
Achieving Full Security in Privacy-Preserving Data
Mining
Marina Blanton

Department of Computer Science and Engineering
University of Notre Dame

mblanton@nd.edu

Abstract—In privacy-preserving data mining, a number of
parties would like to jointly learn a function of their priva te data
sets in a way that no information about their inputs, beyond the
output itself, is revealed as a result of such computation. Yang et
al. 2010 showed that several popular data mining algorithmscan
be reduced to three basic operations, secure implementation of
which – termed Secure Product of Summations (SPoS), Secure
Ratios of Summations (SRoS), and Secure Comparison of Sum-
mations (SCoS) – would lead to privacy-preserving data mining
solutions. The authors showed that prior privacy-preserving data
mining solutions are unsatisfactory in presence of participants’
collusion and they gave new implementation of these operations
that were designed to sustain the collusion. In this work, weshow
that unfortunately the protocols of Yang et al. leak a significant
amount of private information and are not secure even if no
collusion takes place. We then show how these operations can
be securely and efficiently realized in the same and stronger
security models, which leads to fully secure solutions for many
data mining algorithms.

I. I NTRODUCTION

Privacy-preserving data mining has received a significant
amount of attention in the research literature in the recent
years. This is not surprising given a vast growth of the amount
of collected information, including sensitive data, that we
might desire to analyze. In privacy-preserving data mining,
the data are distributed across multiple sites and are considered
private information. The data owners would like to mine on
their collective data, but in a way that no information about
their private data sets is available to other participants (except
what can be deduced from the output of the computation).

In this distributed setting, we can distinguish between
horizontally partitioned data, vertically partitioned data, and
their hybrid. In horizontally partitioned data, each data owner
has complete information about a distinct set of entities. In
vertically partitioned data, on the other hand, all partieshold
information about the same set of entities, but each possesses
information about distinct attributes.

A recent work by Yang et al. [24] provided an important
observation that several popular data mining algorithms can be
realized in a privacy-preserving way by relying on secure real-
izations of the following functions: (i) product of summations,
(ii) ratio of summations, and (iii) comparison of summations.
In all of the above cases, the sums are computed by adding
private inputs of all of the participants, after which either
the product, ratio (division), or comparison is applied to the
aggregate values. Examples of data mining algorithms that can

be securely realized using secure implementations of the three
functions above include:

• Probability distribution of a data set distributed among
a number of parties can be securely estimated by using
a privacy-preserving solution that computes the ratio of
summations [24]. In particular, if each party has a number
of observations drawn from the same probability distri-
bution, the parties can jointly estimate the distribution
by dividing the number of data items with a particular
value (summed across all parties) by the total number of
collected items (also summed across all parties).

• Jha et al. [16] showed that secure computation ofk-
means clustering on horizontally partitioned data can be
reduced to a secure computation of weighted average
computation. This is the same as computing a ratio (or
division) of sums, and therefore can be achieved by a
secure ratio of summations protocol.

• Similarly, secure computation of Naı̈ve Bayes classifier
on horizontally partitioned data can be performed by
securely computing the ratio of summations [23].

• In k-means clustering on vertically partitioned data, on
the other hand, the closest cluster is determined by
computing the index of the cluster with the minimum sum
(where the sum is over the participants’ private data) [22].
This requires secure computation of comparison of sum-
mations. More generally, when a number of elements
need to be privately sorted, so that only the ordering of
the elements is revealed, secure comparison can be used
as well.

Therefore, secure computation of the summation (addition),
product (multiplication), ratio (division), and comparison,
where the private inputs are contributed byn > 2 parties,
is the focus of this work.

Overview. Let P0, . . ., Pn−1 denote then > 2 parties who
contribute their data to the computation and learn the result.
Yang et al. [24] show that in prior literature multi-party
privacy-preserving protocols for the data mining algorithms
mentioned above are susceptible to the problem of collusion.
That is, solutions in [22], [18], [23] use special parties that
are not expected to collude with any other participants (we
refer the reader to [24] for additional information). Because
this assumption can be very difficult to meet in practice, it is
desirable to have solutions that are resistant to collusionby



subsets of the participants.
To address the problem, Yang et al. take an interesting

approach in designing privacy-preserving protocols for prod-
uct, ratio, and comparison of summations. Unlike computing
over the integers, which is standard in secure multi-party
computation, arithmetic is performed over real operands. All
inputs of each party are assumed to be in the range(0, 1),
which means that they are scaled to that range before joint
computation takes place. More precisely, the authors provide
protocols for the following functionalities:

1) In Secure Product of Summations (SPoS)protocol, party
Pi, for i = 0, . . ., n − 1, has inputx(i)

1 and x
(i)
2 , where

x
(i)
j ∈ (0, 1) for j = 1, 2. As a result, each party learns

p =
∑n−1

i=0 x
(i)
1 ·

∑n−1
i=0 x

(i)
2 .

2) In Secure Ratios of Summations (k-SRoS)protocol, party
Pi, for i = 0, . . ., n−1 has inputx(i)

1 , x
(i)
2 , . . ., x

(i)
k , where

x
(i)
j ∈ (0, 1) for j = 1, . . ., k. As a result, each party

learnsr =
∑n−1

i=0 x
(i)
1 :

∑n−1
i=0 x

(i)
2 : · · · :

∑n−1
i=0 x

(i)
k .

3) In Secure Comparison of Summations (SCoS)protocol,
party Pi, for i = 0, . . ., n − 1, has inputx(i)

1 , andx
(i)
2 ,

wherex
(i)
j ∈ (0, 1) for j = 1, 2. As a result, each party

learnsl = arg maxk={1,2}(
∑n−1

i=0 x
(i)
k ).

The Secure Product of Summations protocol SPoS protocol
is realized in [24] using homomorphic encryption, and the
authors provide a rigorous security proof against semi-honest
participants (see below for a definition). The Secure Ratios
k-SRoS and Comparison of Summation SCoS protocols are
then built using the SPoS protocol and were left without
security analysis. In this work we show that unfortunately the
latter two protocols leak a significant amount of information
about private inputs. Furthermore, the functionality realized
by the SPoS protocol can be achieved (over integers or fixed
point values) in a straightforward manner using a number of
underlying secure computation techniques. Secure solutions
for the comparison and ratio (or division) operations, however,
are more complex with the state of the art secure multi-party
computation (SMC) techniques and require careful design.
Therefore, one of the goals of this work is to show how the
above functions can be securely and efficiently realized, sothat
they could be used to build secure solutions for data mining
algorithms.

