
Binary Search in Secure Computation

Marina Blanton
Department of Computer Science and Engineering

University at Buffalo
mblanton@buffalo.edu

Chen Yuan
Department of Computer Science and Engineering

University at Buffalo
chyuan@buffalo.edu

Abstract—Binary search is one of the most popular algo-
rithms in computer science. Realizing it in the context of secure
multiparty computation which demands data-oblivious execu-
tion, however, is extremely non-trivial. It has been previously
implemented only using oblivious RAM (ORAM) for secure
computation and in this work we initiate the study of this topic
using conventional secure computation techniques based on secret
sharing. We develop a suite of protocols with different properties
and of different structure for searching a private dataset of m
elements by a private numeric key. Our protocols result in O(m)
and O(

√
m) communication using only standard and readily

available operations based on secret sharing. We further extend
our protocols to support write operations, namely, binary search
that obliviously updates the selected element, and realize two
variants: updating non-key fields and updating the key field. Our
implementation results indicate that even after applying known
and our own optimizations to the fastest ORAM constructions,
our solutions are faster than optimized ORAM schemes for
datasets of up to 230 elements and by up to two orders of
magnitude. We hope that this work will prompt further interest
in seeking efficient realizations of this important problem.

I. INTRODUCTION

Secure multi-party computation is a mature research area
which allows for any functionality to be evaluated on private
data without having to disclose the data to the computation
participants. While work in this direction originated in the
80s [56], the past two decades resulted in significant progress
on two fronts: (i) secure computation techniques experienced
notable performance advances and (ii) availability and expres-
siveness of existing implementations greatly improved. Today
such techniques are performant enough to privately analyze
large data sets with reasonable overhead. We also witness
a growing number of compilers that automatically generate
secure multi-party protocols for any desired functionality.

In addition to improving performance of underlying tech-
niques and commonly used operations, there is a need to
continue research on data-oblivious (i.e., data-independent)
algorithms and data structures which permit higher-level func-
tionalities to be executed within secure multi-party computa-
tion frameworks, ideally with asymptotic complexities of data-
oblivious constructions being as close as possible to those
of their non-oblivious counterparts. One particular direction
that would benefit from additional exploration and research

is algorithms for working with sorted data. Prior work [58]
demonstrated that generically building data structures for
working with sorted sets using common techniques such as
linked lists or binary trees not only predictably significantly
increases the asymptotic complexity of the resulting protocols,
but performs even worse than using simple linear-scan-type
techniques where the data is not sorted at all.

In this work, we look at the binary search problem in
the context of secure multi-party computation and study al-
gorithms suitable for its data-oblivious realization. We are
aware of binary search discussed in prior literature only
as an application of oblivious RAM (ORAM) and are not
aware of any work that specifically studied this algorithm in
the context of secure computation or, more generally, data-
oblivious computation.1 This work initiates such a study.

Binary search is one of fundamental algorithms in com-
puter science with applications in all areas of computing. With
the maturity of secure computation tools today that permit eval-
uation of any desired functionality and the greatly improved
speed of secure computation techniques that process large
data sets in record times, it is of great importance to provide
efficient tools for common algorithms and data structures.
Improving performance of secure binary search would have
immediate impact on secure computation applications in use
today, for example, for utilizing it in database queries over
private data. Sharemind, a heavily developed secure multi-
party computation compiler and toolkit [4], is advertised as
a secure database and analytics system and offers a database
module for manipulating private data stored in a database (see
also [6], [14], [42], [46]). Naive linear search is not practical
for typical database sizes and secure data-oblivious binary
search would offer a superior solution. While data-oblivious
and secure protocols have been developed for many other
data structures and algorithms (e.g., [51], [54], [39], [37], [5],
[12], [41], [11], [26]), a lack of sufficient exploration of the
binary search problem can be explained by the difficulty of
the problem and in particular the difficulty of developing a
data-oblivious solution for it.

Problem statement. We are interested in the computation
associated with a binary search when we search a private sorted
dataset using a private key. In more detail, we are given a
data set consisting of m private items a0, . . . , am−1, possibly
consisting of multiple fields, one of which is the key field. The
items are sorted by their keys. On input private search value
b, we want to retrieve the element ai whose key is equal to
the searched key b or the smallest one that bigger than b. We

1While [45] is said to provide oblivious binary search, it fails to meet the
expectations; see section II for additional information.

Network and Distributed Systems Security (NDSS) Symposium 2022
27 February - 3 March 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.23106
www.ndss-symposium.org



also consider update operations where instead of retrieving an
element, we update the chosen item.

Security requirements. The above formulation informs the
security properties that our solution is to achieve. While the
problem size and the computation to be performed are known,
no information about the private inputs is to be revealed
to any party including a party that controls a subset of the
computation participants. In particular, the size of the data set
m, the number of fields in each ai, and size of each field is
accessible during the computation, but no information about
the ais and b can be revealed. This, in particular, requires
that the search procedure is data oblivious, which dictates that
the executed instructions and accessed memory locations are
independent of the private data.

Contributions. Our contributions are as follows:

• We design a suite of binary search protocols with different
properties and structure in the multi-party setting based
on secret sharing. In the process we also develop an
optimization for use of generic ORAM schemes in binary
search. These results are presented in sections IV and V.

• We combine and further improve our solutions to obtain
hybrid schemes which outperform the individual construc-
tions and lower binary search communication from O(m)
in our prior constructions to O(

√
m) for a dataset of size

m.2 Section VI covers our hybrid protocols.
• We extend our binary search techniques to also support

write operations. That is, instead of retrieving the element
that the search selected, we update that element. We
distinguish between updating non-key fields and the key
field because the latter requires restructuring the dataset to
preserve its sorted order. These techniques can be found
in section VII.

• We implement several of our constructions in the semi-
honest and malicious models and compare them to the
state of the art on LAN and WAN. Our best result shows
performance improvement over ORAM-based solutions
(even with our ORAM optimizations) for dataset sizes
up to 227 on LAN and 230 on WAN; the largest im-
provements are by 49× and 240× in the semi-honest and
malicious models, respectively.

II. RELATED WORK

All prior work that securely performs binary search in
the context of secure multi-party computation we are aware
of [50], [25], [57], [35], [43], [53] focuses on leveraging
ORAM operations to hide search patterns, typically invoking
a logarithmic number of ORAM accesses per binary search.
With the ability to conceal access patterns, ORAM is often
used as a general-purpose solution for constructing oblivious
algorithms. The notion of ORAM was originally proposed
[32], [34] for the client-server setting and allows a client to
obliviously access data from an encrypted dataset held by a
server. A popular type of ORAM is tree-based [49], [50], [35],
[30], with constructions capable of achieving communicating
O(logm) blocks of sufficient size per access with constant
client storage [50]. Because the original ORAM formulation
is not suitable for use in secure computation where no party is

2Sublinear communication is achievable when the underlying framework
supports dot products with communication independent of the input size.

permitted to access the data in the clear, Gordon et al. [35] built
on [49] to design ORAM for secure two-party computation
with amortized sublinear complexity, where the parties jointly
perform the work of the client without learning the access
patterns. Additional results improving the efficiency of ORAM
schemes for secure computation followed [25], [28], [38], [15].

Floram [25] is one of the state-of-the-art ORAM construc-
tions for secure computation, which reported the best binary
search performance among [57], [35], [43], [54], and thus we
empirically compare performance of our constructions to that
of Floram. Bunn et al.’s ORAM [15] has similar properties to
Floram; i.e., it is based on a distributed point function [31], has
the same round, communication, and local work complexities
as Floram, but uses three parties instead of two. While its
performance can be competitive to other ORAM schemes, it
comes without an implementation and it is not possible for us
to do meaningful comparisons of our solutions to that ORAM,
especially because the underlying techniques differ (e.g., it
uses oblivious transfer). We can only say that our constant
round binary search construction is expected to outperform
binary search based on Bunn et al.’s ORAM for small datasets.
Its (linear per access) local work will also be the bottleneck
when m is large and our optimization from section IV-C
reduces it from O(m logm) to O(m) per search, which would
match O(

√
m) communication and O(m) local work of our

best construction. In addition, 3PC ORAM [38] is a tree-
based three-party ORAM based on two-party ORAM [52]. 3PC
ORAM was reported to have a lower bandwidth than Floram
when the dataset size is < 216 and thus is also competitive.
Earlier, Gentry et al. [30] proposed an ORAM optimization
for binary search for their tree-based construction, which
enables binary search to have the asymptotic cost of a single
(recursive) ORAM access. This optimization is also applicable
to 3PC ORAM and therefore we apply the optimization to 3PC
ORAM and include the optimized scheme in the discussion
as well. The above constructions were developed for the
semi-honest adversarial model, and the only ORAM secure
against malicious adversaries we are aware of is by Keller and
Yanai [40] which can be based on Circuit ORAM [52] or Path
ORAM [50]. Although other recent ORAM constructions exist
[36], [44], [19], [7], [16], they are designed for client-server
environments and are not applicable to secure computation.

In addition to the above generic solutions, there have
been efforts to improve efficiency of oblivious computation
by designing oblivious data structures. Toft [51] proposed
an oblivious secure priority queue with an amortized cost
of O(log2 n) per insertion and removal operation. Wang
et al. [54] presented oblivious data structures that include
priority-queues and stacks building upon techniques of [50]
and [30]. Keller and Scholl [39] proposed oblivious data
structures using two ORAM schemes [49], [50] and basic
secure multi-party operations from [23]. The work realized
oblivious arrays, dictionaries, and priority-queues in the multi-
party setting using secret sharing. Shi [48] and Jafargholi
et al. [37] proposed oblivious priority queues that achieve
optimal O(logm) complexity. However, most of these data
structures cannot be directly used for binary search operations
in the context of secure multi-party computation. Among
these oblivious data structures, the closest to our work is the
oblivious dictionary construction for secure computation from
[39]. It is capable of performing record search in a binary-

2



search-like manner with communication complexity of O(m),
while the best of our protocols has sublinear communication
complexity.

Lastly, a recent article by Rao et al. [45] claims to achieve
oblivious binary search based on secret sharing. However, the
protocol in [45] is not data-oblivious, simply invokes O(logm)
comparisons the way a regular binary search would, and has to
disclose the locations used in the comparisons. Furthermore,
there are other significant discrepancies in that work. For
example, the protocol’s complexity is not analyzed in the text,
but is said to be O(m logm) communication in O(1) rounds
in the abstract, which disagrees with the protocol itself.

III. PRELIMINARIES

We consider binary search computation on private data,
which can be a stand-alone operation or a part of larger
computation. The parties carrying out the computation obtain
a data set [a0], . . . , [am−1], where notation [x] means that the
value of x is protected and not known to the participants in the
clear. The items may consist of multiple fields, but there has to
be a value used as the key, which we denote as ai.key for item
ai. The set is sorted in the increasing order by the key field of
the elements, i.e., for each i ai.key < ai+1.key. The search
uses keys ai.key, but all fields associated with the chosen ai
are returned by the search. The dataset and other private inputs,
e.g., the search key, can be contributed by one or more parties
or be the result of preceding secure computation.

Our focus is secure multi-party computation based on
linear secret sharing. That is, when we discuss non-ORAM-
based approaches, our optimizations target, and performance
improvements are measured, using secret sharing techniques,
but the high-level ideas can likely apply to other types of
techniques. With secret sharing, computation is carried out
by n parties and there is a corruption threshold t < n,
indicating that at most t out of n participants can be corrupt
and conspiring (controlled by the same adversary) under which
the techniques remain secure. Then the security expectations
are that no information about any of the private data can
be revealed to the corrupt participants, when the number
of corrupt participants is below t. In particular, we use the
standard simulation-based definition of security, which can be
found, e.g., in [33], and requires that the view of the adversary
controlling t parties during the protocol execution can be
simulated using only the input and output of the corrupt parties
and the simulated view is indistinguishable from an actual run
of the protocol. Note that the functionality we target takes
shares of the input and produces shares of the output and thus
the parties performing the computation contribute no private
input and learn no output. This means that they learn nothing
as a result of protocol execution and the simulation proceeds
without access to any data.

