
Privacy-Preserving Network Aggregation

Troy Raeder1,2, Marina Blanton2, Nitesh V. Chawla1,2, and Keith Frikken3

1 Interdisciplinary Center for Network Science and Applications
University of Notre Dame, Notre Dame IN 46556 USA

{traeder, nchawla}@cse.nd.edu
2 Department of Computer Science and Engineering

University of Notre Dame, Notre Dame IN 46556 USA
mblanton@cse.nd.edu

3 Miami University, Oxford OH 45056 USA
frikkekb@muohio.edu

Abstract. Consider the scenario where information about a large network is dis-
tributed across several different parties or commercial entities. Intuitively, we
would expect that the aggregate network formed by combining the individual
private networks would be a more faithful representation of the network phe-
nomenon as a whole. However, privacy preservation of the individual networks
becomes a mandate. Thus, it would be useful, given several portions of an under-
lying network p1 . . . pn, to securely compute the aggregate of all the networks pi

in a manner such that no party learns information about any other party’s network.
In this work, we propose a novel privacy preservation protocol for the non-trivial
case of weighted networks. The protocol is secure against malicious adversaries.

1 Introduction

As the collection of social network data by enterprises increases, so too does the in-
cidence of proprietary network data. One simple example arises from so-called “viral
marketing” campaigns, which exploit the social networks of individuals for targeted
marketing. In such a program, a new product is distributed to a few (hopefully influen-
tial) individuals with the goal that friends will then buy the product on their recommen-
dation. If the success of recommendations can be tracked, future campaigns can take
advantage of the previously-collected network information by targeting “influential”
viral marketers, as identified by network structure.

Another scenario comes from the analysis of transactional data as a network of
products, where the edge between two products pi and pj has a weight wij equal to the
number of times pi and pj are purchased together. It has been shown that the structure of
such a network can be exploited in order to discover meaningful complex relationships
between products and propose potentially profitable promotions [13].

In both cases outlined above, any one view of the network may be biased [1, 7],
meaning that it is an incomplete or unfaithful representation of the underlying “true”
relationships. The simplest way to overcome such a bias is to combine networks from
multiple sources on the principle that two networks are unlikely to suffer the same bias,
or that the combination of networks will offer a more complete view of the true network.



When networks are highly proprietary or private, participants may not be comfortable
disclosing their networks to each other. For instance, an aggregate social network may
be useful in collecting product recommendations (if you trust your friends and their
friends more than the general population), but the structure of individual social net-
works is often considered private. In the product networks scenario, while different
stores may benefit from sharing, they would still like to preserve their proprietary in-
formation such as exact sales and product information. It is with this motivation that
we discuss secure methods for network aggregation. Specifically, given a series of net-
works G1 = (V1, E1), . . . ,Gn = (Vn, En) from participants P1, . . . ,Pn, we show how
to produce an aggregate network G in a manner such that no participant learns anything
about another participant’s network. We then develop a novel protocol for the case of
weighted networks that is secure in the presence of malicious adversaries.

In this paper, we use the product networks scenario of [13] as the driving scenario.
Specifically, we develop a protocol with which a set of n stores, selling ` products be-
tween them, participate in joint computation to securely determine cjk, the number of
times product j and product k have sold together in all stores combined (without reveal-
ing any information about the products that any one store sells). Each store chooses the
products about which it would like to learn, and the stores jointly compute the cjk with-
out leaking unintended information to any of the participants. That is, each store only
learns the total counts for products of its interest and other stores do not learn any of the
inputs. In addition to the full protocol, we present strategies for efficient implementation
and timing results based on real-world data.

It is worth noting that the protocol developed is general and can be applied to any
application requiring a secure aggregation of networks. Our focus on product networks
is driven by our ability to conduct empirical experiments, since we have data available.

The remainder of the paper is organized as follows: Section 2 describes the problem
of secure network aggregation in general and outlines the difficulties associated with
weighted networks. Section 3 describes our protocol for secure aggregation of weighted
networks, makes suggestions for efficient implementation, and provides timing results
on real-world data. Finally, Section 4 offers concluding remarks.

