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Abstract—Cloud computing services are becoming prevalent
and readily available today, bringing to us economies of scale and
making large scale computation feasible. Security and privacy
considerations, however, stand on the way of fully utilizing the
benefits of such services and architectures. In this work we ad-
dress the problem of secure outsourcing of large-scale biometric
experiments to a cloud, where privacy of the data is preserved
and the client can verify that with very high probability the
task was computed correctly. We conduct thorough theoretical
analysis of the proposed techniques and provide instantiations for
concrete biometric types that show that the overhead is modest.

I. I NTRODUCTION

Cloud computing enables on-demand access to computing
and data storage resources, which can be configured to meet
unique constraints of the clients and utilized with minimal
management overhead. The recent rapid growth in avail-
ability of cloud services makes such services attractive and
economically sensible for clients with limited computing or
storage resources who are unwilling or unable to procure and
maintain their own computing infrastructure. One of the largest
possibilities that the cloud enables is computation outsourcing,
when the client can utilize any necessary computing resources
for its computational task. It has been suggested that the
top impediment on the way of harnessing the benefits of
cloud computing to the fullest extent is security and privacy
considerations that prevent clients from placing their data or
computations on the cloud (see, e.g., [1]). While in general
sensitive data can be protected by the means of encryption,
traditional encryption is not suitable for computation over data.
Furthermore, the clients no longer have direct control over
the outsourced data and computation and there is a lack of
transparency in the current cloud services. The cloud provider
can be incentivized to delete rarely accessed data or skip
some of the computations to conserve resources (for financial
or other reasons), which is especially true for volunteer-
based computational clouds. Furthermore, unintentional data
or computation corruption might also take place for a variety
of reasons including malware, security break-ins, etc. From
that perspective, it is important for the clients to be able to
verify the correctness of the result of the outsourced task.
The verification mechanism should not require the client to
perform the computation comparable in size to the outsourced
task itself. Secure and verifiable outsourcing of certain types
of computation is therefore the focus of this work.

The main motivation for this work comes from the extensive
amount of computation involved in biometric research that,
due to memory and processing power constraints, inevitably
pushes the computation on a computational cloud or grid. The
sensitive nature of the data makes its protection throughout
the computation a necessary requirement, and to be able to
rely on the outcome of the computation, the result needs to
be verified. While we present the developed techniques in the
context of biometric data processing, our results can be used
for any type of computation of similar structure.

The computation, secure and verifiable outsourcing of which
we address in this work, can be described as follows. In
biometric research, evaluation of a new recognition algorithm
amounts to running the algorithm on a very large number of
biometric images. Given a data setD of raw biometrics, first
each of them needs to be processed to extract the features.
Next, the distance between each pair of processed biometrics
in D is computed, which is called “all pairs” computation. The
result allows users to gather distribution (and any necessary
statistical) information about the quality of biometric matching
for impostor (different subjects) and authentic (same subject)
comparisons. The accuracy of the result depends on the size
of D, which can often consist of tens (or even hundreds)
of thousands of biometrics. This volume of the computation
cannot be performed on a single machine and needs to be
partitioned and run by a computational grid or cloud.

Prior work [8] provides a system for seamlessly placing
such functionality on a grid. In this work, we extend the
framework by integrating security protection in the compu-
tation to ensure that it can be placed on a cloud comprised
of untrusted machines and the correctness of the computation
is verifiable by the client. Throughout this work, we assume
that the client is capable of performing work linear in the
number biometrics inD, |D|, but computation exceeding this
linear bound is beyond the client’s capabilities. For that reason,
we focus on the computation corresponding toAllPairs and
Analyze functionalities with quadratic complexity, defined as
follows: AllPairs(S, F ) compares all members of setS using
function F and produces matrixM , where each element
M [i][j] = F (S[i], S[j]); Analyze(M, C) extracts statistical or
other quality metric data from matrixM and stores the result
in C. Furthermore, because secure comparison of biometric
templates has been a subject of prior research (see, e.g., [12],



[3], [6] and others), this work is primarily dedicated to tech-
niques for computation verification. These techniques are inde-
pendent of the mechanisms for securing the computation (e.g.,
those based on secret sharing or homomorphic encryption) and
can be used with any suitable solution for protecting privacy of
the data. Nevertheless, to illustrate that all of the computation
considered in this work can indeed be carried out privately in
an outsourced scenario, we describe secure protocols that can
be derived from prior literature. For concreteness, throughout
this work we assume that unconditionally secure techniques
based on linear secret sharing are used.