In light of the above, [x] corresponds to a secret-shared
value x. All inputs are provided in the secret-shared form and
the outputs are also produced in the form of private shares.
Also note that while each ai may consist of multiple fields,
we do not explicitly define them except the key field ai.key.
Thus, we use notation [ai] to refer to all fields of ai, but it
should be understood that different fields of each ai might be
secret shared separately. In particular, the computation uses
shares of the keys [ai.key].

With linear secret sharing, a linear combination of shared
values is performed locally, without communication, while
multiplication is an elementary building block that requires a
unit of communication. Because local operations are typically
fast, relevant performance metrics are the total number of in-
teractive operations and the number of rounds (i.e., sequential
interactive operations).

Our constructions expect the availability of secure proto-
cols for certain integer operations in the chosen secret sharing
framework. For example, we rely on multiplication of private
integers [x] and [y], less-than-or-equal comparison of integers
[x] and [y] (denoted LE([x], [y])), a dot product of two arrays of
private integers, and generation of a (possibly pseudo-)random
integer of a predefined bitlength k (denoted RandInt(k)). Then
any type of secret sharing for which these building blocks are
available would be suitable for instantiating our constructions.
Examples include Shamir secret sharing [47], which provides
security in the semi-honest setting with honest majority, and
SPDZ [24], which achieves security in the presence of ma-
licious participants with dishonest majority. Both of these
example carry out computation over a finite field, but our
techniques would also apply to computation over ring Z2k for
some k, e.g., as used in Sharemind [13] and SPDZ2k [20].

For concreteness, in our presentation we assume classical
Shamir secret sharing. This will allow us to report concrete
costs of the protocols which guide our optimizations and argue
security for a fixed adversarial model (namely, in the presence
of semi-honest participants with t < n/2). Computation based
on secret sharing is information-theoretically secure in its
nature, but for performance reasons building blocks can rely
on computational security, therefore achieving computational
indistinguishability.

Some of our constructions are based on oblivious RAM
(ORAM), which comes with certain security guarantees. In
particular, we require that an ORAM initialized over a private
data set of size m allows us to read and write an element at
a private location j without revealing any information about
either the location or the element. We use ORAM for secure
computation, where the computational parties perform the
necessary computation on private data without access to the
data or accessed location in the clear.

In the rest of this work, we use notation “←” to indicate
randomized functionalities (where randomization might only
be due to share randomization and not randomization of the
values to which the shares reconstruct) and use assignment
notation “=” for deterministic computation.

IV. INITIAL CONSTRUCTIONS

In the current discussion, we focus on the read operation,
i.e., we are interested in retrieving element ai with the closest
key to the searched value b. Discussion of the write operation
is deferred to section VII and specified as two variants where
we update non-search fields based on the result of the search or
update the search key itself. Note that the logic of the protocols
for the read operation will apply to non-key field updates to
a large extent, while updating the search key of an element
requires different computation and restructuring of the dataset
representation.

3



Protocol 1 [z]← CompBS(〈[a0], . . . , [am−1]〉, [b])
1: for i = 0, . . . ,m− 1 in parallel do
2: [ci]← LE([b], [ai.key]);
3: end for
4: [d0] = [c0];
5: for i = 1, . . . ,m− 2 in parallel do
6: [di]← [ci] · (1− [ci−1]);
7: end for
8: [dm−1] = 1− [cm−2];
9: [z]←

∑m−1
i=0 [ai] · [di]

10: return [z];

There can be two natural, and known, ways of performing
a binary search operation in the context of secure computation:
(i) comparing the search key to every element of the set
to locate the desired element and (ii) using oblivious RAM
(ORAM). The approach with a linear number of comparisons
is expected to have favorable performance when the data set
size m is small. ORAM, on the other hand, uses sub-linear
(polylogarithmic) in m work to perform a read or write access
at a hidden location and can result in solutions of sub-linear
communication and computation. ORAM, however, usually
requires large setup costs and has larger constants. Thus, it
would be faster for data sets of large size and when the
initialization cost could be amortized across many operations.

This section focuses on the above two ways of performing
an oblivious search on sorted data, which we denote as initial
constructions. While the structure of the computation in each
of them is “common sense”, we design the corresponding pro-
tocols to efficiently implement the functionalities in our setting
using available building blocks. This section also describes
our optimization to ORAM-based binary search, which is a
new contribution of this work. All protocols and constructions
described after this section are likewise new.

A. Linear Number of Comparisons

Recall that we are given a set [a0], . . . , [am−1] sorted in
the increasing order by their keys (we assume no duplicate
key values) and would like to search for value [b]. In a linear-
scan-type solution, we compare b to each ai.key by executing
a protocol for [b] ≤ [ai.key], which results in an array of m
bits. We then search for the position j in the array where the
bits switch from 0s to 1s and return the corresponding item
aj . A possible comparison-based binary search CompBS is
given as Protocol 1, with less or equal comparisons LE being
called on k-bit arguments. In this protocol, after performing
the comparisons on line 2, we compute di as ci∧¬ci−1. Note
that dj = 1 indicates that b > aj−1.key and b ≤ aj .key and
thus aj is the desired element that we want to retrieve. Because
there is only one index j such that dj = 1, we retrieve the
corresponding element aj using computation z =

∨m−1
i=0 (di ∧

ai) =
∑m−1
i=0 ai · di on line 9.

CompBS is written to return a single element of the set
even if the searched value is outside of the key range for all
ais. In particular, if b ≤ a0.key, a0 is returned; if ai−1.key <
b ≤ ai.key for some i, ai is returned; and if b > am−1.key,
am−1 is returned (this means that am−1 is returned if b is
greater than the key of am−2). However, any desired variant
of the algorithm can be easily supported.

Protocol 2 [z]← OramBS(ORAM([a0], . . . , [am−1]), [b])

1: [c]← LE([b], [abm/2c.key]);
2: [d] = bm/2c;
3: [p]← [c] · ([abm/2c]− [am−1]) + [am−1];
4: for i = 0, . . . , log(m)− 1 do
5: [d] = [d] + (1− 2[c]) · bm/2i+2c;
6: [a]← ORAMR([d]);
7: [c]← LE([b], [a.key]);
8: [p]← [c] · ([a]− [p]) + [p];
9: end for

10: return [z] = [p];

Because round complexity is crucial to performance of
secure protocols based on secret sharing, our protocol is
written to run as many interactive operations in parallel as
possible. The overall cost is dominated by m LE comparisons.
Detailed costs of this and other protocols are provided in
Table I assuming classical building blocks. In particular, the
dot product costs 1 interactive operation with communication
independent of the input size (e.g., implemented as a general-
ization of multiplication from [29]), and LE comparisons are
instantiated as in [18], [17] on k-bit inputs ai.key and b, which
cost 4k−2 interactive operations in 4 rounds, one of which can
be precomputed.3 Security analysis of this and other protocols
together with a formal security definition can be found in the
full version [10].

B. ORAM-Based Search

We next discuss binary search that uses ORAM. Unless
noted otherwise, we let the array size be m = 2k−1 for some
integer k, i.e., the set can be represented as a perfect binary
tree. Also, we use notation log(·) to denote dlog2(·)e.

The algorithm for performing an ORAM-based binary
search follows the same structure as that of a conventional
binary search with the difference that the array access to a
known index is replaced with ORAM access to a secret index.
Due to the access pattern hiding properties of ORAM, no
information about the decision (i.e., go left or right) will be
leaked after each round of comparisons. Given an ORAM
set up over sorted dataset [a0], . . . , [am−1], we denote an
ORAM read and write access to a logical address [d] as
ORAMR([d]) and ORAMW([d]), respectively. Note that for
an entry [ai], the index i represents its logical address rather
than its physical address in the ORAM. Furthermore, typical
realizations of ORAM hide the type of operation (read or write)
on each access, but in our context the operation type is public
knowledge. Thus, we reveal the type of the operation in the
ORAM notation (in the case that knowledge of the operation
can permit performance optimizations).

The ORAM-based binary search, OramBS, is given as
Protocol 2. It starts by comparing the search key to the element
at position bm/2c. Because the location of the first access is
fixed and known, we store [abm/2c] outside of ORAM to save
a costly ORAM access. The value of d stores the (private)

3Note that there are newer comparison protocols such as those that use
edaBits for random bit generation [27] of noticeably lower communication,
but higher round complexity. As will be seen later, our final solution uses a
relatively small number of comparison operations and a lower-round version
of the comparison operation is preferred.

4



location which should be read in each round, and after the
total of j comparisons moves bm/2jc positions left or right
depending on the last comparison result c.

In the last iteration, the search key b is compared to the
element at position d to determine whether to return ad or
ad+1. While the element at position d was just retrieved,
retrieving ad+1 requires another ORAM access. We, however,
observe that this extra ORAM read is not needed because ad+1

is guaranteed to be retrieved in an earlier ORAM access. That
is, because we know b > ad based on the last comparison and
b ≤ ad+1 based on correctness of the search, the element at
position d + 1 has to reside on the path from the root of the
binary search tree abm/2c to ad (except when d = m−1 is the
last position). This means that ad+1 has been previously read
and all we need is to maintain a copy of it instead of invoking
another ORAM access. This is what OramBS does: variable
p stores the last element on the path from the root when the
search proceeded left, i.e., the searched value was smaller than
the element on the path (p is conditionally updated on line
8 during each loop iteration). This guarantees that p will be
equal to ad+1 if the comparison in the last round results in
incrementing d. In the event that the path never goes left, p is
initialized to am−1 on line 3.

The computation on lines 3 and 8 uses conditional state-
ments of the type if ([c]) then [p] = [x] else [p] = [y]
expressed as [p] = [c]∧ [x]∨ [¬c]∧ [y] = [c] · [x]+(1− [c]) · [y].
We rewrite them as [p] = [c]([x] − [y]) + [y] to save one
multiplication each. Furthermore, because updating the value
of p can be done together with the next interactive operation,
updating p contributes to the round complexity only in the
last round. Thus, the cost of the ORAM-based binary search
is heavily dominated by logm ORAM accesses and logm LE
comparisons. Security analysis is deferred to [10].

Gentry et al. [30] suggested a formula for performing
greater-than comparisons, x > y, on bit-decomposed k-bit
values written as x = xk−1 . . . x0 and y = yk−1 . . . y0. The
computation is g(xk−1 . . . x0, yk−1 . . . y0) = (xk−1 − yk−1) ·
xk−1 + (xk−1 − yk−1 + 1)g(xk−2 . . . x0, yk−2 . . . y0). Note
that a straightforward implementation of this function would
result in k rounds of computation, which becomes prohibitive
in an application like binary search where comparisons are
executed sequentially. We notice that the formula can be rewrit-
ten in a different form to support constant-round evaluation
as g(x, y) =

∑k−1
i=0 xizi

∏k−1
j=i+1 wj , where zi = xi − yi

and wi = zi + 1. However, note that the original formula
was written for computation in Z2 and does not produce
correct output when the computation is over a larger field.
Furthermore, if we rewrite the formula to be correct, it can no
longer be represented in a compact form suitable for constant-
round evaluation. This means that we do not further consider
it as competitive for our application compared to other options
(such as LE from [18] mentioned above, which also avoids bit
decomposition).