As another security-related aspect of the above protocol
formulation, notice that the operations arenot composable.
That is, the result of the computation in each of SPoS,k-
SRoS, and SCoS is revealed to the participants in the clear
and therefore the protocols cannot be automatically used as
building blocks in more complex protocols. This, in particular,
means that only data mining algorithms that can be realized
using a single invocation ofk-SRoS protocol or a number
of SCoS protocols where the results of the comparisons are
not private (i.e., part of the output) are supported. We argue
that composability is desirable for widening the applicability
of the solutions and will result in the ability to securely
evaluate a much richer set of functions. For example, privacy-

preserving computation on vertically partitioned data often
involves multiple applications of the product operation (e.g., in
Naı̈ve Bayes and association rule mining). Also, in association
rules mining, finding frequent itemsets with support exceeding
certain thresholdk% relies on addition, multiplication, and
comparison operations, which cannot be realized by a single
protocol above, but can be realized by their combination.
Finally, when the index of the closest cluster is computed in
k-means on vertically partitioned data, repeated application of
SCoS would lead to information about the distance ordering of
all of the clusters, which is undesirable and can be eliminated
if the comparison protocol is composable.

To further widen the scope of data mining algorithms that
can be securely realized using these techniques, we decompose
the above protocols into four distinct operations: addition,
multiplication, comparison, and division. We then provide
secure and composable realizations for each of them. This
means that arguments to each operation are distributed among
the participants and the outputs are also communicated in a
distributed way. This enables secure evaluation of any number
of these operations in any order. Then in the beginning, each
party will distribute its inputs among all of the participants,
and once the desired function is computed, the parties will
combine their outputs to learn the result of the computation.
This setup has an additional advantage in that the set of parties
who hold the inputs does not have to be the same as the set
of parties who carry out the computation. Similarly, the setof
parties who receive the output can be different from the set of
parties supplying the inputs, carrying out the computation, or
both. This has the flexibility that, for instance, for efficiency
reasons the computation can be carried out by a selected group
of input owners on behalf of all input providers or even be
outsourced to a number of computational servers.

To summarize, the contributions of this work are: (i) we
analyzek-SRoS and SCoS protocols of Yang et al. and show
that they do not satisfy necessary security guarantees and (ii)
we show how secure and composable solutions for addition,
multiplication, comparison, and division operations can be
realized to support a broader range of data mining algorithms.
These solutions are secure in the same as in [24] and stronger
security models.

Security model. In secure multi-party computation (SMC),
there are two standard security models with respect to the
malicious behavior of the participants. In the semi-honest(or
honest-but-curious or passive) model, the participants follow
the computation as prescribed, but might attempt to compute
additional information from the messages observed during
protocol execution. In the malicious (or active) model, the
participants can arbitrarily deviate from the protocol, including
aborting the computation, substituting wrong values for the
intermediate results, etc. In both models, the participants
can collude (i.e., share their information and coordinate their
actions), which is modeled by an adversary that corrupts a
number of participants. In the semi-honest model, securityis
achievable even if there is only a single honest participant. In



the malicious model, however, the number of honest parties is
required to be a larger fraction of the participants (e.g., if all
corrupted participants quit, the honest parties should be able
to bring the computation to completion).

Publications that provide privacy-preserving solutions for
data mining algorithms, including Yang et al., normally as-
sume the semi-honest model (a number of publications assume
even weaker security model, in which semi-honest participants
do not collude). We therefore next formalize the security
definition for that model.

Definition 1: Let P0, . . ., Pn−1 engage in protocolπ that
computes functionf(in0, . . ., inn−1) = (out0, out1, . . .,
outn−1), whereini andouti are the input and output of party
Pi, respectively. LetI = {Pi1 , Pi2 , . . ., Pit

} denote a subset of
the participants fort < n andVIEWπ(I) denote the combined
view of participants inI during execution of protocolπ. In
particular,Pi’s view is formed by its input, internal random
coin tossesri, and messagesm1, . . ., ms passed between the
parties during protocol execution, i.e.,

VIEWπ(Pi) = (ini, ri, m1, . . ., ms).

The view ofI is then the union of the views of the participants
in I. We say that protocolπ is t-private in presence of semi-
honest adversaries if for each coalitionI of size at mostt
there exists a probabilistic polynomial time simulatorSI such
that

{SI(inI , f(in0, . . ., inn−1))} ≡ {VIEWπ(I), outI},

where inI =
⋃

Pi∈I{ini}, outI =
⋃

Pi∈I{outi}, and “≡” de-
notes computational indistinguishability (using an appropriate
security parameter).

Standard techniques for converting a solution secure in
the semi-honest model to a solution secure in the malicious
model ensure that each participant computes the next step
of the computation correctly from the results of the previous
steps. Such techniques are available in the literature for certain
underlying secure computation mechanisms.

While the majority of publications on privacy-preserving
data mining (including the work of Yang et al.) assume that
the data owners will be conducting the secure collaborative
computation themselves, this does not need to be the case. In
particular, we distinguish between input parties (IP), compu-
tational parties (CP), and output parties (OP), which can be
formed by distinct or overlapping sets of participants. In the
current setting of data mining, it would be meaningful to have
the parties who contribute their input to also receive the output,
i.e., sets IP and OP to be the same. The computational parties
can be chosen by the participants to minimize the possibility
of collusion or other forms of misbehavior. For example, the
participants can employ computational cloud providers and/or
competing businesses to assume the role of computational
servers. Then prior to the computation, each input provider
distributes its input among the computational servers (in such
a way that t or less colluding servers cannot recover the
input), the servers carry out the secure computation, at the
end of which each server communicates its share of the result

to an output party. Upon receiving output information from
the computational servers, each output parties reconstructs and
learns the result of the computation.

The benefits of separating the input parties from compu-
tational parties include greater flexibility of the solution and
lower computational cost under similar trust guarantees (e.g.,
when the number of computational parties is lower than the
number of input providers, but each of them is more trusted
than an average data provider).

II. SECURITY ANALYSIS OF TECHNIQUES OFYANG ET AL .

In this section we analyze two protocols –k-SRoS and
SCoS – from [24]. In the subsequent analysis we assume that
a fully secure realization of the SPoS protocol, on whichk-
SRoS and SCoS protocols are built, exists.

The Secure Ratios of Summations protocol is given in [24]
as follows:

Protocol k-SRoS

Input: Each partyPi has inputx(i)
1 , x

(i)
2 . . ., x

(i)
k , where each

x
(i)
j ∈ (0, 1).

Output: Each party learnsr =
∑n−1

i=0 x
(i)
1 :

∑n−1
i=0 x

(i)
2 : · · · :

∑n−1
i=0 x

(i)
k .

Protocol steps:
1) EachPi generates a random real numberc(i) in (0, 1).
2) For j = 1, . . ., k, the parties execute SPoS on private

inputs (x
(0)
j , c(0)), . . ., (x

(n−1)
j , c(n−1)) and learnxj =

(x
(0)
j + · · · + x

(n−1)
j ) · (c(0) + · · · + c(n−1)).

3) EachPi computesr = x1 : x2 : · · · : xk.

We next show that this protocol leaks a significant amount of
unintended information about the inputsx

(j)
i . This information

cannot be deduced from the output of the protocol, which
means that the protocol violates the security properties of
Definition 1 which was also used in [24].