2 Secure Network Aggregation

Assume a series of participants P1 . . .Pn wish to combine their private networks G1 =
(V1, E1) . . .Gn = (Vn, En). These networks can be either weighted or unweighted, but
we assume that if any network has edge weights, all do.

In the case of unweighted networks, we can define an aggregate network as the
“union” of individual constituent networks: a vertex or edge appears in the aggregate
network if it appears in any individual network. In this case, aggregation is simply
a union of the sets of vertices and edges, where edges are ordered pairs of vertices.
Protocols exist [6] to compute this union efficiently and securely even in the presence
of malicious adversaries. Alternatively, one could specify that a vertex or edge appears
in the aggregate network only if it appears in at least some number k of individual
networks. This is simply a formulation of the secure over-threshold set union problem,
which has been solved in [9] for the case of semi-honest adversaries.



The case of weighted networks is more difficult. There is no obviously correct way
to aggregate edge weights (one could take the minimum, maximum, sum, average, or
any other quantity) and no existing secure protocols permit the combination of infor-
mation such as edge weights during the computation of a set union. If we assume that
the desired aggregate is “sum”, as in the case of the product networks mentioned above,
one could adapt a secure association-rules protocol (i.e. [8, 15]) to our problem in the
following manner: For each edge (a, b) of weightw, producew copies of the transaction
{a, b}. Then run a secure association rules protocol with support s and zero confi-
dence. The two-item association rules in the result will be the edges in the aggregate
network whose total weight is at least s.

There are several problems with this approach. First, the size of the transaction
database (and therefore the complexity of the algorithm) will depend on the edge
weights, which may be arbitrarily large. Second, in these protocols, one participant
learns the answer and must forward it to all others rather than informing all participants
simultaneously. Third, these protocols do not preserve the actual aggregate (sum), but
merely whether the sum exceeds a threshold. Our approach, which we present in the
next section, addresses all these concerns.

Furthermore, we provide a mechanism whereby participants commit upfront to the
vertices (i.e. products or individuals) about which they would like to learn. This com-
mitment, which can be omitted for efficiency if deemed unnecessary, provides added
privacy in that participants can only learn about what they already know. In a viral mar-
keting scenario, for example, participant Pi could obtain more complete neighborhood
information about individuals already in their network but would learn nothing about
individuals in Pj’s network that Pi had never encountered. Thus Pj’s competitive ad-
vantage is sustained.

3 Privacy-Preserving Solution

In this section, after providing background information, we present our solution, which
we call Private Product Correlation (PPC) protocol. We analyze its complexity, pro-
pose several efficiency improvements and demonstrate performance on real data. Due
to space constraints, the formal security proof has been deferred to [12].

3.1 Preliminaries

Homomorphic encryption Our solution utilizes semantically secure homomorphic
encryption that allows computation on encrypted data without knowledge of the cor-
responding plaintext. In particular, we use public-key additively homomorphic en-
cryption such as Paillier [11]. Suppose there is a public-private key pair (pk, sk);
we denote encryption of message m as Epk(m) and decryption of ciphertext c as
Dsk(c). The additive property gives us Dsk(Epk(m1) · Epk(m2)) = m1 + m2 and
Epk(m)a = Epk(m · a). It is also possible, given a ciphertext c = Epk(m), to com-
pute a re-encryption of m such that it is not feasible to tell whether the two ciphertexts
correspond to the same message or not; this is done by multiplying the ciphertext by an
encryption of 0.



Our protocols use a threshold version of homomorphic encryption. In an (n, k)-
threshold encryption scheme, the decryption key is distributed among n parties and the
participation of k of them (k ≤ n) is required to decrypt a ciphertext.
Zero-knowledge proofs Our protocols rely on zero-knowledge proofs of knowledge
from prior literature. In particular, we use a proof of plaintext multiplication defined as
follows: given ciphertexts c1 = Epk(a), c2 = Epk(b), and c3 = Epk(c), the prover
proves that c corresponds to multiplication of a and b, i.e., c = a · b. Cramer et al. [2]
give a zero-knowledge protocol for this proof using Paillier homomorphic encryption,
which is the type of encryption used in this work.
Privacy-preserving set operations Prior literature [5, 6, 9] contains results that permit
privacy-preserving operations on sets (or multi-sets). A set S = {s1, s2, . . ., s`} is rep-
resented as the polynomial fS(x) = (x− s1)(x− s2) · · · (x− s`). This representation
has the property that fS(s) = 0 if and only if s ∈ S.

