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Abstract—With the proliferation of internet-based social net-
works into our lives, new mechanisms to control the release and
use of personal data are required. As a step toward this goal,we
develop a recommendation system which protects the privacyof
user answers while allowing them to learn an aggregate weighted
average of ratings. Due to the use of social network connections,
the querier obtains a more relevant and trustworthy result than
what generic anonymous recommendation systems can provide,
while at the same time preserving user privacy. We also give
experimental performance results for our solution and several
recently developed secure computation techniques, which is of
independent interest.

I. I NTRODUCTION

Over the last decade social networking sites have increased
in popularity. This popularity has brought many people to-
gether, increasing their ability to share information. While in
general information sharing is desirable, some users might
be concerned with the privacy implications of disclosing so
much personal information online. Currently users have two
main options: They can either refuse to enter the information
they are uncomfortable disclosing, or they may limit accessto
the information via privacy controls provided by the social
networking site. It is important to note, however, that in
the second case the information is stored remotely, and thus
control of the data is lost to the user.

While the current system is functional, a more desirable
alternative would be to enable users to retain control over their
data, while retaining utility to friends in the social network.
Product reviews, for example, can benefit from a system that
facilitates information sharing while maintaining participants’
privacy. While some users might not be willing to disclose
their (numerical) ratings of certain products (or the existence
of a rating), they would still be able to give their opinion.
Without input from a social network, users who had not tried a
certain product would instead be forced to sample the product
themselves, or read reviews from anonymous users to be able
to make an intelligent decision about the product. Both of
these options are suboptimal as they disregard the benefits of
friendship relationships available. In particular, recommenda-
tions gathered through a social network are likely to be more
useful than general systems due to similarities between the
tastes of the querier and its network. Information gathered
through such means is also likely to be more trustworthy as it

relies on connections between individuals, and thus enabling
users to query friends for their opinions would be beneficial.

In order to facilitate this, we propose a protocol whereby
users are able to query a neighborhood of their social network
in order to learn a recommendation. The rating is computed
as a weighted average of individual ratings, with users closer
to the querier (optionally) having more weight. During no
point of the computation should any user (nor the underlying
system) be able to learn any additional information. That
is, only the querier learns the weighted average of ratings
from its social network, while everyone else learns nothing.
This should alleviate any privacy concerns users may have
about disclosing their opinions. Furthermore, we provide a
mechanism for claiming that no rating exists.

An additional substantial contribution of this work is the
extensive implementation of our recommendation system inte-
grated with the Facebook social networking site. To the bestof
our knowledge, this is the first implementation illustrating the
performance of several highly non-trivial techniques for secure
multi-party computation from prior literature. Such results are
of independent interest and have high practical relevance.

II. OVERVIEW OF SCHEME

As previously stated, our goal is to compute a weighted
average of ratings among a group whose individual values are
considered private. In this section we provide a description of
the computation performed during an invocation our scheme,
a description of the security model, and an overview of the
techniques. Building blocks are presented in Section III, the
full scheme is given in Section IV, and Section V describes
our implementation and the performance results.

A. Overview of Computation

We view the network as a hierarchical structure, where the
user submitting the query acts as a “root” and the immediate
friends as “children.” The root can specify the distance to
which the query should propagate. While in general any depth
can be specified, for convenience we describe the computation
using depth 2 (as we believe the results will be most useful to
the root for low values of the depth). In our setup, we assume
neither the object being rated nor the querier are sensitive, but
all information regarding user ratings must remain secure.



Initially, the root,R, wishes to learn the rating of an item,I.
To do so,R first chooses a set of friends,F , who are trusted to
determine an average rating.R then requests that eachf ∈ F
computes a rating ofI, where the range of possible ratings is
specified as a subset ofN

+. Upon being queried for a rating
of I, eachf ∈ F then queries its friends for their rating ofI.
Each rating is represented as the pair(si, wi), wheresi is the
rating andwi is the weight. When a useri does not need to
query her children (e.g., is at the bottom of the hierarchy),she
merely returns her ratingri as the value forsi and sets the
weightwi to 1, or, alternatively, if useri does not have (or wish
to provide) a rating for the item, the pair(0, 0) is returned.
Other users in the hierarchy compute their rating as a function
of their own rating and ratings of their children. In that case,
the rating should be read assi/wi, i.e., si corresponds to the
rating scaled bywi.

Upon receiving ratings of the form(si, wi) from all chil-
dren, each intermediate nodef ∈ F can compute a weighted
average of its children’s ratings and its own. We givef the
ability to replace the weight of childi with weight ŵi if
desired. Letrf (ŵf ) denotef ’s own rating (weight) that it
wants to assign to itself (resp.). Its combined rating(sf , wf )
is computed aswf = ŵf +

∑

i ŵi andsf = rf · ŵf +
∑

i(si ·
ŵi/wi). Note that care must be taken during evaluation as
some of thewi’s may be 0.

f can also have its weight be a function of the weights of its
children. In particular,̂wf can be computed ask1

∑

i wi +k2,
wherek1, k2 ≥ 0 are constants. Whenk1 = 1 andk2 = 0, for
example,f ’s weight is equal to that of its children.f can also
setk1 = 0 andk2 to a constant to have a weight independent
of the weights of its children. Given this, its rating computation
becomeswf =

∑

i wi+ŵf andsf =
∑

i si+rf ·ŵf . Note that
if the children are not reweighted no division is used which
is more attractive for use in secure computation.

After eachf ∈ F computes its weighted rating, it returns
(sf , wf ) to R. R can now reweight all of its children using
weightsŵf (as described above with the exception of having
no own rating or weight) and obtain the final weighted rating
(sR, wR), wheresR/wR is the learned rating.