In the current version of this work due to space constraints
we focus on the verification techniques for theAnalyze func-
tionality, which is the more interesting and difficult among
AllPairs and Analyze. The full version [7] shows how to
enforce verifiability ofAllPairs computation and integrate the
techniques with those ofAnalyze functionality. It also provides
implementation results.

Our contributions. We design a mechanism for verification
of outsourcedAnalyze computation for three distinct distance
metrics used in biometric computation: the Hamming distance
(Section III), the Euclidean distance (Section IV), and theset
intersection cardinality (Section V). The rigorous analysis that
allows the client to set the security parameters as to achieve the
desired probability of misbehavior detection is omitted due to
space constraints and can be found in the full version [7]. We,
however, demonstrate to what values the security parameters
should be set to achieve desired security guarantees (according
to the analysis) and show that the overhead of our schemes is
acceptable. The computation is assumed to be carried out on
protected data, and we illustrate a way of achieving privacy-
preserving outsourcing for all functionality used in this work.

II. PROBLEM DESCRIPTION

Computation description. A client has a pre-selected large
collectionS of biometric templates, which are to be compared
and analyzed. To accomplish theAllPairs functionality (which
comes beforeAnalyze), the matrix M is partitioned across
multiple computational servers such that each server receives a
computational task which can be performed within its memory
and computational capacity constraints. Let a server receive a
job of the form of two setsS1 andS2 of n items each and its
task is to perform comparisons of each pair of itemsx ∈ S1

andy ∈ S2, producing ann × n matrix as the output. When
we refer to this matrix, we will assume that the items from
the first set correspond to rows of the matrix and the items
from the second set correspond to columns. The server is not
assumed to follow the computation as prescribed, but it might
be interested in attempting to avoid being detected that (some
of) the computation was not performed. The computation is
appropriately secured, so that the server does not learn any
information about the data it handles, but has the description
of the computation. Depending on how the secure computation
is realized, a single task might take the form of multi-party
computation, in which case it should be understood that
when we refer to server’s computation it involves (interactive)

computation by multiple entities. Also, because biometric
comparisons amount to computing the distance between two
items which normally consist of multiple elements, we assume
that each item consists ofm elements.

To accomplish theAnalyze functionality, the computational
servers will need to post-process the distance values in the
matrix to compute statistical information. In this work we
propose that each server computes the number of times each
particular distance value appeared among then2 computed
distances. This information fully defines the distributionand
will allow the client to compute any necessary statistics from
it. (When the computational task is partitioned among multiple
servers, the client can easily merge the returned data by simply
adding the counts from multiple servers for each given distance
value.) To compute the count for each distance, the server
obliviously compares a distance it computed for a given cell
to all possible distance values and increments one of them that
matched (without knowing which count was incremented). We
refer to the data structure that stores distribution information
(i.e., an array of protected counts) asC. Note that the number
of counts thatC contains will depend on the range of distances
information about which is being collected. For instance, for
biometrics represented asm-bit binary strings the distance
between which is computed as the Hamming distance, the
range of distances will be[0, m]. Let C = 〈c0, . . ., cv−1〉,
where v is defined by the range of the distances and is
a function of m. The pseudo-code below shows howC is
updated for each cell. Below, notation[x] means that the value
of x is not known to the server, the result of the equality
testing operation(a

?
= b) is a bit, anddi is the distance value

associated with countci. Initially, all ci’s are set to 0.

