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Abstract—In privacy-preserving data mining, a number of
parties would like to jointly learn a function of their priva te data
sets in a way that no information about their inputs, beyond he
output itself, is revealed as a result of such computation. ahg et
al. 2010 showed that several popular data mining algorithmgan
be reduced to three basic operations, secure implementatioof
which — termed Secure Product of Summations (SPoS), Secure
Ratios of Summations (SRoS), and Secure Comparison of Sum-
mations (SCoS) — would lead to privacy-preserving data mimig
solutions. The authors showed that prior privacy-preservihg data
mining solutions are unsatisfactory in presence of partiggants’
collusion and they gave new implementation of these operatns
that were designed to sustain the collusion. In this work, wahow
that unfortunately the protocols of Yang et al. leak a signifcant
amount of private information and are not secure even if no
collusion takes place. We then show how these operations can
be securely and efficiently realized in the same and stronger
security models, which leads to fully secure solutions for @ny
data mining algorithms.

|I. INTRODUCTION

L]

Privacy-preserving data mining has received a significant
amount of attention in the research literature in the recent
years. This is not surprising given a vast growth of the arhoun ,

of collected information, including sensitive data, thae w
might desire to analyze. In privacy-preserving data mining
the data are distributed across multiple sites and are deresi

private information. The data owners would like to mine on

their collective data, but in a way that no information about

their private data sets is available to other participastsépt
what can be deduced from the output of the computation).

In this distributed setting, we can distinguish between

horizontally partitioned data, vertically partitionedtaaand
their hybrid. In horizontally partitioned data, each datener
has complete information about a distinct set of entities.
vertically partitioned data, on the other hand, all partietd

information about distinct attributes.

be securely realized using secure implementations of tee th
functions above include:

« Probability distribution of a data set distributed among
a number of parties can be securely estimated by using
a privacy-preserving solution that computes the ratio of
summations [24]. In particular, if each party has a number
of observations drawn from the same probability distri-
bution, the parties can jointly estimate the distribution
by dividing the number of data items with a particular
value (summed across all parties) by the total number of
collected items (also summed across all parties).

« Jha et al. [16] showed that secure computationkef

means clustering on horizontally partitioned data can be

reduced to a secure computation of weighted average
computation. This is the same as computing a ratio (or

division) of sums, and therefore can be achieved by a

secure ratio of summations protocol.

Similarly, secure computation of Naive Bayes classifier

on horizontally partitioned data can be performed by

securely computing the ratio of summations [23].

In k-means clustering on vertically partitioned data, on

the other hand, the closest cluster is determined by

computing the index of the cluster with the minimum sum

(where the sum is over the participants’ private data) [22].

This requires secure computation of comparison of sum-

mations. More generally, when a number of elements

need to be privately sorted, so that only the ordering of
the elements is revealed, secure comparison can be used
as well.

Therefore, secure computation of the summation (addition)
roduct (multiplication), ratio (division), and companig
here the private inputs are contributed hy> 2 parties,

: . . is the focus of this work.
information about the same set of entities, but each possess

Overview. Let P, ..

., P,_1 denote then > 2 parties who

A recent work by Yang et al. [24] provided an importantontribute their data to the computation and learn the tesul
observation that several popular data mining algorithnrmshea Yang et al. [24] show that in prior literature multi-party
realized in a privacy-preserving way by relying on secugd-re privacy-preserving protocols for the data mining algorith

izations of the following functions: (i) product of sumnmis,

mentioned above are susceptible to the problem of collusion

(ii) ratio of summations, and (iii) comparison of summason That is, solutions in [22], [18], [23] use special partieatth
In all of the above cases, the sums are computed by addarg not expected to collude with any other participants (we
private inputs of all of the participants, after which eitherefer the reader to [24] for additional information). Besau
the product, ratio (division), or comparison is applied e t this assumption can be very difficult to meet in practicesit i
aggregate values. Examples of data mining algorithms trat alesirable to have solutions that are resistant to collubipn



subsets of the participants. preserving computation on vertically partitioned dataeoft
To address the problem, Yang et al. take an interestiftyolves multiple applications of the product operatiorg(gin
approach in designing privacy-preserving protocols farxder Naive Bayes and association rule mining). Also, in assiozia
uct, ratio, and comparison of summations. Unlike computirrgles mining, finding frequent itemsets with support exdegd
over the integers, which is standard in secure multi-partgrtain thresholdk% relies on addition, multiplication, and
computation, arithmetic is performed over real operandk. ALomparison operations, which cannot be realized by a single
inputs of each party are assumed to be in the rafigé), protocol above, but can be realized by their combination.
which means that they are scaled to that range before jokinally, when the index of the closest cluster is computed in
computation takes place. More precisely, the authors geovik-means on vertically partitioned data, repeated apptinati
protocols for the following functionalities: SCoS would lead to information about the distance ordering o