B. Security Model

While the description above specifies the desired com-
putation, a privacy-preserving solution cannot leak private
information to the participants. That is,R announcesI and
the query parameters (e.g., the depth of the search, range of
ratings, etc.) and learns the final result. No other information
should be leaked toR or the other parties. We assume that the
participants are semi-honest, i.e., they follow the protocol, but
attempt to learn additional information if possible. This model
is sensible in our setting since users are connected through
social ties, and thus a trust relationships often exists. Wenote,
however, that many building blocks used were designed to be
secure in a stronger, fully malicious, model and thus additional
techniques can make them robust against misbehaving parties
if necessary. Section VII expands upon these issues.

We assume that two users have a (direct) communication
channel only if they are directly connected in the network
(i.e., they are friends). As is common (e.g., on Facebook)
we assume the network topology (or user connections) are
publicly available and therefore not sensitive. The inability
of some participants to communicate directly requires them
to pass their communication through other parties in the
computation, appropriately secured (e.g., by using Public
Key Infrastructure). Due to the hierarchical nature of social
networks, some users might assume more active roles than
others, e.g., the root and its children are more central to
query execution than users farther from the root. The security
guarantees are, however, required to hold for all participants,
regardless of their role.

Let P0, P1, . . ., Pm−1 denote the set of participating users,
whereP0 = R. We formally define security using the standard
definition in secure multi-party computation for semi-honest
adversaries. Because most participants receive no output,we
denote “no data” by the special character⊥.

Definition 1: Let P0, . . ., Pm−1 engage in a protocolπ
that computes functionf(in0, . . ., inm−1) = (out0,⊥, . . .,⊥),
whereini denotes the input of partyPi andout0 is the output
of partyP0. Let VIEWπ(Pi) denote the view of participantPi

during the execution of protocolπ. More precisely,Pi’s view
is formed by its input and any internal random coin tossesri,
as well as messagesm1, . . ., mt passed between the parties
during protocol execution, as

VIEWπ(Pi) = (ini, ri, m1, . . ., mt).

We say that protocolπ is secure against semi-honest ad-
versaries if for each partyPi there exists a probabilistic
polynomial time simulatorSi such that

{Si(f(in0, . . ., inm−1))} ≡ {VIEWπ(Pi), outi},

whereouti =⊥ for all parties exceptP0 and≡ denotes com-
putational indistinguishability (using an appropriate security
parameter).

Note that this standard model allows participants to collude
(i.e., share the information). The security guarantees must hold
as long as the coalition size does not exceed a thresholdt. In
particular, this means that the rootR does not have exceptional
capabilities and thus participates as a regular user.

C. Overview of Techniques

To carry out the computations securely, we employ a seman-
tically secure public-key homomorphic encryption scheme,
i.e., one which maps operations on ciphertexts to correspond-
ing operations on the underlying plaintexts. In particular, we
employ additively homomorphic encryption with the following
properties: given messagesm1, m2 and encryption algorithm
Enc, Enc(m1) · Enc(m2) = Enc(m1 + m2). This implies
Enc(m1)

c = Enc(c ·m1) for c > 0. We assume an encryption
schemeE is composed of three algorithms(Gen, Enc, Dec) for
key generation, encryption, and decryption, respectively.

To perform our protocol we must add two unknown values,
multiply an unknown quantity by a known value, and divide



two encrypted numbers. The first two operations are easily
accomplished via homomorphic encryption, while division
requires additional techniques. For this reason we developa
division protocol that takes two encrypted inputs and produces
an encrypted quotient. Custom protocols for secure division
exist in the literature (e.g., [1]–[3]), but none of can be used
in our setting. More details are given in Section III-C.

One complication of developing division protocols is han-
dling division by zero. Since in our scheme the child’s
weight can be zero, our solution must not fail in such cases.
Consequently in our division protocol division by zero returns
the largest possible value. To ensure the overall computation is
performed correctly when reweighting the child, we therefore
compute the rating given(sf , wf ) aswf = ŵf +

∑

i(ŵi · bi)
and sf = rf · ŵf +

∑

i(si · ŵi · bi/wi), where bi is a bit
which is set to 1 iff wi is non-zero. This means that we
also have a procedure (in Section III-D) for testing whethera
ciphertext corresponds to an encryption of a non-zero value,
which outputs an encryption of a bit.

To ensure that no single party or coalition of less thant
users can recover any values, we employ a(t, n)-threshold
encryption scheme, wheren users receive shares of the de-
cryption key and participation of at leastt users is required
to decrypt any value. Any coalition of less thant users learns
nothing. Since no single party is assumed to be fully trusted,
we also require a fully distributed key generation protocol.
In particular, neither the root, nor the system should be able
to decrypt user’s inputs, and therefore neither can be used
as a trusted “dealer” for key generation. Considering these
requirements, our implementation uses Paillier encryption.

One of the major challenges in designing privacy-preserving
protocols stems from the inefficiency of existing techniques.
While complexity is often measured in terms of communica-
tion and computation, in our setting it is especially important
to minimize interaction as measured in the number of rounds.
This is due to the fact that every round of interaction requires
every user to pass information through the social networking
site in order to proceed. As we would like to minimize the
latency, minimizing the number of rounds is an important goal.

Once a public key for a threshold homomorphic scheme
is generated, all users at the bottom of the hierarchy can
produce their ratings and forward them to their parents without
any further interactions. Similarly, intermediate nodes can
independently compute a combined rating from the encrypted
values received from their children (we assume intermediate
nodes follow the second type of computation described in
Section II-A). If reweighting is desirable, interactive division
protocols must be performed. To achieve reasonable efficiency,
we reserve the ability to reweight children’s ratings for the root
node, where such computation can make the most significant
difference. In the description of our protocol (Section IV)
we assume that intermediate nodes do not reweight ratings
obtained from their children.

