
Robust Authentication Using Physically Unclonable
Functions�

Keith B. Frikken1, Marina Blanton2, and Mikhail J. Atallah3

1 Computer Science and Software Engineering, Miami University
frikkekb@muohio.edu

2 Department of Computer Science and Engineering, University of Notre Dame
mblanton@cse.nd.edu

3 Department of Computer Science, Purdue University
mja@cs.purdue.edu

Abstract. In this work we utilize a physically unclonable function (PUF) to im-
prove resilience of authentication protocols to various types of compromise. As
an example application, we consider users who authenticate at an ATM using
their bank-issued PUF and a password. We present a scheme that is provably se-
cure and achieves strong security properties. In particular, we ensure that (i) the
user is unable to authenticate without her device; (ii) the device cannot be used
by someone else to successfully authenticate as the user; (iii) the device cannot
be duplicated (e.g., by a bank employee); (iv) an adversary with full access to
the bank’s personal and authentication records is unable to impersonate the user
even if he obtains access to the device before and/or after the setup; (v) the device
does not need to store any information. We also give an extension that endows the
solution with emergency capabilities: if a user is coerced into opening her secrets
and giving the coercer full access to the device, she gives the coercer alternative
secrets whose use notifies the bank of the coercion in such a way that the coercer
is unable to distinguish between emergency and normal operation of the protocol.

1 Introduction

Recent work has demonstrated the existence and practicality of physically unclonable
functions (PUFs), but many of their security implications remain to be explored. PUFs
have both advantages and limitations compared to more traditional security devices.
E.g., compared to a smartcard, a PUF has the advantage that it cannot be cracked and
its secrets revealed, or replicated by an insider who has the blueprint. But unlike a
smartcard, one can no longer assume the convenient existence of multiple copies that
all contain the same key, nor can one assume any storage capacity within a device other
than the PUF functionality.

The focus of this work is authentication, where a physically unclonable function
(PUF) is used to provide superior resilience against various forms of compromise. A
PUF is a function that is tied to a device and cannot be reproduced on another device,
even another device from the same manufacturing batch. That is, a PUF is computed

� Portions of this work were supported by grants NSF-CNS-0627488 and AFOSR-FA9550-09-
1-0223, and by sponsors of CERIAS.

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 262–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Robust Authentication Using Physically Unclonable Functions 263

using unique physical characteristics of the device, and any attempts to tamper with the
device change the behavior of the device and therefore destroy the PUF. This function
is often assumed to be evaluated on a challenge c which is sent to the device. Upon
receiving c, the response is computed as r = PUF(c) and is assumed to be unpredictable
to anyone without access to the device. Schemes exist for using in different contexts
(e.g., for protection of intellectual property and authentication), where the inability to
clone the function improves the properties of a solution.

Here we use PUFs for authentication in contexts such as bank ATMs, through the
use of a device with a built-in PUF. The ATM communicates with the bank to establish
authenticity of the user before any transaction. We are able to achieve strong security
properties which are not simultaneously achieved by previous protocols. In particular,
our protocol provably has the following properties (in the random oracle model):

– a user is unable to successfully authenticate without her device;
– a stolen device cannot be used to authenticate as the user;
– the device functionality cannot be duplicated (e.g., by an employee of the bank even

if that employee has access to the card);
– an adversary with full access to the bank’s data with user information and authen-

tication records is unable to impersonate the user even if she obtains access to the
device before and/or after the account is setup.

Furthermore, our design requirements are to avoid placing any sensitive information
on the device, to eliminate any possibility of data compromise (i.e., the PUF, which
measures a physical characteristic of the device, will be destroyed in the event of tam-
pering with the device, while the data stored on the device might not be erased). In fact,
our protocols do not require the device to store any information not related to the PUF
functionality, which introduces a challenge in the protocol design.

Our Contributions

1. We provide a protocol for one-factor authentication with PUFs (Section 4.1). It
provides only a weak form of security in that to authenticate the adversary needs to
have had physical access to the PUF at some point in time. One limitation of this
protocol (and any one-factor “what you have” authentication mechanism) is that in
order to impersonate a user, the adversary only needs physical access to the device.

