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Abstract—With the proliferation of internet-based social net- relies on connections between individuals, and thus emgbli
works into our lives, new mechanisms to control the releaseral ysers to query friends for their opinions would be beneficial
use of personal data are required. As a step toward this goalve |, o qer 1o facilitate this, we propose a protocol whereby
develop a recommendation system which protects the privacyf . . .
user answers while allowing them to learn an aggregate weigbd USErs are able to query a neighborhood of their social nétwor
average of ratings. Due to the use of social network conneotis, in order to learn a recommendation. The rating is computed
the querier obtains a more relevant and trustworthy result than  as a weighted average of individual ratings, with usersezlos
what generic anonymous recommendation systems can provide to the querier (optionally) having more weight. During no
while at the same time preserving user privacy. We also give nint of the computation should any user (nor the underlying
experimental performance results for our solution and sevel . . .
recently developed secure computation techniques, whicts iof SYStém) be able to learn any additional information. That
independent interest. is, only the querier learns the weighted average of ratings

from its social network, while everyone else learns nothing
I. INTRODUCTION This should alleviate any privacy concerns users may have
about disclosing their opinions. Furthermore, we provide a

Over the last decade social networking sites have increaggéchanism for claiming that no rating exists.
in popularity. This popularity has brought many people to- An additional substantial contribution of this work is the
gether, increasing their ability to share information. Whn extensive implementation of our recommendation systeet int
general information sharing is desirable, some users migjtated with the Facebook social networking site. To the best
be concerned with the privacy implications of disclosing sgur knowledge, this is the first implementation illustratiine
much personal information online. Currently users have twserformance of several highly non-trivial techniques fecise
main options: They can either refuse to enter the informatignulti-party computation from prior literature. Such restre

they are uncomfortable disclosing, or they may limit acdess of independent interest and have high practical relevance.
the information via privacy controls provided by the social

networking site. It is important to note, however, that in Il. OVERVIEW OF SCHEME

the second case the information is stored remotely, and thus ) ] )
control of the data is lost to the user. As previously stated, our goal is to compute a weighted

While the current system is functional, a more desirabfy®ragé of rat_ings among a group whose i_ndividual va_llu_es are
alternative would be to enable users to retain control dweir t cr:)n5|dered pr_|vate. IP this ('jsedctpn we prowde_a descrip thlc
data, while retaining utility to friends in the social netiko the computation performed during an invocation our scheme,

Product reviews, for example, can benefit from a system ﬂ?atdes_crlptlon O,f t_he security model, and an overview of the
facilitates information sharing while maintaining paipants’ techniques. I_3w|t_j|ng _bIOCkS are presented n Section Hid:_ ¢
privacy. While some users might not be willing to disclosélJII gcheme IS given in Section IV, and Section V describes
their (numerical) ratings of certain products (or the exise our implementation and the performance results.

of a rating), they would still be able to give their opinion.
Without input from a social network, users who had not tried%
certain product would instead be forced to sample the ptoducWe view the network as a hierarchical structure, where the
themselves, or read reviews from anonymous users to be alder submitting the query acts as a “root” and the immediate
to make an intelligent decision about the product. Both dfiends as “children.” The root can specify the distance to
these options are suboptimal as they disregard the beng&fitsvhich the query should propagate. While in general any depth
friendship relationships available. In particular, recoemda- can be specified, for convenience we describe the compntatio
tions gathered through a social network are likely to be mousing depth 2 (as we believe the results will be most useful to
useful than general systems due to similarities between tiwe root for low values of the depth). In our setup, we assume
tastes of the querier and its network. Information gatheregither the object being rated nor the querier are senshive
through such means is also likely to be more trustworthy asall information regarding user ratings must remain secure.

. Overview of Computation



Initially, the root, R, wishes to learn the rating of an iteth, We assume that two users have a (direct) communication
To do so,R first chooses a set of friendB, who are trusted to channel only if they are directly connected in the network
determine an average rating.then requests that eaghe F* (i.e., they are friends). As is common (e.g., on Facebook)
computes a rating of, where the range of possible ratings isve assume the network topology (or user connections) are
specified as a subset 8f". Upon being queried for a rating publicly available and therefore not sensitive. The iritybil
of I, eachf € F then queries its friends for their rating 6f of some participants to communicate directly requires them
Each rating is represented as the gair w;), wheres; is the to pass their communication through other parties in the
rating andw; is the weight. When a userdoes not need to computation, appropriately secured (e.g., by using Public
query her children (e.g., is at the bottom of the hierarchly® Key Infrastructure). Due to the hierarchical nature of abci
merely returns her rating; as the value for; and sets the networks, some users might assume more active roles than
weightw; to 1, or, alternatively, if usef does not have (or wish others, e.g., the root and its children are more central to
to provide) a rating for the item, the pa(f, 0) is returned. query execution than users farther from the root. The srcuri
Other users in the hierarchy compute their rating as a fanctiguarantees are, however, required to hold for all partitgpa
of their own rating and ratings of their children. In that €as regardless of their role.
the rating should be read as/w;, i.e., s; corresponds to the Let Py, P,..., P,_1 denote the set of participating users,
rating scaled byw,. wherePy, = R. We formally define security using the standard