C. ORAM-based Optimizations

Gentry et al. [30] suggested an optimization to tree-based
ORAM constructions that allows ORAM-based binary search
to have asymptotically the same cost as that of a recursive tree-
based ORAM access. Briefly, the optimization eliminates the

need for a recursive position map to translate a logical address
to its physical address in ORAM by adding pointers to each
block that store the locations of the next access in the ORAM.
As a result, the total cost of a binary search is equal to that of a
single recursive ORAM access instead of a logarithmic number
of full ORAM accesses in general tree-based ORAM protocols.
The optimized solution was not empirically evaluated in [30]
and therefore it is difficult to tell how its performance might
compare to other constructions in the literature. We, however,
note that this optimization is expected to apply to other tree-
based ORAM constructions which recursively outsource the
position map. In particular, we determined that one of the
latest efficient ORAMs, 3PC ORAM [38], is tree-based and
uses recursive position maps for each ORAM access. Thus,
the optimization is applicable to 3PC ORAM and we use the
resulting optimized 3PC ORAM in the performance evaluation
of our constructions.

We also note that it is possible to optimize performance of
ORAM-based binary search regardless of the internal structure
of the underlying ORAM construction. The general idea be-
hind our optimization is that we partition the original dataset
a0, . . . , am−1 into logm layers of exponentially increasing
size. The ith layer will correspond to the elements which
can be accessed during the ith step of the binary search
computation. That is, for m of the form 2k − 1, layer 0
contains only a single element abm/2c, layer 1 contains two
elements abm/4c and ab3m/4c, etc., and layer log(m) − 1
contains (m + 1)/2 elements at even positions i. With this
division, we can set up a separate ORAM for each layer,
significantly decreasing the work associated with the first
accesses to ORAM and thus leading to practical improvements
in the performance of binary search.

This optimization can lead to varying impacts on the
asymptotic complexity of the resulting binary search for dif-
ferent ORAM constructions. In particular, for constructions
with polylogarithmic (in dataset size) complexities of ORAM
access, there might be no asymptotic gain in applying this
optimization. For example, if ORAM access costs O(log2N)
for an ORAM set up for N elements, then making logm
accesses of cost O(log2m) and making logm accesses with
exponentially increasing sizes from O(1) to O(m) will both
result in O(log3m) overall cost. On the other hand, ORAM
constructions of larger asymptotic complexities can see pro-
nounced improvements in the asymptotic cost. For example,
we can look at Floram [25], which is one of the fastest
two-party ORAM constructions. Its asymptotic complexity
per access is O(

√
N) communication and O(N) local work.

After applying our optimization, the total work associated
with binary search decreases from O(m logm) using full-size
ORAM for each access to only O(m). We empirically evaluate
the associated performance gain and report it in section VIII.

V. HIERARCHICAL CONSTRUCTIONS

In this section we describe two new approaches to binary
search, both of which are hierarchical and use only a logarith-
mic number of comparisons. The high-level structure is similar
to the one used with ORAM-based search, but we replace
the mechanism for protecting true accesses at each iteration.
Because of the cost of an ORAM access, it can be beneficial to
replace it with alternative computation, including solutions of

5



Protocol 3 [z]← RotBS(〈[a0], . . . , [am−1]〉, [b])

1: let [`(i)] = 〈[abm/2i+1c], [ab3m/2i+1c], . . . , [ab(2i+1−1)m/2i+1c]〉
for i = 1, . . . , log(m)− 1;

2: for i = 1, . . . , log(m)− 1 in parallel do
3: 〈[ˆ̀(i)], [r(i)]〉 ← Rotate([`(i)]);
4: end for
5: [c]← LE([b], [abm/2c.key]);
6: [p]← [c] · ([abm/2c]− [am−1]) + [am−1];
7: [d] = 0;
8: for i = 1, . . . , log(m)− 1 do
9: [d] = 2[d] + [c];

10: [w]← RandInt(κ+ 1);
11: s′ = Open([d] + [r(i)] + 2i[w]);
12: s = s′ mod 2i;
13: [a] = [ˆ̀

(i)
s ];

14: [c]← LE([b], [a.key]);
15: [p]← [c] · ([a] + [p]) + [p];
16: end for
17: return [z] = [p];

higher asymptotic complexity linear in the size of a layer. Our
findings are in line with those in [9] that demonstrated that
linear-time constructions for accessing an element at a private
location outperform ORAM performance in practice unless the
size of the array becomes very large.

In this section, we offer two solutions: The first one is based
on array rotation to hide accessed locations and the second
generates tags for all elements in a layer to mark the true
path. As with the previous, ORAM-based, construction, we
divide the array into layers and process one layer at a time.
The conceptual difference is how true accesses are protected
for each layer.

A. Rotation-based Construction

Our first construction rotates all elements in a layer to hide
the true access pattern and is based on the following high-level
idea: after comparing an element to the search key, we privately
determine whether we are jumping left or right and compute
the location d to read in the next layer. We next rotate the next
layer of size 2i by a random private amount r ∈ [0, 2i−1] and
disclose the protected location (d+r) mod 2i. Once we know
the location, we can retrieve the desired element and perform
the next comparison without knowing what the true index d
was. Note that the rotation operation should be oblivious and
performed once per search for each layer to ensure that no
information about the accessed locations is revealed.

Our algorithm for rotation-based binary search, RotBS, is
given as Protocol 3. As before, we are given an ordered set
[a0], . . . , [am−1], where m is of the form 2k − 1, and divide
it into layers as in the optimized ORAM-based solution, i.e.,
with layer 0 consisting of only one element abm/2c and layer
log(m)− 1 containing all elements at even indices. Let [`(i)]
denote the elements stored at layer i and [`

(i)
j ] denote the

jth element stored at layer i. We first randomly generate a
secret random offset r(i) ∈ [0, 2i) for each layer i > 0 and
rotate all layers by those offsets in parallel to minimize round
complexity (lines 2–4). This is illustrated in Figure 1. The
rotation algorithm Rotate, which also chooses the amount of
rotation, is described afterwards.

`(2)

`(0)

`(1) Rotate by [r(1)] = [1]

Rotate by [r(2)] = [3]

Fig. 1: Illustration of the rotation-based construction.

After rotating all layers, we proceed with comparisons and
first retrieve the (only) element from the top layer [`(0)] and
compare it with the target value b (line 5). We continue by
jumping left or right as before and privately computing the
index d to access next using local computation (line 9). Note
that unlike OramBS that computed this index d as an index
in the entire array, this time we compute it as a position in a
layer. This means that we start from two possible positions in
layer 1 and update d in the next layer as 2[d] + [c], where [c]
is the result of the current comparison.

To safely disclose the desired (protected) position in the
rotated array, we must open (d+r(i)) mod 2i instead of simply
d + r(i). While the latter is a location operation, computing
the remainder modulo a power of 2 in this framework is a
rather expensive operation, with the same number of rounds as
in comparisons and a number of interactive operations linear
in the size of the modulus, i.e., in i (see Mod2m in [18]).
Fortunately, we were able to get around this cost and safely
disclose (d+ r(i)) mod 2i using only local computation (prior
to the opening). In particular, we mask the (i + 1)st bit of
the sum d + r(i), i.e., the carry bit, by a randomly chosen
integer, which allows us to safely open the result. To achieve
this, we rely on statistical secrecy and choose an integer of
κ bits longer than the value we are protecting, where κ is
a statistical security parameter (line 10). The corresponding
protocol is called RandInt and takes an argument that specifies
the bitlength of an integer to generate. It can be realized non-
interactively as described in [18]. The reader may notice that
this approach requires that the field can represent integers κ
bits longer than the bitlength of the key values. This, however,
is already required by the LE protocol.

Because each layer has been rotated by a one-time ran-
dom offset, we can safely proceed by revealing the value of
(d+ r(i)) mod 2i in each layer, retrieving that element in the
rotated layer, and performing the comparison until we reach
the last layer. In addition to maintaining the current element
used in the comparison, we also keep track of the last retrieved
element p which was ≤ the target b, in the same way as in
OramBS. It will be retrieved in the last round if the returned
element should not be the one used in the last comparison. As
before, the default value of p is am−1.

The cost of this protocol consists of log(m) comparisons
and other cheaper operations (i.e., multiplications and open-
ings) and is dominated by the cost of rotating all layers.
Because some interactive operations could be combined and
executed in the same round, the overall round complexity is
that of rotation (see below) plus 4 logm. See [10] for security
analysis.

We next describe our Rotate protocol. It takes as input

6



Protocol 4 (〈[â0], . . . , [â2u−1]〉, [r]) ← Rotate([a0], . . .,
[a2u−1])

1: for i = 0, . . . , u− 1 in parallel do
2: [ri]← RandBit();
3: end for
4: let [a(0)j ] = [aj ] for j ∈ [0, 2u − 1];
5: for i = 0, . . . , u− 1 do
6: for j = 0, . . . , 2u − 1 in parallel do
7: [a

(i+1)
j ]← [a

(i)
j ]− ([a

(i)
j ]− [a

(i)
(j−2i) mod 2u ]) · [ri];

8: end for
9: end for

10: [r] =
∑u−1
i=0 2i[ri];

11: let [âj ] = [a
(u)
j ] for j ∈ [0, 2u − 1];

12: return (〈[â0], . . . , [â2u−1]〉, [r]);

an array [a0], . . . , [a2u−1] of size 2u, generates a random u-
bit integer r, circularly rotates the elements of the array by r
positions, and outputs r together with the rotated array. Our
solution is conceptually simple and is given as Protocol 4.
As the first step, we generate u random bits using protocol
RandBit (line 2) and use them to assemble u-bit offset r (line
10). RandBit can be implemented using 1 interactive operation
[18]. Despite having a higher cost than RandInt(u), generating
r from random bits is important for two reasons: (i) we use
the bits in the computation that follows and (ii) it allows us to
generate a value in the exact range [0, 2u − 1], while RandInt
generates values slightly larger than of the specified bitlength.

The next step is to rotate the array elements by the
generated offset, which we do in u iterations: in iteration i,
the elements are shifted by 2i · ri positions right, i.e., we
conditionally perform the shift if the ith bit of r is set. After
u iterations, the array elements are shifted by the value of
r, as desired. In more detail, on line 7 we either keep the
current element aj at position j or replace it with the element
at position aj−2i mod 2u based on the value of ri.

When u = log(m), Rotate requires m logm interactive
operations in log(m)+1 rounds. Recall that we use it in RotBS
and execute rotations for all layers in parallel in the beginning.
However, rotation of only the smallest layer 1 needs to finish
prior to its use in the first loop iteration on line 13. This means
layer rotations do not increase the round complexity of RotBS.
As before, we summarize performance of our binary search
constructions in Table I.

On using ring Z2k . Before we conclude, we comment on
executing our protocols over ring Z2k instead of a finite field.
All protocols described so far except RotBS work unmodified
when instantiated with building blocks over ring Z2k . The
difference is that RotBS protects a value, opens it, and uses i
least significant bits in further computation (i.e., lines 10–12 of
RotBS). We note that this operation can become even easier
over ring Z2k because all values are automatically reduced
modulo a power of 2. In particular, instead of prepending a
large random value to statistically hide the overflow from i
bits, we can directly open the sum [r(i)] + [d] and use the
result as s, as long as all shares are reduced modulo 2i prior
to the opening.

q
(2)
2 = q

(1)
1 ∧ c(1)

q(0) = 1

q
(1)
0 = q(0) ∧ c(0) q

(1)
1 = q(0) ∧ ¬c(0)

q
(2)
0 = q

(1)
0 ∧ c(1) q

(2)
1 = q

(1)
0 ∧ ¬c(1) q

(2)
3 = q

(1)
1 ∧ ¬c(1)

Fig. 2: Illustration of the tag-based construction.

