 23.7 23.6 24.0 27.4 129 1194 11626

Table 16: WAN runtime of RandBit protocols in ms.

Protocol

Batch Size

1 10 10
2

10
3

10
4

10
5

10
6

3PC

R (30) 164 165.079 164 169 233 1525 13899

R (60) 189 188.855 188 198 414 3062 29212

[3] (32) 1045 1044 1045 1046 1050 9834 97638

[3] (64) 1849 1849 1850 1850 1859 17351 172588

Table 17: WAN runtime of edaBit protocols in ms compared
to MP-SPDZ implementation.

Protocol

Batch Size

1 10 10
2

10
3

10
4

10
5

10
6

3PC

F (30) 164 169 205 639 5114 47002 469621

F (60) 166 176 308 1442 12611 120213 1313728

R+rB (30) 187 187 189 244 859 7492 71238

R+rB (60) 210 211 222 464 2893 26743 262235

R+eB (30) 351 351 351 357 483 2656 23065

R+eB (60) 398 398 398 410 849 5015 46611

[3]+eB (32) 1448 1449 1448 1451 1491 11099 105248

[3]+eB (64) 2253 2253 2254 2219 2398 18801 181247

[3]+ABY3 (32) 452 453 500 1160 7839 74717 741118

[3]+ABY3 (64) 476 477 524 1178 7891 75042 744067

5PC

F (30) 166 174 229 998 8533 79248 801954

F (60) 168 184 364 2348 21007 202218 2119692

R+rB (30) 351 351 377 507 1636 14508 139451

R+rB (60) 398 398 528 863 5351 50290 493042

R+eB (30) 962 973 964 1003 1436 10662 98823

R+eB (60) 1103 1104 1110 1193 2805 23685 201298

7PC

F (30) 166 169 212 947 8512 82489 829618

F (60) 167 175 371 2389 22649 222109 2239171

R+rB (30) 516 516 550 738 3181 26537 126586

R+rB (60) 586 588 737 1434 9297 84788 415354

R+eB (30) 1431 1432 1461 1682 6339 43072 368024

R+eB (60) 1642 1648 1710 2133 12181 85635 784269

Table 18: WAN runtime of MSB protocols in ms unless
marked otherwise. rB and eB indicate variants using RandBit
and edaBit, respectively.

19

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Secure Multi-Party Computation
	3.2 Secret Sharing
	3.3 Replicated Secret Sharing

	4 Basic Protocols
	4.1 Random Number Generation
	4.2 Multiplication
	4.3 Revealing Private Values
	4.4 Inputting Private Values

	5 Composite Protocols
	6 Neural Network Applications
	6.1 Share Conversion
	6.2 Quantized Neural Networks

	7 Performance Evaluation
	7.1 Micro-benchmarks
	7.2 Machine Learning Applications

	8 Conclusions
	Acknowledgments
	References
	A Additional Protocols
	A.1 Inputting Private Values
	A.2 Random Bit Generation
	A.3 Comparisons

	B Security Definitions and Proofs
	C 5PC and 7PC Multiplication Maps
	D WAN Micro-benchmarks