1) In Secure Product of Summations (SPp8&)tocol, party _all of the clus'_[ers, which is _undesirable and can be elineithat
P, fori=0,....,n—1, has input:cgi) and a:éi . where if the companspn protocol is composabl.e.. .
x;i) € (0,1) for j = 1,2. As a result, each party learns To further widen t_he scope of data mining algorithms that
el () n—1 (i) can be securely realized using these techniques, we desgmpo
P=2li— %1 _'Zizo Ta - the above protocols into four distinct operations: additio
2) In Secgre Ratios of Summatloriész(%Sproto(%ol, party multiplication, comparison, and division. We then provide
P(ii’)for’ =0,...,n—1 hasinpute;”, 25", ..., 2", Where  socire and composable realizations for each of them. This
Z; (0,1) for j = 1,....k. As a result, each party means that arguments to each operation are distributedgmon
learnsr = Z?;(} :vgl) : Z?;Ol xgl) Teee Z?;Ol :v,(j). the participants and the outputs are also communicated in a
3) In Secure Comparison of Summations (SCp@Yocol, distributed way. This enables secure evaluation of any rmumb
party P;, fori = 0,...,n — 1, has inputr“), andxgl), of these operations in any order. Then in the beginning, each
wherexg.i) € (0,1) for j = 1,2. As a result, each party party will distribute its inputs among all of the particigan
learns] — argmaxk:{m}(z;zol 171(;))- and once thg desired function is computed, the parties _W|II
combine their outputs to learn the result of the computation
The Secure Product of Summations protocol SPoS protoquiis setup has an additional advantage in that the set départ
is realized in [24] using homomorphic encryption, and th@ho hold the inputs does not have to be the same as the set
authors provide a rigorous security proof against semieBbn of parties who carry out the computation. Similarly, the sfet
participants (see below for a definition). The Secure Ratigarties who receive the output can be different from the tet o
k-SRoS and Comparison of Summation SCoS protocols g&rties supplying the inputs, carrying out the computatin
then built using the SPoS protocol and were left withowoth. This has the flexibility that, for instance, for efficy
security analysis. In this work we show that unfortunatély t reasons the computation can be carried out by a selected grou
latter two protocols leak a significant amount of informatioof input owners on behalf of all input providers or even be
about private inputs. Furthermore, the functionality il outsourced to a number of computational servers.
by the SPoS protocol can be achieved (over integers or fixedrg summarize, the contributions of this work are: (i) we
point values) in a straightforward manner using a number ghalyzek-SRoS and SCoS protocols of Yang et al. and show
underlying secure computation techniques. Secure solitighat they do not satisfy necessary security guaranteesigind (
for the comparison and ratio (or division) operations, hesve e show how secure and composable solutions for addition,
are more complex with the state of the art secure multi-paggy|tiplication, comparison, and division operations cam b
computation (SMC) techniques and require careful desiggjized to support a broader range of data mining algosthm

Therefore, one of the goals of this work is to show how thehese solutions are secure in the same as in [24] and stronger
above functions can be securely and efficiently realizethab gecurity models.

they could be used to build secure solutions for data mining
algorithms. Security model. In secure multi-party computation (SMC),
As another security-related aspect of the above protodbkre are two standard security models with respect to the
formulation, notice that the operations anet composable malicious behavior of the participants. In the semi-horiest
That is, the result of the computation in each of SPbS, honest-but-curious or passive) model, the participanitsvio
SRoS, and SCoS is revealed to the participants in the clélae computation as prescribed, but might attempt to compute
and therefore the protocols cannot be automatically usedaaglitional information from the messages observed during
building blocks in more complex protocols. This, in partazy protocol execution. In the malicious (or active) model, the
means that only data mining algorithms that can be realizpdrticipants can arbitrarily deviate from the protocotluding
using a single invocation ok-SRoS protocol or a numberaborting the computation, substituting wrong values far th
of SCoS protocols where the results of the comparisons améermediate results, etc. In both models, the participant
not private (i.e., part of the output) are supported. We argaan collude (i.e., share their information and coordinhtsrt
that composability is desirable for widening the applitiabi actions), which is modeled by an adversary that corrupts a
of the solutions and will result in the ability to securelynumber of participants. In the semi-honest model, secisity
evaluate a much richer set of functions. For example, pyivacachievable even if there is only a single honest participlant



the malicious model, however, the number of honest pariesd an output party. Upon receiving output information from
required to be a larger fraction of the participants (efgalli the computational servers, each output parties reconstanc
corrupted participants quit, the honest parties shoulddde alearns the result of the computation.
to bring the computation to completion). The benefits of separating the input parties from compu-
Publications that provide privacy-preserving solutions f tational parties include greater flexibility of the solutiand
data mining algorithms, including Yang et al., normally adewer computational cost under similar trust guarantees,(e
sume the semi-honest model (a number of publications assumieen the number of computational parties is lower than the
even weaker security model, in which semi-honest partidgpa number of input providers, but each of them is more trusted
do not collude). We therefore next formalize the securithan an average data provider).

definition for that model. Il. SECURITY ANALYSIS OF TECHNIQUES OFYANG ET AL
Definition 1: Let Py,..., P,_1 engage in protocofr that ' Q '

computes function f(ing,...,in,—1) = (outo,outy,..., In this section we analyze two protocols -~SRoS and

out,_1), wherein; andout; are the input and output of partySCOS — from [24]. In the subsequent analysis we assume that

P;, respectively. Lef = {P,,, P,,,..., P;,} denote a subset of @ fully secure realization of the SPoS protocol, on which

the participants fot < n andVIEW(I) denote the combined SR0S and SCoS protocols are built, exists.

view of participants inI during execution of protocot. In  The Secure Ratios of Summations protocol is given in [24]

particular, P;'s view is formed by its input, internal randomas follows:

coin. tosses;, and messagesiy, . .., s passed between thep gtocol k-SR0S

parties during protocol execution, i.e., _ @ @) ()

. Input: Each partyP; has inputz;”’, z5’. .., z,~, where each
VIEWTA’(—PZ) = (Iniariamla---ams)' xgl) c (0’1)

The view of[ is then the union of the views of the participant

in I. We say that protocat is ¢-private in presence of semi- ;"1 ;)

honest adversaries if for each coalitidnof size at mostt im0 Tk -

there exists a probabilistic polynomial time simulatrsuch Protocol steps:

Dutput: Each party learns = S AR DK a0

that 1) EachP; generates a random real numk&? in (0, 1).
{Si(ins, f(ing, .. .,inn_1))} = {VIEW(I),out;}, 2) Forj = <.%>’“<'6>k' the pglrygs (eflc)ute SPoS on.pivate
_ . inputs (z;7, c'Y), .., (x; ,C ) and learnz;
wherein; = Up, ¢ {ini}, outr = Up,¢{out:}, and =" de- (xg_o) 4. +x§n71)) (O 4 D),

notes computational indistinguishability (using an ajmpiate
security parameter).