2. We provide a stronger protocol for two-factor authentication that combines PUFs
with passwords (Section 4.2). The adversary must have had access to the PUF and
to the user’s password in order to impersonate the user, even if the adversary has
compromised the bank’s servers. A unique feature of this protocol is that the pass-
word is not stored in either the PUF or the bank, but is integrated into the PUF
challenge, and thus in order to perform a dictionary attack one must have physical
access to the PUF.

3. One limitation of the previous schemes is that an adversary can clone the PUF in
software by having physical access to the PUF. That is, the adversary can obtain the
PUFs response to a challenge, and then build a piece of software that impersonates
the user. To mitigate this software cloning attack, we introduce a protocol which
requires the authenticator to currently have physical access to the PUF in order to
authenticate (Section 4.3). This protocol requires a stronger assumption than those

264 K.B. Frikken, M. Blanton, and M.J. Atallah

required by the previous schemes: We assume an integrated PUF (or computational
PUF) where the device performs some computation with the PUF.

4. We give an extension which additionally improves robustness of the protocol when
a user is coerced into giving her device and secret data (e.g., her password), which
permits an adversary to authenticate on behalf of the user. We provide a mechanism
for a user to give a false secret to the coercer that will lead to successful authenti-
cation, but will trigger an alarm at the bank. Solutions of this type are common in
physical security systems, but do not appear in cryptographic protocols1.

2 Related Work

Existing literature on PUF-based authentication is not extensive and can be divided
into three categories: (i) implementation-based publications that consider the feasibility
of reliably computing a PUF response to a challenge; (ii) PUF-based authentication
for IP (intellectual property) protection; and (iii) enhancing properties of lightweight
authentication solutions using PUF.

Publications from the first category include [2,3] and others and are complemen-
tary to our work. They also provide support for using public-key cryptography with
PUF-based authentication. Publications from the second category (e.g., [4,5,6]) are
also largely implementation-based, often implementing existing authentication proto-
cols for reconfigurable FPGA and are not suitable for our purposes. The last category
covers PUF-based protocols for RFID (Radio-frequency identification) systems [7,8,9]
and human protocols HB [10,11]. The RFID publications are implementation-based re-
alizing simple authentication constructions. Recent results [10,11] strengthen the HB
protocol by using PUFs and are not suitable in our context (i.e., do not achieve the
properties we seek).

Authentication protocols based on smart-cards can also be viewed as related to our
framework. However, the nature of PUF-based authentication places unique require-
ments: For a smartcard protocol to fit our model, the smartcard must implement a PUF
and have no other information stored, yet satisfy our security requirements – there are
no such previous smartcard protocols.

Multi-factor authentication protocols, which often use a password and a mobile de-
vice, have been explored in prior literature (see, e.g., [12,13,14,15] among others – some
have insufficient security analysis). Resilience to user impersonation in the event of
database compromise (the “insider threat”), however, is not considered and not achieved
in previous work. In our case both factors (i.e., the user password and the token) are in-
accessible to the server in their plain form, so that an insider with full access to the
server is unable to recover either of them.

Boyen [16] uses biometrics and fuzzy extractors (i.e., biometric-based key deriva-
tion) to provide zero-storage authentication that achieves insider security. Our solution
then can be viewed as an authentication mechanism with similar security properties, but
which is based on a different technique and type of device (instead of using a device
that captures biometrics) and additionally includes passwords as the second security

1 The only publication on panic passwords in computer systems we are aware of is [1] that treats
the general framework of panic passwords and is discussed later in this section.

Robust Authentication Using Physically Unclonable Functions 265

factor. Note that we desire the same level of security even when the PUF is misused
(by either a bank employee who temporarily gets access to the PUF or the user her-
self). This means that, to ensure that the device is present during each authentication
session, we would like to make the raw information output of a PUF inaccessible to the
user and use computational capabilities of a PUF. This problem is not a threat in case
of biometric-based authentication, when the user is interested in erasing her personal
biometric data output by the device and used in the protocol.