First, notice that the magnitude of the productxj provide
information about the magnitude of the sum

∑n

i=1 x
(i)
j , which

cannot be inferred from the output ratio. In particular, while the
value of the productxj can lie in the range(0, n2), a specific
value ofxj will make a part of that interval unreachable, thus
revealing information aboutxj . That is, the value of

∑n

i=1 c(i)

is sampled from the distribution of the sum ofn independent
uniformly distributed variables from the range(0, 1), which is
known and fixed for a fixed value ofn. This means that any
party can rule out unlikely values for

∑n

i=1 c(i) and narrow
the possible range for the sum

∑n

i=1 x
(i)
j even further. We

illustrate this analysis on an example.

Example 1. Let n = 3 and k = 2. Also let x
(0)
1 = 0.18,

x
(1)
1 = 0.23, x

(2)
1 = 0.19, x

(0)
2 = 0.19, x

(1)
2 = 0.15, x

(2)
2 =

0.20, c(0) = 0.36, c(1) = 0.89, and c(2) = 0.18. The only
information that the parties obtain in a secure realizationof
this function isr =

∑n−1
i=0 x

(i)
1 :

∑n−1
i=0 x

(i)
2 = 1 : 0.9. From

this information the parties can deduce that
∑n−1

i=0 x
(i)
2 < 2.7

because
∑n−1

i=0 x
(i)
1 must be less than 3. If the granularity of



the computation is1
ℓ
, the parties also know that that

∑n−1
i=0 x

(i)
1

cannot take a few smallest possible values (such as1
ℓ
, 2

ℓ
, etc.)

since
∑n−1

i=0 x
(i)
2 is smaller and must satisfy the ratior.

During the execution of the protocol above, on the other
hand, the parties learnx1 = 0.858 andx2 = 0.7722. Because
∑n−1

i=0 c(i) < 3, from the released information the parties
immediately know that

∑n−1
i=0 x

(i)
1 > 0.858/3 = 0.286 and

∑n−1
i=0 x

(i)
2 > 0.7722/3 = 0.2574. This reduces the range

of the possible values of
∑n−1

i=0 x
(i)
1 and

∑n−1
i=0 x

(i)
2 by about

10%. The parties might also be able to limit the value of
∑n−1

i=0 x
(i)
1 and

∑n−1
i=0 x

(i)
2 from the above whenℓ is small, i.e.,

because
∑n−1

i=0 c(i) ≥ 3
ℓ
, it must hold that

∑n−1
i=0 x

(i)
1 ≤ 0.858ℓ

3

and
∑n−1

i=0 x
(i)
2 ≤ 0.7722ℓ

3 .
We also know that the probability density function (pdf) for

the sum ofn = 3 uniform variables in (0, 1) is

f(x) =







1
2x2 0 ≤ x ≤ 1
1
2 (−2x2 + 6x − 3) 1 ≤ x ≤ 2
1
2 (x2 − 6x + 9) 2 ≤ x ≤ 3

with the mean 1.5 and variance 0.25. By integratingf(x),
we obtain the cumulative density function (cdf)F (x). Let
C denote a random variable from the distribution of which
∑2

i=0 c(i) is sampled. ThenF (s) = Pr[C ≤ s] = 0.1
when s ≈ 0.8434, which means that a value sampled from
C will be at most 0.8434 with 10% probability. Similarly,
F (s) = Pr[C ≤ s] = 0.9 when s ≈ 2.1566, which gives us
that with probability 80% any given value of

∑2
i=0 c(i) will

lie in the interval[0.8434, 2.1566]. This means that the parties
can discover that with 80% probability0.858

2.1566 ≈ 0.398 ≤
∑n

i=1 x
(i)
1 ≤ 0.858

0.8434 ≈ 1.017, thus narrowing the range for the
inputs even further. Similarly, with 66.67% probability any
given value of

∑2
i=0 c(i) will lie in the range [1, 2], which

in this example implies that the parties learn that with the
probability 66.67%0.429 ≤

∑n

i=1 x
(i)
1 ≤ 0.858. Using the

same analysis, similar information can be learned about the
range of the sum ofx(i)

2 ’s.

The above example showed what information is readily avail-
able to all participants. The situation, however, worsens when
some of the participants collude. The protocols in [24] were
intended to be resilient against any number of colluding
parties, and we next show that the SRoS protocol is far from
secure in that case. Once again, we need to consider what
information the parties can deduce from the output of the
(secure) computation and compare it to the information that
the parties can discover during this protocol. Suppose that
P0 throughPm−1 collude for some1 < m < n. Given the
output of the computationr =

∑n−1
i=0 x

(i)
1 :

∑n−1
i=0 x

(i)
2 (which

will be only partial output whenk > 2) and their respective
inputs

∑m−1
i=0 x

(i)
1 and

∑m−1
i=0 x

(i)
2 , the colluding parties can

learn additional information from the output. In particular, they
can find the relationship between the honest parties’ inputs
∑n−1

i=m x
(i)
1 and

∑n−1
i=m x

(i)
2 by expressing the former as the

function of the latter and somewhat narrow the known range
for the possible values for

∑n−1
i=m x

(i)
1 and

∑n−1
i=m x

(i)
2 using

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
he

 v
al

ue
 o

f x
1(2

)

The value of x2
(2)

Fig. 1. Information about the input values of partyP2 that can be deduced
from the output of a secure ratio protocol.

the fact that both must lie in the range(0, n − m).
In the SRoS protocol of [24], however, much more infor-

mation about private inputs of honest parties can be deduced.
This is due to the fact that additional information aboutc(i)’s
(which are used to protect the inputs) is known and additional
functions of the inputs of honest parties are revealed, which
narrow their range. We illustrate the analysis on an example.

Example 2. For simplicity, we use the same values as in the
previous example. Suppose thatP0 andP1 collude againstP2.
In a secure implementation, the colluding parties only know
that (0.41 + x

(2)
1 )/(0.34 + x

(2)
2 ) = 10/9. They can compute

the linear functionx(2)
1 = 10

9 x
(2)
2 − 0.0322, which is plotted

in Figure 1. The parties then determine that in order for both
x

(2)
1 andx

(2)
2 to lie in the range(0, 1), the value ofx(2)

2 must
be in the range(0.029, 0.929). In other words, the range of
possible values forx(2)

2 is reduced by 8%.
In the protocol of [24], however, the parties know that

(0.41 + x
(2)
1 )(1.25 + c(2)) = 0.858 and (0.34 + x

(2)
2 )(1.25 +

c(2)) = 0.7722. Therefore, they can expressx
(2)
1 andx

(2)
2 as

linear functions ofc(2) and, as before, attempt to limit the
range of values forx(2)

1 andx
(2)
2 . In our example, these func-

tions arex
(2)
1 = 0.858

1.25+c(2) − 0.41 andx
(2)
2 = 0.7722

1.25+c(2) − 0.34,
which are plotted in Figure 2. It is obvious from the figure
that the information leakage is significant and substantially
exceeds what can be deduced from a secure implementation
of the computation. In particular, the range ofx

(2)
1 is narrowed

down to[0, 0.2764] and the range ofc(2) is narrowed down to
[0, 0.8427] using the first function. Using the second function,
the range ofx(2)

2 is narrowed down to[0.0032, 0.2778], but
can further be reduced to[0.0295, 0.2778] considering that the
value ofc(2) can be at most 0.8427 (this value ofc(2) is shown
in the plot forx(2)

2 in Figure 2). Since the range of possible
values is reduced by 72.4% forx(2)

1 and by 76.2% forx(2)
2 ,

it is clear that a large amount of unintended information is
leaked.