[d] := dist([x], [y]);
for i = 0, . . ., v − 1

[bi] := ([d]
?
= [di]);

[ci] := [ci] + [bi];

Note that because the server does not have access to the
distancesdi associated with eachci, the values ofdi do not
have to equal toi or even be in the range[0, v − 1].

Security model. As mentioned above, our goal is to achieve
secure and verifiable computation outsourcing. Because com-
putation verification techniques is the focus of this work,
throughout most of it we assume that the computation can
be carried out in a secure manner. For completeness of this
work, we, however, show below how the types of computation
used in this work can be carried out in a private manner
by the servers to whom tasks are being outsourced. We thus
obtain that the server performing the computation is unableto
learn information about the data it handles, but might deviate
from the computation by skipping a portion of it or returning
incorrect results. In particular, we assume that the server
computes fractionp of its task, where0 ≤ p ≤ 1, and attempts
to manipulate the result so as to make the client believe that
it computed its task as prescribed. The client’s goal is then
to devise a mechanism which detects the server’s misbehavior



even when the portion of skipped computation,1−p, is small.
Let D denote the event that the client detects server’s cheating
(and D that the client does not). Then the client’s goal is to
achievePr[D] ≥ 1 − 1

2κ for the desired security parameter
κ wheneverp is below the specified threshold. It is assumed
that the server knows the verification procedure and knows
(or can sufficiently well approximate) all of the parameters
used by the client for devising its task verification mechanism.
These include Pr[D], p, m, n, and all other security parameters
derived from them as detailed later in this work.

Achieving privacy of distance and statistics computation.
Three different distance metrics are treated in this work:
the Hamming distance (used for iris), the Euclidean distance
(used for faces and other types of biometrics), and the set
intersection cardinality (used for fingerprints). Secure out-
sourcing of iris code comparisons to one or multiple servers
has been addressed in a recent work [6]. The computation
considered in that work is more complex than the Hamming
distance alone, but for the purposes of this work we simplify
the computation and show how the Hamming distance and
statistics computation can be achieved in the multi-party
setting. Based on that, we also provide a protocol for the
Euclidean distance computation. Lastly, [5] develops currently
the most efficient multi-party implementation of secure set
intersection and set intersection cardinality which can beused
in outsourced environment. We show how the solution can be
adopted to our work. All protocols for private distance and
statistics computation are given in Appendix A.

III. V ERIFICATION OF STATISTICS COMPUTATION FOR

HAMMING DISTANCE

We now proceed with describing our techniques for verifi-
able Analyze functionality. In the current description we use
the Hamming distance as the distance metric for computing
distances between two items. Modifications to this method that
apply to other distance metrics are given afterwards.

A. First attempt

At a high level, the idea consists of introducing fake items,
the distances associated with which fall into a range different
from original distances and can be verified by the client. The
client has two data sets and insertsn1 (n2) fake items intoS1

(S2, resp.), where the resulting sets are of sizen each. Each
original item consists ofm elements, where every element is
a bit (i.e., the Hamming distance between any two items is in
the range[0, m]). The client inserts a new(m + 1)st element
in each item as follows: ifx = 〈x1, . . ., xm〉 is a real item, the
client modifies it tox = 〈x1, . . ., xm, 0〉. To form a fake item
y, the client sets its elements to〈y1, . . ., ym, m+1〉, where bits
y1, . . ., ym are chosen according to any desired distribution.
The server will be unable to distinguish two types of values
because they are not accessible to the server in the clear.

We obtain that the distances between two real items remain
in [0, m], while distances between a real and fake items now
lie in the range[m + 1, 2m + 1]. The distances between two
fake items can be made not to overlap with the range[0, 2m+

1] since the Hamming distance is computed using arithmetic
operations.