Recent work of Clark and Hengartner [1] defines the framework for panic passwords,
where any user has a regular password and another, panic, password which can be used
when the user is coerced into giving her password to the adversary. They define the
adversarial model in terms of the response the user receives from the authenticator
upon using a panic password, and goals/capabilities of the adversary. Our solution was
designed independently of this recent model, but in section 5 we briefly discuss how it
fits the Clark-Hengartner framework.

3 Security Model

3.1 Problem Description

There are three principal entities: server S (or another entity authenticating the user
on behalf of the server), user U, and device D. Before authentication can take place,
the user obtains a device with a PUF built into it and participates in the registration or
enrollment protocol with the server. Once the registration is complete, the user will be
able to authenticate with the help of the device. Thus, we specify two procedures:

Enroll: is a protocol between S and U, where the user U registers with the server with
the aid of D. If enrollment is successful, the server obtains and stores a token credU
that can be used in subsequent authentications.

Auth: is a protocol between S and U, where U uses D and S uses its stored credentials
credU to make its decision to either accept or reject the user.

3.2 Modeling PUFs

Prior literature does not contain a lot of cryptographic constructions where PUFs are
used in a provably secure scheme. We are aware of the following uses of such functions.
In what follows, we will generically refer to the entity trying to authenticate (i.e., user,
device, tag, etc.) as a client and to the entity verifying authentication as a server.

1. Straightforward authentication. This is the most common form found in the PUF
literature, where the server sends a challenge c and the client responds with r =
PUF(c). At the enrollment phase, the server stores n challenges c1, . . .,cn and their
corresponding responses r1, . . .,rn for each client. During authentication, the client
is challenged on one of the ci’s at random and that (ci,ri) is removed from the
database. If the server runs out of challenge-response pairs (CRPs), there are pro-
tocols for updating the server’s database with new CRPs [17].

2. PUF as a random oracle. Modeling a PUF as a random oracle (as in [8]) might be
unnecessary if the full features of the random oracle model are not used.

266 K.B. Frikken, M. Blanton, and M.J. Atallah

3. PUF as a computable function. Hammouri and Sunar [10] define a delay-based
PUF that can be represented using a linear inequality. This means that the server
does not need to store CRPs, but instead can compute the expected responses. While
it might be possible to model the specific PUF used in the above paper, for general
functions it is commonly assumed that the function cannot be modeled and its be-
havior cannot be predicted by any entity without physical access to it.

4. PUF in previously published identification protocols. Some papers gave implemen-
tations where a PUF response is used as a part of known identification protocols.
E.g., Tuys and Batina [7] use PUFs in Schnorr’s identification protocol, where the
user’s secret key is set to be PUF’s response to a challenge. Similarly, Batina et
al. [9] use Okamoto identification protocol with PUF-derived secrets. We, however,
aim to design a PUF-based protocol specific to our security goals.

As in the previous PUF literature, we make the standard assumption that, without hav-
ing the physical device, the behavior of a PUF is impossible to predict. Let PUF be a
function PUF : {0,1}κ1→{0,1}κ2 that on input of length κ1 produces a string of length
κ2. Before giving the definition, let us first define the following PUF response game:

Phase 1: Adversary A requests and gets the PUF response ri for any ci of its choice.

Challenge: A chooses a challenge c that it has not queried thus far.

Phase 2: A is allowed to query the PUF for challenges other than c.

Response: Eventually, A outputs its guess for r′ for PUF’s response to r = PUF(c).

A wins if r = r′. Let Advpu f
A (κ2) = Pr[r = r′] denote the probability of A winning.