III. B ACKGROUND AND BUILDING BLOCKS

A. Threshold Paillier Encryption Scheme

The Paillier cryptosystem is a semantically secure, addi-
tively homomorphic, public-key encryption scheme based on
the composite residuosity problem [4]. It was expanded in [5],
[6] to function as a threshold encryption scheme, but required
the use of a trusted dealer to distribute the keys to participants.
The reliance on a trusted dealer was lifted in [7], [8]. We
thus obtain a fully distributed scheme composed of algorithms
(Gen, Enc, Dec), which we briefly sketch next. Our current
description covers only material necessary for understanding
this work; a detailed description is given in [9].

Gen(κ, t, n) is a protocol run betweenn parties to setup
a (t, n)-threshold scheme. The parties first generaten
additive shares of twoκ/2-bit candidate primesp andq,
computeN = pq, and test whetherN is indeed a product
of two large primes. The parties set the public keypk to
(N, g), whereg = N + 1, then compute the private key
sk = d, where each party obtains a(t, n)-share ofd.

Enc(pk, m) is a probabilistic algorithm which, on input mes-
sagem ∈ Z

∗

N and public-keypk, outputs ciphertext

c ∈ ZN2 , using randomnessr
R
← ZN .

Dec(pk, d1, . . ., dk, c) is a protocol run byk ≥ t parties where
each party first computesci from ciphertextc and its
sharedi of the decryption key. Each party then combines
any t ci’s to recover the plaintextm.

To computeN during the distributed key generation phase the
primality of p and q is tested concurrently. Thus if finding a
κ/2-bit prime takes on the order ofκ/2 trials (and thusκ trials
for both), the distributed computation requiresκ2/4 trials.

B. Supplemental Operations

Re-randomization.Given a ciphertextEnc(v), we will need to
re-randomize it so there is no correlation between the original
and new ciphertexts without affecting the underlying plaintext.
Using homomorphic encryption, this is easily accomplishedby
multiplying the ciphertext byEnc(0).

Additive sharing. We also need to additively split a value
moduloN amongn participants. GivenEnc(v), each partyi
for i = 0, . . ., n − 2 choosesri

R
← ZN , encrypts, and broad-

casts Enc(ri). Given Enc(v), Enc(r0), . . ., Enc(rn−2), each
Pi locally computesEnc(rn−1) = Enc(v −

∑n−2
i=0 ri) =

Enc(v)
∏n−2

i=0 Enc(ri)
−1. All parties then jointly decrypt

Enc(rn−1) for Pn−1 (i.e., only Pn learnsrn−1). We use[v]
to denote thatv is additively split among then users modN .

Multiplication. Our solution relies on the ability to securely
multiply two values. When both operands to the protocol are
encrypted, the protocol,Mult, proceeds as follows:

Mult(Enc(v1), Enc(v2)):

1) The parties additively split and decrypt shares of the
second argument to jointly hold[v2] (i.e., only partyi
learnsith share, as described above).



2) Each partyi computesEnc(u(i)) = Enc(v
(i)
2 · v1) =

Enc(v1)
v
(i)
2 , wherev(i) denotes the share ofv that party

i has, then re-randomizes the result, and broadcasts it.
3) Each party locally assemblesEnc(u) = Enc(v1 ·v2) using

the broadcasted values asEnc(u) = Enc(
∑n

i=1 u(i)) =
∏n

i=1 Enc(u(i)).
During our protocol there are instances where one of the values
is already in additively split form. As such the first step can
be skipped, and we denote this variant asMult(Enc(v1), [v2]).

C. Division Protocol

As previously mentioned, our computation requires carrying
out the division operation where both operands and the output
must remain secure. Division protocols in secure multi-party
setting previously appeared in the literature: Atallah et al. [1]
gives a two-party solutions based on the Newton method that
uses homomorphic encryption. Bunn and Ostrovsky [2] give a
conventional implementation of division also based on homo-
morphic encryption for the two-party case. The latter protocol
was extended by Blanton and Aliasgari [3] to the multi-party
case, but was based on number-theoretic techniques (i.e., a
linear secret sharing scheme). In this work we start with a
lightweight version of Bunn-Ostrovsky’s solution and extend
it to work with multiple parties.

Suppose we wish to divide some integerv by another integer
d. The protocol of Bunn-Ostrovsky computes each bit of the
quotientq = ⌊v/d⌋ securely. Letv = vℓ−1 · · · v0 denote the
binary representation ofℓ-bits of v, where v0 is the least
significant bit. The algorithm first sets the remainder to be
v and tests whether subtracting2ℓ−id results in a negative
value, starting fromi = 1. If the remainder is greater or
equal to2ℓ−id, the (ℓ − i)th bit of the result is set to 1, the
remainder is decremented by2ℓ−id (otherwise, the remainder
is unchanged and the(ℓ − i)th bit of the result is 0), and
i is incremented. The main inefficiency of this protocol is
the need to determine for what value ofi the quantity2id
exceeds the modulusN . This causes the protocol to take at
leastO(|N |) rounds, where the amount of communication is
also large. (Note that a protocol using linear secret sharing is
much more efficient in this respect, as the size of the modulus
can be chosen to be very close to the size of values.) When,
however, the size of the modulus|N | is significantly larger
than the size of integers on which we operate, the protocol
can be specified to use values ofi in a much smaller range so
that 2id will never exceed the modulus. Thus, assuming that
the size of the modulus|N | is larger than twice the size of
the maximum values ofv andd, we significantly decrease the
complexity of the protocol by skippingO(|N |) checks.