Standard techniques for converting a solution secure \Me next show that this protocol leaks a significant amount of
the semi-honest model to a solution secure in the maliciousintended information about the input§’. This information
model ensure that each participant computes the next segnnot be deduced from the output of the protocol, which
of the computation correctly from the results of the presiouneans that the protocol violates the security properties of
steps. Such techniques are available in the literaturecidain  Definition 1 which was also used in [24].
underlying secure computation mechanisms. First, notice that the magnitude of the produgt provide

While the majority of publications on privacy-preservingnformation about the magnitude of the soni_, a:jz), which
data mining (including the work of Yang et al.) assume thagannot be inferred from the output ratio. In particular, ieihe
the data owners will be conducting the secure collaborativalue of the product; can lie in the rang€0, n?), a specific
computation themselves, this does not need to be the casevdhue ofz; will make a part of that interval unreachable, thus
particular, we distinguish between input parties (IP), pam revealing information about;. That is, the value 0f__, c¢(¥
tational parties (CP), and output parties (OP), which can Eesampled from the distribution of the sum wfindependent
formed by distinct or overlapping sets of participants. e t uniformly distributed variables from the rang@ 1), which is
current setting of data mining, it would be meaningful to éavknown and fixed for a fixed value of. This means that any
the parties who contribute their input to also receive thipoy  party can rule out unlikely values fox_!"_; ¢ and narrow
i.e., sets IP and OP to be the same. The computational parties possible range for the sub’", w? even further. We
can be chosen by the participants to minimize the possibiliflustrate this analysis on an example.
of collusion or other forms of misbehavior. For example, the 0)
participants can employ computational cloud providersand Example 1.Letn = 3 andk = 2. Also letz;” = 0.18,

: i iofial = 0.23, 217 = 0.19, 2% = 0.19, 25" = 0.15, 20 =
competing businesses to assume the role of computatiofia RS v Lo 1 Lo Lo
servers. Then prior to the computation, each input provid@r, C(O? = 0.36, clV = 0.89, and ?(2) = 0.18. The only
distributes its input among the computational servers (ichs information that the partlles‘obtaln T a.)secure realizatbn
a way thatt or less colluding servers cannot recover thilis function isr = 377" o) iy wd) =1:0.9. From
input), the servers carry out the secure computation, at tés information the parties can deduce thaf— =5 < 2.7

end of which each server communicates its share of the reémlt:auseZ?:_o1 x@ must be less than 3. If the granularity of

3) EachP; computes: = x1 : xp @ -+« @ Xk



the computation i%, the parties also know that thﬁ?;ol a;g“ 1

cannot take a few smallest possible values (such,ds etc.) S o8|

sinc:ezzo1 :vg) is smaller and must satisfy the ratio 5 ol
During the execution of the protocol above, on the other E

hand, the parties learm, = 0.858 andx, = 0.7722. Because S 041

S, e < 3, from the released information the parties £ 02

immediately know thaty""—' z{" > 0.858/3 = 0.286 and 0

Z:L:_ol xéi) > 0.7722/3 = 0.2574. This reduces the range 0 0.2The(:/.:|ue :f'i ) 08 1
of the possible values of7— =!" and 327~ z{” by about ?
10%. The parties might also be able to limit the value of

n—1 (i) n—1 (i) : : Fig. 1. Information about the input values of paif that can be deduced
Zi:O 1 andZi:O @ from the above whefis small, i.e., from the output of a secure ratio protocol.

becaus& '~ ¢ > &, it must hold thafy "' «{" < 0.858¢

and anol xgi) < 0.7722¢ =
1= — 3 N . .
We also know that the probability density function (pdf) fofn€ fact that both must lie in the range, n —m). _
the sum ofn = 3 uniform variables in (0, 1) is In the SRoS protocol of [24], however, much more infor-

mation about private inputs of honest parties can be deduced

%IQ 0<z<1 This is due to the fact that additional information abetit’s
f(x) = P —2224+6x-3) 1<x<2 (which are used to protect the inputs) is known and additiona
(@ — 6z +9) 2<x<3 functions of the inputs of honest parties are revealed, lwhic

with the mean 1.5 and variance 0.25. By integratif(@), narrow their range. We illustrate the analysis on an example

we obtain the cumulative density function (cdf)(z). Let Example 2.For simplicity, we use the same values as in the
C denote a random variable from the distribution of whicprevious example. Suppose thatand P, collude againsP;.
Z?:o c® is sampled. ThenF(s) = Pr[C < s] = 0.1 In a secure imgolementation, the colluding parties only know
when s ~ 0.8434, which means that a value sampled fronthat (0.41 + z{*)/(0.34 + 2%)) = 10/9. They can compute

C will be at most 0.8434 with 10% probability. Similarly,the linear functionz!® = %xg) — 0.0322, which is plotted
F(s) = Pr[C < s] = 0.9 whens ~ 2.1566, which gives us in Figure 1. The parties then determine that in order for both
that with probability 80% any given value oF;_, c” will  +(*) andz{?) to lie in the rangg0, 1), the value ofz'> must

lie in the interval[0.8434, 2.1566]. This means that the partiespe in the rang€0.029, 0.929). In other words, the range of
can discover that with 80% probabilitf:>23 ~ 0.398 < possible values fowéz) is reduced by 8%.