Protocol 5 [z]← TagBS(〈[a0], . . . , [am−1]〉, [b])

1: let [`(i)] = 〈[abm/2i+1c−1], [ab3m/2i+1c−1], . . . ,
[ab(2i+1−1)m/2i+1c−1]〉 for i = 1, . . . , log(m)− 1;

2: [q(0)] = 〈1〉;
3: [c]← LE([b], [abm/2c−1.key]);
4: [p] = [c] · ([abm/2c−1]− [am−1]) + [am−1];
5: for i = 1, . . . , log(m)− 1 do
6: for j = 0, . . . , 2i − 1 in parallel do
7: if j mod 2 = 0 then
8: [q

(i)
j ] = [q

(i−1)
bj/2c ] · [c];

9: else
10: [q

(i)
j ] = [q

(i−1)
bj/2c ] · (1− [c]);

11: end if
12: end for
13: [a] =

∑2i−1
j=0 [q

(i)
j ] · [`(i)j ];

14: [c]← LE([b], [a.key]);
15: [p] = [c] · ([a]− [p]) + [p];
16: end for
17: return [z] = [p];

B. Tag-based Construction

Our second hierarchical solution utilizes a different mecha-
nism for retrieving an element at a private location from each
layer. While a generic protocol for reading an element at a
private location could be used (e.g., multiplexor-based or as
described in [9]), in the context of binary search we notice
that the location read at layer i + 1 is highly correlated to
the location previously read at layer i. This observation allows
us to generate binary tags for each layer using tags of the
layer before, where in each layer the tag of a single position
is set to 1 and the tags at all other positions are set to 0. This
representation consequently permits us to retrieve the element
at the marked position using efficient dot product computation.

Our tag-based construction, TagBS, is given as Protocol 5.
As before, let [`(i)] denote the elements at layer i and let us
use similar notation [q(i)] to denote binary tags for layer i.

Initially, layer 0 has a single element and its tag is set to 1.
The next layer has two elements, one of which will be set to
1 based on the result of the first comparison and the other will
be set to 0. We continue computing tags for the current layer
from the tags of the previous layer as follows: if the “parent”
tag at position j is 0, both “children” tags at positions 2j and
2j+1 will be 0. If the “parent” tag is 1, one of the “children”
tags will be 0 and one will be 1 based on the result of the
current comparison c. This process is illustrated in Figure 2.
Then to retrieve the marked element at the current layer, we
compute the dot product of the elements and their tags in the
current layer (line 13). Also, as before, we maintain another
element in variable p, which will be used at the end if the
result of the last comparison is false.

7



The overhead of this protocol is given in Table I. Note that
TagBS uses fewer interactive operations compared to rotation-
based RotBS, but the latter has fewer rounds. Thus, we expect
that TagBS will be a faster choice in typical circumstances,
but RotBS can be beneficial for high-latency connections.
In addition, comparison-based CompBS has constant round
complexity, but is expected to be slower for larger datasets
due to its communication volume.

VI. HYBRID CONSTRUCTIONS

In this section we discuss how combining multiple con-
structions in a single solution can be used to further improve
performance of binary search. Section VI-A discusses a solu-
tion in which portions of the binary search tree are processed
using different algorithms, and section VI-B presents a solution
where previously developed constructions are applied only to a
subset of the tree nodes resulting in sublinear communication
cost. In particular, while all of our constructions including the
one in section VI-A require O(m) communication, the solution
of section VI-B lowers communication to O(

√
m) by relying

on an efficient dot product protocol.

A. Composition of Layers

The binary search constructions described so far have their
own advantages. For example, comparison-based CompBS has
constant round complexity, which is the lowest across all
protocols. Its communication cost, however, is rather high
and is linear in m · k. These properties make it a good
choice for datasets of small size, but performance is expected
to deteriorate as the dataset size grows. In contrast, tag-
based TagBS has the lowest communication complexity as
the dataset size m increases, but the largest round complexity.
Because it invokes only a logarithmic number of comparisons,
it is expected to outperform other constructions for larger
values of m, but perform relatively worse for very small values
of m. In particular, the first three rounds of comparisons in
that construction process only 7 elements, but use 15 rounds.
This can be contrasted with the total of 5 rounds in CompBS.
Coupled with the fact that communication latency is the major
overhead when the dataset is small, TagBS is sub-optimal
during processing of the top layers.

The hybrid construction we propose here combines flat
and hierarchical structures to take advantage of the benefits
of both of them. More precisely, we replace the top layers
of the hierarchy with a flat structure and design a transition
to feed the results of evaluating the flat structure to the next
layer in the hierarchy. Although the idea is straightforward, its
realization requires careful design because the constructions
have different interfaces and rely on different intermediate
results. We illustrate a transition mechanism on the example
of combining CompBS and TagBS.

Recall that CompBS computes an array of bits
[c0], . . . , [cm−1], where the bits in the beginning of the
array are 0s and switch to 1s at the location of the searched
element [b]. The array is consequently used to compute
another bit array [d0], . . . , [dm−1], in which all elements are
0 except for the location of the switch, and the non-zero
bit is used to retrieve the desired element of the array
[a0], . . . , [am−1]. TagBS, on the other hand, proceeds in a

hierarchical manner and prior to moving to layer i expects
state [c], [p] that indicates the position of the desired element
in the already processed layers and computed tags [q

(i−1)
j ]

for layer i − 1. Our transition computes the value of [p] and
tags [q

(i)
j ] from the bit arrays computed by CompBS and no

explicit [c], as maintained by TagBS, is used in the process.

Suppose we would like to process the first ı̃ layers, or
equivalently m̃ = 2ı̃ elements, using the flat structure. We
execute the main portion of CompBS on elements associated
with layers 0 through ı̃−1, use transition to generate [p] and the
tags at layer ı̃, and continue with the remaining computation as
in TagBS. Figure 3 illustrates the process for ı̃ = 3. Note that
the very last element of the original dataset, am−1, is appended
to the elements that CompBS processes and is treated as an
element of layer 0.

We determined that the relationship between c0, . . . , cm̃−1
computed by CompBS and q

(ı̃)
0 , . . . , q

(ı̃)
m̃−1 needed in TagBS

is rather simple. In particular, we have:

q
(ı̃)
j =

{
c0 if j = 0
cj−1 ⊕ cj if 0 < j ≤ m̃− 1

(1)

Somewhat surprisingly, each q(ı̃)j is computed in the same way,
while we expect differences in the computation of even and
odd elements because only half of the values are associated
with layer ı̃−1. XOR of each [cj−1] and [cj ] is easily computed
as [cj−1] + [cj ] − 2[cj ] · [cj−1]. This is equivalent to 2[dj ] −
[cj ] + [cj−1], where the [dj ]s are as computed by CompBS.
Because availability of [dj ]s makes the computation of [q(ı̃)j ]s
local, a notable implication for us is that combining the two
constructions reduces the overall cost below that of running
CombBS and TagBS on the respective portions of the data.

It is also necessary to compute the appropriate value of
[p] during the transition. This computation comes first (i.e.,
to finish processing layer ı̃ − 1), and [p] is computed in the
same way as [z] in CompBS, i.e., the first element which was
determined to be ≤ b so far will be used as the next larger
element if the remaining search returns that b is greater than
all other elements. For completeness, we present this hybrid
construction, called LayHBS, in the appendix.

In practice, the best choice of ı̃ depends on the setup. When
the network latency between the computational parties is small,
the round complexity may have less impact on performance
and therefore a lower ı̃ is preferred. In contrast, if the network
latency is high, a larger ı̃ reduces the round complexity and
therefore could be a better choice. We provide additional
comments in section VIII. The exact cost is listed in Table I
and this time is a function of ı̃.

B. Composition of Subtrees

All solutions presented so far, except OramBS, have com-
munication linear in the size of the dataset m. In this section
we show how performance of previously presented construc-
tions can be further improved to O(

√
m) communication using

only standard building blocks.

The high-level idea behind this solution is as follows.
Recall that, on input m elements, CompBS works by gen-
erating a bit array [d0], . . . , [dm−1] with a single element set

8



TABLE I: Performance of binary search using field-based building blocks in the semi-honest model with honest majority.

Protocol Rounds Interactive operations
Read Write Read Write

Comparison-based CompBS 5 +0 (4k − 1)m− 1 +(4k +m− 3)
ORAM-based OramBS (logm)(3 + ORAMRead) +ORAMWrite N/A N/A
Rotation-based RotBS 4 logm +1 m log(m) + 4k log(m)− 1 +(log2m− logm)/2
Tag-based TagBS 5 logm +1 4k log(m) +m− 2 +2m− logm

Hybrid LayHBS, ı̃ < log(m)− 1 5(log(m)− ı̃) + 4 +1 (4k − 3)2ı̃ +m+ 2 +2m− log(m) + ı̃
Hybrid SubHBS, α · β = m MBS(α) + BS(β) + 1 varies MBS(α) + BS(β) + β varies

· · ·

[am/4][a3m/8] [am/2] [am−1][a5m/8][a3m/4][a7m/8]

Protocol 1 computation
[am/2] [am−1]

Hierarchical structure

[a5m/8]

[a3m/4][am/4]

Protocol 5 computation

Transition

`(0)

`(1)

`(2) [q7] = [c7]⊕ [c6][q0] = [c0]q(3):

[c0] [c1] [c7][c4] [c5] [c6][c] :

Hybrid structure

[a7m/8][a3m/8][am/8]

[c2] [c3]

[z]

· · · [qi] = [ci]⊕ [ci−1]

[am/8]

Fig. 3: Illustration of the layer-based hybrid construction.

sα−1

a0 am−1

s0

Fig. 4: Illustration of the subtree-based hybrid construction.
Shaded array elements are used to form the top tree of size α.
Subtrees s0 through sα−1 have size β.

to 1 and that array is used to retrieve the searched element
using a dot product (which costs 1 interactive operation). Now
suppose that instead of retrieving a single element at the end
of the computation, we use the computed bits to retrieve a
desired subset of the elements, or a subtree if the elements
are organized in a hierarchy. The high-level structure of this
approach is illustrated in Figure 4.

We organize the dataset in a hierarchy and run a modified
binary search (which produces a bit array) on the top portion
of the tree of size α. We consequently use dot products
to obliviously localize the search to the relevant subtree of
size β = m/α, call binary search on that tree, and use its
output as the result of the search. In other words, the top-level
search allows us to determine in what portion of the dataset
the searched element falls and the second low-level search
determines the exact position and returns the desired element.

The solution, SubHBS, is formalized as Protocol 6. We use
a modified version of a binary search protocol that produces
a unity bit array, denoted as MBS. The second call to binary
search, on the other hand, uses the conventional interface. We
note that communication savings are possible because of the
use of dot product protocols, which on input of two vectors

Protocol 6 [z]← SubHBS(〈[a0], . . . , [am−1]〉, [b], α)
1: let β = m/α;
2: let [s(i)] = 〈[ai·β ], [ai·β+1], . . . , [ai·β+β−1]〉 for i = 0, . . .,
α− 1;

3: 〈[d0], . . . , [dα−1]〉 ← MBS(〈[s(0)β−1], [s
(1)
β−1], . . . , [s

(α−1)
β−1 ]〉, [b]);

4: for i = 0, . . . , β − 1 in parallel do
5: [ui]←

∑α−1
j=0 [s

(j)
i ] · [dj ];

6: end for
7: [z]← BS(〈[u0], . . . , [uβ−1]〉, [b]);
8: return [z];

of arbitrary size require only one interactive operation. This
means that when we set α = β = O(

√
m), communication

complexity of this solution reduces from O(m) to O(
√
m). We

note that local computation remains O(m), but this component
of interactive protocols is much easier to speed up than
communication, e.g., by employing more powerful hardware
and/or using multi-threading.