Upon receiving ratings of the forrfis;,w;) from all chil- definition in secure multi-party computation for semi-hsine
dren, each intermediate nogiec F' can compute a weighted adversaries. Because most participants receive no owtut,
average of its children’s ratings and its own. We gjehe denote “no data” by the special character
ability to replace the weight of child with weight w; if Definition 1: Let Fy,...,Pn—1 engage in a protocotr
desired. Letr; (@) denotef’'s own rating (weight) that it that computes functiotf(ino, .. .,in,—1) = (outo, L, ..., L),
wants to assign to itself (resp.). Its combined ratiag,w;) Wherein; denotes the input of part¥#; andout, is the output
is computed asvy = s+ >, W; andsy =ry -+ ,(s;- of party . Let VIEW(F;) denote the view of participart;
;/w;). Note that care must be taken during evaluation akiring the execution of protocal. More precisely,P;’s view
some of thew;’s may be 0. is formed by its input and any internal random coin tosses

f can also have its weight be a function of the weights of i@ well as messages,, ..., m; passed between the parties
children. In particular;i; can be computed ds >, w; + ko, during protocol execution, as
wherek;, k’g > 0 are constants. Whemll =1 gndkz =0, for VIEW,(P)) = (iny, i, m1,
example,f’s weight is equal to that of its childrerf. can also
setk; = 0 andk, to a constant to have a weight independe/e say that protocolr is secure against semi-honest ad-
of the weights of its children. Given this, its rating comgian ~ versaries if for each party’; there exists a probabilistic
becomesv; = Y, w;+iy ands; = 3, si+r-10y. Note that Polynomial time simulatorS; such that
!f the children are not reV\_/elghted no dIVISIOI’I. is used which (Si(f(ing, - . ,inm_1))} = {VIEW, (P}), out;},
is more attractive for use in secure computation.

After eachf € F computes its weighted rating, it returngvhereout; =L for all parties except, and= denotes com-
(s;,wys) to R. R can now reweight all of its children usingPutational indistinguishability (using an appropriateistty
weightsw; (as described above with the exception of havingarameter).
no own rating or weight) and obtain the final weighted rating Note that this standard model allows participants to c@lud

.. .,mt).

(sr,wr), Wheresg/wg is the learned rating. (i.e., share the information). The security guaranteed hmld
as long as the coalition size does not exceed a threghaid
B. Security Model particular, this means that the ra8tdoes not have exceptional

_ o - ) capabilities and thus participates as a regular user.
While the description above specifies the desired com-

putation, a privacy-preserving solution cannot leak pevaC. Overview of Techniques

information to the participants. That i& announced and To carry out the computations securely, we employ a seman-
the query parameters (e.g., the depth of the search, rangeiaHlly secure public-key homomorphic encryption scheme,
ratings, etc.) and learns the final result. No other infofamat i.e., one which maps operations on ciphertexts to corrabpon
should be leaked t& or the other parties. We assume that thing operations on the underlying plaintexts. In particulae
participants are semi-honest, i.e., they follow the protosut employ additively homomorphic encryption with the followgi
attempt to learn additional information if possible. Thisdel properties: given messages,, mo and encryption algorithm

is sensible in our setting since users are connected throlgte, Enc(mi) - Enc(mz2) = Enc(mi + mg). This implies
social ties, and thus a trust relationships often existsn@éle, Enc(m;)¢ = Enc(c-mq) for ¢ > 0. We assume an encryption
however, that many building blocks used were designed to behemef is composed of three algorithni&en, Enc, Dec) for
secure in a stronger, fully malicious, model and thus adi#i key generation, encryption, and decryption, respectively
techniques can make them robust against misbehaving partieTo perform our protocol we must add two unknown values,
if necessary. Section VIl expands upon these issues. multiply an unknown quantity by a known value, and divide



two encrypted numbers. The first two operations are easily [1l. BACKGROUND AND BUILDING BLOCKS
accomplished via homomorphic encryption, while divisio
requires additional techniques. For this reason we develo
division protocol that takes two encrypted inputs and poedu  The Paillier cryptosystem is a semantically secure, addi-
an encrypted quotient. Custom protocols for secure diwisitively homomorphic, public-key encryption scheme based on
exist in the literature (e.g., [1]-[3]), but none of can beds the composite residuosity problem [4]. It was expanded Jn [5
in our setting. More details are given in Section IlI-C. [6] to function as a threshold encryption scheme, but reglir
o ) o ] the use of a trusted dealer to distribute the keys to paaiti
©One complication of developing division protocols is hanthe reliance on a trusted dealer was lifted in [7], [8]. We
dling division by zero. Since in our scheme the child'§,s obtain a fully distributed scheme composed of algorith
weight can be zero, our solution must not fail in such Cas€Ken, Enc, Dec), which we briefly sketch next. Our current
Consequently in our division protocol division by zero el gescription covers only material necessary for undergtand

the largest possible value. To ensure the over_all COMPUKE s work; a detailed description is given in [9].
performed correctly when reweighting the child, we therefo

compute the rating give(ss, wy) aswy = wy + y_,(w; - b;)
and sy = ry - w5 + Y .(s; - W - bi/w;), whereb; is a bit
which is set to 1 iffw; is non-zero. This means that we
also have a procedure (in Section 1lI-D) for testing whether
ciphertext corresponds to an encryption of a non-zero value
which outputs an encryption of a bit.

. Threshold Paillier Encryption Scheme

Gen(k,t,n) is a protocol run betweem parties to setup
a (t,n)-threshold scheme. The parties first generate
additive shares of twe /2-bit candidate primep andg,
computeN = pq, and test whethel is indeed a product
of two large primes. The parties set the public kdyto
(N,g), whereg = N + 1, then compute the private key
sk = d, where each party obtains(g n)-share ofd.