This solution requires both operands be shared encrypted in
a bitwise manner. As such, we employ the protocol of Schoen-
makers and Tuyls [10] which, given an encrypted value, allows
the parties to generate encryptions of its bitwise representation
(this conversion is also necessary in the Bunn-Ostrovsky solu-
tion, but was not described). This protocol, denotedBits, can
be specified to compute any numberℓ of the least significant
bits of the encrypted value, in which case its complexity is

linear in ℓ. In what follows, we will explicitly specify the
number of bits to output as a parameter to this protocol, i.e.,
we use〈Enc(vℓ−1), . . ., Enc(v0)〉 ← Bits(ℓ, Enc(v)).

The division protocol of [2] also uses a sub-protocol (de-
notedMinLoc) which, given two values, outputs the location of
the minimum value as a bit, i.e., on input(v1, v2), it outputs 0
iff v1 ≤ v2. The arguments are assumed to be additively shared
(modulo |N |) in bitwise form. (For more implementation
details see [2].) In our solution, we use a similar building
block that instead computes “less than or equal,” i.e., on
input v1, v2 (in bitwise additively split form),LessOrEqual

outputs 1 iff v1 ≤ v2 (the complement ofMinLoc). This
optimization decreases the number of calls toBits (one of
the most expensive building blocks) by a factor of 2.

Another optimization employed reduces the size of the
numbers on whichLessOrEqual is called from2ℓ to ℓ + 1.
Namely, to subtract2ℓ−id from the current remainder, both
the value and the remainder are represented as2ℓ-bit values
(2ℓ−id is formed by prepending it withi zero bits, and setting
theℓ most significant bits to 0). Note that the result remains the
same if theℓ most significant bits of2ℓ−id are combined into a
single bit. Thus we set theℓ+1st bit of 2ℓ−id to be 1 if one or
more of theℓ most significant bits of its2ℓ-bit representation
are set. Theseℓ + 1 bits can be precomputed for alli’s once,
and LessOrEqual can be called on theℓ + 1 bit values. We
also convertd to additive shares to avoid performing multiple
calls insideLessOrEqual (for use inMult).

Div(Enc(v), Enc(d)):

1) The n parties execute〈Enc(dℓ−1), . . ., Enc(d0)〉 ←
Bits(ℓ, d), where ℓ is the maximum length of plaintext
integers, and then additively share each of (encrypted)di

and jointly decrypt each share for the intended recipient.
2) They compute theℓ+1st bit of 2id, bi, for i = 1, . . . , ℓ−

2 by setting Enc(b1) = Enc(dℓ−1) and computing
Enc(bi+1) = Enc(OR(bi, dℓ−i)) = Enc(bi) · Enc(dℓ−i) ·
(Mult(Enc(bi), [dℓ−i]))

−1
= Enc(bi + dℓ−i − bi · dℓ−i).

3) The parties setEnc(R) = Enc(v) and fori = 1, . . ., ℓ−1,
they compute:

a) The parties jointly execute〈Enc(Rℓ−1), . . ., Enc(R0)〉
← Bits(ℓ, R) and prepend an encrypted 0 to the result
to form the(ℓ + 1)-bit representation ofR.

b) Each party computes a share of the(ℓ + 1)-bit rep-
resentation of2ℓ−id by shifting the shares ofi most
significant bits ofd ℓ − i positions left, appending
ℓ− i additively shared zero bits to the result, and then
prepending additively shared bitbℓ−i (jointly computed
from Enc(bℓ−i)). Denote the result by[R′

ℓ], . . ., [R
′

0].
c) The parties execute [qℓ−i] ←

LessOrEqual(〈[R′

ℓ], . . ., [R
′

0]〉, 〈Enc(Rℓ), . . ., Enc(R0)〉).
d) To compute a new remainderR = R − qℓ−iR

′, each
party computes its share of[R′] =

∑ℓ

i=1 2ℓ−i[R′

ℓ−i],
then encrypts and broadcast the result. All parties
locally multiply the ciphertexts to obtainEnc(R′) and
executeEnc(qℓ−iR

′) ← Mult(Enc(R′), [qℓ−i]). Fi-
nally, each party locally computesEnc(R) = Enc(R) ·



Enc(qℓ−iR
′)−1 = Enc(R− qℓ−iR

′).

4) Each party locally computes its share of outputq as
[q] =

∑ℓ

i=1 2ℓ−i[qℓ−i], then encrypts and broadcasts its
share, so thatEnc(q) can be locally computed using the
homomorphic properties of encryption.

Optionally, assembly of the quotientq in the last step can be
omitted if it is beneficial to have the result in a bitwise form.

D. Non-Zero Test

Given the tools described it is straightforward to implement
a non-zero test to ensure that division is performed correctly.

NotZero(Enc(v)):

1) (Optional) The parties jointly execute〈Enc(vℓ−1), . . .,
Enc(v0)〉 ← Bits(ℓ, v), additively share each encrypted
vi and decrypt the shares to obtain[vℓ−1], . . ., [v0].

2) The parties execute[b]← LessOrEqual(〈[vℓ−1], . . ., [v0]〉,
〈[0], . . ., [0]〉).

3) The parties set their output to[b] = [1]− [b].

The first step is optional if the encryption is already available
in bitwise form, as is the case in our main protocol.

IV. PROTOCOL DESCRIPTION

In describing the protocol, we use the following notation: let
R be the root,F = {f1, . . . , fn−1} denote the friends the root
selected to query, andt be the desired decryption threshold.
Also, letGet-Own-Rating(item) andGet-Own-Weight(item)
be functions that return the current user’s rating and weight
for item, respectively We then have:

Calc-Rating(depth, item):

1) R initiates the generation of a public-private key pair for a
(t, n)-threshold homomorphic encryption scheme, at the
end of which eachfi andR obtain shares of the private
decryption key and the public key is known to everyone.