It should be clear that the call to binary search BS on
line 7 of SubHBS can be instantiated with any binary search
construction described so far. This includes hybrid LayHBS
and even SubHBS itself, which in that case would be called
recursively. Similarly, the first call to binary search on line 3
can be instantiated with any binary search protocol modified
to produce a bit array instead of a single element. So far
we only showed that CompBS can be naturally used for this
purpose, but below we also show how to modify TagBS. This
would imply that LayHBS could additionally be used for that
purpose. Lastly, if we replace the call to BS on line 7 of
SubHBS with a call to MBS, SubHBS itself can be invoked
on line 3. Combined with the ability to choose parameter α
(and consequently β), these options provide a rather significant
performance optimization space in practice.

What remains is to discuss our solution for modifying
TagBS to implement the interface for MBS. Recall that TagBS

9



Protocol 7 〈[d0], . . . , [dm−1]〉 ← TagMBS(〈[a0], . . . ,
[am−1]〉, [b])

1: let [`(i)] = 〈[abm/2i+1c], [ab3m/2i+1c], . . . ,
[ab(2i+1−1)m/2i+1c]〉 for i = 0, . . . , log(m)− 1;

2: [q
(0)
0 ] = 1;

3: for i = 0, . . . , log(m)− 1 do
4: [q(i)] = 〈[q(i)0 ], . . . , [q

(i)
2i−1]〉;

5: [a] =
∑2i−1
j=0 [q

(i)
j ] · [`(i)j ];

6: [c]← LE([b], [a.key]);
7: for j = 0, . . . , 2i − 1 in parallel do
8: if j mod 2 = 0 then
9: [q

(i+1)
j ] = [q

(i)
bj/2c] · [c];

10: else
11: [q

(i+1)
j ] = [q

(i)
bj/2c] · (1− [c]);

12: end if
13: end for
14: end for
15: return 〈[d0], . . . , [dm−1]〉 = 〈[q(logm)

0 ], . . . , [q
(logm)
m−1 ]〉;

generates tags [q(i)] for each layer i in the hierarchy and main-
tains variable [p]. The tags have a useful structure, which each
tag being a bit and having only a single tag set to 1 per layer.
However, to generate a desired bit array [d0], . . . , [dm−1], we
need to have a single bit set to 1 out of the entire dataset and
not per layer. Instead of trying to combine different layers into
a single array, out solution is to continue with the structure of
TagBS and generate one more layer [q(logm)], which this time
will have a tag for each element of the original dataset and
only a single element will be set to 1. We also remove the
code for creating and maintaining the value of [p] because it
is no longer used in the protocol. The final solution TagMBS
is formalized as Protocol 7. As noted before, this variant will
allow for a variety of solutions to be used with SubHBS.

Performance of hierarchical SubHBS is shown in Table I.
Because the algorithm makes calls to binary search algorithms
on datasets of smaller sizes, we use notation BS(x) and
MBS(x) to denote the cost of binary search and modified
binary search, respectively, invoked on input of size x. The cost
of the write variant will depend on the binary search algorithms
that SubHBS calls.

VII. UPDATE OPERATIONS

We next explore solutions for a binary search followed by
an update operation. The first variant updates non-key fields of
the element located by the search and does not require high-
level changes to the logic of read constructions. The second
variant is for updating the key itself, which requires changes
to the logic due to the need to re-position the affected element
within the dataset to maintain the sorted order.

A. Updating Non-Key Fields

In this write or update variant, we determine the target
location by a binary search and then update the corresponding
non-key fields. That is, the write operation updates one element
at a private location, while the order of the elements remain
unchanged. The high-level logic behind the modification is that
we produce an m-bit array with zeros in all positions except the
one which was located by the binary search, the bit of which is

set to 1. Given this array, we can easily update all elements of
the data set in such a way that only one element is updated with
the desired value, while all other elements remains unchanged.
Note that it is necessary to touch (re-randomize) all elements
of the original dataset to ensure that the location of the selected
element is not revealed.

To this extent, we revisit our binary search constructions
and describe what changes are necessary to support this
operation. We use v to denote the value with which the located
element is to be updated with the understanding that the key
field is not affected, i.e., we somewhat abuse the notation to
update an element with v, but only non-key fields are updated.

Recall CompBS, where we perform a linear number of
comparisons, update the resulting bit array to ensure only one
bit is set to 1, and retrieve the desired element using the
dot-product operation. The structure of that algorithm makes
it easy to support write operations, where we only need to
replace the retrieval step with an update step. In particular,
the di values form the unity array that we need. Then after
the computation of the dis, we update the non-key fields of
each ai as [di][v] + (1 − [di])[ai] = [ai] − ([ai] − [v])[di].
A complete specification of this variant, CompBSW, is given
in the appendix as Protocol 9 due to its close resemblance
to CompBS. The extra work associated with this and other
protocols compared to the read versions is given in Table I.

Consider OramBS next. Recall that it makes logm ORAM
(read) accesses and the element of interest is guaranteed to
be on the selected path. The original OramBS avoids an
extra ORAM access at the end by storing additional element
p from the path. However, to perform the update, we still
need to protect the location of the update and make an
additional ORAM (write) access. Detailed OramBSW is given
as Protocol 10 in the appendix.

RotBS was a hierarchical approach with layer rotations by
one-time random offsets to protect information about accessed
elements. In that construction, we retrieved one element from
each rotated layer, computed the element corresponding to the
result of the search, and returned to the original representation
of the data set. Now, as we would like to update an element of
the set, performing the update on rotated layers and returning
to the original layers afterwards would nullify the update. For
that reason, we modify the solution to return the rotated layers,
which become the starting point for the next invocation of
binary search. This means that we (privately) maintain the
current amount of rotation for each layer and add a new
offset to it during each additional rotation. That is, after each
binary search, the amount of rotation associated with each
layer corresponds to the cumulative amount of rotations over
all prior searches.

An issue arises in connection to storing cumulative offsets
due to the need to keep each cumulative sum below the size of
the layer after each addition (which corresponds to reduction
modulo 2i). Recall that in RotBS we avoided reducing the sum
d + r(i) modulo 2i and instead protected the carry bit prior
to the opening the sum. This time, however, the cumulative
value of r(i) increases after each binary search and thus we
would need to protect more and more bits during the opening.
Because the bitlength of the value being protected affects the
size of the field over which we compute, it is not practical to

10



let that value go unbounded. For that reason, we periodically
reduce the cumulative sum modulo 2i and denote the period by
δ. RotBSW and the updated rotation that reflect these changes
are listed as Protocols 11 and 12 in the appendix. We also
detail the mechanism for periodic reduction of the sum.

What remains to discuss in the context of rotation-based
algorithm is how to update the result of the search. Recall
that the protocol discloses logm masked locations, one of
which must be our target. This means that it is sufficient for
us to update those logm locations. Thus, if we find a way
to write the new data to the target location without changing
the data written to the remaining log(m) − 1 locations, data-
obliviousness will be maintained. Fortunately, the comparison
results leave a hint that the last retrieved element ≤ b must
be the one we want. In other words, we only need to find the
last [c(i)] set to 1 and reset all other comparison results to 0.
We do this iteratively, which does not increase the number of
rounds compared to RotBS; see the appendix for details.

The last construction we discuss is TagBS modified for
writing. Given that TagMBS already produces a bit array, it be-
comes straightforward to realize its write variant. In particular,
because TagMBS produces unity bit array [d0], . . . , [dm−1],
all that is necessary is to append lines 9–11 of CompBSW to
the end of TagMBS to obtain TagBSW. The cost difference
compared to the original TagBS is given in Table I.

B. Updating the Key Field

Now, updating the key of an element returned by the
search impacts the structure of the solution. This is because
a change in an element’s key can lead to relocation of the
element within the sorted array. This means that we need to
locate both the target element’s current location and the new
location and obliviously reposition all elements between these
two locations. We sketch a possible solution in this section.

Given two keys, i.e., the original key and the new key, we
need to execute two instances of binary search with these two
keys to determine the original and new locations of the target
element. Because we represent the dataset as a sorted array,
obliviously moving the in-between elements requires O(m)
work. We describe a simple solution which expects that the
two binary search instances produce bit arrays.

Suppose that the two searches determine (private) loca-
tions x and y, respectively. Also suppose that the results of
each search are encoded as two bit arrays [c0], . . . , [cm−1]
and [d0], . . . , [dm−1], where the latter contains 0s with the
exception of the target location and the former is filled with
0s prior to the target location and with 1s starting from the
target location. These bit arrays are identical to what CompBS
generates during the computation, but the latter array is also
produced by TagMBS and hybrid constructions. Note that
given one of the arrays, it is straightforward to produce the
other. In what follows, we use superscript (1) and (2) to denote
the results of the first and second searches, respectively.

The logic behind our solution is that any element with
index smaller than min(x, y) and greater than max(x, y)
remains unchanged. If x > y, each element in the range
[y+1, x] should be overwritten with its left neighbor and new
data [v] should be written in location y. Otherwise, if x < y,

each element in the range [x, y−1] should be overwritten with
its right neighbor and the new data [v] is written in location y.
(When x = y, either case applies and there are no elements to
shift.) Thus, for any given element, there are four possibilities:
it remains unchanged, it moves left, right, or it gets replaced
with the new value.

Because the computation is different depending on whether
x or y is greater, as the first step of the computation, we
determine the result of the comparison [w] ← LE([x], [y]).
Note that x and y are not provided to us in the above form,
but given the information we possess, it is easy to compute
them as [x] =

∑m−1
i=0 i · [d(1)i ] and [y] =

∑m−1
i=0 i · [d(2)i ], which

is local computation.

Having computed the value of [w], we can proceed with
updating the elements themselves. We start by computing a
new array [c0], . . . , [cm−1] with the elements computed as
[ci] = [c

(1)
i ]⊕ [c

(2)
i ]. Namely, we execute [ci] = [c

(1)
i ]+[c

(2)
i ]−

2[c
(1)
i ] · [c(2)i ] for each i ∈ [0,m − 1] in parallel. This results

in the elements between x and y being set to 1 while erasing
the remaining elements, and the in-between elements are what
we would like to move.

The next point to notice is that when x > y, the positions
of the non-zero ci values correspond exactly to the positions
of the values we want to move, i.e., they range from indices
y through x− 1. However, when x ≤ y, the positions of non-
zero ci elements range from x to y − 1, while we need to
move elements with indices x+ 1 through y. For that reason,
as the next step, we use the value of [w] to update the [ci]s in
parallel as [ci] = [ci]+[w] · ([d(1)i ]− [d

(2)
i ]). Now we are ready

to proceed with updating the dataset and update each element
in parallel as [âi] = [ci] · ([w] · [ai+1] + (1 − [w]) · [ai−1]) +
(1− [ci]) · ([d(2)i ] · [v] + (1− [d

(2)
i ]) · [ai]). That is, the first of

the two terms, conditioned on ci = 1, corresponds to moving
the in-between elements either left or right depending on w.
The second term, conditioned on ci = 0, corresponds to either
updating the target element with the new value v or keeping
the element unchanged depending on d

(2)
i , i.e., whether it is

the target location. The formula is written for readability and
can be expressed differently to lower the number of interactive
operations (multiplications). This concludes our description.

VIII. PERFORMANCE EVALUATION

A. Cost in Different Settings

Table I shows costs of our constructions when instantiated
with Shamir secret sharing in the semi-honest setting. If one
would like to utilize a different underlying framework, for
example, 3-party replicated secret sharing over ring Z2k , the
costs of the building blocks can change which will have an
impact on the total cost. Using a different realization of LE
would likely most significantly impact CompBS, but we expect
that relative performance of different construction will remain
similar.