Privacy-preserving operations on sets use encrypted representations of sets. Given
a polynomial f(x) = a`x

` + a`−1x
`−1 + . . . + a1x + a0, its encryption is formed as

encryption of each coefficient ai: Epk(f) = (Epk(a`), . . ., Epk(a0)). This representa-
tion can be used to perform set operations in privacy-preserving manner. One such an
operation used in our solution is polynomial evaluation, which given Epk(f), y, and
public parameters allows one to compute Epk(f(y)). This is done by computing the
product

∏`
i=0Epk(ai)

yi

. We also utilize the set union protocol of [6], which is the
fastest protocol for computing the union of two sets.

3.2 Private Product Correlation Protocol

In our solution we assume that there are n participants (i.e., stores) P1, . . .,Pn. Each
participant Pi sells a number of products to which we refer as Li. We assume that a
unique naming convention is used, and different participants will use the same name
for a particular product.

Overview of the solution A natural solution to the product correlation problem in a
non-private setting proceeds as follows: each participant counts the number of instances
two products were sold together at its store, across all pairs of products the participant
offers. Given these counts, the aggregate counts are computed for each pair of products
the participants collectively carry. Each participant then saves the aggregate counts cor-
responding to the products it is interested in. The same logic could be used in construct-
ing a privacy-preserving protocol for product correlation: each participant computes the
counts privately, all of them then engage in a variant of a set union protocol preserving
(and summing) the counts during the protocol, and finally each participant performs a
set intersection on the result to recover the counts for the products of interest.

The existing techniques do not allow this functionality to be implemented in the
above form. That is, while privacy-preserving protocols for both set union and set in-
tersection exist, they are not composable, i.e., they cannot be used as sub-protocols in a
larger solution which is required to be secure. Furthermore, the way sets are represented
in these protocols does not permit additional information (such as a count) to be stored
with an element of the set. These limitations led us to design alternative mechanisms
for achieving the above task.



Our protocol first requires that the participants agree on an (n, n)-threshold homo-
morphic encryption scheme and a naming convention for vertices. The simplest choice
would be some sort of hashed unique identifier, such as UPC codes for product net-
works, or e-mail addresses, social security numbers, or ID codes in the more general
case. Then, every participant commits to the set of products about which it would like to
learn without revealing this set to others. Next, we employ a secure set-union protocol
to determine the set of products on which we need to compute. Each participant pre-
pares counts for all pairs of products in the set union and broadcasts encrypted counts
to others. The participants jointly add the counts using the homomorphic properties of
the encryption scheme. To allow a participant to learn information about the products to
which he or she committed (without others learning anything), all parties will aid with
the decryption of necessary (unknown to others) counts.

It is conceivably possible to construct a simpler protocol to achieve similar aims.
One could repeatedly apply a secure sum protocol to compute the counts we desire,
or could omit the commitment step and simply have participants learn about all pairs
of products. However, we would argue that these solutions lack potentially desirable
security properties. Our full protocol provides added security by preventing participants
from learning an arbitrary amount of information regarding products other stores stock
(which could result in stores refusing to participate). That is, by limiting the number
of products about which a participant learns, we provide the stores with a useful utility
without giving anyone the ability to abuse the knowledge they gain.

Protocol description The participants agree on a (n, n)-threshold homomorphic en-
cryption scheme and generate a public-private key pair (pk, sk) for it.