To ensure that no single party or coalition of less thanEnc(pk,m) is a probabilistic algorithm which, on input mes-
users can recover any values, we employta)-threshold sagem € Zj and public-keypk, outputs ciphertext
encryption scheme, where users receive shares of the de- ¢ ¢ Zy», using randomness & Z .
cryption key and participation of at leastusers is required Dec(pk,ds, .. .,dx,c) is a protocol run byk > ¢ parties where
to decrypt any value. Any coalition of less thamisers learns each party first computes; from ciphertextc and its
nothing. Since no single party is assumed to be fully trusted  shared; of the decryption key. Each party then combines
we also require a fully distributed key generation protocol  anyt ¢;’s to recover the plaintexin.

In particular, neither the root, nor the system should be abf’o computeN during the distributed key generation phase the

0 de(t:ryptt gs?(jrs Iln;?,u;s, ind therefotr.e negher.gar! bet#s rﬂnality of p andq is tested concurrently. Thus if finding a
as a truste cajer” for key generation. Lonsidering en‘?2—bitprime takes on the order af/2 trials (and thuss trials
requirements, our implementation uses Paillier encryptio for both), the distributed computation required/ trials.

One of the major challenges in designing privacy-presegrvin )
protocols stems from the inefficiency of existing technigueB: Supplemental Operations

While complexity is often measured in terms of communicge-randomization.Given a ciphertexEnc(v), we will need to
tion and computation, in our setting it is especially impott re-randomize it so there is no correlation between the maigi
to minimize interaction as measured in the number of roundghd new ciphertexts without affecting the underlying plievit.

This is due to the fact that every round of interaction reefiir Using homomorphic encryption, this is easily accomplisbgd
every user to pass information through the social netwarkimnultiplying the ciphertext byEnc(0).

site in order to proceed. As we would like to minimize th - . - .
er o p . . ?Addltlve sharing. We also need to additively split a value
latency, minimizing the number of rounds is an importanigoa

modulo N amongn participants. GiverEnc(v), each partyi

Once a public key for a threshold homomorphic schenfer i = 0,...,n — 2 chooses; ki3 Zy, encrypts, and broad-
is generated, all users at the bottom of the hierarchy caasts Enc(r;). Given Enc(v), Enc(rg),. .., Enc(r,—2), each
produce their ratings and forward them to their parentsauth P; locally computesEnc(r,,—1) = Enc(v — Y7 1) =
any further interactions. Similarly, intermediate nodemn ¢ Enc(v) ]'[?;02 Enc(r;)~t. All parties then jointly decrypt
independently compute a combined rating from the encryptédc(r,—;) for P, (i.e., only P, learnsr,_1). We use|v]

values received from their children (we assume intermedidb denote that is additively split among the users modV.

nodes follow the second type of computation described @ ipjication. Our solution relies on the ability to securely
Section II-A). If reweighting is desirable, interactivevidion multiply two values. When both operands to the protocol are
protocols must be performed. To achieve reasonable emienencrypted, the protocoMult, proceeds as follows:

we reserve the ability to reweight children’s ratings foz thot

node, where such computation can make the most signific%‘ﬂ't(E”C(vl)v Enc(vz)):

difference. In the description of our protocol (Section IV) 1) The parties additively split and decrypt shares of the
we assume that intermediate nodes do not reweight ratings second argument to jointly holfls] (i.e., only party:
obtained from their children. learnsith share, as described above).



2) Each partyi computesEnc(u(”) = Enc(véi) -v1) = linear in ¢. In what follows, we will explicitly specify the
Enc(vl)vé”, wherev(® denotes the share ofthat party number of bits to output as a parameter to this protocol, i.e.
i has, then re-randomizes the result, and broadcasts itve use(Enc(vg—1), ..., Enc(vp)) < Bits(¢, Enc(v)).

3) Each party locally assembl&sc(u) = Enc(v; -v2) Using The division protocol of [2] also uses a sub-protocol (de-
the broadcasted values &sc(u) = Enc(>1_, u(?) = notedMinLoc) which, given two values, outputs the location of
1, Enc(u(®). the minimum value as a bit, i.e., on inplat;, v2), it outputs 0

During our protocol there are instances where one of theegaldff v1 < v2. The arguments are assumed to be additively shared
is already in additively split form. As such the first step cafinodulo [N]) in bitwise form. (For more implementation

be skipped, and we denote this varianiasit(Enc(v, ), [v;]). details see [2].) In our solution, we use a similar building
block that instead computes “less than or equal,” i.e., on