If we realize the constructions in the malicious adversarial
setting, many frameworks do not support dot product of
communication independent of the input size. Note that all
of CompBS, RotBS, TagBS, and the hybrid constructions
utilize dot product operations and thus their communication

11



25 210 215 220 225 230
10−3

10−1

101

Array size

R
un

tim
e

(s
ec

)

25 210 215 220 225 230
10−1

100

101

102

Array size

R
un

tim
e

(s
ec

)

Floram [25]
Optimized Floram

3PCORAM [38]+[30]
CompBS

TagBS

LayHBS

SubHBS

Fig. 5: Performance of ring-based binary search in the semi-honest model on LAN (left) and WAN (right).

will be impacted. The amount of impact varies based on the
relationship of m to the original communication cost. For
example, this is a relatively small increase for CompBS, close
to doubling for TagBS, and significant increase for SubHBS.
The order of the protocols in terms of their communication
volumes, however, does not change.

B. Evaluation Setup

We implemented several of our algorithms and carried out
experiments on both LAN and WAN. For LAN experiments,
we used three machines with 2.1GHz processors connected via
1Gbps Ethernet (934Mbps throughput) with a one-way latency
of 0.13ms. Our WAN experiments used local machines and one
remote machine with a 2.4GHz processor. The link between the
remote and local machines had throughput of 76–85Mbps and
a one-way latency of 21ms. While the machine configurations
are slightly different, we examine the times to ensure that the
differences do not introduce inconsistencies in the experiments.
That is, the computation time is determined by the slower
machines, and the introduced slowdown on WAN is due to the
higher latency and lower bandwidth in the WAN experiments.
All experiments used a single thread and the dataset elements
had a single field (the key) represented as a 32-bit integer.

C. Performance in the Semi-Honest Model

Our implementation in the semi-honest model is in the
honest majority setting (i.e., t < n/2). Because ring-based
computation is faster than computation over a field, we use
replicated secret sharing over Z232 with three parties. Imple-
mentation of comparisons is adapted from field-based LT [18],
[17] as described in [22], [8]. The difference with field-based
performance as well as additional performance numbers are
available in the full version [10].

We compare performance of our constructions to the state-
of-the-art Floram [25] and 3PC ORAM [38] after optimizing
them. In particular, we run Floram’s binary search imple-
mentation from [2] and also execute an optimized version
using the results of section IV-C. We also apply Gentry et
al.’s optimization [30] to 3PC ORAM which makes the cost
of binary search asymptotically equal to a single ORAM
access and run it using the implementation from [1]. Note
that 3PC ORAM uses custom techniques not compatible with
standard secure computation building blocks. For that reason

we approximate performance of optimized 3PC ORAM binary
search using comparisons and multiplications as implemented
in this work. The exact times might be higher due to the need
to convert between different representations. Furthermore, all
ORAM schemes come with significant initialization costs not
captured in our experiments.

The results of our experiments on both LAN and WAN
are given in Figure 5. First note that optimized Floram binary
search is on par with the original Floram binary search for
small datasets and the difference starts to show when m
becomes larger than 210. Also, the optimization applied to 3PC
ORAM removes recursion and makes the construction faster.

Our CompBS outperforms all other protocols when the
dataset size is small because the round complexity is the
bottleneck with small m. With larger m, communication is
dominant and CompBS is not competitive, as expected, but
maintains its advantage longer on WAN because of the latency.
TagBS has lower communication and shows a better runtime
than optimized Floram for sizes up to 222 on LAN and larger
on WAN, but its linear communication becomes the bottleneck
for large sizes.

Hybrid LayHBS can improve performance of TagBS by
only a constant. The maximum improvement is achieved when
ı̃ = 6 on LAN and ı̃ = 12 on WAN, where the runtime gap
between CompBS and TagBS is the largest. Nevertheless, the
difference in performance of TagBS and LayHBS diminishes
as the size increases.

Our SubHBS shows significant advantage over all other
protocols. It outperforms all other options for sizes is up to 227

on LAN and 211–230 on WAN due to its low communication.
As the size increases, its curve becomes steep indicating that
local computation is the bottleneck. In particular, the dot-
product computation of O(m) local work consumes 94%
(45%) of the total time with m = 225 on LAN (resp.,
WAN). This means that the performance could be significantly
improved for large sizes via multi-threading. We also would
like to note that while it appears that SubHBS’s curve is
significantly steeper than that of (optimized) Floram binary
search, this will not be the case if we keep increasing m.
Both SubHBS and optimized Floram search require O(m)
local computation, but computation becomes the bottleneck for
SubHBS at smaller sizes because of its superior performance
for medium values of m. This is consistent with findings in

12



25 210 215 220 225
100

102

104

Array size

C
om

m
un

ic
at

io
n

(K
B

)

25 210 215 220 225
100

102

104

Array size

C
om

m
un

ic
at

io
n

(K
B

)

Floram [25]
Optimized Floram

3PCORAM [38]+[30]
CompBS

TagBS

LayHBS

SubHBS

Fig. 6: Communication costs (per party) of binary search in the semi-honest model on LAN (left) and WAN (right).

[25] which show that Floram’s curve becomes steep close to
230 in a setting with 500Mbps bandwidth.

Recall that implementing SubHBS involves several opti-
mization choices including the algorithms for the sub-searches
and the values for parameter α. While using α = O(

√
m)

gives us theoretically the lowest communication, the network
environment and the speed of sub-protocols also affect this
decision. For each experiment, we vary the value of α and
select the best performing protocols for the sub-searches to
determine the best configuration. Specifically, for LAN, we
used α = 26 and modified CompBS for the first sub-search
for m from 210 to 214 and α = 27 and TagMBS for larger
m; the second sub-search used the fastest protocol for the
corresponding β. On WAN, we set α ≈

√
m for m < 216 and

use α = 28 for m between 216 to 219. For larger m, we let
β = 213 or 214 and use SubHBS with α = 28 recursively for
the second sub-search. TagBS and TagMBS were not helpful
in WAN experiments because CompBS is faster for small to
medium sizes and SubHBS that combines CompBS variants
becomes a better choice. We expect the best configurations to
vary based on computation and communication resources.

The above choices give us that on LAN each party sends
22.9KB when m = 215, 65KB when m = 220, and 2.12MB
when m = 225 per SubHBS. On WAN, communication
becomes 107.5KB, 116.5KB, and 554KB for the same sizes.
The differences are because we opt for CompBS with fewer
rounds on WAN and also use α closer to

√
m when m is

large. As is clear from the above, our protocol configurations
were optimized for runtime and do not always use minimally
achievable communication. Compared to ORAM solutions,
SubHBS uses less communication than Floram binary search,
both asymptotically and in practice. For example, for m = 220,
Floram search communicates 10MB per party. Communication
of optimized 3PCORAM (of polylogarithmic cost) is 543KB
for m = 220, but predictably will get closer to that of
SubHBS and outperform it when the size grows to very large.
Memory footprint of our constructions is proportional to the
computation size (i.e., linear in m for most protocols).

Figure 6 illustrates communication costs of our and
ORAM-based binary search protocols in the semi-honest set-
ting. The communication costs of the ORAM-based solutions
and our CompBS and TagBS are the same on both LAN and
WAN, while communication of hybrid LayHBS and SubHBS
vary since we adjust the settings in different environments to

achieve the best runtime results. CompBS has the steepest
curve among all solutions as it has the worst communica-
tion complexity, which is dominated by m instances of LE
operations. TagBS uses only logm LE comparisons, but also
invokes m multiplications, which make its curve relatively flat
at small sizes and steep at larger sizes. LayHBS generates
significantly more communication on WAN than on LAN at
small sizes. This is because we used a larger ı̃ on WAN, which
means that a larger portion is processed by CompBS, inevitably
increasing the communication cost. However, larger ı̃ reduces
the total number of communication rounds since CompBS
has a constant round complexity, and round complexity is the
bottleneck at small sizes on WAN. Thus, a larger ı̃ can improve
the overall runtime of LayHBS on WAN.

The curves of our SubHBS on LAN and WAN are signifi-
cantly different because different settings are used, especially
when the dataset size is large. As mentioned in Section VIII-C,
TagBS or LayHBS are of little use as sub-protocols of SubHBS
on WAN because CompBS is faster for small to medium
sizes. As a result, we mainly use CompBS in SubHBS on
WAN, but TagBS and LayHBS on LAN. This makes the
communication costs of SubHBS on WAN larger than that
on LAN when the data set size is smaller than 222. For larger
sizes, local computation becomes the dominating component
of LAN experiments. The setting we use, i.e., α = 7, is not
the best choice for optimizing the communication cost, but it
results in faster runtime as we can recursively use SubHBS for
the second sub-search.

One can notice from Figure 6 that communication of
SubHBS fluctuates as the size changes. This is due to the
changes in the settings and the choices of sub-search protocols.
More specifically, we used CompBS to do the second sub-
search on LAN at small sizes and switched to TagBS and
SubHBS at m = 212 and 226, respectively, which also reduced
communication. Similarly, we replaced CompBS with a recur-
sive invocation of SubHBS in the second and first sub-search
on WAN at m = 220 and 226 because CompBS’s performance
degrades at large sizes due to its high communication.

To summarize, our best protocols outperform alternative
solutions for sizes up to m = 227 on LAN and m = 230 on
WAN. SubHBS is up to 49× faster than binary search based
on best performing ORAM (optimized Floram) on LAN and
up to 27× on WAN.

13



25 210 215 220

10−2

10−1

100

Array size

R
un

tim
e

(s
ec

)

25 210 215 220

10−2

100

102

Array size

R
un

tim
e

(s
ec

)

Online runtime
Total runtime

Circuit ORAM [40]+[30]
CompBS

TagBS

LayHBS

SubHBS

Fig. 7: Performance of binary search in the malicious model with (left) and without (right) honest majority on LAN.

25 210 215 220

100

101

Array size

R
un

tim
e

(s
ec

)

25 210 215 220

100

102

104

Array size

R
un

tim
e

(s
ec

)

Online runtime
Total runtime

Circuit ORAM [40]+[30]
CompBS

TagBS

LayHBS

SubHBS

Fig. 8: Performance of binary search in the malicious model with (left) and without (right) honest majority on WAN.

D. Performance in the Malicious Model

To demonstrate that our constructions can be used in the
malicious setting, we also evaluate our constructions in the
malicious model on both LAN and WAN. Because relying on
dot product protocols of constant communication is important
for our constructions, we start with the techniques of Dalskov
et al. [21] which have this property. The solution uses repli-
cated secret sharing with three or four parties one of which
is corrupt and we use the three party version. To evaluate
performance when dot products involve linear communication,
we use SPDZ2k [20], [22]. It is in the dishonest majority
setting and our experiments use two parties, which often
gives the best performance. Lastly, we also run binary search
experiments using maliciously secure ORAM [40], which is
the only ORAM in the malicious model we are aware of, and
use its BMR+Circuit ORAM variant with two parties. Because
it is tree-based recursive ORAM, Gentry et al.’s optimization
is applied in the experiments. All implementations are from
MP-SPDZ [3] and ORAM is available only for m ≥ 211.

Figure 7 and 8 show the results, with additional numbers
available in [10]. The left plots with honest majority depict the
total time, just like Figure 5. The right plots with dishonest
majority show online and total runtime separately. The total
runtime includes both online and estimated offline times,
where the offline cost is computed based on the amount of
precomputation and offline computation speed for our solutions
in MP-SPDZ and the same triple generation speed is used for
our protocols and Circuit ORAM. LayHBS is not shown in the
right plot for clarity and has almost the same performance as

TagBS for larger sizes.