The client can verify the correctness of the server’s compu-
tation using the number of computed distances that fall in
each range. In particular, the server computes the distance
distribution by comparing each computed distance to2m + 2
values from 0 to2m + 1 and incrementing the count for
the distance that matched. The client’s verification consists
of adding the counts for the distances in the range[0, m] and
the counts for the distances in the range[m+1, 2m+1]. The
client compares the aggregate counts to their expected values
(n−n1)(n−n2) and(n−n1)n2+n1(n−n2), respectively, and
the computation is considered correct if both of them match.

Now suppose that the server computespn2 distances and
would like to avoid detection. Instead of trying to guess the
locations of fake items, it simply returns2m +2 counts, such
that countsc0 throughcm add to(n−n1)(n−n2) and counts
cm+1 throughc2m+1 add to(n−n1)n2+n1(n−n2). Because
it is reasonable to assume that the server knows (or can guess)
n1 andn2, which are set by the client to achieve a certain level
of security, the server can always be successful in avoidingthe
detection. This means that a different solution is needed.

B. Improved solution

To improve security of the above solution, we employ two
ideas: (i) (protected) distances used for computing statistics
are given to the server in randomized order and (ii) the client
verifies a larger number of aggregate counts. By itself, the
first modification still results in insufficiently high detection
probability, but in combination with the second it leads to the
client’s ability to achieve a desired level of protection.

In detail, both client’s procedures for preparing the data and
verifying the computation change. Before the computation is
sent to the server, the client adds extrak elements to each
real item (with m original elements). Them + k elements
are randomly permuted, but consistently across all items. Let
i1, . . ., ik denote positions of extra elements. All artificial
elements are set to 0 in real items.

To form fake items, the client first chooses a small integer
ℓ, which will be used as a security parameter. The client
next choosesℓ values larger thanm; each value will be used
to increase the distance between certain fake items and real
items. For concreteness, and without loss of generality, let
these values bem + 1, . . ., m + ℓ. Then to create a fake item,
the client first chooses a distanced at random from the range
[m + 1, m + ℓ]. Next, the client choosesk valuesd1, . . ., dk

such that
∑k

i=1
di = d, and sets the element at positionij in

the fake item todj for j = 1, . . ., k and all original elements to
0. This setup implies that the distance between this fake item
and any real item is in the range[d, d +m], and the distances
between any fake item and any real time will always be in the
range[m + 1, 2m + ℓ]. The client also records the number of
times eachd was used in a fake item in the setS1 and S2,
respectively (both formed in the above described way). Let the
counts be denotedcj

i , wherei ∈ [m+1, m+ ℓ] andj ∈ [1, 2].



Before the client will be able to verify the computation
performed by the server using setsS1 andS2, the client needs
to compute additional information as follows: For each real
item in S1, the client computes the number of bits sets to 1
in that biometric (i.e., its Hamming weight) and counts the
number of instances of each distance across all real items. Let
s1
0, . . ., s

1
m denote the distribution of the distances, wheres1

i

indicates the number of real items inS1 with the Hamming
weight of i. Similarly, the client produces the counts for the
real items inS2, which are denoted bys2

0, . . ., s
2
m.

After the server receives setsS1 andS2 from the client, it
computes the distances between all pairs. Afterwards, when
the server produces statistics, it will need to compare each
computed distance to the values in the range[0, 2m + ℓ].
Since the comparisons are performed obliviously without the
server knowing to what value a distance is being compared,
the client randomizes the order in which all possible distances
are communicated to the server. This means that the server will
not be able to know what positions within the set of2m+ℓ+1
values correspond to original distances from 0 tom and which
correspond to artificial distances abovem.