> :vg” < 2258 ~ 1.017, thus narrowing the range for the In the protocol of [24], however, the parties know that
inputs even further. Similarly, with 66.67% probabilityyan (0.41 + z{*)(1.25 + ¢(») = 0.858 and (0.34 + z*)(1.25 +
given value of 37 ¢ will lie in the range[L,2], which .(2)) — (.7722. Therefore, they can expres§” andz®) as

in this example implies that the parties learn that with thehear functions ofc(® and, as before, attempt to limit the
probability 66.67%0.429 < >77_, #{” < 0.858. Using the range of values for{*) andz?. In our example, these func-

same analysis, similar information can be learned about thgns ares(® — _0:858 41 andz® = 07722 _ (334
f the sum of"’s . 1 7 1.25+c®) : et 1.25?%(2) O
range o 2 S which are plotted in Figure 2. It is obvious from the figure

The above example showed what information is readily avafffat the information leakage is significant and substaptial
able to all participants. The situation, however, worsehsny €Xceeds what can be deduced from a secure implementation
some of the participants collude. The protocols in [24] we® the computation. In particular, the ra_ngenﬁ is narrowed
intended to be resilient against any number of colludir@own t0[0,0.2764] and the range of®) is narrowed down to
parties, and we next show that the SRoS protocol is far fro 0.8427] using the first function. Using the second function,
secure in that case. Once again, we need to consider wi range ofr$” is narrowed down td0.0032, 0.2778], but
information the parties can deduce from the output of tHfi@n further be reduced {0.0295, 0.2778] considering that the
(secure) computation and compare it to the information theglue ofc(®) can be at most 0.8427 (this valued?) is shown

the parties can discover during this protocol. Suppose thatthe plot forz$*) in Figure 2). Since the range of possible
Py through P,,_; collude for somel < m < n. Given the values is reduced by 72.4% fat> and by 76.2% forz'?,
output of the computation = 327! xgi) D P xg) (which it is clear that a large amount of unintended information is
will be only partial output wherk > 2) and their respective leaked.

inputs 22—01 xgl) and Z?l_ol :vg), the colluding parties can we now analyze the second protocol, Secure Comparison of
learn additional information from the output. In partioutey  symmations, which is given in [24] as follows:

can find the relationship between the honest parties’ inputs

Sl and L 200 by expressing the former as the” r0toco! SCoS o

function of the latter and somewhat narrow the known randeput: Each party?; has private input;gl),xg). .., where each
for the possible values foy_7—! +{" and 327} «5” using «!” € (0,1). There is also public integeP > 1.
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0 02 04 06 08 1 andz,’ is gained. When some parties collude, this can lead

to learning information about the inputs of a single indivadl
Example 3.Let us use the same set of values e\, 23,
Fig. 2. Information about the input values of paiy that can be deduced and ¢® as in the previous examples. Thatis= 3, xgl) =
from the execution ok-SRoS protocol. 0.18, Igg) — 0.23, x§3) — 0.19, Ig) ~ 0.19, x§2) — 0.15,
2 =020, ¢ = 0.36, ¢® = 0.89, and ¢® = 0.18. In
Output: Each party learns a bit whereb = 0 if Z?:Ol xgi) ~ secure implementation and in presence of a collusion betwee
Zr_z—l +% andb = 1 otherwise. - parties Py and P;, they know from the output that0.41 +
i=0 T2 (2) (2) : : - :
xy”’) > (0.34—x5 ). This allows the parties to slightly restrict
Protocol steps: the inputs ofP,, where nowz{? € (0.07,1), 28 € (0,0.93),
1) EachP; generates a random real) in (0,1—1/P) and and the possible choices for the p&ﬁ(f),xgﬁ) are given in
computes)\” = 27 /P +u® andy{” = 2{" /P +u®. the shaded area in Figure 3.
2) EachP; generates a random redl) € (0,1), and the  After executing the protocol, however, the colluding pEsti
parties execute SPoS twice: Py andP; learn that(p; —p») P = (0.07+ (¥ —2{?))(1.25+
(i) on private inputs(y§0)7c(0))7...,(y§"’1),c("—1)) to c¢®) = 0.0858. This allows them to compute the value of
learnp; = (y\” + - + "N (©@ 4. 4 (D), (=¥ — 2{?) as a function ofc®, which is shown in the
(i) on private inputs(y{”, ¢©@), ..., (4" (=1 to top plot of Figure 4. That is, the value ot'? — 2{?) is
learnpy = (y" + - + y§" (e 4 ... 4 ((n-1)),  restricted to the ra(r;)g(a—0.00147 _0(8)319)'(;;% parties can
3) EachP; outputs 0 ifp; > ps, and 1 otherwise. thus go_nclud_e t_haf:2 —0.0319 < ;™ <y’ —0.0014. By
combining this information with what is already known from
For conciseness, we only analyze the case when a collusiqg output alone (Figure 3), the parties can limit the pdesib
of participants .te}kes place. As before,_ in a secure implemepyues of pairs(a:@,xé”) to the area shaded in the bottom
tation, the participants can only learn information that && |0t of Figure 4. We can see that the area shaded in Figure 3,
deduced from their inputs and the output bit. If partis \yhich corresponds to uncertainty abd@t's inputs in secure
through P, collude, the only information they learn is thegyecution, is reduced by 94.7% to the area shaded in Figure 4

constraints on the sums;~, 21" and Y7~ =" that lead s a result of SCoS execution.
to the computed bit.

In the comparison protocol of [24], however, additionallylll. SECURE COMPUTATION OF DATA MINING FUNCTIONS

information about the magnitude of the differerjcg~; 2 - This section shows how the operations identified in Section |

St al? can be deduced even without collusion. Wheas the basis of many data mining protocols — namely, addition

collusion is present, this can additionally lead to infotio@a multiplication, comparison, and division — can be impleteen

about the inputs of a particular participant. We next amalyin a secure and composable way. Composability means that,

the protocol in more detail. due to the theorem of Canetti [6], a protocol consisting of
While no recommended value fét was given in [24], when secure sub-protocols will be itself secure.