We now analyze the second protocol, Secure Comparison of
Summations, which is given in [24] as follows:

Protocol SCoS

Input: Each partyPi has private inputx(i)
1 , x

(i)
2 . . ., where each

x
(i)
j ∈ (0, 1). There is also public integerP > 1.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
he

 v
al

ue
 o

f x
1(2

)

The value of c(2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
he

 v
al

ue
 o

f x
2(2

)

The value of c(2)

Fig. 2. Information about the input values of partyP2 that can be deduced
from the execution ofk-SRoS protocol.

Output: Each party learns a bitb, whereb = 0 if
∑n−1

i=0 x
(i)
1 >

∑n−1
i=0 x

(i)
2 andb = 1 otherwise.

Protocol steps:

1) EachPi generates a random realu(i) in (0, 1−1/P ) and
computesy(i)

1 = x
(i)
1 /P + u(i) andy

(i)
2 = x

(i)
2 /P + u(i).

2) EachPi generates a random realc(i) ∈ (0, 1), and the
parties execute SPoS twice:

(i) on private inputs(y(0)
1 , c(0)), . . ., (y

(n−1)
1 , c(n−1)) to

learnp1 = (y
(0)
1 + · · · + y

(n−1)
1 )(c(0) + · · · + c(n−1)),

(ii) on private inputs(y(0)
2 , c(0)), . . ., (y

(n−1)
2 , c(n−1)) to

learnp2 = (y
(0)
2 + · · · + y

(n−1)
2 )(c(0) + · · · + c(n−1)).

3) EachPi outputs 0 ifp1 > p2, and 1 otherwise.

For conciseness, we only analyze the case when a collusion
of participants takes place. As before, in a secure implemen-
tation, the participants can only learn information that can be
deduced from their inputs and the output bit. If partiesP0

throughPm−1 collude, the only information they learn is the
constraints on the sums

∑n−1
i=m x

(i)
1 and

∑n−1
i=m x

(i)
2 that lead

to the computed bit.
In the comparison protocol of [24], however, additionally

information about the magnitude of the difference
∑n−1

i=0 x
(i)
1 −

∑n−1
i=0 x

(i)
2 can be deduced even without collusion. When

collusion is present, this can additionally lead to information
about the inputs of a particular participant. We next analyze
the protocol in more detail.

While no recommended value forP was given in [24], when
P = 2κ for a security parameterκ > 80, the release of a single
pj statistically hides the value of

∑n−1
i=m x

(i)
j even in presence

of collusion. However, because the value of eachu(i) is reused
in bothp1 andp2, security is violated. That is, by computing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
he

 v
al

ue
 o

f x
1(2

)

The value of x2
(2)

Fig. 3. Information about the input values ofP2 that can be deduced from
the output of a secure comparison protocol.

(p1 − p2)P =
(

∑n−1
i=0 x

(i)
1 −

∑n−1
i=0 x

(i)
2

)

∑n

i=1 c(i) informa-

tion about the magnitude of the difference between inputsx
(i)
1

andx
(i)
2 is gained. When some parties collude, this can lead

to learning information about the inputs of a single individual.

Example 3.Let us use the same set of values forn, x
(i)
1 , x

(i)
2 ,

and c(i) as in the previous examples. That is,n = 3, x
(1)
1 =

0.18, x
(2)
1 = 0.23, x

(3)
1 = 0.19, x

(1)
2 = 0.19, x

(2)
2 = 0.15,

x
(3)
2 = 0.20, c(1) = 0.36, c(2) = 0.89, and c(3) = 0.18. In

secure implementation and in presence of a collusion between
partiesP0 and P1, they know from the output that(0.41 +

x
(2)
1 ) > (0.34−x

(2)
2 ). This allows the parties to slightly restrict

the inputs ofP2, where nowx
(2)
1 ∈ (0.07, 1), x

(2)
2 ∈ (0, 0.93),

and the possible choices for the pair(x
(2)
1 , x

(2)
2 ) are given in

the shaded area in Figure 3.
After executing the protocol, however, the colluding parties

P0 andP1 learn that(p1−p2)P = (0.07+(x
(2)
1 −x

(2)
2 ))(1.25+

c(2)) = 0.0858. This allows them to compute the value of
(x

(2)
1 − x

(2)
2 ) as a function ofc(2), which is shown in the

top plot of Figure 4. That is, the value of(x(2)
1 − x

(2)
2 ) is

restricted to the range(−0.0014,−0.0319). The parties can
thus conclude thatx(2)

2 − 0.0319 < x
(2)
1 < x

(2)
2 − 0.0014. By

combining this information with what is already known from
the output alone (Figure 3), the parties can limit the possible
values of pairs(x(2)

1 , x
(2)
2 ) to the area shaded in the bottom

plot of Figure 4. We can see that the area shaded in Figure 3,
which corresponds to uncertainty aboutP2’s inputs in secure
execution, is reduced by 94.7% to the area shaded in Figure 4
as a result of SCoS execution.

III. SECURE COMPUTATION OF DATA M INING FUNCTIONS

This section shows how the operations identified in Section I
as the basis of many data mining protocols – namely, addition,
multiplication, comparison, and division – can be implemented
in a secure and composable way. Composability means that,
due to the theorem of Canetti [6], a protocol consisting of
secure sub-protocols will be itself secure.

The choice of the techniques used in this work was driven
by the practical SMC efficiency considerations. In particular,
SMC can be based on three general types of techniques:
(i) threshold homomorphic encryption, (ii) garbled circuit



-0.1

-0.05

 0

 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

T
he

 v
al

ue
 o

f (
x 1

(2
) -x

2(2
) )

The value of c(2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
he

 v
al

ue
 o

f x
1(2

)

The value of x2
(2)

Fig. 4. Information about the input values ofP2 that can be deduced from
the execution of SCoS protocol.

evaluation, and (iii) secret sharing. The disadvantage of ho-
momorphic encryption is that all operations take place in
a group of large size, which means that every single op-
eration is expensive. Multi-party garbled circuit evaluation
(GCE) (see, e.g., [14]) is generally more efficient per opera-
tion than homomorphic encryption-based techniques, but uses
Boolean circuits that operate on bits. Furthermore, the most
efficient implementation of multi-party GCE known today,
FairplayMP [3], uses secret sharing techniques for building a
garbled circuit, and several interactive operations over secret-
shared values are needed for each gate. This leaves us with
the techniques based on a linear secret sharing scheme, where
all operations are performed over a field of small size and the
computation of any linear combination of secret-shared values
requires no interaction of the participating parties.