C. Division Protocol input vy, vy (in bitwise additively split form),LessOrEqual
As previously mentioned, our computation requires cagyiroutputs 1 iff v; < vy (the complement ofMinLoc). This
out the division operation where both operands and the outpptimization decreases the number of callsRies (one of
must remain secure. Division protocols in secure multiyparthe most expensive building blocks) by a factor of 2.
setting previously appeared in the literature: Atallahlefld Another optimization employed reduces the size of the
gives a two-party solutions based on the Newton method thaimbers on whicH essOrEqual is called from2¢ to £ + 1.
uses homomorphic encryption. Bunn and Ostrovsky [2] giveNamely, to subtrac2‘~?d from the current remainder, both
conventional implementation of division also based on homghe value and the remainder are represented/dsit values
morphic encryption for the two-party case. The latter pcoto (2¢~*( is formed by prepending it witt zero bits, and setting
was extended by Blanton and Aliasgari [3] to the multi-parthe ¢ most significant bits to 0). Note that the result remains the
case, but was based on number-theoretic techniques (i.esagne if the/ most significant bits o2‘~*d are combined into a
linear secret sharing scheme). In this work we start with gingle bit. Thus we set thé+ 1st bit of 2¢~?d to be 1 if one or
lightweight version of Bunn-Ostrovsky’s solution and exde more of the/ most significant bits of it@¢-bit representation
it to work with multiple parties. are set. Thesé+ 1 bits can be precomputed for al once,
Suppose we wish to divide some integey another integer and LessOrEqual can be called on thé + 1 bit values. We
d. The protocol of Bunn-Ostrovsky computes each bit of thgiso convertl to additive shares to avoid performing multiple
quotientg = |v/d] securely. Letv = v,y ---vo denote the calls insideLessOrEqual (for use inMult).
binary representation of-bits of v, where vy is the least . .
significant bit. The algorithm first sets the remainder to b%'V(EnC(U)’ Enc(d)):
v and tests whether subtracti®y—‘d results in a negative 1) The n parties execute(Enc(d¢—1),...,Enc(do)) «
value, starting fromi = 1. If the remainder is greater or  Bits({,d), where( is the maximum length of plaintext
equal to2¢~id, the (¢ — i)th bit of the result is set to 1, the integers, and then additively share each of (encrypfed)
remainder is decremented B§~id (otherwise, the remainder ~ and jointly decrypt each share for the intended recipient.
is unchanged and th&/ — i)th bit of the result is 0), and 2) They compute thé+ 1st bit of2°d, b;, fori =1,...,¢—
i is incremented. The main inefficiency of this protocol is 2 by setting Enc(b1) = Enc(d,—1) and computing
the need to determine for what value othe quantity2id Enc(bi+1) = Enc(OR(b;, d¢—i)) = Enc(b;) - Enc(de—) -
exceeds the modulud’. This causes the protocol to take at  (Mult(Enc(b;), [de—i])) ™" = Enc(b; + do—; — b; - do—;).
leastO(|N|) rounds, where the amount of communication is3) The parties sefnc(R) = Enc(v) and fori = 1,...,0—1,

also large. (Note that a protocol using linear secret shasn they compute:

much more efficient in this respect, as the size of the modulus a) The parties jointly executéEnc(R,—1), .. ., Enc(Ry))

can be chosen to be very close to the size of values.) When,  «— Bits(¢, R) and prepend an encrypted 0 to the result

however, the size of the modulyd/| is significantly larger to form the (¢ + 1)-bit representation of?.

than the size of integers on which we operate, the protocol b) Each party computes a share of tftet 1)-bit rep-

can be specified to use valuesidh a much smaller range so resentation oR‘~*d by shifting the shares of most

that 2¢d will never exceed the modulus. Thus, assuming that significant bits ofd ¢ — i positions left, appending

the size of the modulugV| is larger than twice the size of ¢ — i additively shared zero bits to the result, and then

the maximum values of andd, we significantly decrease the prepending additively shared bit_; (jointly computed

complexity of the protocol by skippin@(|N|) checks. from Enc(b,—;)). Denote the result byR;], .. ., [Ry].
This solution requires both operands be shared encrypted in c) The parties execute  [go—q —

a bitwise manner. As such, we employ the protocol of Schoen- LessOrEqual(([R}], . .., [Ry]), (Enc(Ry), . .., Enc(Ryp))).

makers and Tuyls [10] which, given an encrypted value, allow  d) To compute a new remaind& = R — q,_; R’, each

the parties to generate encryptions of its bitwise reprtasien party computes its share 0R'] = Zle 274 Ry ),

(this conversion is also necessary in the Bunn-Ostrovsky so then encrypts and broadcast the result. All parties

tion, but was not described). This protocol, denoBed, can locally multiply the ciphertexts to obtaiEnc(R’) and

be specified to compute any numbfeof the least significant execute Enc(qe—;R’) «— Mult(Enc(R'),[q¢—s]). Fi-

bits of the encrypted value, in which case its complexity is nally, each party locally computdsic(R) = Enc(R) -



Enc(qr—iR')~! = Enc(R — qv—;R'). 2) Set encryption of own rating to beénc(w’) =
4) Each party locally computes its share of outgugs Enc(Calc-Own-Weight(item)), Enc(s’) = Enc(w -
[q] = >'_, 2¢~[q,_,], then encrypts and broadcasts its  Get-Own-Rating(item)).
share, so thaEnc(q) can be locally computed using the 3) If depth # 0, computeEnc(s) = Enc(s'+3, cp s1,) =
homomorphic properties of encryption. Enc(s) - [1;,er Enc(sy,) and Enc(w) = Enc(w’ +
Optionally, assembly of the quotientin the last step can be  2_z,cr Wr;) = Enc(w’) - [Ty ¢ g Enc(wy, ); otherwise
omitted if it is beneficial to have the result in a bitwise form  SetEnc(s) = Enc(s") andEnc(w) = Enc(w’).
4) Return{Enc(s), Enc(w)).
D. Non-Zero Test Note that we allow the depth to be arbitrary. Due to the small
Given the tools described it is straightforward to implemenvorld hypothesis, however, we advise a depth of 2, as even
a non-zero test to ensure that division is performed cdytectthen a large number of users are likely to be queried.
NotZero(Enc(v)):
1) (Optional) The parties jointly executéEnc(ve—1),. . .,
Enc(vg)) < Bits(¢,v), additively share each encryptedt