PPC Protocol:

1. Each participant Pi creates a list of products Di = {d1, . . ., dmi
} about which

it would like to learn. Pi commits to this set by committing to the polynomial
Qi(x) = (x − d1) · · · (x − dmi) = qmix

mi + qmi−1x
mi−1 + · · · + q1x + q0

for constants qmi , . . . , q0. (Qi may be padded with fake items to hide the size of
the set Di). More specifically, Pi posts Epk(qmi

), . . . , Epk(q0) along with a zero-
knowledge proof that qmi

is non-zero as described in sub-protocol NZProof below.
The proof is necessary to provide a bound on the size of mi.

2. Each participant Pi prepares a list of its products Li. The participants engage in a
privacy-preserving set union protocol to determine the set of products all of them
sell. Let L = {p1, . . ., p`} denote the outcome of the protocol.

3. For each pair of products pj , pk ∈ L, Pi computes Epk(cijk), where cijk is its count
for the number of times products pj and pk were sold together for Pi. Note that if at
least one of pj and pk is not in Li, cijk will be 0. Pi broadcasts the values Epk(cijk)
for each 0 ≤ j, k ≤ ` (j 6= k).

4. Each Pi locally computes the encryption of the sum of all counts for each product
pair pi, pk as Epk(cjk) =

∏n
i=1Epk(c

i
jk)). Pi then rearranges the values to form

tuples (pj , Epk(cj1), . . . , Epk(cj`)) for each pj ∈ L.
5. Now each Pi obtains the decryption of counts of the products to which Pi commit-

ted in step 1 (i.e., all counts cjk such that pj ∈ Di, 1 ≤ k ≤ `, and k 6= j). To
accomplish this, perform the following in parallel for each Pi:



(a) One party posts Epk(Qi(p1)), Epk(Qi(p2)), . . . , Epk(Qi(p`)). Note that

Epk(Qi(pj)) = Epk(qmi)
p

mi
j · Epk(qmi−1)

p
mi−1
j · · ·Epk(q0), and since this

is a deterministic process, everyone can verify the result of the computation.
Also, note that Qi(pj) will be 0 iff pj was in Di.

(b) For each value Epk(Qi(pj)), j = 1, . . ., `, the participants randomize the un-
derlying plaintext by engaging in a NZRM (non-zero random multiplication)
protocol described below (each participant executes the NZRM protocol in or-
der). In this protocol each participant multiplies each plaintext by a random
non-zero value and proves correctness of the computation. We denote the re-
sult of the computation by Epk(bij). Note that bij is 0 if pj ∈ Di and a random
value otherwise.

(c) For each 0 ≤ j, k ≤ ` (j 6= k), one party computes the values Epk(bij) ·
Epk(cjk) = Epk(bij + cjk). Note that the encrypted value is cjk if pj ∈ Di and
is a random value otherwise.

(d) The parties engage in a joint decryption protocol to reveal the values bij + cjk
to the Pi for all 0 ≤ j, k ≤ `.

Sub-protocols NZProof Protocol: A user has a ciphertext c and would like to prove
that the corresponding plaintext a (where c = Epk(a)) is non-zero.
1. The prover chooses a random value b and posts Epk(b) and Epk(ab).
2. The prover proves in zero knowledge that the decryption of Epk(ab) corresponds

to the multiplication of the decryptions of Epk(a) and Epk(b).
3. The prover decrypts Epk(ab) and posts ab (this value is jointly decrypted in case of

threshold encryption). If ab is non-zero, so must a.
NZRM Protocol: Given a ciphertext c = Epk(a), a participant multiplies the underlying
plaintext by a random non-zero value b, outputs c′ = Epk(ab) and proves correctness
of the computation.
1. The participant chooses a random value b and posts Epk(b) and c′ = Epk(ab).
2. The participant proves in zero knowledge that the decryption of Epk(ab) corre-

sponds to the multiplication of the decryptions of Epk(a) and Epk(b).
3. The participant also proves that Epk(b) encrypts a non-zero value using the

NZProof protocol.