P = 2" for a security parameter > 80, the release of a single  The choice of the techniques used in this work was driven

p; statistically hides the value of."_" :cy) even in presence by the practical SMC efficiency considerations. In parteul

of collusion. However, because the value of eathis reused SMC can be based on three general types of techniques:

in bothp; andps, security is violated. That is, by computing(i) threshold homomorphic encryption, (ii) garbled circui

The value of ¢@



o~ o1 adversary can corrupt up tb parties, wheret < n/2 for
:g“ 005 | pas_sive adversgries and additional restrictions can ajoply
Sa active adversaries.
beg 0 Let valuesa andb be shared among the parties [af, =
3 (fa(1),..., fa(n)) and [b], = (fu(1),..., fo(n)). Then the
g -005 ] following operations can be performed on the shared values
§ 01 ‘ ‘ ‘ ‘ without any interaction: to computé& + b mod p|,, each
0 02 04 06 08 1 party P; locally computesf, (i) + f»(¢) mod p; to compute
The value of ¢® [c+ a mod p], = ¢+ [a], Wherec is a publicly known value,
each partyP; locally computes: + f, (i) mod p; to compute
1 [ca mod p, = c|a],, each partyP; computescf, (i) mod p.
@xﬁ 0.8t ] Similarly, any linear combination of any number of shared
5 06| ] values can be computed locally.
% 04 | Multiplication of shared values, on the other hafudh, mod
> plp = [ab], requiresk, ..., P,_1, to communicate with each
£ 02y ] other. In particular, the overhead is dominated by the need

for party P; to securely transmit ard-bit message to each
party (and receive a message from each party), e.g., using th
multiplication protocol from [13]. Therefore, communiizat
overhead for a single party is — 1 transmissions, and a
Fig. 4. Information about the input values &% that can be deduced from multiplication protocol involves transmission of the tot#
the execution of SCoS protocol. O(n?) messages. The current description assumes that the ad-

versary is passive. When security against malicious adviess

is desired, additional general techniques based on vdefiab
evaluation, and (iii) secret sharing. The disadvantageosf hsecret-sharing (VSS) can be utilized to make the protocols
momorphic encryption is that all operations take place i@silient to such behavior (see, e.g., [13], [10]).
a group of large size, which means that every single op-Normally, performance of a protocol is measured in terms
eration is expensive. Multi-party garbled circuit evaloat of two parameters: (i) the number of interactions (mulipli
(GCE) (see, e.g., [14]) is generally more efficient per operaations, secret splitting or opening) necessary to perfibien
tion than homomorphic encryption-based techniques, bes ugomputation and (i) the number of sequential interactioes,
Boolean circuits that operate on bits. Furthermore, thetm@gunds. We employ the same metric in this work.
efficient implementation of multi-party GCE known today, Going back to our setup in Section I, before a privacy-
FairplayMP [3], uses secret sharing techniques for bulidin preserving data mining computation takes place, each IP
garbled circuit, and several interactive operations oeeret- (distributes its private inputs to the CH%, ..., P,_;. Upon
shared values are needed for each gate. This leaves us \pjmocm completionF,, ..., P,_1 communicate their shares
the techniques based on a linear secret sharing schemes Whgthe output to each OP who reconstructs the result from the
all operations are performed over a field of small size and tBRares. Two secure operations — addition and multiplinatio
computation of any linear combination of secret-sharede&l are trivial in this framework: addition of shares is perfeuirby
requires no interaction of the participating parties. each CP locally and multiplication is performed interaetjv

In detail, we assume thatomputational parties (CP) as described above. The rest of this section concentrates on

Py,..., P,—_1 are connected with each other by secure athe remaining two operations: comparison and division.
thenticated channels. Each input party also establishegese .
channels withP, throughP,,_;. For concreteness, we assum@' Comparison
that Shamir secret sharing [21] over a finite fiéld is used ~ Performing comparison of two values often requires access
as the underlying secret sharing scheme, wheisea (small) to the bits in their binary representation, and we use rmtati
prime (such that all values we want to represent do not excdetis = [a1]p[az],- - -[ae], t0 denote that each bit of binary
p). We use notatioria], to denote thats is shared among representation ols = 3., 2’a; is secret-shared by the
the parties. In particular, when value is shared, there is parties. Because comparison is a commonly used operation,
a polynomial fs(z) = a;a? + --- + a1z + s mod p with it has been a subject of research. Some publications provide
randomly chosen coefficients; € Z, for i = 1,...,t and techniques for comparing two bit-decomposed values, thet mo
P;’s share isfs(i + 1). With this setup, the shared valueefficient of which are listed in Table I, while others such as
s can be easily reconstructed from ahy+ 1 shares using [7] allow comparison without bitwise representation. Wéede
Lagrange interpolation. On the other haridparties or less discussion of the latter to section IlI-D. Theoretical figtire
cannot learrany informationabout the shared value, i.e., it is(such as [11]) concentrates on constant-round techniques,
perfectly protected in information-theoretic sense rdlgess which normally minimize the latency of computation when the
of the computational power of the participants. Therefare, operation is run in isolation. When, on the other hand, many

0 02 04 06 08 1
The value of X2(2)



Source Roundd Interactiong Security] Passivg Active
[11] 8 19¢ perfect| +/ Vv
[12] | log, ¢ 30— 2 perfect| / Vv

TABLE |

KNOWN TECHNIQUES FOR COMPARISON OF TWO BFDECOMPOSED
VALUES OF LENGTH/.

KNOWN TECHNIQUES FOR ADDITION OF TWO BIFDECOMPOSED VALUES

operations can be executed in parallel, techniques that mi
mize the overall work are preferred. For example, in Table
the techniques of [12] offer lower round and overall ovecthea
as long a¢ < 256, i.e., for all data mining applications. The
last three columns in the table show that perfect infornmatio
theoretic security can be achieved in presence of passiv

active adversaries.