A. Analysis

To show the security of our solution, we must show that any
X — 1 colluding participants cannot recover more information
v; and decrypt the shares to obtdin_], .. ., [vo]. gp P

) than what is obtainable if a trusted third party implemented
2) ;I'[g]e parﬁ;execul{é] « LessOrEqual({[vg—1], .., [vol). the functionality. In our analysis we simulate the view oé th

) . - root andt — 2 other participants (since the root is the only
3) The parties set their output {8] = [1] — [5]. participant who learns any output) thereby using the steehg
The first step is optional if the encryption is already aval#a 4qversary in the simulation. As our solution relies on saver
in bitwise form, as is the case in our main protocol. existing building blocks which are provably secure (e.dt, b
IV. PROTOCOLDESCRIPTION decompos.ition), we assume thgir security. Sincg our sitonla
o ) ) argument is standard, we provide only an outline.
In describing the protocol, we use the following notati@t: | |, yeneral it is trivial to simulate an encrypted value in the

R be the root/” = {fi,..., fu—1} denote the friends the root , esence of — 1 participants by encrypting any value, since
selected to query, anﬂ b? the desired decryptlpn th_reShOIdthe encryption scheme is semantically secure. Similarty, a
Also, let Get-Own-Rating(item) andGet'OV",n'We_'ght(Ztem) _ additively split value can be simulated by choosirgl shares
be functlons that_ return the current user's rating and wieighy random, and such shares will be identically distributed
for item, respectively We then have: to real shares. Using these observations the multiplicatio
Calc-Rating(depth, item): protocol, for instance, can be fully simulated without st
1) R initiates the generation of a public-private key pair for &ve underlying data. In the division protocol the partiekena
(t,n)-threshold homomorphic encryption scheme, at th&lls to the bit decomposition protocdijts, and comparison
end of which eacly; and R obtain shares of the privateprotocol,LessOrEqual, which we assume are secure. All other
decryption key and the public key is known to everyong€omputation proceeds on encrypted or additively sharasegal
2) Eachf; separately invoke€alc-Node-Rating(depth — 1, Which are easily simulatable. The same appliesi¢oZero.

item) and publishes the resulEnc(s ), Enc(wy, )). Finally, the main protocol itself is composed of the dis-
3) fi,.-..,fn—1 and R jointly execute Enc(qs,) <« tributed key generation protocol (which has its own segurit
Div(Enc(sy,), Enc(wy,)) and [b;] < NotZero(Enc(wy,)) proof), and the rest of the computation proceeds on enalypte
foreachi =1,...,n— 1. values in a straightforward manner (involvilgv and Mult).
4) R chooses weightsiy,,..., 1wy, , that it wishes to Therefore, at no point of can the colluding parties discover

assign to friendsfy,..., f.—1, respectively, computesinformation about the intermediate values of the compotati
Enc(w) = Enc(327-, bi - 1by,) = [[7=) Enc(b;)™: and
Enc(s},) = Enc(wy, - ¢5,) = Enc(qp)™ for i = . .
1,...,n — 1. R re-randomizes each computed ciphertext N order to implement our protocol, we built on the Face-
(Enc(w), Enc(s/;.) Enc(s’, )) and publishes them book social networking site. Currently Facebook offers two
’ fl [ fnfl - . . . 3

5) fi,....fae1 and R jointly’ compute Enc(s,) « Ways of deploying applications: web-based and desktopchase

Mult(Enc(s’, ), [b:]) and then each participaﬁt locally With the web-based applications, the application intaract

V. IMPLEMENTATION

computesEnc(s) = EnC(Z?:_ll S/f/i) _ HZ:ll E”C(S}/’i)' }/:rt]h uFaacebook Ujlng one toan|_1|z;\)ny V\:je_b centr;c progrgmmmg
6) fi,...,fn_1 and R computeEnc(a) « Div(Enc(s), . guages (e.q., avascript, P ) an IS constraine tongin
Enc(w)) and decrypEnc(a) for R, who learmsa. inside a vyeb browser. This is subgp_t|mal fqr our purposes
because (i) web browsers are restrictive environmentstwhic
Calc-Node-Rating(depth, item): do not easily allow for the type of communication our protoco

1) If depth # 0, choose a subset of friend$ to query and requires and (ii) our protocol requires large number suppor
forward them the request. Each frieffgd € F’ executes which these programming languages lack.
Calc-Node-Rating(depth — 1,item) and forwards the  With the desktop application option, applications can be
result(Enc(sy, ), Enc(wy,) to the requester. written in any language and interact with Facebook through a
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common API. This API gives access to not any information

available to a user logged onto Facebook. As we only requirg. K

knowledge of a user’s friends (i.e., the social networkjs th =< 20
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allows us to choose a programming language which has betteg‘;g e
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characteristics for our problem. A desktop application thees 20
added advantage of giving the user more control over their P
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data (i.e., all data is stored locally), and allows the aggtion ° Key Size (bits) Number of participants
to be run in the background unobtrusively from the user’s _ o o _
point of view. When considering the state of currently aaalié Fig. 1. Timing results for distributed key generation.