Complexity Analysis To simplify the analysis, let m be the upper bound on the num-
ber of items to which a participant commits (i.e., m = maxi{mi}). The total work and
communication for participant Pi in step 1 of the protocol isO(m+n), which amounts
toO(mn+n2) communication across all parties. The computation and communication
associated with the proof of nonzero qmi

is constant with respect to m and n and does
not affect the complexity. In step 2, the overhead associated with the semi-honest (ma-
licious) version of the set union protocol is bounded by O(n`) (O(n`2 + n2`), resp.)
computation and communication per person and therefore O(n2`) (O(n2`2 + n3`),
resp.) overall communication. In step 3, each participant’s work and communication
is O(`2) resulting in O(n`2) overall communication. Step 4 involves O(`2) cheaper
operations (modular multiplications) per participant and no communication.

To determine the output for a single participant Pi in step 5, the overhead is as
follows: step 5a requires O(m`) operations and the same amount of overall commu-



nication. Step 5b requires O(`) work and communication per participant, resulting in
the total of O(n`) communication. Here the work and communication added by the
NZProof protocol is constant per participant and per product, so the additional com-
plexity introduced is O(n`), which does not affect the asymptotic running time. Step
5c involves O(`2) computation and overall communication. Finally, step 5d involves
O(`2) threshold decryptions, which amounts to O(`2) work and communication per
participant resulting in O(n`2) total communication. Since this part is executed for
each participant, the total communication of step 5 over all participants is O(n2`2).

Thus, if the protocol is built to resist malicious adversaries, the work per participant
is O(n`2 + n2`) and the overall communication is O(n2`2 + n3`).

3.3 Efficiency Improvements

Polynomial multiplication and evaluation As described in [5], polynomial evalu-
ation can be performed more efficiently by applying Horner’s rule. Recall from sec-
tion 3.1 that computing Epk(f(y)) amounts to calculating

∏`
i=0Epk(ai)

yi

. More
efficient computation can be performed by evaluating it from “the inside out” as
Epk(f(y)) = ((· · · (Epk(a`)yEpk(a`−1))y· · ·)yEpk(a1))yEpk(a0). Considering that
the polynomial is always evaluated on small values (compared to the size of the encryp-
tion modulus), this results in a significant performance improvement.

The set union protocol we utilize [6] also uses polynomial multiplication, which
for large polynomials becomes inefficient. Given an encrypted polynomial Epk(f1) =
(Epk(a`1), . . ., Epk(a0)) and another polynomial f2(x) = b`2x

`2 + · · ·+ b0, the multi-
plication consists of computing (encrypted) coefficients ci of their product: Epk(ci) =∏min{i,`1}
j=max{0,i−`2}Epk(aj)

bi−j for i = 0, . . ., `1 +`2. This can be performed faster by us-
ing multi-base exponentiation (see, e.g., [10]), where instead of computing exponentia-
tions gx1

1 , . . ., gxk

k separately, exponentiation is performed simultaneously as gx1
1 · · · g

xk

k

for a fixed (small) value of k. This can speed up computation by several times.
Packing Assume that the (total) cjk values are at most 2M . It is likely that M � ρ,
where ρ is the number of bits in the modulus of the encryption scheme. In Step 3 of the
PPC protocol, a participant posts ` encryptions. We can reduce this number by storing
s = b ρM c values in a single encryption, which would require only d `se encryptions.

To do the compression, suppose we want to place M -bit values x1, ..., xs into a
single encryption. We then compute Epk(

∑s
i=1 2M(i−1)xi). Note that as long as indi-

vidual results do not get larger thanM bits, we can add to such compressed encryptions
(to obtain the value representing the pairwise values) and we can multiply them by con-
stants. In the protocol, addition is the only operation performed on the counts. Such
compressed encryptions of counts can also easily be used in Step 5 of the protocol if
only the counts that correspond to the same product are combined together (e.g., cjk
and cjk′ can be included in the same ciphertext for any k, k′). Doing this compression
does not reduce the asymptotic communication of the protocol (as this has no effect on
the set union), but it does improve the performance of Steps 3–5 in the protocol.
Leaking products with zero sales In our data, there are many products that never sell
together, either because they are relatively unpopular or because they are not available
at the same time. If this information is not valuable to an adversary, pairs of products



with zero sales can be excluded from the protocol, meaning that their counts do not
need to be encrypted, combined, or decrypted.