Under different conditions and in different environments, PUF responses to the same
challenge can contain noise resulting in non-perfect match. We measure such noise in
terms of hamming distance between two binary strings x1 and x2 of equal length κ, i.e.,
dist(x1,x2) is the number of positions such that ith bit of x1 is different from the ith bit
of x2. In what follows, let Uκ denote the set of strings chosen uniformly at random from
{0,1}κ. Now we are ready to define a PUF:

Definition 1. A physically unclonable function PUFD : {0,1}κ1 → {0,1}κ2 bound to a
device D is a function with the following properties:

1. Efficient: PUFD is easy to evaluate;
2. Hard to characterize: for any probabilistic polynomial time (PPT) adversary A ,

Advpu f
A (κ2) is negligible in κ2;

3. Bounded noise: in a wide variety of environments, the distance between two re-
sponses from PUFD on the same challenge is at most t, e.g., Pr[dist(y,z) > t | x←
Uκ1 ,y← PUFD(x),z← PUFD(x)]≤ ε1 for a negligibly small ε1;

4. Unique: the PUFD is unique for each D (even those from the same manufactur-
ing batch), e.g., for any other function PUFD′ , Pr[dist(y,z) ≤ t | x ← Uκ1 ,y ←
PUFD(x),z← PUFD′(x)]≤ ε2 for sufficiently small ε2.

We call such a function a (t,ε1,ε2) PUF (i.e., ε1 and ε2 are false rejection rate and
false acceptance rate, respectively). Some of our constructions furthermore assume that
a PUF is inseparatable from the device to which it is bound, i.e., our latter schemes
make the strong assumption that the device (circuit) can do computation based on PUF
responses. More specifically:

Robust Authentication Using Physically Unclonable Functions 267

Definition 2. An integrated PUF (I-PUF) has the following additional properties:

1. It is bound to the chip – any attempt to remove it changes its behavior.
2. Its communication with the chip cannot be accessed from outside the chip.
3. The output of the PUF cannot be accessed.

I-PUFs have been used in prior literature (see, e.g., [7]), and the best known examples
of them are silicon PUFs [17] and coating PUFs [18].

Because the output of a PUF is noisy, PUF-based authentication must either tolerate
a certain threshold of errors at the protocol level or implement a mechanism for correct-
ing the errors prior to using the response of the PUF. We choose the second option. Prior
literature [7,6] already contains examples of using functions such as fuzzy extractors to
remove the noise and extract responses that are close to uniform. Fuzzy extractors [19]
can be defined for different metric spaces, and throughout this work we will assume
we are dealing only with Hamming distance as the distance metric. The definition fur-
thermore assumes a sufficient amount of uncertainty of the noisy string from which a
random string is being extracted, defined in terms of min-entropy m (see [19] for more
precise definitions). The construction generates a public helper string P that permits
correction of errors and reconstruction of the extracted string and ensures that, even
after releasing P, the statistical distance between the extracted string and a uniformly
chosen string of the same length is less than a (negligibly small) threshold ε (likewise,
we refer the reader to [19] for precise definitions).

Definition 3 ([19]). An (m, �,t,ε) fuzzy extractor is given by procedures Gen and Rep:

Gen: is a probabilistic algorithm that on input W outputs a string R ∈ {0,1}� and a
helper string P, such that for any distribution of W with min-entropy m, if (R,P)←
Gen(W), then the statistical difference between (R,P) and (U�,R) is at most ε.

Rep: is a deterministic algorithm that, given P and W ′ such that dist(W,W ′)≤ t, allows
to exactly reproduce R: if (R,P)← Gen(W), then Rep(W ′,P) = R.

Our discussion does not necessitate the details of fuzzy extractors, as we refer to them
only at a high level. They make possible the construction of an exact I-PUF having
(t,ε1,ε2) PUF : {0,1}κ1 → {0,1}κ2 such that:

1. An I-PUF bound to device D is associated with a (m, �,t,ε3) fuzzy extractor
(Gen,Rep), where Gen, Rep, and PUFD are efficient procedures.

2. During the enrollment phase, given a challenge c, I-PUF computes (R,P) ←
Gen(r), where r← PUFD(c) and outputs P.

3. In a wide variety of environments, given a pair (c,P) where c← Uκ1 and P was
produced by Gen(PUFD(c)), the exact extracted string can be recovered: Pr[x �=
y | x← Rep(PUFD(c),P),y← Rep(PUFD(c),P)]≤ ε1.