In detail, we assume thatcomputational parties (CP)
P0, . . ., Pn−1 are connected with each other by secure au-
thenticated channels. Each input party also establishes secure
channels withP0 throughPn−1. For concreteness, we assume
that Shamir secret sharing [21] over a finite fieldZp is used
as the underlying secret sharing scheme, wherep is a (small)
prime (such that all values we want to represent do not exceed
p). We use notation[a]p to denote thata is shared among
the parties. In particular, when values is shared, there is
a polynomial fs(x) = atx

t + · · · + a1x + s mod p with
randomly chosen coefficientsai ∈ Zp for i = 1, . . ., t and
Pi’s share isfs(i + 1). With this setup, the shared value
s can be easily reconstructed from anyt + 1 shares using
Lagrange interpolation. On the other hand,t parties or less
cannot learnany informationabout the shared value, i.e., it is
perfectly protected in information-theoretic sense regardless
of the computational power of the participants. Therefore,an

adversary can corrupt up tot parties, wheret < n/2 for
passive adversaries and additional restrictions can applyfor
active adversaries.

Let valuesa and b be shared among the parties as[a]p =
(fa(1), . . ., fa(n)) and [b]p = (fb(1), . . ., fb(n)). Then the
following operations can be performed on the shared values
without any interaction: to compute[a + b mod p]p, each
party Pi locally computesfa(i) + fb(i) mod p; to compute
[c + a mod p]p = c + [a]p wherec is a publicly known value,
each partyPi locally computesc + fa(i) mod p; to compute
[ca mod p]p = c[a]p, each partyPi computescfa(i) mod p.
Similarly, any linear combination of any number of shared
values can be computed locally.

Multiplication of shared values, on the other hand,[ab mod
p]p = [ab]p requiresP0, . . ., Pn−1, to communicate with each
other. In particular, the overhead is dominated by the need
for party Pi to securely transmit anℓ-bit message to each
party (and receive a message from each party), e.g., using the
multiplication protocol from [13]. Therefore, communication
overhead for a single party isn − 1 transmissions, and a
multiplication protocol involves transmission of the total of
O(n2) messages. The current description assumes that the ad-
versary is passive. When security against malicious adversaries
is desired, additional general techniques based on verifiable
secret-sharing (VSS) can be utilized to make the protocols
resilient to such behavior (see, e.g., [13], [10]).

Normally, performance of a protocol is measured in terms
of two parameters: (i) the number of interactions (multipli-
cations, secret splitting or opening) necessary to performthe
computation and (ii) the number of sequential interactions, i.e.,
rounds. We employ the same metric in this work.

Going back to our setup in Section I, before a privacy-
preserving data mining computation takes place, each IP
distributes its private inputs to the CPsP0, . . ., Pn−1. Upon
protocol completion,P0, . . ., Pn−1 communicate their shares
of the output to each OP who reconstructs the result from the
shares. Two secure operations – addition and multiplication –
are trivial in this framework: addition of shares is performed by
each CP locally and multiplication is performed interactively
as described above. The rest of this section concentrates on
the remaining two operations: comparison and division.

A. Comparison

Performing comparison of two values often requires access
to the bits in their binary representation, and we use notation
[a]B = [a1]p[a2]p. . .[aℓ]p to denote that each bit of binary
representation ofa =

∑ℓ

i=1 2iai is secret-shared by the
parties. Because comparison is a commonly used operation,
it has been a subject of research. Some publications provide
techniques for comparing two bit-decomposed values, the most
efficient of which are listed in Table I, while others such as
[7] allow comparison without bitwise representation. We defer
discussion of the latter to section III-D. Theoretical literature
(such as [11]) concentrates on constant-round techniques,
which normally minimize the latency of computation when the
operation is run in isolation. When, on the other hand, many



Source Rounds Interactions Security Passive Active
[11] 8 19ℓ perfect

√ √

[12] log
2
ℓ 3ℓ − 2 perfect

√ √

TABLE I
KNOWN TECHNIQUES FOR COMPARISON OF TWO BIT-DECOMPOSED

VALUES OF LENGTHℓ.

Source Rounds Interactions Security Pas Act
[11] 15 47ℓ log

2
ℓ perfect

√ √

[19] 5 7ℓ + 3 statistical
√ √

[7], [1] log
2
ℓ + 1 ℓ log

2
ℓ + ℓ perfect

√ √

[7], [1] 2 log
2
ℓ − 1 5ℓ − 2 log

2
ℓ − 4 perfect

√ √

Appendix A ℓ 2ℓ − 1 perfect
√ √

TABLE II
KNOWN TECHNIQUES FOR ADDITION OF TWO BIT-DECOMPOSED VALUES

OF LENGTHℓ.

operations can be executed in parallel, techniques that mini-
mize the overall work are preferred. For example, in Table I
the techniques of [12] offer lower round and overall overhead
as long asℓ ≤ 256, i.e., for all data mining applications. The
last three columns in the table show that perfect information-
theoretic security can be achieved in presence of passive or
active adversaries.

B. Bit-oriented addition and subtraction

Before discussing the division operation, we turn our at-
tention to addition and subtraction of bit-decomposed values
[a]B and [b]B. While addition of two secret-shared values
[a]p and [b]p can be performed without any interaction, in
some cases it is beneficial to be able to add two values in
a bit-decomposed form, so that their sum is also available
in the bit-decomposed form (the same functionality can be
achieved by locally computing[a]p and [b]p from [a]B and
[b]B, respectively, as[x]p =

∑ℓ

i=1 2i[xi]p, then locally adding
them[c]p = [a+b]p and decomposing[c]p into bits, but adding
two bitwise values can often be achieved more efficiently
than bit decomposition). In particular, this operation is used
in division and bit decomposition protocols. We list known
techniques for bit-oriented addition in Table II (subtraction
can be performed similarly). Also, while prior publications
target minimizing the number of rounds, the best performance
in terms of the overall overhead is achieved using a linear (in
the length of values) number of rounds. For that reason, we
design addition and subtraction protocols that use only2ℓ− 1
multiplications. They are described in Appendix A.

In Table II, statistical security means that with negligible
probability (in security parameterκ) some information about
private values can be revealed. Protocols with statisticalse-
curity often have to use a field of a larger size resulting in
slower operations.

C. Division

The division operation is most complex among the compu-
tational primitives considered in this work. Privacy-preserving

division protocols appeared in the literature starting from two-
party solutions based on homomorphic encryption [2], [4] to
more recent multi-party protocols [8], [15], [9]. There are
a number of (conventional) division algorithms that can be
used as the basis for secure implementation such as long
division, Newton-Raphson, etc. Perhaps the most efficient
privacy-preserving division protocol is that of Catrina and
Saxena [9] that uses Goldschmidth’s method and was designed
to work on fixed-point values. While that algorithm has faster
convergence (i.e., requires fewer iterations) than long division
which computes a single bit of the quotient per iteration,
the protocol of [9] is not guaranteed to compute the exact
result (without an error). Furthermore, the solution achieves
statistical security and has to rely on fields of large size,
and security against an active adversary was not shown.
We therefore provide an alternative solution that computes
the result exactly, uses only standard techniques for which
countermeasures against active adversaries are known, andcan
have advantageous performance when the length of values is
small.