OF LENGTHZ.

B. Bit-oriented addition and subtraction

Before discussing the division operation, we turn our
tention to addition and subtraction of bit-decomposed eslu3.
[a]p and [b] 5. While addition of two secret-shared valueg.
[a], and [b], can be performed without any interaction, irb. outputgs, ..

Source Rounds Interactions | Security | Pag| Act
[11] 15 470log, ¢ perfect | \/ | v/
[19] 5 7+ 3 statisticall / | v/

[71, [1] log, £+ 1 llog, £+ £ perfect | v/ | v/

[71, [1] |2log, ¢ —1|5¢—2log, £ —4| perfect | / | V/

Appendix A 14 20— 1 perfect | v/ | v/
TABLE Il

e or

a?—' forz'zl,...,ﬁ

division protocols appeared in the literature startingnfriovo-
party solutions based on homomorphic encryption [2], [4] to
more recent multi-party protocols [8], [15], [9]. There are
a number of (conventional) division algorithms that can be
used as the basis for secure implementation such as long
division, Newton-Raphson, etc. Perhaps the most efficient
privacy-preserving division protocol is that of Catrinadan
Saxena [9] that uses Goldschmidth’s method and was designed
to work on fixed-point values. While that algorithm has faste
convergence (i.e., requires fewer iterations) than longsidin
which computes a single bit of the quotient per iteration,
the protocol of [9] is not guaranteed to compute the exact
result (without an error). Furthermore, the solution achse
statistical security and has to rely on fields of large size,
and security against an active adversary was not shown.
We therefore provide an alternative solution that computes
the result exactly, uses only standard techniques for which
countermeasures against active adversaries are knowoaand
Iqrave advantageous performance when the length of values is
small.

The solution is built using an intuitive implementation of
division, which consists of a sequence of comparisons and
subtractions. That is, the logic of the protocol for compgti
|v/d] andr = v mod d is as shown below, whereholds

the current remainder:

1.7 :=v;

? )
qo—i = (r > 2°7%d);
ri=r—q_i2'7d;
'aqE;

some cases it is beneficial to be able to add two values)in15] we built a secure division protocol using this logitda

a bit-decomposed form, so that their sum is also availalgmomorphic encryption, but homomorphic encryption makes
in the bit-decomposed form (the same functionality can beioo expensive for use in applications that should scakseH
achieved by locally ComPU“?@l]p_ and [b], from [a]z and e start with an optimization suggested in [15], then déecri
[b] ., respectively, agr], = >_;_, 2'[z;],, then locally adding our own additional optimizations, and use more efficient
them(c], = [a+b], and decomposinfg],, into bits, but adding puilding blocks to develop a protocol with fast performance
two bitwise values can often be achieved more efficiently gecause on line 3 we perform a comparison véithid, a
than bit decomposition). In particular, this operation &d  strajghtforward implementation would involve computatimn

in division and bit decomposition protocols. We list knowRa|yes as large @ — 1 bits. It is, however, noted in [15] that
techniques for bit-oriented addition in Table Il (subtiant (4 1)-bit representation is sufficient for all iterations of the
can be performed similarly). Also, while prior publicat®n computation. In particular, thé2¢ — i)-bit representation of
target minimizing the number of rounds, the best perforreangt—i; is formed by shifting the bits of the bit-decomposéd

in terms of the overall overhead is achieved using a linear (i_; positions to the left and appendifig i bits corresponding
the length of values) number of rounds. For that reason, W¢zeros. Thé/+ 1)-bit representation a‘~‘d can be formed

design addition and subtraction protocols that use @naly 1

multiplications. They are described in Appendix A.

In Table I, statistical security means that with negligiblwith a single bit that corresponds to their OR. This meant tha
probability (in security parameter) some information about if at least one of thé—i most significant bits 02/~d is 1, the
private values can be revealed. Protocols with statisBeal relationshipy < 2¢~id will be preserved (here the + 1)-bit

CUrity often have to use a field of a Iarger size reSUlting iﬂgpresentation of is formed by prepending a zero as its most
slower operations.

C. Division

by also appending—i zero bits to the value af, but replacing
the £ — ¢ most significant bits of the resulting representation

significant bit). If, however, all of such bits are 0, the alu
of (¢ + 1)-bit representation 02‘~*d equals to the value of
its (2¢ —i)-bit representation. Notice that té+ 1)st bits for

The division operation is most complex among the compeach2’d can be computed once for allbefore entering the
tational primitives considered in this work. Privacy-prasng loop as prefix-OR operatioty = V;;t de—jfori=1,...,¢



To further optimize the computation, we consider reducing
the number of iterations in the division. While the number

of iterations is not reduced asymptotically, our optimizas

reduce their number by a constant multiplicative factorhwit
minimal impact on the communication and computation of
the protocol. The optimization consists of computing a fixed
number k of quotient bits within a single iteration of the
protocol. The idea consists of replacing the comparison on

line 3 with 2 — 1 parallel comparisons that will compate
with values2‘=*=*+14 . j, where;j ranges from 1 t@* — 1.

Thenk bits of ¢ can be determined from the outcomes of the

comparisons irk — 1 rounds using} (k — 1)k multiplications.

? .
Let ¢;; = (r > 2¢7i=F+1q . j) denote the outcome of a

comparison. We sefy_; = ¢; ok _ogk-1 = C; k-1, Qr—i—1 IS
computed agy—;—1 = qr—iC; gk gk —2+(1—qr—i)C; gr—1_gk-2,
etc. Finally, the value oR/~~**14. j is subtracted fromr,
wherej = [T Zg 2¥ 1, 4.