3.4 Performance

One persistent concern with privacy-preserving data mining protocols is that they tend
to be unacceptably computation-intensive. We now present a discussion of the perfor-
mance of our protocol and the optimizations that were required to make it tractable in
practice. Such a discussion serves both to demonstrate the feasibility of our algorithm
and to serve as a baseline for evaluating privacy-preserving data mining techniques.

We implemented the protocol in C using (n, n)-threshold Paillier encryption [2–
4] as the encryption scheme and the protocol of [6] for set union. For efficiency, we
extend the set union protocol as follows: the participants decide on a number, B, of
buckets, and each participant divides its products among the B buckets according to
a hash function. The participants run the set union protocol B times and combine the
results of the runs. This can be accomplished without leaking additional information
since the combination of several unions is the same as the final union. If the participants
split the products uniformly among B = `

log(`) buckets, the buckets will contain log(`)
products on average, reducing the time complexity of the set union from O(n`2) to
O(n` log(`)). In practice, the participants do not know the size of the union beforehand,
so we approximated ` with n · `i where `i is the number of products in each store. We
find that this significantly reduces the running time of the set union.

In conducting the experiments, we accounted for the parallelism afforded by the pro-
tocol (each participant doing computation in parallel). However, in situations where the
computation must be serialized we time the computation of all participants. Specifically
we do not include key generation, the construction of unencrypted polynomials for the
set union, or the construction of the commitment polynomials. These are pre-processing
steps outside the context of PPC. For steps that can be done by all participants simulta-
neously (steps 2, 3, 4, 5d), we only time the effort of one participant. In steps 4 and 5d,
the effort to combine results is also timed.

All experiments were done with a 1024-bit key in keeping with modern standards
for public-key encryption, and are run on real-world transaction data from a conve-
nience store at the University of Notre Dame. For the purposes of the experiment, we
constructed several stores from a single dataset by randomly assigning products to each
store from a pre-determined list of top-selling products. The size of the set union de-
pends on how much overlap there was between the selections of the different stores and
is, therefore, random.

Table 1 shows performance as a function of the number of participants n, the size
of the set union `, and the size of each store. We present timing results for (i) the full
protocol carried out on all pairs of products and (ii) when pairs of products that were
never sold together were excluded, as mentioned in Section 3.3. We also report the
speedup obtained from the second scenario over the first. The time taken to complete
the protocol in both cases scales most significantly with the size of the set union. While
increases in the number of participants has some effect, it is partially offset by the
increase in the amount of available parallelism afforded by the participation of multiple
entities.



Table 1. Timing results for protocol execution.

Participants Products Per Products in Time Time Speedup
Participant Union (all pairs) (no zeros)

3 100 239 105:25 14:21 7.35
3 200 461 386:14 45:40 8.46
3 400 942 1,637:09 98:42 16.69
5 100 312 293:33 61:57 4.74
5 200 601 1,097:21 167:49 6.54
5 400 1231 4,794:07 338:49 14.14
10 100 375 939:17 336:15 2.79
10 200 744 1,883:04 844:42 2.22
10 400 1502 7,191:15 1506:02 4.77

Improvement as a result of leaking zero counts is substantial, achieving at least 2.22
times speedup. In general, the benefit to leaking zeros increases with the size of the
union as zeros become more likely and decreases with the number of participants, as the
overhead of each computation is larger. The only exception was the case with 10 stores
and 200 products, in which we observe a decrease in speedup from 2.79 to 2.22. Based
on other results, this seems to be an aberration, perhaps caused by unusual activity on
the machine running the experiment. In all, we observe that leaking zero counts makes
the computation substantially more tractable. Whereas computing all O(`2) counts takes
almost five days with ten participants and 1500 products in the union, leaking zero
counts reduces computation time to just over one day.