The solution is built using an intuitive implementation of
division, which consists of a sequence of comparisons and
subtractions. That is, the logic of the protocol for computing
q = ⌊v/d⌋ andr = v mod d is as shown below, wherer holds
the current remainder:

1. r := v;
2. for i = 1, . . ., ℓ

3. qℓ−i := (r
?
≥ 2ℓ−id);

4. r := r − qℓ−i2
ℓ−id;

5. outputq1, . . ., qℓ;

In [15] we built a secure division protocol using this logic and
homomorphic encryption, but homomorphic encryption makes
it too expensive for use in applications that should scale. Here
we start with an optimization suggested in [15], then describe
our own additional optimizations, and use more efficient
building blocks to develop a protocol with fast performance.

Because on line 3 we perform a comparison with2ℓ−id, a
straightforward implementation would involve computation on
values as large as2ℓ−1 bits. It is, however, noted in [15] that
(ℓ + 1)-bit representation is sufficient for all iterations of the
computation. In particular, the(2ℓ − i)-bit representation of
2ℓ−id is formed by shifting the bits of the bit-decomposedd
ℓ−i positions to the left and appendingℓ−i bits corresponding
to zeros. The(ℓ+1)-bit representation of2ℓ−id can be formed
by also appendingℓ−i zero bits to the value ofd, but replacing
the ℓ − i most significant bits of the resulting representation
with a single bit that corresponds to their OR. This means that
if at least one of theℓ−i most significant bits of2ℓ−id is 1, the
relationshipv < 2ℓ−id will be preserved (here the(ℓ + 1)-bit
representation ofv is formed by prepending a zero as its most
significant bit). If, however, all of such bits are 0, the value
of (ℓ + 1)-bit representation of2ℓ−id equals to the value of
its (2ℓ− i)-bit representation. Notice that the(ℓ+1)st bits for
each2id can be computed once for alli before entering the
loop as prefix-OR operationti =

∨i−1
j=0 dℓ−j for i = 1, . . ., ℓ.



To further optimize the computation, we consider reducing
the number of iterations in the division. While the number
of iterations is not reduced asymptotically, our optimizations
reduce their number by a constant multiplicative factor with
minimal impact on the communication and computation of
the protocol. The optimization consists of computing a fixed
number k of quotient bits within a single iteration of the
protocol. The idea consists of replacing the comparison on
line 3 with 2k − 1 parallel comparisons that will comparev
with values2ℓ−i−k+1d · j, wherej ranges from 1 to2k − 1.
Thenk bits of q can be determined from the outcomes of the
comparisons ink− 1 rounds using1

2 (k− 1)k multiplications.

Let ci,j := (r
?
≥ 2ℓ−i−k+1d · j) denote the outcome of a

comparison. We setqℓ−i = ci,2k−2k−1 = ci,2k−1 , qℓ−i−1 is
computed asqℓ−i−1 = qℓ−ici,2k−2k−2+(1−qℓ−i)ci,2k−1−2k−2 ,
etc. Finally, the value of2ℓ−i−k+1d · j is subtracted fromr,
wherej =

∏k−1
t=0 2k−1−tqℓ−i−t.

To accomplish the last step, subtraction must be per-
formed without having access to the computed quotient bits.
We achieve this by forming the value to be subtracted as
∑2k−1

j=1 ij(2
ℓ−i−kd · j), whereij is a bit and at most oneij

is set to 1. The value ofij is computed from the quotient
bits qℓ−i, . . ., qℓ−i−k+1. For example, whenk = 2, we
obtain i1 = ¬qℓ−i ∧ qℓ−i−1, i2 = qℓ−i ∧ ¬qℓ−i−1, and
i3 = qℓ−i ∧ qℓ−i−1. If the valuesd · j are precomputed in
bitwise form in the beginning of the protocol, computation
of ij(d · j) consists of multiplying each bit ofd · j with ij,
after which the result is appended withℓ− i− k + 1 zero bits
to obtainij(2

ℓ−i−k+1d · j). Finally, the sum across allj’s is
performed (on bit-decomposed values) locally because at most
one value being added is non-zero.

The above optimization technique for reducing the number
of rounds affects the way the comparisons are carried out on
line 3 above using(ℓ+1)-bit values, and we need to ensure that
(ℓ + 1)-bit representations are computed for all2ℓ−i−k+1d · j.
In order to combine both optimization techniques on line 4,
we notice that it is sufficient to use onlyℓ least significant bits
of 2ℓ−i−k+1d · j because the subtraction is performed only if
theℓ-bit valuer is larger than2ℓ−i−k+1d ·j. This gives us the
overall division protocol presented next.

For simplicity of exposition, we describe it for the case of
k = 2 and evenℓ (when ℓ is odd, one iteration of the loop
should be executed to compute a single bit of the quotient
instead of two).

Divide([v]B = [v1]. . .[vℓ], [d]B = [d1]. . .[dℓ])

1) The parties execute[s]B = Add(0[d1]. . .[dℓ],
[d1]. . .[dℓ]0), where[s]B = [s1]. . .[sℓ+2].

2) The parties execute([t1], . . ., [tℓ−1]) = PrefixOR([dℓ],
. . ., [d2]) and([t′1], . . ., [t

′
ℓ]) = PrefixOR([sℓ+2], . . ., [s3]),

also set[t0] = 0.
3) Each party sets[r]B = [v]B , [0d]B = 0B, [1d]B = [d]B,

[2d]B = 0[d1]. . .[dℓ−1], and [3d]B = [s1]. . .[sℓ].
4) For i = 1, 3, . . ., ℓ − 1

a) the parties execute[c1] = Compare([r]B ,

0ℓ−i−1[d1]. . .[di+1][tℓ−i−1]), [c2] = Compare([r]B ,
0ℓ−i[d1]. . .[di][tℓ−i]), and [c3] = Compare([r]B ,
0ℓ−i−1[s1]. . .[si+1][t

′
ℓ−i+1]) in parallel, where 0j

denotes concatenation ofj zeros.
b) the parties set[qℓ−i] = [c2] and compute[qℓ−i−1] =

[qℓ−i]([c3] − [c1]) + [c1] using one multiplication.
c) the parties compute[qℓ−i][qℓ−i−1] and set [i1] =

[qℓ−i−1]−[qℓ−i][qℓ−i−1]; [i2] = [qℓ−i]−[qℓ−i][qℓ−i−1];
and [i3] = [qℓ−i][qℓ−i−1].

d) the parties compute in parallel[o1,j ] = [i1][1dj ],
[o2,j ] = [i2][2dj ], and [o3,j ] = [i3][3dj] for j =
1, . . ., i + k − 1.

e) each party locally sets[oj ] = 0 for j = 1, . . ., ℓ− i −
k + 1 and [oj+ℓ−i−k+1] = [o1,j ] + [o2,j ] + [o3,j ] for
j = 1, . . ., i + k − 1 to obtain[o]B = [o1]. . .[oℓ].

f) the parties execute[r]B = Subtract([r]B , [o]B).