OZ_%_I[dl]. . .[diJrl][tg,i,l]), [CQ] Compare([r]B,
Og_l[dl]. . [dl] [tg_i]), and [63] Compare([r]B,
0= s1].. .[si41][t)_;11]) in parallel, where 0/
denotes concatenation gfzeros.

b) the parties seig,—;] = [c2] and computdge—_;—1] =
[ge—i]([e3] = [c1]) + [c1] using one multiplication.

c) the parties computége_;][g;—;—1] and set[i;]
[qe—i—1] = [qe—i][qe—i-1]; [i2] = [qe—i] = [qe—illge—i—1];
and[is] = [qe—il[qe—i—1]-

d) the parties compute in paralléb, ;] = [i1][1d,],
lo2,;] = [i2][2d;], and [o0s;] = [is][3d;] for j =
1,..,i+k—1.

e) each party locally sefg,;] =0forj=1,....,0 —i—
k+1and[ojir—i—k+1] = [01,;] + [02,5] + [03,5] for

j=1,...,i+k—1 to obtain[o]g = [01]. . .[o¢]-
f) the parties executg]p = Subtract([r]s, [0]B).

5) Return[qls = [q1]- - -[ge]-

To accomplish the last step, subtraction must be p&fr the above, step 1 computed (the valueshd, 1d, 2d, and
formed without having access to the computed quotient bits; are explicitly set in step 3), and step 2 computes prefix OR

Wekachieve this by forming the value to be subtracted
Z?:}l i;(2¢=7kd - j), wherei; is a bit and at most ong;

@ form (¢ + 1)-bit representation o2‘~?~1d, 2-*~124, and
2¢=1=134. In step 4(a), three comparisons witlare performed

is set to 1. The value of; is computed from the quotientin parallel, after which 2 quotient bits are computed in step

bits qs—s, ..., qr—i—r+1. FOr example, whenk = 2, we
obtain iy = —qr—i A qe—i—1, 2 = qe—i N\ —qe—;—1, and
i3 = qo—; N\ qo—;—1. If the valuesd - j are precomputed in

4(b). Steps 4(c)-(e) compute the sOi’_, i;(2"""1d - j),
after which it is subtracted fromr. Note that when the
remainderr = v mod d is not needed, steps 4(c)—(f) can be

bitwise form in the beginning of the protocol, computatioskipped in the last iteration of the loop.

of i;(d - j) consists of multiplying each bit of - j with i,
after which the result is appended with- i — k + 1 zero bits
to obtaini; (2==%*+1d . j). Finally, the sum across affs is

performed (on bit-decomposed values) locally because at m

one value being added is non-zero.

The above optimization technique for reducing the numb\Q’PUId be achieved
of rounds affects the way the comparisons are carried out 5
line 3 above using/+1)-bit values, and we need to ensure that!

(¢ +1)-bit representations are computed for 2=+ +14. j.
In order to combine both optimization techniques on line
we notice that it is sufficient to use onfyleast significant bits

of 26=i=k+14. j because the subtraction is performed only i

the (-bit valuer is larger thare‘~i—*+14. ;. This gives us the
overall division protocol presented next.
For simplicity of exposition, we describe it for the case

k = 2 and evend (when/ is odd, one iteration of the loop

should be executed to compute a single bit of the quoti
instead of two).

Divide([v] g = [v1]. . .[ve], [d] B = [d4]. . .[de])

1) The parties execute[s|p Add(0[d4]. . .[de],
[d1]...[d¢]0), where[s]g = [s1].. .[s¢+2]

2) The parties executé[t],...,[tr—1]) = PrefixOR([d/],
o [d2]) and ([t1], . . ., [t}]) = PrefixOR([s¢2], . - -, [s3]),
also settg] = 0.

3) Each party set&|p = [v]p, [0d]g = 0B, [1d]p = [d]B,
[2d]3 = O[dl] . .[dg_l], and [3d]B = [81] . [Sg]

4) Fori=1,3,...,0—1
a) the parties execute[c]

Compare([r] 5,

e

Complexity. The protocol performs a single addition in step 1
and two prefix OR operations in step 2. The loop in step 4 adds
3 comparison operations, one subtraction, and a number of
multiplications ing iterations. Notice that similar complexity
if we performediterations with a single
parison and subtraction and a number of multiplications
ile the round complexity would rise by about a factor of
2. Assuming that we use bitwise addition and comparison

A)perations witHog, ¢ rounds andPrefixOR with log, ¢ rounds

and0.5¢log, ¢ interactions from [7] with perfect privacy, we
btain the round complexity dflog, £ + 1 + %(2 log, £ +4).
For ¢ = 32, this gives us 235 rounds. The number of multipli-
cations is1.5¢logy £ + £ + £(10¢ + ¢log, £ — 4) + 3¢(% + 1).

O\(Vhen several division or other operations are executed in

parallel, the cost of each of them can be noticeably reduced
% the expense of increasing the number of rounds. Also,
with statistical security guarantees, both the number ohds

and the overall cost can be reduced by using more efficient
PrefixOR and comparison operations from [7].

Security. As can be seen from the protocol, no single value
is revealed throughout the entire computation, i.e., diles

are handled in a secret shared form. This means that no infor-
mation can be leaked except what the building blocks might
leak. Because we use only secure sub-protocols to perform
privacy-preserving division, by the composition theorehif
means that the entire protocol is also secure. In partictiiar
simulator in Definition 1 can perfectly simulate the view of
the parties by using random values (or using the simulators



Source] Rounds Multiplications Security | Pag Act
[11] 38 94/ 1log, £ + 93¢ perfect | v/ | v/
[17] 25 |47llog, £+ 630+ 30| perfect | /| v/
[20] 12 39.5¢ + 15 statisticall \/ | +/

[9], [1] |log, £+ 2 Llog, 0+ 4 +1 statistical| /| ?