4 Conclusion

The goal of this work was to design solutions that utilize the power of networks while
ensuring that privacy of the affected parties is preserved and no unintended information
leakage takes place. We considered a family of product networks where the stores want
to share information about their product/item networks to form a global network, such
that they can query this global network for efficient marketing and pricing. The collec-
tion of large volumes of customer transaction data is commonplace among both large
and small retailers of consumer products. The data collected by any one retailer may
potentially be biased, i.e., it does not accurately reflect the level of demand for products
in the store, for any number of reasons. Moreover, competitive enterprises can mutually
improve their standing in a market by sharing information with rivals [14].

To address these concerns, we developed the Private Product Correlation (PPC) pro-
tocol for the secure exchange of aggregate network information. The protocol provides
more information to participants (namely, a sum of counts) and is secure against mali-
cious as well as semi-honest adversaries. While our work targeted the product networks,
it is general enough for applicability to any scenario that requires an aggregation of net-
works such that no participant learns anything about another participant’s network.

We empirically demonstrate the efficacy of the developed protocol by presenting
timing results, which show that our framework is tractable for participants with reason-



able computing power. Our results suggest that execution of the protocol would take
on the order of days for participants with a modest number of products using widely-
available off-the-shelf hardware. Furthermore, if participants are comfortable with leak-
ing pairs of products that they do not sell together at all, they will see significant gains
in performance.

We hope that the above-described analytical techniques and privacy-preserving pro-
tocol lead to the increased availability of transactional datasets for scientific study. Prod-
uct networks contain significantly less information than transaction databases, because
some information is lost in the aggregation process. The combination of several prod-
uct networks, then, should reveal almost nothing about one store’s marketing model. As
such, retailers could consider an aggregated product network to be devoid of proprietary
information and may allow this information to be released and studied.

Acknowledgments This work was supported in part by the NET Institute, the Air Force
Office of Scientific Research under grant AFOSR-FA9550-09-1-0223 and the National
Science Foundation under grants CNS-0915843 and BCS-0826958.

References

1. N. V. Chawla and G. Karakoulas. Learning from labeled and unlabeled data: An empirical
study across techniques and domains. JAIR, 23:331–366, 2005.

2. R. Cramer, I. Damgard, and J. Nielsen. Multiparty computation from threshold homomorphic
encryption. In EUROCRYPT’01, volume 2045 of LNCS, pages 280–299, 2001.

3. I. Damgard and M. Jurik. A generalisation, a simplification and some applications of pail-
lier’s probabilistic public-key system. In PKC, pages 90–104, 2001.

4. P. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting or lotteries.
In Financial Cryptography, volume 1962 of LNCS, pages 90–104, 2000.

5. M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In
EUROCRYPT’04, volume 3027 of LNCS, pages 1–19, 2004.

6. K. Frikken. Privacy-preserving set union. In Applied Cryptography and Network Security
(ACNS’07), volume 4521 of LNCS, pages 237–252, 2007.

7. J. Heckman. Sample selection bias as a specification error. Econometrica: Journal of the
econometric society, pages 153–161, 1979.

8. M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association rules
on horizontally partitioned data. IEEE TKDE, 16(9):1026–1037, 2004.

9. L. Kissner and D. Song. Privacy-preserving set operations. In Advances in Cryptology –
CRYPTO’05, volume 3621 of LNCS, pages 241–257, 2005.

10. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. 1996.
11. P. Paillier. Public key cryptosystem based on composite degree residue classes. In EURO-

CRYPT’99, volume 1592 of LNCS, pages 223–238, 1999.
12. T. Raeder, M. Blanton, N. Chawla, and K. Frikken. Privacy-preserving network aggregation.

Technical Report TR-2010-02, Notre Dame Computer Science and Engineering, 2010.
13. T. Raeder and N. Chawla. Modeling a store’s product space as a social network. In Proceed-

ings of ASONAM, Athens, Greece, 2009.
14. M. Raith. A general model of information sharing in oligopoly. Journal of Economic Theory,

71(1):260–288, 1996.
15. J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically partitioned

data. In Proceedings of KDD, pages 639–644, New York, NY, USA, 2002. ACM.