5) Return[q]B = [q1]. . .[qℓ].

In the above, step 1 computes3d (the values0d, 1d, 2d, and
3d are explicitly set in step 3), and step 2 computes prefix OR
to form (ℓ + 1)-bit representation of2ℓ−i−1d, 2ℓ−i−12d, and
2ℓ−i−13d. In step 4(a), three comparisons withr are performed
in parallel, after which 2 quotient bits are computed in step
4(b). Steps 4(c)–(e) compute the sum

∑3
j=1 ij(2

ℓ−i−1d · j),
after which it is subtracted fromr. Note that when the
remainderr = v mod d is not needed, steps 4(c)–(f) can be
skipped in the last iteration of the loop.

Complexity. The protocol performs a single addition in step 1
and two prefix OR operations in step 2. The loop in step 4 adds
3 comparison operations, one subtraction, and a number of
multiplications in ℓ

2 iterations. Notice that similar complexity
would be achieved if we performedℓ iterations with a single
comparison and subtraction and a number of multiplications,
while the round complexity would rise by about a factor of
2. Assuming that we use bitwise addition and comparison
operations withlog2 ℓ rounds andPrefixOR with log2 ℓ rounds
and0.5ℓ log2 ℓ interactions from [7] with perfect privacy, we
obtain the round complexity of2 log2 ℓ + 1 + ℓ

2 (2 log2 ℓ + 4).
For ℓ = 32, this gives us 235 rounds. The number of multipli-
cations is1.5ℓ log2 ℓ + ℓ + ℓ

2 (10ℓ + ℓ log2 ℓ− 4) + 3ℓ( ℓ
2 + 1).

When several division or other operations are executed in
parallel, the cost of each of them can be noticeably reduced
at the expense of increasing the number of rounds. Also,
with statistical security guarantees, both the number of rounds
and the overall cost can be reduced by using more efficient
PrefixOR and comparison operations from [7].

Security. As can be seen from the protocol, no single value
is revealed throughout the entire computation, i.e., all values
are handled in a secret shared form. This means that no infor-
mation can be leaked except what the building blocks might
leak. Because we use only secure sub-protocols to perform
privacy-preserving division, by the composition theorem [6] it
means that the entire protocol is also secure. In particular, the
simulator in Definition 1 can perfectly simulate the view of
the parties by using random values (or using the simulators



Source Rounds Multiplications Security Pas Act
[11] 38 94ℓ log

2
ℓ + 93ℓ perfect

√ √

[17] 25 47ℓ log
2
ℓ + 63ℓ + 30

√

ℓ perfect
√ √

[20] 12 39.5ℓ + 15 statistical
√ √

[9], [1] log
2
ℓ + 2 ℓ log

2
ℓ + ℓ + 1 statistical

√

?

TABLE III
KNOWN TECHNIQUES FOR BIT DECOMPOSITION OF ANℓ-BIT VALUE .

for the building blocks) assuming that no more thant parties
collude. Security against active adversaries can be achieved by
using standard verifiable secret sharing techniques.

D. Bit decomposition and related operations

Performance of known techniques for securely computingℓ
least significant bits[a1]. . .[aℓ] from [a]p are summarized in
Table III. Security of the solution in [9], [1] was not shown
to hold in presence of active adversaries. We also note that
the literature provides techniques for performing comparison
without having to bit-decompose the operands first, and the
performance is more efficient than applying bit decomposition
followed by comparison of bit-decomposed values. Such tech-
niques were given in [17], [5], [9] for comparison, equality,
and range checks.

E. Performance

Finally, we show that the techniques described in this work
are practical for many applications. Based on our experiments,
a single round of multiplication takes about 3msec on a LAN
with n = 5 parties, where a noticeable portion comes from the
need to encrypt/decrypt communication. This means that addi-
tion, multiplication, and comparison operations are extremely
fast, while a 235-round division algorithm can be executed in
less than a second. This performance compares favorably with
the performance results for this operation reported by Yanget
al. [24] which do not tolerate collusion.

IV. CONCLUSIONS

This work follows the line of research taken by Yang et
al. [24] that suggest that a large number of data mining
problems can be realized in a privacy-preserving setting by
designing techniques for what we decompose into secure eval-
uation of addition, multiplication, comparison, and division.
We first show that, despite security claims given in [24], their
protocols are not secure (i.e., leak a significant amount of
private information) in presence of semi-honest adversaries
even if no collusion between the participants takes place. We
then show how efficient solutions secure in both semi-honest
and malicious models can be developed in this framework.
An additional advantage of our approach is that the protocols
do not need to be run by the data owners themselves, but
instead can be executed by a selected groups of parties or
even outsourced to external computational servers.

ACKNOWLEDGMENTS

This work was supported in part by the grant AFOSR-
FA9550-09-1-0223 from the Air Force Office of Scientific
Research. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the
author and do not necessarily reflect the views of the AFOSR.

REFERENCES

[1] SecureSCM Project Deliverable D9.2.
http://pi1.informatik.uni-mannheim.de/index.php?pagecontent=site/
Research.menu/SecureSCM.page, University of Mannheim, July 2009.

[2] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara. Private
collaborative forecasting and benchmarking. InACM Workshop on
Privacy in the Electronic Society (WPES), pages 103–114, 2004.

[3] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A system for
secure multi-party computation. InACM Conference on Computer and
Communications Security (CCS), pages 257–266, 2008.

[4] P. Bunn and R. Ostrovsky. Secure two-party k-means clustering. In
ACM Conference on Computer and Communications Security (CCS),
pages 486–497, 2007.

[5] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos.SEPIA:
Privacy-preserving aggregation of multi-domain network events and
statistics. InUSENIX Security Symposium, pages 223–240, 2010.

[6] R. Canetti. Security and composition of multiparty cryptographic
protocols.Journal of Cryptology, 13(1):143–202, 2000.

[7] O. Catrina and S. de Hoogh. Improved primitives for secure multiparty
integer computation. InSecurity and Cryptography for Networks (SCN),
pages 182–199, 2010.

[8] O. Catrina and C. Dragulin. Multiparty computation of fixed-point
multiplication and reciprocal. InInternational Workshop on Database
and Expert Systems Application (DEXA), pages 107–111, 2009.

[9] O. Catrina and A. Saxena. Secure computation with fixed-point numbers.
In Financial Cryptography and Data Security (FC), pages 35–50, 2010.

[10] R. Cramer, I. Damgård, and U. Maurer. General secure multi-party
computation from any linear secret-sharing scheme. InAdvances in
Cryptology – EUROCRYPT, volume 1807 ofLNCS, pages 316–334,
2000.