After the server returns statistics data to the client, the client
performs the verification procedure in Figure 1 (which is also
used for other distance metrics) using parameters[lr, lu] =
[0, m], [lf , uf ] = [m + 1, 2m + ℓ], and do = m. Notation
C[i] denotes the count returned by the server for distancei
anddo = m indicates that the original elements of real items
contribute distances in[0, m] to the distances between real
and fake items. Step 2 in the figure represents the number of
distances contributed by the intersection of fake items inS1

with real items inS2 and fake items inS2 with real items inS1.
For example,cm+1 = c1

m+1s
2
0 + c2

m+1s
1
0, cm+2 = c1

m+1s
2
1 +

c1
m+2s

2
0 + c2

m+1s
1
1 + c2

m+2s
1
0, etc. If all checks succeed, the

client treats the obtained distribution as correct.
In order for distances between two fake items not to

interfere with the counts being verified, we can ensure that
dist(x, y) between fakex and y are outside of the range
[0, 2m+ℓ] using the following: Because in secure computation
modular arithmetic is normally used, the client choosesdi’s
uniformly at random fromZq, when the arithmetic is carried
out moduloq, while maintaining

∑k

i=1
di mod q = d. When

q ≫ 2m+ ℓ, with high probability alln1n2 distances between
two fake items will fall outside of the range[0, 2m + ℓ]. If,
however,dist(x, y) happens to be in[0, 2m + ℓ] for somex
andy, the client can choose a different set ofdi’s for x or y.
We, however, allowdist(x, y) to be in [0, 2m + ℓ], in which
case the client needs to adjust the counts it expects from the
server and also needs to compensate for the error when using
statistical data computed by the server. This incurs minimal
overhead on the client, but allows to keepq low.

C. Performance

To evaluate the overhead introduced by our techniques, we
need to compute parametersn1, k, and ℓ for a fixed m,
variablen, and desired values of Pr[D] and p. Our analysis
also uses an additional parameterγ that serves a role similar

to Pr[D] that ensures that the client’s security guarantees hold
with probability at least1 − γ. Therefore, the parameters are
computed for the desired values of Pr[D], γ, and p. We use
m = 1000 in our computation, which is similar to the length
of iris codes used in commercial software.

We show the values ofk, ℓ, and n1 according to our
(omitted) analysis for three different settings of Pr[D], γ, and
p in Table I. As can be seen from the table, form = 1000
it is sufficient to setℓ to 1. Also, the value ofm has a low
impact on the value ofk. Similarly, the value ofn1 increases
slowly as a function ofn and approaches a constant.

The cost associated with our verification techniques consists
of the overhead due to (i) the addition of fake elements which
amounts to the fractionk/m for tasks of all sizesn, (ii) the
addition of fake items which amounts to the fractionn1/n
that decreases asn grows, and (iii) expanding the size ofC
from m to 2m + ℓ which doubles the work associated with
processing each pair of items. The client’s task preparation
and verification effort is minimal and amounts to a couple of
seconds for tasks withn set to several thousand. We refer the
reader to [7] for additional results.

IV. V ERIFICATION OF STATISTICS COMPUTATION FOR

EUCLIDEAN DISTANCE

We now proceed with the verification techniques for the
Euclidean distance. This time, each itemx is represented
as an m-dimensional vector〈x1, x2, . . . xm〉, where every
elementxi ∈ [0, t] for 1 ≤ i ≤ m. Instead of following
the distance computation exactly, in this metric, we have the
server compute the distribution of squared distances and send
the result back to the client. That is, we definedist(x, y) =∑m

i=1
(xi−yi)

2. The client will then either produce a mapping
between regular and squared distances as it forms a task
assignment for the server, will take the square root of each
returned result, or will operate directly on squared distances.

The solution is very similar to that for the Hamming
distance. The client, as before, insertsn1 = n2 fake items into
S1 andS2 and also insertsk fake elements into real and fake
items. The resultingm + k elements are randomly permuted,
and all artificial elements are set to 0 in the real items.