Facebook SDKs, and the aforementioned criteria, we chose to

implement our protocol in Java. , , , - .
Given these decisions, the architecture for our applicatiy test while keeping each test efficient. In particulare th

is as follows. Each user first logs into Facebook using if¢/mber of primality tests in practice reduces to about 1000
Facebook username and password. Once the user is autfi@h2 1024-bit modulus. Our implementation followed the
ticated, it registers as online with a server. This serves aglescription given in [11] with the exception that threading
as an intermediary between all users, passing communicaif$2s not mcly_ded. Our r.esults are consistent with thoserte¢o
through the network. It also acts as a check pointing systeift [11]- Additionally while the experiments in [11] includeat
allowing the computation to be performed asynchronousfjost S parties, we show performance of the algorithm up to 19
as users log on and off the system. Once logged onto #@ticipants. We also suggest a sl|g_ht eff|C|enc_y improveme
server, the user can receive requests and issue queries.{@U&1e techniques of [11] described in Appendix A.
note that our system is not dependent upon Facebook forfhe remaining key material is computed using the tech-
anything other than the social network. That is, once the ugddues of [6], which also rely on results from [12]. The dEtai
logs into Facebook and the social network is retrieved, tige given in [9]. To the best of our knowledge, this is the first
user can immediately log out of Facebook and never log inf@plementation of fully distributed Paillier encryptiooleme.
it through the application again, instead she would rely on Figure 1 illustrates performance of the distributed key-gen
our application to track users. We also note that it is easy &ation protocol. For all experiments, we plot the perfanoea
see that our system can be used in the absence of Faceb¥ak protocol by varying (i) the size of the encryption key and
when other social networks are available. An advantage @) the number of participants. In all figures, the plot oe thft
using Facebook, however, is that it is a widely used sociafnd side fix the number of participants to 7 (varying key)size
networking site which allows us to message any user wigind the plot on the right fixes the key size to 1024 bits (vayyin
a request to participate in the computation, even if the uga#mber of participants). (In [9] we also plot the number of
does not have the application installed. Thus, if users ate firials.) The results indicate that this (one-time) operattan
directly involved in the computations, they can merely netu be executed within an acceptable time frame.
their value and not install any application at all. There are other techniques for distributed key generation
In order to implement the protocol, each of the buildingvailable in the literature. For example, Ibrahim [13] reels!
blocks described in Section 11l had to be implemented. To gaihe number of rounds from quadratic to linear; however,
a better understanding of the performance of each of thes#ch round becomes expensive and is equivalent to a linear
operations, we present the timing results for each buildimgimber of tests. Also, Biehl and Takagi [14] have a technique
block. As the computations were distributed, we simulategsing quadratic fields which provides a possible area for
each user (and the server) as its own PC on a 100Mb LAN. Timeprovement. We, however, anticipate that the implemented
computers used were Sun workstations using 2200 MHz AMBchniques would be comparable or even outperform other
processors and 2 GB of memory. We tested each buildiaglutions including the newest techniques [15].
block independently, and took an average time over 10 runs,
with the exception of key generation tests which were avetagB. Protocol Performance
over 50 runs due to large fluctuations in the number of trials.

We are unaware of other implementations of secure multipart We now ShOV\.’ the performance of our pr.oFocol and its com-
techniques of similar complexity and scale. ponents beginning with the smallest non-trivial protodadiylt,

and continuing with the remaining protocols. In addition to
A. Key Generation gaining an understanding of the most resource-intensivs pa
of the solution, this also gives the reader performanceisi

As mentioned in Section IlI-A, fully distributed generatio X - F X
f_)f several recent constructs with no prior implementations

of an RSA modulus normally involves first choosing cand
dates for primesp and ¢ and testing them simultaneouslyMultiplication. The results of running the multiplication
resulting in an expecte@(x?) trials for ax-bit modulus [7]. protocol (Section 1II-B) are depicted in Figure 2. Sincesthi
As O(x?) trials is computationally infeasible, we applied therotocol involves at least one modulo exponentiation, the
optimization techniques of [11] which allow for significantexpected function growth is cubic in the size of the key which
performance improvements over the Boneh-Franklin bipFimahe figure confirms. For a key size 1024, performance stays
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around 1.3 seconds even if the number of parties varies astiile to executeBits (33 invocations), and.essOrEqual (32
operations are performed by the participants in parallel.  invocations on 33-bit integers), are also shown. Note time ti
Random bit generation. This operation allows parties to M98 forBits andLessOrEqual dominate the timing of division.
jointly choose a random bit and can be realized in linear (f°Y ComPpleteness.essOrEqual is described in Appendix B.

the number of participants), logarithmic, or constant agin The performa}nce of _the protoco_l for compuu_ngt_he we|gr_1ted
We implemented the first two (due to the small number G/¢r29¢€ of ratings will be o_lomlnat_ed by division. During
parties). Figure 3 shows the performance of both versions gfecution of the system, the interaction proceeds as fellow
the protocol. The gap between their performance grows as th®) The root broadcasts a request to initiate a recommenda-
number of participants increases (both require 1 multipli- tion protocol tom friends.

cations, but one offers more parallelism). Small fluctuzgio 2) The root generates a public-private key pair with the first

in the runtime are an artifact of the computing environment. ~ n — 1 friends who respond as willing to participate; the

. - . .. . ublic key is then broadcast to the remaining friends.
Bit decomposition. The bit decomposition protocdits [10] 3) Pl'he n pa?/rties generate a sufficient numbergof random

rep_eatedly glener_at(_as random bits and also performs auditio bits while all participating friends recursively colleatc
of integers in bitwise form. To add& = ay_;...a9 and X .
assemble their recommendations.

b =by_1...by, bits a;’s are given in the clear, while bits’s . o .
10 i give & 4) The n parties run all division protocols in parallet(
as well as carry; and sums; bits are encrypted aBnc(b;), . . . .
instances in round 1 and one instance in round 2).