TABLE IlI

KNOWN TECHNIQUES FOR BIT DECOMPOSITION OF AN-BIT VALUE .
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(1]
for the building blocks) assuming that no more thaparties
collude. Security against active adversaries can be asthiey

) . ; . [2]
using standard verifiable secret sharing techniques.

D. Bit decomposition and related operations B3l

Performance of known techniques for securely computing [4]
least significant bitga+]. ..[a,] from [a], are summarized in
Table Ill. Security of the solution in [9], [1] was not shown
to hold in presence of active adversaries. We also note thag
the literature provides techniques for performing congaari
without having to bit-decompose the operands first, and thiél]
performance is more efficient than applying bit decompaositi [7]
followed by comparison of bit-decomposed values. Such-tech
nigues were given in [17], [5], [9] for comparison, equality 8]
and range checks.

El
E. Performance
[10
Finally, we show that the techniques described in this work
are practical for many applications. Based on our experisjen
a single round of multiplication takes about 3msec on a LAN;
with n = 5 parties, where a noticeable portion comes from the
need to encrypt/decrypt communication. This means that add
tion, multiplication, and comparison operations are erely [12]
fast, while a 235-round division algorithm can be executed |
less than a second. This performance compares favorality wit
the performance results for this operation reported by \ang[13
al. [24] which do not tolerate collusion.

[14]
IV. CONCLUSIONS

This work follows the line of research taken by Yang 5!
al. [24] that suggest that a large number of data mining
problems can be realized in a privacy-preserving setting by
designing techniques for what we decompose into secure eV
uation of addition, multiplication, comparison, and diuis.

We first show that, despite security claims given in [24],rthe[17]
protocols are not secure (i.e., leak a significant amount of
private information) in presence of semi-honest advegsari
even if no collusion between the participants takes place. \{t8]
then show how efficient solutions secure in both semi-honest
and malicious models can be developed in this framework,
An additional advantage of our approach is that the protocol
do not need to be run by the data owners themselves, but
instead can be executed by a selected groups of parties[28]r
even outsourced to external computational servers.

] R. Cramer, |. Damgard, and U. Maurer.
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a shorthand forb;. We obtain:
APPENDIXA Si = a;®bi®e=(a;BbDc)
SUPPLEMENTAL PROTOCOLS = 1—a;®b; —ci + 2(a; ®b)es
Here we describe addition and subtraction algorithms thad . .
take ¢-bit operands in bit-decomposed form and produce their ci+1 = ¢ A=(ai Ab;) + ¢ A —(a; V b;) _
(¢ + 1)-bit sum or difference, respectively. The protocols = ci(l—aib) + (1= ;)1 + abi — a; — b;)
involve ¢ rounds, but require onlg/— 1 interactive operations = 1—a; —b;+aib; + c;(a; + b; — 2a;b;).

(multiplications), giving a performance advantage coreplarThis |eads to a subtraction protocol below that still usely on
to other available solutions when many protocols are run i _ 4 multiplications in/ rounds.

parallel.
Subtract([a]ls = [a1]. . .[as], [b] B = [b1]. . .[be])

A. Bit-oriented addition

1) Each party locally setf,] =1 — [b;] fori=1,...,¢.
In what follows, letc; for i = 1,...,£+ 1 denote theith ~ 2) Fori =1,...,¢ in parallel executéd;] = [a;][b}].
carry bit withe; = 0, ands; fori = 1,...,¢ denote theth bit ~ 3) Each party locally set§f;] = [a;] + [bi] — 2[d;] for i =
of the sum. Then using the truth table for binary addition we 1,...,¢ and also[s;] = 1 — [f1] and[c2] = 1 — [a1] —
can express; andc;; as a function ofa;, b;, andc¢; using [b1] + [d1]-
Boolean operators as follows: 4) Fori=2,...,4,

a) executdh;] = [¢][fi]-
b) each party locally setls;] = 1 — [fi] — [ci] + 2[h]
We further rewritec;,; as an algebraic expression as: and(c;+1] = 1 — [a;] — [bf] + [di] + [hi].
civ1 = (1 —=c¢)ab; +ci(a; +b; —ab;) 5) Setsera] = [eeta].
— aibi + Ci(ai + bl _ 2azb7,) 6) Return[81]. . .[Sg+1].

$i=a;PDb; P and Cit1 = —|cl-/\ai/\bi+ci/\ﬂ(ai\/bi).

Note that in the division protocol, when subtraction is per-
formed ona and b, we always have that > b. This means
that we can skip the computation of the last borrowdpit; .

Becausea; ® b; = a; + b; — 2a;b;, we see that alk;’s and
ci+1'S can be computed using onB¢ multiplications (more
precisely,2¢ — 1 multiplications because; is known to be 0):
¢ multiplications to compute alk;b; and ¢ multiplications to Security. Security follows from the fact that no value is
compute alle;(a; @ b;). This computation results i rounds revealed in the clear throughout the execution. This mezats t
because of the sequential nature of the computation of the long as the underlying basic operations provide security
ci+1's. More precisely, we obtain the protocol given next. Fagigainstt or less colluding parties, the overall protocol is also
simplicity of exposition, all products;b;, are computed in the secure.

first round of the protocol, while in an implementation it vidu

make sense to spread them out through all of the rounds.

Add([a]5 = [a1]. . .[ag], (b5 = [ba]. - .[be)

1) Fori=1,...,£ in parallel executéd;| = [a;][b:].
2) Each party locally set§f;] = [ai] + [bi] — 2[d;] for i =
1,...,¢ and also[s1] = [f1] and[cz] = [d1].
3) Fori=2,...¢,
a) executdh;] = [c][fi]-
b) each party locally sets;] = [fi] + [c:] — 2[h] and
[cit1] = [di] + [hi].

4) Set[syr1] = [cot1]-
5) Return[sy]...[s¢+1]-