To form fake items, the client chooses a small integerℓ as
the security parameter and then choosesℓ values larger than
mt2 with each of them being used to increase the distance
between real and fake items. For concreteness, we set these
values tomt2 +1, mt2 +2, . . . , mt2 + ℓ. To form a fake item,
the client first randomly chooses a distanced from theseℓ
candidates. Next, the client choosesk fake elements at random
from Zq, denoted bydi for 1 ≤ i ≤ k, so that the constraint
∑k

i=1
di

2 = d is satisfied. In detail, the client chooses the
first k − 1 di’s uniformly at random fromZq, sets(dk)2 to
d−

∑k−1

i=1
di

2, and computesdk. For a primeq, there is about
50% probability that square root computation fails (i.e.,(q −
1)/2 values fromZq are quadratic nonresidues). In this case,
the client chooses a newdk−1 at random and tries again until
dk is successfully found. Finally, the client sets the remaining
m (original) elements in that item to 0. To aid producing the



Input:
• the range of distances[lr, ur] between two real items in data structureC;
• the range of distances[lf , uf ] between real and fake items in data structureC;
• the maximum distancedo that the original elements of real items contribute to the distance between real and fake items.

Algorithm steps:
1) The client adds the counts for the distances betweenlr andur usingC[lr] throughC[ur ] and compares the result to(n−n1)(n−n2).
2) The client computes the expected distribution of the distances between real and fake items as follows: for eachi = lf , . . ., uf , the

client setsci =
Pmin(uf−lf+1,i)

j=max(lf ,i−do)(c
1
js

2
i−j + c2

js
1
i−j). The client then compares eachci with C[i].

Fig. 1. Description of client’s computation of the expectedstatistics.

Computed parameters
Security setting k ℓ n1

any n any n n = 200 n = 400 n = 600 n = 800 n = 1000 n = 2000
p ≤ 0.9, Pr[D] ≥ 0.95, γ ≤ 0.05 28 1 27 28 28 28 29 29
p ≤ 0.95, Pr[D] ≥ 0.95, γ ≤ 0.05 57 1 51 55 56 57 57 58
p ≤ 0.95, Pr[D] ≥ 0.99, γ ≤ 0.01 87 1 73 81 84 85 86 88

TABLE I
VALUES OF PARAMETERSk, ℓ, AND n1 FOR VERIFICATION OFHAMMING DISTANCE-BASED STATISTICS WITHm = 1000.

expected statistics for computation verification purposes, the
client records the number of times eachd was used in a fake
item in the setS1 and S2, respectively. Let the counts be
denotedcj

i , wherei ∈ [mt2 + 1, mt2 + ℓ] andj ∈ [1, 2].
By forming a task as described above, the distances between

two real items fall into the range[0, mt2], the distances
between a real and fake items fall into the range[mt2 +
1, 2mt2 + ℓ], and the distances between two fake items can
be anywhere inZq. Because the range of distances between
two fake items might now overlap with the range of distances
between two real (or real and fake) items, for verification
purposes, the client needs to precompute the distribution of
distances between two fake items that fall into the range
[0, 2mt2 + ℓ], and subtract it from the statistics returned by
the server. Note that the fake items could be reused for
each task without lowering the detection probability, thusthis
computation should be treated as a one-time overhead.

Before the client is able to verify the computation performed
by the server, it needs to compute additional information as
follows: for each real itemx in S1 andS2, the client computes
the sum of squares of its elements

∑m

i=1
x2

i , and counts
the number of instances of each occurred value across all
items. Lets1

i (s2
i ) denote the number of items with computed

valuei in S1 (S2, resp.). After acquiring this distribution, the
client computes the expected statistics and verifies the results
returned by the servers using the algorithm in Figure 1 with
the inputs:[lr, ur] = [0, mt2], [lf , uf ] = [mt2 + 1, 2mt2 + ℓ],
anddo = mt2. If all the checks in the algorithm succeed, the
client treats the obtained statistics data as correct.

The number of dimensionsm in biometrics that rely on
the Euclidean distance (such as faces) is significantly lower
than m using in the Hamming distance analysis, normally
not exceeding 50. Fortunately, our analysis of the scheme
for the Euclidean distance shows that lowerℓ can be used
for the Euclidean distance than the Hamming distance with
comparable sizes ofC. This gives us thatℓ = 1 is sufficient
for the Euclidean distance as well, and we obtain that the client

can use the same values ofn1 and ℓ as given in Table I and
the value ofk for m = 50 will be lower than in the table.