Enc(c;), andEnc(s;). We use the following computation for _ ) i _
the addition, which results in only one interactive mulggt ©On the scale of this type of interaction, where collecting

tion (i.e., Mult(Enc(b;), Enc(¢;))) per bit of the computation: ratings can take days, the protocol is reasonably efficient.
b: - e if a:=0 VI. RELATED WORK
Ciy1 = { ‘L !

by +c; —b;-c; ifa; =1 Prior research on related recommendation systems has two
main focuses: trust-based and systems that preserve ypo¥ac

wheres; = a; + b; + ¢; — 2a;b; — 2aic; — 2bic; + 4aibici.  yser preferences. In trust-based recommendation systiersis,
Figure 4 depicts the performance of bit decomposition fQ¢ madeled using a graph where each edge weight represents
32-bit integers with and without the overhead for randofpg {ryst between the two parties it connects. One example is
bit generation. Note the time saved by precomputing randofy,spwalker [16], where ratings of items are determined by a
bits. An interesting aside is th®(logn)-round random bit st network and an item similarity metric. Another, more
generation in the protocol does not _result in performangﬁn“ar, example is FilmTrust [17], in which users specify
improvement over the(n)-round version due to the highy st vajues for each user (similar to ow) and calculate
degree of parallelism introduced, i.8its runs many §2 here) 14 rating of a movie as the weighted average of each users
instances of the bit generation protocol in parallel. We file rating, where the trust values act as weights. FilmTruserf
Bits protocol using the)(n)-round random bit generation.  tom our scheme in that the depth of the query can only be
Division. Finally Figure 5 reports the performance of divisiorone, decreasing the coverage of items (i.e., if none of the
of 32-bit integers with precomputed random bits, where theot’s friends have a rating, no rating is given), and there i



no privacy of user ratings. There is also other literature dviironov [35] built a system to achieve differential privaayer
trust-based collaborative recommendation systems,[@&]5 the Netflix dataset. Experiments on their system showed that
[20] that use trust-based mechanisms (including sociatltta the accuracy of results was not severely effected throughou
improve the correctness of public recommender systemg. Thee query execution by maintaining privacy of user data.
is, they attempt to remove the bias that could be introduged b Another work by Kearns et al. [36] develops secure compu-
malicious users through injection attacks via anonymots rgation techniques for a network of users. That work presents
ings. They do not, however, preserve the privacy of indigldua mechanism for securely computing belief propagation and
ratings. Gibbs sampling, which is not applicable to the computation
Publications that build recommendation systems with usee perform in our application. The authors assume a fully
privacy in mind include a secure protocol by Katzenbeissdecentralized network, which can also be easily achieved in
and Petkovit [21] for computing the similarity of vectoxsf our setting (i.e., our implementation used a centralizedese
use in medical applications. That is, given a vector (e.dar the ease of synchronizing the interaction, but this isar
disease vector), the system is able to securely find similatrinsic requirement of the solution).
vectors and make recommendations about doctors. Similarly
collaborative filtering techniques, where a user has a set
of preferences and the system attempts to suggest relateth this work we design and implement a protocol that uses
products based on similarities with other users, have besocial network connections to realize a reliable recommen-
developed that take user privacy into account. Such teaksiqdation system that preserves the privacy of individual user
are known based on both homomorphic encryption [22], [28&tings. We assumed semi-honest participant behaviaifjéats
and data perturbation [24]-[27]. Since collaborative fittg by social ties. It is important to note, however, that adadisl
is used, results are obtained which are based on similafigchniques can be employed to prevent user misbehavior.
to existing users. Thus while both recommendation systerms what follows, we describe a number of such techniques
are similar to what we present here (with the schemes baseduding countermeasures that are not covered by, and thus
on homomorphic encryption being closer), they do not takg beyond, the techniques for secure multi-party compriati
into account trust relationships as our scheme does. Thisthe presence of active adversaries.
is important to note, because without the ability to use the One concern that potential users might have is an uncer-
information present in the social network, these techrsquiinty about whether their privacy is sufficiently protette
cannot be adapted to achieve the same results as our teehnitjwough the participation of enough individuals. As mené&d
Our solution therefore could allow the user to obtain défetr previously, each user can decline to participate if thesthoé
recommendations, thereby offering a potentially bettarall ¢ is set below her tolerance level. Furthermore, because all
recommendation. (secured) communication is relayed through the root, tlee us
From the literature on data privacy in social networksnight want to verify that the encryption key was generated
publications in the area of access control are the closesthimnestly (as opposed to by e.g., users created by the root)
this work. In particular, articles such as [28]-[32] alloseus and there are a certain nhumber of other users contributing
to specify access rules for their content stored on the kodiaeir inputs. To alleviate such concerns, all communicatio
networking site and/or preserve privacy of their data fréwa t relayed through the root can be authenticated, e.g., sigped
networking site itself. The mechanisms for achieving thalgo the originating parties using a Public Key Infrastructup&l)
differ, ranging from using trusted third parties to decalited embedded in the social network. This prevents all parties (n
solutions where the user herself implements access conjudt the root) from faking additional users or pretending to
policies for her data (e.g., using public-key [30] or keye a different user. Furthermore, when a friend of the root
management [32] techniques). The goal of these publicaticsends a message to its children, the authentication intayma
is, however, access control, and thus does not solve the samgociated with the users who participated in the creatfon o
problem as our work, as evidenced by the fact that they revéla¢ encryption key can also be passed to them. This will allow
data which we require be kept private. all participating users (rather than just the root’s frightb
Another recent notion of privacy which is also used in recserify that their data will be adequately protected.
ommendation systems is called “differential privacy.” lsety If due to some reason a user still does not feel that her
speaking, differential privacy [33], [34] for statisticdhtabases data is being adequately protected even in the presence of
guarantees that two data sets from the same population whilek above safeguards, the user can decline to participate. F
differ by one element will occur with almost the same protexample, a malicious querier can run multiple queries on the
ability. Intuitively, this means that for each element ire thsame product selectively excluding users in the attemgizimnl
database there exist very similar elements. Differentigbgy individual responses. This concern is not unique to ouirggtt
is usually achieved by adding noise to the dataset, and the exists every time the flexibility of the system allows for
amount and type of noise is heavily dependent on the statistioverlapping queries. Since the querier and the productgbein
queries that users are allowed to execute on the databaise. Gheried are known, however, a user can easily detect such
means that there is a trade-off between accuracy and privagyeries and refuse to participate in the computation on all
In application to recommendation systems, McSherry amdnsecutive query runs. In this way topological attacksrea