2) Eachfi separately invokesCalc-Node-Rating(depth−1,
item) and publishes the result〈Enc(sfi

), Enc(wfi
)〉.

3) f1, . . . , fn−1 and R jointly execute Enc(qfi
) ←

Div(Enc(sfi
), Enc(wfi

)) and [bi] ← NotZero(Enc(wfi
))

for eachi = 1, . . ., n− 1.
4) R chooses weightsŵf1 , . . ., ŵfn−1 that it wishes to

assign to friendsf1, . . ., fn−1, respectively, computes
Enc(w) = Enc(

∑n−1
i=1 bi · ŵfi

) =
∏n−1

i=1 Enc(bi)
ŵfi and

Enc(s′fi
) = Enc(ŵfi

· qfi
) = Enc(qfi

)ŵfi for i =
1, . . ., n− 1. R re-randomizes each computed ciphertext
〈Enc(w), Enc(s′f1

), . . ., Enc(s′fn−1
)〉 and publishes them.

5) f1, . . . , fn−1 and R jointly compute Enc(s′′fi
) ←

Mult(Enc(s′fi
), [bi]) and then each participant locally

computesEnc(s) = Enc(
∑n−1

i=1 s′′fi
) =

∏n−1
i=1 Enc(s′′fi

).
6) f1, . . ., fn−1 and R compute Enc(a) ← Div(Enc(s),

Enc(w)) and decryptEnc(a) for R, who learnsa.

Calc-Node-Rating(depth, item):

1) If depth 6= 0, choose a subset of friendsF ′ to query and
forward them the request. Each friendfj ∈ F ′ executes
Calc-Node-Rating(depth − 1, item) and forwards the
result (Enc(sfj

), Enc(wfj
) to the requester.

2) Set encryption of own rating to beEnc(w′) =
Enc(Calc-Own-Weight(item)), Enc(s′) = Enc(w ·
Get-Own-Rating(item)).

3) If depth 6= 0, computeEnc(s) = Enc(s′+
∑

fj∈F ′ sfi
) =

Enc(s) ·
∏

fj∈F ′ Enc(sfj
) and Enc(w) = Enc(w′ +

∑

fj∈F ′ wfj
) = Enc(w′) ·

∏

fj∈F ′ Enc(wfj
); otherwise

setEnc(s) = Enc(s′) andEnc(w) = Enc(w′).
4) Return〈Enc(s), Enc(w)〉.

Note that we allow the depth to be arbitrary. Due to the small
world hypothesis, however, we advise a depth of 2, as even
then a large number of users are likely to be queried.

A. Analysis

To show the security of our solution, we must show that any
t − 1 colluding participants cannot recover more information
than what is obtainable if a trusted third party implemented
the functionality. In our analysis we simulate the view of the
root andt − 2 other participants (since the root is the only
participant who learns any output) thereby using the strongest
adversary in the simulation. As our solution relies on several
existing building blocks which are provably secure (e.g., bit
decomposition), we assume their security. Since our simulation
argument is standard, we provide only an outline.

In general it is trivial to simulate an encrypted value in the
presence oft − 1 participants by encrypting any value, since
the encryption scheme is semantically secure. Similarly, an
additively split value can be simulated by choosingt−1 shares
at random, and such shares will be identically distributed
to real shares. Using these observations the multiplication
protocol, for instance, can be fully simulated without access to
the underlying data. In the division protocol the parties make
calls to the bit decomposition protocol,Bits, and comparison
protocol,LessOrEqual, which we assume are secure. All other
computation proceeds on encrypted or additively shared values
which are easily simulatable. The same applies toNotZero.

Finally, the main protocol itself is composed of the dis-
tributed key generation protocol (which has its own security
proof), and the rest of the computation proceeds on encrypted
values in a straightforward manner (involvingDiv andMult).
Therefore, at no point of can the colluding parties discover
information about the intermediate values of the computation.

V. I MPLEMENTATION

In order to implement our protocol, we built on the Face-
book social networking site. Currently Facebook offers two
ways of deploying applications: web-based and desktop based.

With the web-based applications, the application interacts
with Facebook using one of many web centric programming
languages (e.g., Javascript, PHP) and is constrained to running
inside a web browser. This is suboptimal for our purposes
because (i) web browsers are restrictive environments which
do not easily allow for the type of communication our protocol
requires and (ii) our protocol requires large number support
which these programming languages lack.

With the desktop application option, applications can be
written in any language and interact with Facebook through a



common API. This API gives access to not any information
available to a user logged onto Facebook. As we only require
knowledge of a user’s friends (i.e., the social network), this
allows us to choose a programming language which has better
characteristics for our problem. A desktop application hasthe
added advantage of giving the user more control over their
data (i.e., all data is stored locally), and allows the application
to be run in the background unobtrusively from the user’s
point of view. When considering the state of currently available
Facebook SDKs, and the aforementioned criteria, we chose to
implement our protocol in Java.

Given these decisions, the architecture for our application
is as follows. Each user first logs into Facebook using its
Facebook username and password. Once the user is authen-
ticated, it registers as online with a server. This server acts
as an intermediary between all users, passing communication
through the network. It also acts as a check pointing system,
allowing the computation to be performed asynchronously
as users log on and off the system. Once logged onto the
server, the user can receive requests and issue queries. We
note that our system is not dependent upon Facebook for
anything other than the social network. That is, once the user
logs into Facebook and the social network is retrieved, the
user can immediately log out of Facebook and never log into
it through the application again, instead she would rely on
our application to track users. We also note that it is easy to
see that our system can be used in the absence of Facebook
when other social networks are available. An advantage of
using Facebook, however, is that it is a widely used social
networking site which allows us to message any user with
a request to participate in the computation, even if the user
does not have the application installed. Thus, if users are not
directly involved in the computations, they can merely return
their value and not install any application at all.