V. V ERIFICATION OF STATISTICS COMPUTATION FORSET

INTERSECTIONCARDINALITY

We lastly describe our solution for statistics verification
for the set intersection cardinality distance metric. Now each
original item is composed ofm elements1 from the range[0, t].
The server is to compute the cardinality of set intersectionof
the elements inx andy, |x ∩ y|, for eachx ∈ S1 andy ∈ S2

and compile the distribution of the distances in the form ofC.
As before, the client proceeds with insertingn1 fake items

into the sets andk fake elements into the real and fake items
to aid verification. Unlike the previous distance metrics, the
fake elements are not required to be positioned consistently
across all items. All fake elements are set to 0 in real items.

To generate fake items, the client produces2n1 values larger
than t and assigns each of them to a single fake item so that
each fake item obtains a unique value. We usedi to denote the
value assigned to theith fake item. To form theith fake item,
the client randomly chooses a valued from the range[0, k−1],
and setsd randomly chosen elements of it to 0 and sets the
remainingm + k − d elements todi. Each resulting real or
fake item is now a multiset, and we assume that the distance
computation function will work properly on such items. The
client also records the number of times eachd was used in a
fake item in the setS1 and the setS2, respectively, and we
denote such counts bycj

d, whered ∈ [0, k− 1] andj ∈ [1, 2].
This setup gives us that the distances between any two real

items fall into the range[k, m + k], the distances between
any real and fake items fall into the range[0, k), and the
distances between any two fake items fall into the range
[0, k). Because of the overlap of the last two ranges, the client
needs to precompute the statistics for the distances between

1Note that each biometric is not required to be of length exactly m. Both
correctness and security of our solution will hold if each item is of length at
mostm, i.e., m is the upper bound on the size of items.



any two fake items, add it to the expected statistics for the
distances between real and fake items, and then compare the
result to the statistics returned by the server. The rest of the
verification process uses the algorithm in Figure 1 with the
inputs: [lr, ur] = [k, m + k], [lf , uf ] = [0, k− 1], anddo = 0.

We note that the value ofm is relatively small in biometric
types that use this distance metric (e.g., fingerprints). This,
based on our analysis, means that higher values ofn1 than
what is reported in Section III-C might be necessary for the
above scheme. We refer the reader to [7] for additional detail.

VI. RELATED WORK AND CONCLUSIONS

Research on verifiable or uncheatable computation was initi-
ated in [14], [13] using redundant task execution and insertion
of so-called ringers in search for rare events (in particular,
performing inversion of one-way function). Consequently,
Szajda et al. [21] extended the idea to optimization problems
and sequential executions (while still relying on paralleland
redundant task execution). Other publications in this direction
include [10], [15], [17] that inject chaff sub-tasks or verify por-
tions of the result for computations of certain structure (e.g.,
NP-complete problems); [18], [23] use redundant scheduling.
Du et al. [11] suggest the use of commitment to the result of
massively-parallel server’s computation using a Merkle hash
tree, where the client verifies the computation by challenging
the server on a number of individual sub-tasks which must
match the commitment. Finally, in [19] distributed checking
is used where (possibly malicious) servers perform checks
on each other. We note that often the techniques from the
literature can achieve a high probability of cheating detection
only whenp is rather low (i.e., not close to 1). There are also
a number domain-specific computation verification techniques
that exploit domain knowledge to verify the results efficiently.
Such techniques are known for algebraic computations [4],
[2] and linear programming [22]. This work is thus can be
positions between general and problem-specific techniques,
as it assumes a certain structure of the computation, but the
developed techniques are applicable to different instantiations
of the distance function. We note that the general solutions
listed above would not work in the context of this work, as
distance computation consists of many elements and should
not be treated as an integral function.