VIl. DIScUSSION ANDCONCLUSIONS



the system can be mitigated. The user also has an oblivious
way of declining to participate by submitting a 0 rating thi

is especially meaningful in social networks where users malig]
not want to offend their friends by declining to participate

is important to note that the computation of the result regui |5
at leastt users to participate. This means that performing
the computation multiple times (i.e., one time including th
information given by uset/, and another not) is impossible
without the collusion oft users. Since we assume this is not

the case, users are safe from such attacks.

We note that the aggregation strategy used by this protocol
is easily modifiable at the user level. When a user is asked {g)
return a rating, they are not required to incorporate thewno
edge of their neighborhood. Similarly, they are not reqliire
to incorporate their personal knowledge. Each individisaru
is instead allowed to amalgamate the results in the way they
deem most accurately reflects their rating for the item. This
very powerful as it allows users to easily and quickly altewh
their ratings are generated (e.g., via a web interface)owith [g]

changing the underlying protocol.

While in the above we focused on the protection of theg
users contributing their ratings, a concern the querierhinig
have is that a single invalid user rating can render the entir
computation useless. For example, a user can submit a rati
significantly exceeding the maximum valid rating or a negati
rating. This problem can be addressed at relatively low lopst
enforcing range checking on each rating: For a leaf noddy sutl
verification can be performed using range or set membership
zero-knowledge proof of knowledge of their rating and wegigh[12]
which are known for Paillier encryption. For intermediate
nodes that do not have knowledge of a rating they assemblehiﬂ
encrypted form, range checks instead can be performed using
joint execution ofLessOrEqual on the values;/w;. While
a user can always set her rating to any value in the rané]é‘,]
its effect on the overall result will be marginal as it will be
averaged with all other friends’ ratings based on a selectiél

weight.

Finally, we note that our implementation of the comparisofg)
operation is based on homomorphic encryption, while recent
literature [37] reports that for the two-party case optieaiz
implementations of generic garbled circuits [37]—[39] yd®
the best performance results. There are no equivalentestudi
for the multi-party case, but the efficiency of alternativ

implementations is worth investigating in the future.
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EFFICIENCY IMPROVEMENT OF THEDISTRIBUTED RSA
KEY GENERATION Hao @b © 1)+~ (a1 & be-1)ar

In order to improve the efficiency of RSA distributedThe XOR operation involves one multiplication asaim y =

key generation, Malkin, Wu, and Boneh [11] outline severé’izy — 2zy. Thenﬂ\}lh? overall (I:c_)mputation ';’ dominated by
practical optimizations. The first, and most important, bict O(¢) executions oMult protocol inO(¢) rounds.

is distributed sieving (others being trial division andethding _Ogr implementation Of_es:sOrEquaI takes the arguments in
to run multiple tests in parallel). bitwise form, where the bit$; of the second argument are
In distributed sieving, each user chooses a random numg@gypted, while having the bits of the first argument in the

which is coprime to the product of all small primes less tha"fl]dd't'vely shared form allows for reduced runtime of the mul

the sieving bound) . The users can then multiply all of theirt'p:'c"]‘t'on Pmt?ﬁOI‘hA” add't'or;f are perftorm?dtr(])n emmydt_
shares to get. = [];", a;, wherea is also coprime taM. vaues using the nomomorphic propery of ihe encryption

In order to split the produat into additive shares, the paperSCheme' Figure 6 shows performance of our |mplgmentat|on
recommends running the BGW protocol [40] for secure circu LessOrEquaI for ¢ ~ 32 with a f'.xed number of participants
evaluation, which in this case performs multiplication wbt ) and a fixed key size (1024 bits).

values shared using a linear secret sharing scheme, once for