In order to implement the protocol, each of the building
blocks described in Section III had to be implemented. To gain
a better understanding of the performance of each of these
operations, we present the timing results for each building
block. As the computations were distributed, we simulated
each user (and the server) as its own PC on a 100Mb LAN. The
computers used were Sun workstations using 2200 MHz AMD
processors and 2 GB of memory. We tested each building
block independently, and took an average time over 10 runs,
with the exception of key generation tests which were averaged
over 50 runs due to large fluctuations in the number of trials.
We are unaware of other implementations of secure multiparty
techniques of similar complexity and scale.

A. Key Generation

As mentioned in Section III-A, fully distributed generation
of an RSA modulus normally involves first choosing candi-
dates for primesp and q and testing them simultaneously,
resulting in an expectedO(κ2) trials for aκ-bit modulus [7].
As O(κ2) trials is computationally infeasible, we applied the
optimization techniques of [11] which allow for significant
performance improvements over the Boneh-Franklin biprimal-
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Fig. 1. Timing results for distributed key generation.

ity test while keeping each test efficient. In particular, the
number of primality tests in practice reduces to about 1000
for a 1024-bit modulus. Our implementation followed the
description given in [11] with the exception that threading
was not included. Our results are consistent with those reported
in [11]. Additionally while the experiments in [11] included at
most 5 parties, we show performance of the algorithm up to 19
participants. We also suggest a slight efficiency improvement
to the techniques of [11] described in Appendix A.

The remaining key material is computed using the tech-
niques of [6], which also rely on results from [12]. The details
are given in [9]. To the best of our knowledge, this is the first
implementation of fully distributed Paillier encryption scheme.

Figure 1 illustrates performance of the distributed key gen-
eration protocol. For all experiments, we plot the performance
of a protocol by varying (i) the size of the encryption key and
(ii) the number of participants. In all figures, the plot on the left
hand side fix the number of participants to 7 (varying key size)
and the plot on the right fixes the key size to 1024 bits (varying
number of participants). (In [9] we also plot the number of
trials.) The results indicate that this (one-time) operation can
be executed within an acceptable time frame.

There are other techniques for distributed key generation
available in the literature. For example, Ibrahim [13] reduces
the number of rounds from quadratic to linear; however,
each round becomes expensive and is equivalent to a linear
number of tests. Also, Biehl and Takagi [14] have a technique
using quadratic fields which provides a possible area for
improvement. We, however, anticipate that the implemented
techniques would be comparable or even outperform other
solutions including the newest techniques [15].

B. Protocol Performance

We now show the performance of our protocol and its com-
ponents beginning with the smallest non-trivial protocol,Mult,
and continuing with the remaining protocols. In addition to
gaining an understanding of the most resource-intensive parts
of the solution, this also gives the reader performance insights
of several recent constructs with no prior implementations.

Multiplication. The results of running the multiplication
protocol (Section III-B) are depicted in Figure 2. Since this
protocol involves at least one modulo exponentiation, the
expected function growth is cubic in the size of the key which
the figure confirms. For a key size 1024, performance stays
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around 1.3 seconds even if the number of parties varies as all
operations are performed by the participants in parallel.

Random bit generation. This operation allows parties to
jointly choose a random bit and can be realized in linear (in
the number of participants), logarithmic, or constant rounds.
We implemented the first two (due to the small number of
parties). Figure 3 shows the performance of both versions of
the protocol. The gap between their performance grows as the
number of participants increases (both requiren− 1 multipli-
cations, but one offers more parallelism). Small fluctuations
in the runtime are an artifact of the computing environment.

Bit decomposition.The bit decomposition protocolBits [10]
repeatedly generates random bits and also performs addition
of integers in bitwise form. To adda = aℓ−1. . .a0 and
b = bℓ−1. . .b0, bits ai’s are given in the clear, while bitsbi’s
as well as carryci and sumsi bits are encrypted asEnc(bi),
Enc(ci), andEnc(si). We use the following computation for
the addition, which results in only one interactive multiplica-
tion (i.e.,Mult(Enc(bi), Enc(ci))) per bit of the computation:

ci+1 =

{

bi · ci if ai = 0
bi + ci − bi · ci if ai = 1

where si = ai + bi + ci − 2aibi − 2aici − 2bici + 4aibici.
Figure 4 depicts the performance of bit decomposition for
32-bit integers with and without the overhead for random
bit generation. Note the time saved by precomputing random
bits. An interesting aside is theO(log n)-round random bit
generation in the protocol does not result in performance
improvement over theO(n)-round version due to the high
degree of parallelism introduced, i.e.,Bits runs many (32 here)
instances of the bit generation protocol in parallel. We plot the
Bits protocol using theO(n)-round random bit generation.

Division. Finally Figure 5 reports the performance of division
of 32-bit integers with precomputed random bits, where the
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time to executeBits (33 invocations), andLessOrEqual (32
invocations on 33-bit integers), are also shown. Note the tim-
ings forBits andLessOrEqual dominate the timing of division.
For completeness,LessOrEqual is described in Appendix B.

The performance of the protocol for computing the weighted
average of ratings will be dominated by division. During
execution of the system, the interaction proceeds as follows:

1) The root broadcasts a request to initiate a recommenda-
tion protocol tom friends.