Overall, our constructions show similar trends to those in
Figure 5. Because the dot product has linear communication in
the dishonest majority setting, both TagBS and SubHBS have
linear communication, which narrows the gap between them.
Due to the high latency, the gap is larger on WAN because
SubHBS has a lower round complexity than TagBS. TagBS
outperforms CompBS for m > 28 on LAN and m > 213 on
WAN, with the biggest gap at m = 26 on LAN and m = 29

on WAN. Thus, we use ı̃ = 6 on LAN and ı̃ = 9 on WAN for
our LayHBS in both malicious settings. Also interesting to note
that the total time in the three-party honest majority setting is
similar to the online time only with dishonest majority (with
the exception of SubHBS when m is large, which is expected);
seeing the exact performance numbers in [10] makes this clear.

Online time of our dishonest majority SubHBS is up to
18 times smaller than that of Circuit ORAM on LAN and
up to 2 times on WAN; Circuit ORAM becomes faster on
LAN when m reaches 221 (resp., 220 on WAN). Circuit
ORAM shows its advantage earlier on WAN because of its
low round complexity, which is consistent with how it is
reported in [40]. The total runtime of Circuit ORAM is up to
140 and 240 times slower than that of SubHBS on LAN and
WAN, respectively, and performance of our construction and
Circuit ORAM becomes similar at 222. One may also observe
that the total runtimes on WAN are an order of magnitude
slower than on LAN. This is because not only does the low
bandwidth affect the online computation, but it also slows
down precomputation needed to generate multiplication triples.

14



25 210 215 220 225 230
10−3

10−1

101

Array size

R
un

tim
e

(s
ec

)

25 210 215 220 225 230

100

101

102

Array size

R
un

tim
e

(s
ec

)

Floram [25]
Optimized Floram

3PCORAM [38]+[30]
CompBSW

TagBSW

LayHBSW

SubHBSW

Fig. 9: Performance of ring-based binary search (non-key) write in the semi-honest model on LAN (left) and WAN (right).

E. Performance of Binary Search Followed by a Non-Key
Write Operation

We also evaluate performance of our binary search con-
structions followed by an update operation in the semi-honest
setting on both LAN and WAN. Recall that our binary search
update solutions first perform binary search that produces an
m-bit array with zeros in all positions except the target loca-
tion, after which we obliviously update the entire array where
only the target location is updated with the desired value.
Because the this array update operation is the same across
all constructions, the runtime differences between our binary
search update solutions are primarily due to the (modified)
search itself. Because oblivious array update requires linear
communication, we expect to see similar trends to those when
binary search is implemented in the malicious setting using
linear-communication dot product. That is, performance of
SubHBS is most severely affected when switching to linear
communication, but in the case of malicious security with
linear-communication dot product both SubHBS and its update
version SubHBSW have the same asymptotic complexity.

Figure 9 shows performance of our and ORAM-based
binary search solutions followed by a non-key write, with ad-
ditional numbers available in [10] The ORAM-based runtimes
are the same as those in Figure 5 for conventional binary
search because ORAM read and write operations have similar
performance. As expected, our constructions show similar
trends to those in Figure 5, while the curves of the write variant
become steep at smaller sizes. This is because array update
(of linear computation and communication) starts to dominate
performance of all our solutions for dataset sizes larger than
215 on both LAN and WAN. The gap between our solutions
is also narrower.

We varied the value of α to get the best configuration for
SubHBSW, but this has little impact on performance since
array update is the dominating component for large sizes.
For instance, array update consumes 88% (78%) of the total
runtime of SubHBSW on LAN (resp., WAN) when m = 220.
Overall, our best binary search construction is still faster than
best-performing ORAM-based solution (optimized Floram) for
dataset sizes up to 221 on LAN and 222 on WAN.

IX. CONCLUSIONS

In this work we initiate the study of binary search protocols
in secure multi-party computation, where on input a private
sorted dataset and a private search key, one retrieves or updates
the closest element that matches the search. We develop a suite
of protocols with different properties and structure and further
combine them to into hybrid solutions to improve performance
and asymptotic complexity. Our fastest binary search protocol
uses O(

√
m) communication for a dataset of size m. We

further proceed by modifying these protocols to support the
write operation, where the write affects either non-key fields
or the key itself.

Our performance evaluation demonstrates that our solutions
outperform existing ORAM constructions for dataset sizes up
to a billion, even after optimizations to improve performance
of ORAM schemes specifically in the context of binary search.
We hope that this work will inspire others to work on this topic
and make further progress in binary search protocols and in
particular designing sublinear-cost constructions.

ACKNOWLEDGMENTS

The authors acknowledge support from the Emulab
project [55] for utilizing an Emulab machine for WAN exper-
iments. This work was supported in part by a Google Faculty
Research Award and Buffalo Blue Sky Initiative. Any options,
findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not necessarily
reflect the views of the funding sources.

REFERENCES

[1] “3PC ORAM implementation,” https://github.com/Boyoung-/
circuit-oram-3pc.

[2] “Floram implementation,” https://gitlab.com/neucrypt/floram/tree/
floram-release.

[3] “MP-SPDZ implementation,” https://github.com/data61/MP-SPDZ.
[4] “Sharemind,” https://sharemind-sdk.github.io/.
[5] A. Aly, E. Cuvelier, S. Mawet, O. Pereira, and M. Van Vyve, “Se-

curely solving simple combinatorial graph problems,” in International
Conference on Financial Cryptography and Data Security (FC), 2013,
pp. 239–257.

[6] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I.
Pagter, N. P. Smart, and R. N. Wright., “From Keys to Databases – Real-
World Applications of Secure Multi-Party Computation,” The Computer
Journal, vol. 61, no. 12, pp. 1749–1771, 2018.

15



[7] G. Asharov, I. Komargodski, W.-K. Lin, K. Nayak, E. Peserico, and
E. Shi, “Optorama: Optimal oblivious RAM,” in EUROCRYPT, 2020,
pp. 403–432.

[8] A. Baccarini, M. Blanton, and C. Yuan, “Multi-party replicated secret
sharing over a ring with applications to privacy-preserving machine
learning,” IACR Cryptology ePrint Archive Report 2020/1577, 2020.

[9] M. Blanton, A. Kang, and C. Yuan, “Improved building blocks for
secure multi-party computation based on secret sharing with honest
majority,” in International Conference on Applied Cryptography and
Network Security (ACNS), 2020, pp. 377–397.

[10] M. Blanton and C. Yuan, “Binary search in secure computation,”
Cryptology ePrint Archive Report 2021/1049, 2021.

[11] M. Blanton and S. Saraph, “Oblivious maximum bipartite matching
size algorithm with applications to secure fingerprint identification,” in
European Symposium on Research in Computer Security (ESORICS),
2015, pp. 384–406.

[12] M. Blanton, A. Steele, and M. Alisagari, “Data-oblivious graph al-
gorithms for secure computation and outsourcing,” in ACM SIGSAC
Symposium on Information, Computer and Communications Security,
2013, pp. 207–218.

[13] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework
for fast privacy-preserving computations,” in European Symposium on
Research in Computer Security (ESORICS), 2008, pp. 192–206.

[14] D. Bogdanov, L. Kamm, S. Laur, P. Pruulmann-Vengerfeldt, R. Talviste,
and J. Willemson, “Privacy-preserving statistical data analysis on fed-
erated databases,” in Annual Privacy Forum (APF), 2014, pp. 30–55.

[15] P. Bunn, J. Katz, E. Kushilevitz, and R. Ostrovsky, “Efficient 3-party
distributed ORAM,” in Security and Cryptography for Networks (SCN),
2020, pp. 215–232.

[16] D. Cash, A. Drucker, and A. Hoover, “A lower bound for one-round
oblivious RAM,” in TCC, 2020, pp. 457–485.

[17] O. Catrina, “Round-efficient protocols for secure multiparty fixed-point
arithmetic,” in International Conference on Communications (COMM),
2018, pp. 431–436.

[18] O. Catrina and S. de Hoogh, “Improved primitives for secure multi-
party integer computation,” in Security and Cryptography for Networks
(SCN), 2010, pp. 182–199.

[19] H. Chen, I. Chillotti, and L. Ren, “Onion ring ORAM: Efficient constant
bandwidth oblivious RAM from (leveled) TFHE,” in ACM Conference
on Computer and Communications Security (CCS), 2019, pp. 345–360.

[20] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing, “SPDZk
2 :

Efficient MPC mod 2k for dishonest majority,” in CRYPTO, 2018, pp.
769–798.

[21] A. Dalskov, D. Escudero, and M. Keller, “Fantastic four: Honest-
majority four-party secure computation with malicious security,” in
USENIX Security Symposium, 2021.

[22] I. Damgård, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and
N. Volgushev, “New primitives for actively-secure MPC over rings
with applications to private machine learning,” in IEEE Symposium on
Security and Privacy (S&P), 2019, pp. 1102–1120.

[23] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Uncon-
ditionally secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation,” in TCC, 2006, pp. 285–304.

[24] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computa-
tion from somewhat homomorphic encryption,” in CRYPTO, 2012, pp.
643–662.

[25] J. Doerner and A. Shelat, “Scaling ORAM for secure computation,” in
ACM Conference on Computer and Communications Security (CCS),
2017, pp. 523–535.

[26] J. Doerner, D. Evans, and A. Shelat, “Secure stable matching at scale,”
in ACM Conference on Computer and Communications Security (CCS),
2016, pp. 1602–1613.

[27] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Improved
primitives for MPC over mixed arithmetic-binary circuits,” in CRYPTO,
2020, pp. 823–852.

[28] S. Faber, S. Jarecki, S. Kentros, and B. Wei, “Three-party ORAM for
secure computation,” in ASIACRYPT, 2015, pp. 360–385.

[29] R. Gennaro, M. Rabin, and T. Rabin, “Simplified VSS and fast-track
multiparty computations with applications to threshold cryptography,”

in ACM symposium on Principles of Distributed Computing, 1998, pp.
101–111.

[30] C. Gentry, K. Goldman, S. Halevi, C. Julta, M. Raykova, and D. Wichs,
“Optimizing ORAM and using it efficiently for secure computation,” in
Privacy Enhancing Technologies Symposium (PETS), 2013, pp. 1–18.

[31] N. Gilboa and Y. Ishai, “Distributed point functions and their applica-
tions,” in Advances in Cryptology – EUROCRYPT, 2014, pp. 640–658.

[32] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious RAMs,” in ACM STOC, 1987, pp. 182–194.

[33] ——, Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2004.

[34] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious RAMs,” Journal of the ACM, vol. 43, no. 3, pp. 431–473,
1996.

[35] S. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova,
and Y. Vahlis, “Secure two-party computation in sublinear (amortized)
time,” in ACM Conference on Computer and Communications Security
(CCS), 2012, pp. 513–524.

[36] T. Hoang, C. D. Ozkaptan, A. A. Yavuz, J. Guajardo, and T. Nguyen,
“S3ORAM: A computation-efficient and constant client bandwidth
blowup ORAM with Shamir secret sharing,” in ACM Conference on
Computer and Communications Security (CCS), 2017, pp. 491–505.

[37] Z. Jafargholi, K. Larsen, and M. Simkin, “Optimal oblivious priority
queues,” in ACM-SIAM Symposiym on Discrete Algorithms (SODA),
2021, pp. 2366–2383.

[38] S. Jarecki and B. Wei, “3PC ORAM with low latency, low bandwidth,
and fast batch retrieval,” in International Conference on Applied Cryp-
tography and Network Security (ACNS), 2018, pp. 360–378.

[39] M. Keller and P. Scholl, “Efficient, oblivious data structures for MPC,”
in ASIACRYPT, 2014, pp. 506–525.

[40] M. Keller and A. Yanai, “Efficient maliciously secure multiparty com-
putation for RAM,” in Advances in Cryptology – EUROCRYPT, 2018,
pp. 91–124.

[41] P. Laud, “Parallel oblivious array access for secure multiparty computa-
tion and privacy-preserving minimum spanning trees,” Proceedings on
Privacy Enhancing Technologies (PETS), vol. 2015, no. 2, pp. 188–205,
2015.