In this work we develop techniques for verifiable outsourc-
ing of large-scale biometric computations for statisticaldata
computation and provide their rigorous security analysis in
the full version [7]. We treat several popular distance metrics
such as the Hamming distance, Euclidean distance, and set
intersection cardinality and show that our techniques introduce
reasonable overhead.
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APPENDIX A
PRIVATE DISTANCE AND STATISTICS COMPUTATION

Here we describe solutions for private distance and statistics
computation in the multi-server outsourced context, wherethe



computation takes the form of secure multi-party computation.
Let serversP1, . . ., Pn carry out the computation. The client
secret-shares all data items among the servers using a(n, t)
linear threshold secret sharing scheme as such as [20], and
the computation proceeds on their shares. This means thatt <
n/2 participants information-theoretically learn no information
about shared values, and the computation is secure in presence
of collusion of size at mostt. We use[x] to denote that value
x is secret-shared among the servers. Any linear combination
of shared values can be computed locally by each server,
but multiplication [x][y] requires interaction. Complexity is
measured in the number of interactive operations.

Our protocols rely on the following building blocks:

• [c]← Inner([a1], . . ., [am], [b1], . . ., [bm]), on input of two
vectorsA andB of equal size, returns the inner product
of the elements ofA andB. The cost is one interactive
operation (multiplication).

• [b]← Eq([x], [y]), on input two integersx andy, outputs
a bit which is set to 1 iffx = y. Existing implementations
use a linear or even sublinear in the length ofx and y
number of interactive operations in constant round (see,
e.g., [9]).

• [b1], . . ., [bm] ← Sort([a1], . . ., [am]), given a set of ele-
ments, outputs the values in a sorted order. The sorting
must be data-oblivious (i.e., the same sequence of com-
parisons is executed regardless of the input) to preserve
privacy of values. Existing algorithms achieve this using
O(m log m) comparisons (see, e.g., [16]).

All of the protocols we provide are information-theoretically
secure in presence of servers that follow the computation
(or do not maliciously change the computation) and achieve
perfect secrecy (unless the invoked building blocks are only
statistically secure). We present protocols for computingthe
distance between two biometrics separately from computing
statistics based on computed distances since the statistics
computation is the same for each distance metric.

The protocol for the Hamming distance is very simple:

Protocol 1. [d]← HD([x1], . . ., [xm], [y1], . . ., [ym])

1) [d]← Inner([x1], . . ., [xm], [y1], . . ., [ym]);
2) return[d];

The Euclidean distance can be securely computed similarly:

Protocol 2. [d]← ED([x1], . . ., [xm], [y1], . . ., [ym])

1) for i = 1 to m do in parallel[zi]← [xi]− [yi];
2) [d]← Inner([z1], . . ., [zm], [z1], . . ., [zm]);
3) return[d];

The cost of both of the above protocols is equivalent to one
multiplication. The set intersection cardinality ofX andY of
sizem1 andm2, respectively, is computed according to [5].

Protocol 3. [d]← SIC([x1], . . ., [xm1
], [y1], . . ., [ym2

])

1) [z1], . . ., [zm1+m2
]← Sort([x1], . . ., [xm1

], [y1], . . ., [ym2
]);

2) for i = 1 to m1 + m2 − 1 do in parallel [ui] ←
Eq([zi], [zi+1]);

3) [d]←
∑m1+m2−1

i=1
[ui];

4) return[d];

The protocol above works correctly only when all elements
of each input set is unique (i.e., the inputs are sets rather
than multisets). For the (more complex) protocol that correctly
works on multisets, we refer the reader to [5]. The cost of
both the set and multiset intersection cardinality protocols is
dominated byO((m1 + m2) log(m1 + m2)) invocations of
comparison protocol, which uses the number of multiplications
linear in the length of its operands.

Finally, given computed[d], the servers updateC as follows:

Protocol 4. [c0], . . ., [cv−1] ← Stat([d], [c0], . . ., [cv−1], [d0],
. . ., [dv−1])

1) for i = 0 to v − 1 do
2) [bi]← Eq([d], [di]);
3) [ci]← [ci] + [bi];
4) return[c0], . . ., [cv−1];