2) The root generates a public-private key pair with the first
n − 1 friends who respond as willing to participate; the
public key is then broadcast to the remaining friends.

3) The n parties generate a sufficient number of random
bits while all participating friends recursively collect and
assemble their recommendations.

4) The n parties run all division protocols in parallel (m
instances in round 1 and one instance in round 2).

On the scale of this type of interaction, where collecting
ratings can take days, the protocol is reasonably efficient.

VI. RELATED WORK

Prior research on related recommendation systems has two
main focuses: trust-based and systems that preserve privacy of
user preferences. In trust-based recommendation systems,trust
is modeled using a graph where each edge weight represents
the trust between the two parties it connects. One example is
TrustWalker [16], where ratings of items are determined by a
trust network and an item similarity metric. Another, more
similar, example is FilmTrust [17], in which users specify
trust values for each user (similar to ourci) and calculate
the rating of a movie as the weighted average of each user’s
rating, where the trust values act as weights. FilmTrust differs
from our scheme in that the depth of the query can only be
one, decreasing the coverage of items (i.e., if none of the
root’s friends have a rating, no rating is given), and there is



no privacy of user ratings. There is also other literature on
trust-based collaborative recommendation systems, e.g.,[18]–
[20] that use trust-based mechanisms (including social trust) to
improve the correctness of public recommender systems. That
is, they attempt to remove the bias that could be introduced by
malicious users through injection attacks via anonymous rat-
ings. They do not, however, preserve the privacy of individual
ratings.

Publications that build recommendation systems with user
privacy in mind include a secure protocol by Katzenbeisser
and Petković [21] for computing the similarity of vectors for
use in medical applications. That is, given a vector (e.g.,
disease vector), the system is able to securely find similar
vectors and make recommendations about doctors. Similarly,
collaborative filtering techniques, where a user has a set
of preferences and the system attempts to suggest related
products based on similarities with other users, have been
developed that take user privacy into account. Such techniques
are known based on both homomorphic encryption [22], [23]
and data perturbation [24]–[27]. Since collaborative filtering
is used, results are obtained which are based on similarity
to existing users. Thus while both recommendation systems
are similar to what we present here (with the schemes based
on homomorphic encryption being closer), they do not take
into account trust relationships as our scheme does. This
is important to note, because without the ability to use the
information present in the social network, these techniques
cannot be adapted to achieve the same results as our technique.
Our solution therefore could allow the user to obtain different
recommendations, thereby offering a potentially better overall
recommendation.

From the literature on data privacy in social networks,
publications in the area of access control are the closest to
this work. In particular, articles such as [28]–[32] allow users
to specify access rules for their content stored on the social
networking site and/or preserve privacy of their data from the
networking site itself. The mechanisms for achieving the goals
differ, ranging from using trusted third parties to decentralized
solutions where the user herself implements access control
policies for her data (e.g., using public-key [30] or key
management [32] techniques). The goal of these publications
is, however, access control, and thus does not solve the same
problem as our work, as evidenced by the fact that they reveal
data which we require be kept private.

Another recent notion of privacy which is also used in rec-
ommendation systems is called “differential privacy.” Loosely
speaking, differential privacy [33], [34] for statisticaldatabases
guarantees that two data sets from the same population which
differ by one element will occur with almost the same prob-
ability. Intuitively, this means that for each element in the
database there exist very similar elements. Differential privacy
is usually achieved by adding noise to the dataset, and the
amount and type of noise is heavily dependent on the statistical
queries that users are allowed to execute on the database. This
means that there is a trade-off between accuracy and privacy.
In application to recommendation systems, McSherry and

Mironov [35] built a system to achieve differential privacyover
the Netflix dataset. Experiments on their system showed that
the accuracy of results was not severely effected throughout
the query execution by maintaining privacy of user data.

Another work by Kearns et al. [36] develops secure compu-
tation techniques for a network of users. That work presents
a mechanism for securely computing belief propagation and
Gibbs sampling, which is not applicable to the computation
we perform in our application. The authors assume a fully
decentralized network, which can also be easily achieved in
our setting (i.e., our implementation used a centralized server
for the ease of synchronizing the interaction, but this is not an
intrinsic requirement of the solution).

VII. D ISCUSSION ANDCONCLUSIONS

In this work we design and implement a protocol that uses
social network connections to realize a reliable recommen-
dation system that preserves the privacy of individual user
ratings. We assumed semi-honest participant behavior, justified
by social ties. It is important to note, however, that additional
techniques can be employed to prevent user misbehavior.
In what follows, we describe a number of such techniques
including countermeasures that are not covered by, and thus
go beyond, the techniques for secure multi-party computation
in the presence of active adversaries.

One concern that potential users might have is an uncer-
tainty about whether their privacy is sufficiently protected
through the participation of enough individuals. As mentioned
previously, each user can decline to participate if the threshold
t is set below her tolerance level. Furthermore, because all
(secured) communication is relayed through the root, the user
might want to verify that the encryption key was generated
honestly (as opposed to by e.g., users created by the root)
and there are a certain number of other users contributing
their inputs. To alleviate such concerns, all communication
relayed through the root can be authenticated, e.g., signedby
the originating parties using a Public Key Infrastructure (PKI)
embedded in the social network. This prevents all parties (not
just the root) from faking additional users or pretending to
be a different user. Furthermore, when a friend of the root
sends a message to its children, the authentication information
associated with the users who participated in the creation of
the encryption key can also be passed to them. This will allow
all participating users (rather than just the root’s friends) to
verify that their data will be adequately protected.