[11] I. Damgård, M. Fitzi, E. Kiltz, J. Nielsen, and T. Toft.Unconditionally
secure constant-rounds multi-party computation for equality, compari-
son, bits and exponentiation. InTheory of Cryptography Conference
(TCC), pages 285–304, 2006.

[12] J. Garay, B. Shoenmakers, and J. Villegas. Practical and secure solutions
for integer comparison. InPublic Key Cryptography (PKC), pages 330–
342, 2007.

[13] R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and fast-track
multiparty computations with applications to threshold cryptography.
In ACM Symposium on Principles of Distributed Computing (PODC),
pages 101–111, 1998.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game. InACM Symposium on Theory of Computing (STOC), pages
218–229, 1987.

[15] T. R. Hoens, M. Blanton, and N. Chawla. A private and reliable
recommendation system using a social network. InIEEE International
Conference on Information Privacy, Security, Risk and Trust (PASSAT),
pages 816–825, 2010.

[16] S. Jha, L. Kruger, and P. McDaniel. Privacy-preservingclustering. In
European Symposium On Research In Computer Security (ESORICS),
pages 397–417, 2005.

[17] T. Nishide and K. Ohta. Multiparty computation for interval, equality,
and comparison without bit decomposition protocol. InConference on
Theory and Practice of Public Key Cryptography (PKC), pages 343–360,
2007.

[18] M. Ozarar and A. Ozgit. Secure multiparty overall mean computation
via oblivious polynomial evaluation. InInternational Conference on
Security of Information and Networks (SIN), pages 84–95, 2007.

[19] T. Reistad. Multiparty comparison – An improved multiparty protocol
for comparison of secret-shared values. InInternational Conference on
Security and Cryptography (SECRYPT), pages 325–330, 2009.

[20] T. Reistad and T. Toft. Linear, constant-rounds bit-decomposition.
In International Conference on Information, Security and Cryptology
(ICISC), pages 245–257, 2009.



[21] A. Shamir. How to share a secret.Communications of the ACM,
22(11):612–613, 1979.

[22] J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over
vertically partitioned data. InACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 206–215,
2003.

[23] J. Vaidya, M. Kantarcioglu, and C. Clifton. Privacy-preserving Naive
Bayes classification.VLDB Journal, 17(4):879–898, 2008.

[24] B. Yang, H. Nakagawa, I. Sato, and J. Sakuma. Collusion-resistant
privacy-preserving data mining. InACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD), pages 483–492,
2010.

APPENDIX A
SUPPLEMENTAL PROTOCOLS

Here we describe addition and subtraction algorithms that
takeℓ-bit operands in bit-decomposed form and produce their
(ℓ + 1)-bit sum or difference, respectively. The protocols
involve ℓ rounds, but require only2ℓ−1 interactive operations
(multiplications), giving a performance advantage compared
to other available solutions when many protocols are run in
parallel.

A. Bit-oriented addition

In what follows, letci for i = 1, . . ., ℓ + 1 denote theith
carry bit withc1 = 0, andsi for i = 1, . . ., ℓ denote theith bit
of the sum. Then using the truth table for binary addition we
can expresssi and ci+1 as a function ofai, bi, andci using
Boolean operators as follows:

si = ai ⊕ bi⊕ ci and ci+1 = ¬ci ∧ai ∧ bi + ci∧¬(ai ∨ bi).

We further rewriteci+1 as an algebraic expression as:

ci+1 = (1 − ci)aibi + ci(ai + bi − aibi)
= aibi + ci(ai + bi − 2aibi).

Becauseai ⊕ bi = ai + bi − 2aibi, we see that allsi’s and
ci+1’s can be computed using only2ℓ multiplications (more
precisely,2ℓ−1 multiplications becausec1 is known to be 0):
ℓ multiplications to compute allaibi and ℓ multiplications to
compute allci(ai ⊕ bi). This computation results inℓ rounds
because of the sequential nature of the computation of the
ci+1’s. More precisely, we obtain the protocol given next. For
simplicity of exposition, all productsaibi are computed in the
first round of the protocol, while in an implementation it would
make sense to spread them out through all of the rounds.

Add([a]B = [a1]. . .[aℓ], [b]B = [b1]. . .[bℓ])

1) For i = 1, . . ., ℓ in parallel execute[di] = [ai][bi].
2) Each party locally sets[fi] = [ai] + [bi] − 2[di] for i =

1, . . ., ℓ and also[s1] = [f1] and [c2] = [d1].
3) For i = 2, . . ., ℓ,

a) execute[hi] = [ci][fi].
b) each party locally sets[si] = [fi] + [ci] − 2[hi] and

[ci+1] = [di] + [hi].

4) Set[sℓ+1] = [cℓ+1].
5) Return[s1]. . .[sℓ+1].

B. Bit-oriented subtraction

The subtraction operation is used during the division pro-
tocol, and we describe a protocol for subtraction of bit-
decomposed values explicitly as a modification of the above
addition protocol. For notational convenience, we useci for
i = 1, . . ., ℓ + 1 to mean the borrow bit (withc1 = 0) and
si for i = 1, . . ., ℓ to mean the difference bit. We obtain
more efficient protocols if the computation is performed on
¬bi = 1− bi rather thanbi, and in what follows we usebi as
a shorthand for¬bi. We obtain:

si = ai ⊕ bi ⊕ ci = ¬(ai ⊕ bi ⊕ ci)

= 1 − ai ⊕ bi − ci + 2(ai ⊕ bi)ci

and
ci+1 = ci ∧ ¬(ai ∧ bi) + ¬ci ∧ ¬(ai ∨ bi)

= ci(1 − aibi) + (1 − ci)(1 + aibi − ai − bi)

= 1 − ai − bi + aibi + ci(ai + bi − 2aibi).

This leads to a subtraction protocol below that still uses only
2ℓ − 1 multiplications inℓ rounds.

Subtract([a]B = [a1]. . .[aℓ], [b]B = [b1]. . .[bℓ])

1) Each party locally sets[b′i] = 1 − [bi] for i = 1, . . ., ℓ.
2) For i = 1, . . ., ℓ in parallel execute[di] = [ai][b

′
i].

3) Each party locally sets[fi] = [ai] + [bi] − 2[di] for i =
1, . . ., ℓ and also[s1] = 1 − [f1] and [c2] = 1 − [a1] −
[b′1] + [d1].

4) For i = 2, . . ., ℓ,

a) execute[hi] = [ci][fi].
b) each party locally sets[si] = 1 − [fi] − [ci] + 2[hi]

and [ci+1] = 1 − [ai] − [b′i] + [di] + [hi].

5) Set[sℓ+1] = [cℓ+1].
6) Return[s1]. . .[sℓ+1].

Note that in the division protocol, when subtraction is per-
formed ona and b, we always have thata ≥ b. This means
that we can skip the computation of the last borrow bitcℓ+1.

Security. Security follows from the fact that no value is
revealed in the clear throughout the execution. This means that,
as long as the underlying basic operations provide security
againstt or less colluding parties, the overall protocol is also
secure.