[42] S. Laur, R. Talviste, and J. Willemson, “From Oblivious AES to
Efficient and Secure Database Join in the Multiparty Setting,” in Applied
Cryptography and Network Security (ACNS), 2013, pp. 84–101.

[43] C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks, “Automating efficient
RAM-model secure computation,” in IEEE Symposium on Security and
Privacy, 2014, pp. 623–638.

[44] S. Patel, G. Persiano, M. Raykova, and K. Yeo, “PanORAMa: Oblivious
RAM with logarithmic overhead,” in Annual Symposium on Foundations
of Computer Science (FOCS), 2018, pp. 871–882.

[45] C. Rao, K. Singh, and A. Kumar, “Oblivious stable sorting protocol and
oblivious binary search protocol for secure multi-party computation,”
Journal of High Speed Networks, vol. 27, no. 1, pp. 67–82, 2021.

[46] R. Saar, “A new database layer for the Sharemind privacy preserving
computer,” Bachelor’s thesis. University of Tartu, 2011.

[47] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[48] E. Shi, “Path oblivious heap: Optimal and practical oblivious priority
queue,” in IEEE Symposium on Security and Privacy (S&P), 2020, pp.
449–465.

[49] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious RAM with
O((logN)3) worst-case cost,” in ASIACRYPT, 2011, pp. 197–214.

[50] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. De-
vadas, “Path ORAM: An extremely simple oblivious RAM protocol,”
in ACM Conference on Computer and Communications Security (CCS),
2013, pp. 299–310.

[51] T. Toft, “Secure data structures based on multi-party computation,” in
ACM Principles of Distributed Computing (PODC), 2011, pp. 291–292.

[52] X. Wang, H. Chan, and E. Shi, “Circuit ORAM: On tightness of the
Goldreich-Ostrovsky lower bound,” in ACM Conference on Computer
and Communications Security (CCS), 2015, pp. 850–861.

16



Protocol 8 [z]← LayHBS(〈[a0], . . . , [am−1]〉, [b], ı̃)

1: for i = 0, . . . , 2ı̃ − 1 in parallel do
2: [ci]← LE([b], [a(i+1)m/2ı̃−1.key]);
3: end for
4: [d0] = [c0];
5: for i = 1, . . . , 2ı̃ − 2 in parallel do
6: [di]← [ci] · (1− [ci−1]);
7: end for
8: [d2ı̃−1] = 1− [c2ı̃−2];
9: [p]←

∑2ı̃−1
i=0 [ai] · [di];

10: let [`(i)] = 〈[abm/2i+1c−1], [ab3m/2i+1c−1], . . . ,
[ab(2i+1−1)m/2i+1c−1]〉 for i = ı̃, . . . , log(m)− 1;

11: [q
(ı̃)
0 ] = [c0];

12: for i = 1, . . . , 2ı̃ − 1 locally do
13: [q

(ı̃)
i ] = 2[di]− [ci] + [ci−1];

14: end for
15: [a] =

∑2ı̃−1
i=0 [q

(ı̃)
i ] · [`(ı̃)i ];

16: [c]← LE([b], [a.key]);
17: [p] = [c] · ([a]− [p]) + [p];
18: for i = ı̃+ 1, . . . , log(m)− 1 do
19: for j = 0, . . . , 2i − 1 in parallel do
20: if j mod 2 = 0 then
21: [q

(i)
j ] = [q

(i−1)
bj/2c ] · [c];

22: else
23: [q

(i)
j ] = [q

(i−1)
bj/2c ] · (1− [c]);

24: end if
25: end for
26: [a] =

∑2i−1
j=0 [q

(i)
j ] · [`(i)j ];

27: [c]← LE([b], [a.key]);
28: [p] = [c] · ([a]− [p]) + [p];
29: end for
30: return [z] = [p];

[53] X. S. Wang, Y. Huang, T. Chan, A. Shelat, and E. Shi, “SCORAM:
oblivious RAM for secure computation,” in ACM Conference on Com-
puter and Communications Security (CCS), 2014, pp. 191–202.

[54] X. S. Wang, K. Nayak, C. Liu, T. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious data structures,” in ACM Conference on Computer
and Communications Security (CCS), 2014, pp. 215–226.

[55] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Symposium on
Operating Systems Design and Implementation (OSDI), 2002, pp. 255–
270.

[56] A. Yao, “Protocols for secure computations,” in Symposium on Foun-
dations of Computer Science, 1982, pp. 160–164.

[57] S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner, D. Evans,
and J. Katz, “Revisiting square-root ORAM: Efficient random access in
multi-party computation,” in IEEE Symposium on Security and Privacy,
2016, pp. 218–234.

[58] Y. Zhang, M. Blanton, and G. Almashaqbeh, “Implementing support
for pointers to private data in a general-purpose secure multi-party
compiler,” ACM Transactions on Privacy and Security (TOPS), vol. 21,
no. 2, 2018.

APPENDIX

This appendix lists complete specifications of several pro-
tocols, which were described in prior sections. In particular,
Protocol 8 lists our hybrid LayHBS from section VI-A on the
example of combining CompBS and TagBS. Protocol 9 de-
scribes CompBSW, i.e., the write (to non-key fields) variant of
comparison-based CompBS. Protocol 10 specifies our ORAM-

Protocol 9 〈[â0], . . . , [âm−1]〉 ← CompBSW(〈[a0], . . . ,
[am−1]〉, [b], [v])

1: for i = 0, . . . ,m− 1 in parallel do
2: [ci]← LE([b], [ai.key]);
3: end for
4: [d0] = [c0];
5: for i = 1, . . . ,m− 2 in parallel do
6: [di] = [ci] · (1− [ci−1]);
7: end for
8: [dm−1] = 1− [cm−2];
9: for i = 0, . . . ,m− 1 in parallel do

10: [a′i] = [ai]− ([ai]− [v]) · [di];
11: end for
12: return 〈[a′0], . . . , [a′m−1]〉;

Protocol 10 ORAM([â0], . . . , [âm−1]) ← OramBSW(ORAM
([a0], . . . , [am−1]), [b], [v])

1: [c]← LE([b], [abm/2c.key]);
2: [d] = bm/2c;
3: [p] = [c] · (bm/2c − (m− 1)) + (m− 1);
4: for i = 0, . . . , log(m)− 1 do
5: [d] = [d] + (1− 2[c])m/2i+2;
6: [a] = ORAMRead([d]);
7: [c]← LE([b], [a.key]);
8: [p] = [c] · ([d]− [p]) + [p];
9: end for

10: ORAMW([p], [v]);
11: return ORAM([â0], . . . , [âm−1]);

based binary search protocol OramBSW which updates non-
key fields based on the result of the search.

Protocols 11 and 12 describe rotation-based binary search
followed by a write to non-key fields RotBSW and its building
block RotateW, respectively. Their general description is
offered in section VII-A and here we specify certain algorithm
details such as periodically reducing the accumulated amount
of shift modulo 2i for each layer and updating the target
element with the new value. In particular, we keep a global
variable count which is assumed to be accessible to both
protocols and corresponds to the number of invocation of the
binary search operations. Once the count reaches δ, we reduce
the cumulative amount of rotation, r̂, modulo 2u, where 2u

is the size the corresponding layer (lines 10–12 in RotateW).
We use protocol Mod2m from [18] for this purpose, which
takes the total bitlength (u + log δ) of r̂ and the number of
bits u to retain as its arguments. It is realized in a constant
number of rounds and communication linear in u. Avoiding
calling modulo reduction during each rotation reduces both
the number of rounds and the number of interactive opera-
tions associated with the binary search, but may result in an
increased field size, which affects communication associated
with all interactive operations in the protocol. In more detail,
when the bitlength of the search keys k > logm, using δ such
that log(m)−1+ log δ = k does not lead to a larger field size
and is always beneficial. Increasing δ above that value can still
result in performance savings, but the cost associated with the
increased field size needs to be balanced with the savings due
to not executing Mod2m protocol. This also means that savings
will be greater for datasets of smaller sizes.

17



Protocol 11 (〈[ˆ̀(0)], . . . , [ˆ̀(log(m)−1)]〉, 〈[r̂(1)], . . . , [r̂(log(m)−1)]〉)
← RotBSW(〈[`(0)], . . . , [`(log(m)−1)]〉, 〈[r(1)], . . . , [r(log(m)−1)]〉,
[b], [v])

1: count = count+ 1;
2: for i = 1, . . . , log(m)− 1 in parallel do
3: 〈[ˆ̀(i)], [r̂(i)]〉 ← RotateW([`(i)], [r(i)], i);
4: end for
5: [c(0)]← LE([b], [abm/2c.key]);
6: [d] = 0;
7: for i = 1, . . . , log(m)− 1 do
8: [d] = 2[d] + [c(i−1)];
9: [w]← RandInt(κ+ log δ);

10: s′(i) = Open([d+ r̂(i) + 2i[w]);
11: s(i) = s′(i) mod 2i;
12: [a] = [ˆ̀

(i)

s(i)
];

13: [c(i)]← LE([b], [a.key]);
14: for j = 0, . . . , i− 1 in parallel do
15: [c(j)] = (1− [c(i)]) · [c(j)];
16: end for
17: end for
18: for i = 0, . . . , log(m)− 1 in parallel do
19: [ˆ̀

(i)

s(i)
] = [ˆ̀

(i)

s(i)
] + [c(i)] · ([v]− [ˆ̀

(i)

s(i)
]) ;

20: end for
21: return (〈[ˆ̀(0)], . . . , [ˆ̀(log(m)−1)]〉, 〈[r̂(1)], . . . , [r̂(log(m)−1)]〉);

Protocol 12 ([ˆ̀], [r̂]) ← RotateW(` = 〈[a0], . . . , [a2u−1]〉,
[r], u)

1: for i = 0, . . . , u− 1 in parallel do
2: [ri]← RandBit();
3: end for
4: for i = 0, . . . , u− 1 do
5: for j = 0, . . . , 2u − 1 in parallel do
6: [a

(i+1)
j ]← [a

(i)
j ]− ([a

(i)
j ]− [a

(i)
j−2i mod 2u ]) · [ri];

7: end for
8: end for
9: [r̂]←

∑u−1
i=0 2i[ri] + [r];

10: if ((count mod δ) = 0) then
11: [r̂] = Mod2m([r̂], u+ log δ, u);
12: end if
13: let [âi] = [a

(u)
i ] for i ∈ [0, 2u − 1];

14: return ([ˆ̀], [r̂]) = (〈[â0], . . . , [â2u−1]〉, [r̂]);

Prior to the first invocation of RotBSW, we set count to
0 and execute the protocol with the value of r set to 0. For
convenience, the dataset is represented in the form of layers.

To be able to update the target element, we first need to
privately determine which of the disclosed logm locations is
the target location using values [c(i)]s. The last non-zero value
should be kept and others should be reset to 0. We perform
this operation iteratively: during each iteration we update all
previous [c(i)]s on line 14 of RotBSW. After the end of the
iterations, we obtains an array of [c(i)]s, in which all elements
are 0 except one, which is set to 1. We consequently write the
new data [v] to its desired location using the array of c(i)s on
lines 18–20.

There can be different ways of updating the [c(i)]s, e.g., by
using a prefix operation after all algorithm’s iterations finish.
We choose the above mechanism due to its round complexity.

That is, as can be seen from Table I, our rotation-based
binary search offers the lowest round complexity among the
hierarchical constructions and the above mechanism does not
increase the number of rounds. In particular, the multiplications
on line 14 use one round, but they can be combined with
other interactive operations. This modification for supporting
the write operation introduces only one additional round to
update all layers at once and increases communication by
(log2(m)− logm)/2 invocations.

18