If due to some reason a user still does not feel that her
data is being adequately protected even in the presence of
the above safeguards, the user can decline to participate. For
example, a malicious querier can run multiple queries on the
same product selectively excluding users in the attempt to learn
individual responses. This concern is not unique to our setting,
but exists every time the flexibility of the system allows for
overlapping queries. Since the querier and the product being
queried are known, however, a user can easily detect such
queries and refuse to participate in the computation on all
consecutive query runs. In this way topological attacks against



the system can be mitigated. The user also has an oblivious
way of declining to participate by submitting a 0 rating (this
is especially meaningful in social networks where users may
not want to offend their friends by declining to participate). It
is important to note that the computation of the result requires
at least t users to participate. This means that performing
the computation multiple times (i.e., one time including the
information given by userU , and another not) is impossible
without the collusion oft users. Since we assume this is not
the case, users are safe from such attacks.

We note that the aggregation strategy used by this protocol
is easily modifiable at the user level. When a user is asked to
return a rating, they are not required to incorporate the knowl-
edge of their neighborhood. Similarly, they are not required
to incorporate their personal knowledge. Each individual user
is instead allowed to amalgamate the results in the way they
deem most accurately reflects their rating for the item. Thisis
very powerful as it allows users to easily and quickly alter how
their ratings are generated (e.g., via a web interface) without
changing the underlying protocol.

While in the above we focused on the protection of the
users contributing their ratings, a concern the querier might
have is that a single invalid user rating can render the entire
computation useless. For example, a user can submit a rating
significantly exceeding the maximum valid rating or a negative
rating. This problem can be addressed at relatively low costby
enforcing range checking on each rating: For a leaf node, such
verification can be performed using range or set membership
zero-knowledge proof of knowledge of their rating and weight,
which are known for Paillier encryption. For intermediate
nodes that do not have knowledge of a rating they assemble in
encrypted form, range checks instead can be performed using
joint execution ofLessOrEqual on the valuesi/wi. While
a user can always set her rating to any value in the range,
its effect on the overall result will be marginal as it will be
averaged with all other friends’ ratings based on a selected
weight.

Finally, we note that our implementation of the comparison
operation is based on homomorphic encryption, while recent
literature [37] reports that for the two-party case optimized
implementations of generic garbled circuits [37]–[39] provide
the best performance results. There are no equivalent studies
for the multi-party case, but the efficiency of alternative
implementations is worth investigating in the future.
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[6] I. Damgård and M. Jurik, “A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system,” in Interna-
tional Workshop on Practice and Theory in Public Key Cryptography
(PKC), 2001, pp. 119–136.

[7] D. Boneh and M. Franklin, “Efficient generation of sharedRSA keys,”
Journal of the ACM, vol. 48, no. 4, pp. 702–722, 2001.
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APPENDIX A
EFFICIENCY IMPROVEMENT OF THEDISTRIBUTED RSA

KEY GENERATION

In order to improve the efficiency of RSA distributed
key generation, Malkin, Wu, and Boneh [11] outline several
practical optimizations. The first, and most important, of which
is distributed sieving (others being trial division and threading
to run multiple tests in parallel).

In distributed sieving, each user chooses a random number
which is coprime to the product of all small primes less than
the sieving bound,M . The users can then multiply all of their
shares to geta =

∏n

i=1 ai, wherea is also coprime toM .
In order to split the producta into additive shares, the paper
recommends running the BGW protocol [40] for secure circuit
evaluation, which in this case performs multiplication of two
values shared using a linear secret sharing scheme, once for
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Fig. 6. Timing results for distributed comparison.

each party. That is, the parties sequentially compute
∏k

i=1 ai

for k = 2, 3, . . ., n. We note, however, that instead of running
the BGW protocol sequentially, one can run multiple instances
in parallel. That is, the participants can run the BGW protocol
to compute shares ofa2j−1 · a2j for eachj = 1, . . ., ⌊n/2⌋,
resulting in⌊n/2⌋ protocols executed in parallel. Once these
have been computed, the users can continue multiplying pairs
of shared values together, until finally the entire product has
been shared using linear secret sharing between all of the
parties.

This optimization results in the splitting of the multiplicative
shares into additive shares taking a logarithmic number of
rounds in the number of users as opposed to linear. In the
case of a user with a large number of friends, this may result
in a large speedup.

APPENDIX B
OVERVIEW OF LessOrEqual PROTOCOL AND

PERFORMANCE

Our realization ofLessOrEqual involves computation of
location of minimumLocMin using two (unknown) arguments
in bitwise form and then complementing the resulting bit.
In [2], LocMin functionality was implemented using a standard
minimum comparison of two valuesa andb in a bitwise form
as described next. Leta = aℓ−1. . .a0, b = bℓ−1. . .b0, and let
⊕ denote XOR.

LocMin(a, b) = (a0 ⊕ b0)a0 + (a0 ⊕ b0 ⊕ 1)(a1 ⊕ b1)a1 +

+(a0 ⊕ b0 ⊕ 1)(a1 ⊕ b1 ⊕ 1)(a2 ⊕ b2)a2 +

+ · · ·+

+(a0 ⊕ b0 ⊕ 1) · · · (aℓ−1 ⊕ bℓ−1)aℓ−1

The XOR operation involves one multiplication as inx⊕ y =
x + y − 2xy. Then the overall computation is dominated by
O(ℓ) executions ofMult protocol inO(ℓ) rounds.

Our implementation ofLessOrEqual takes the arguments in
bitwise form, where the bitsbi of the second argument are
encrypted, while having the bits of the first argument in the
additively shared form allows for reduced runtime of the mul-
tiplication protocol. All additions are performed on encrypted
values using the homomorphic property of the encryption
scheme. Figure 6 shows performance of our implementation
of LessOrEqual for ℓ = 32 with a fixed number of participants
(7) and a fixed key size (1024 bits).