4. Any PPT adversary A cannot distinguish I-PUF’s output from a random value with
more than a negligible probability, i.e., Advpu f -ind

A (�)≤ ε3 as defined below.

The last property can be viewed as a decisional version of the PUF response game,
which we call PUF response indistinguishability game and it is defined as follows:

Enroll: A executes the enrollment phase on any values ci of its choice receiving the
corresponding Pi values from the PUF. Let CP be the set of these (ci,Pi) pairs.

268 K.B. Frikken, M. Blanton, and M.J. Atallah

Phase 1: A requests and receives PUF response Ri for any (ci,Pi) ∈CP of its choice.

Challenge: A chooses a challenge c that it queried in Enroll phase but not in Phase 1.
A random bit b is chosen. If b = 0, A receives R = Rep(PUFD(c),P) where (c,P)∈CP,
otherwise it receives a string uniformly chosen from from {0,1}�.
Phase 2: A is allowed to query the PUF for challenges in CP other than (c,P).
Response: Eventually, A outputs a bit b′.

A wins if b = b′. Let Advpu f -ind
A (�) = Pr[b = b′] denote the probability of A winning

the game. We assume that Advpu f -ind
A (�)−1/2 is negligible 2.

In addition to the above properties, as before, we have that two I-PUFs will produce
the same output on a (c,P) pair with probability at most ε2. Finally, our protocols rest
on the difficulty of the discrete logarithm in certain groups. That is, we assume that any
PPT adversary A , when given group G of large order q, group generator g, and element
gx for some x ∈ Zq, has a negligible change in outputting x.

3.3 Security Requirements

We place strict security requirements on the authentication process to achieve a solu-
tion robust to various types of misuse. In particular, we target to achieve the following
properties beyond the traditional infeasibility to impersonate a user:

– Authentication by an adversary is not successful even with the possession of the
device. Here we assume a powerful adversary who has access to all stored infor-
mation at the server’s side, including all information stored by the server during the
enrollment phase such as recorded (c,P) pairs for the device and other user’s infor-
mation credU , as well as information belonging to other users. This strong notion of
security is necessary in realistic scenarios, when, for example, the device originally
resides with a bank, is consequently issued to a user, and a bank employee might
later temporarily get access to the device and attempt to impersonate the user.

– Authentication by an honest user without the device is not successful with more
than a negligible probability. This is important because, if this property holds, it
is equivalent to a strong form of unclonability, i.e., even if an adversary knows all
bank and user information, it cannot create a clone of the device in question. This
adds resilience to a “what you have” form of authentication, because it guarantees
that one must have the device during a successful login.

The use of I-PUFs ensures that the device cannot be duplicated or cloned, and tampering
with the PUF effectively makes it unusable. Thus, the above requirements guarantee that
both the original device and the user must be present at the time of authentication for
authentication to succeed (except with negligible probability).

Furthermore, to ensure that tampering with the device does not reveal any sensitive
information, our design stores no such information on the device. In fact we assume
that the device does not store any information at all, and can be used for authentication
with a number of servers. Thus, all necessary information is provided as input to the
device, which makes the design of the protocols particularly challenging in presence of
adversaries who can query the device’s response on various inputs.

2 We assume the PUF is built with a security parameter that allows tuning this probability.

Robust Authentication Using Physically Unclonable Functions 269

4 Schemes

4.1 Preliminary Scheme

In this section we introduce a scheme that does not satisfy the security criteria, but that is
a warm-up to the later schemes that do. In this and subsequent solutions we assume that
the server S sets up and announces a group Gq of prime order q, in which the discrete
logarithm problem is hard, and its generator g. That is, Gq could be a subgroup of the
multiplicative group Z∗p for a prime p. We assume either that the PUF is constructed to
use Gq or the user submits the group to the PUF whenever it queries the PUF3

The authentication protocol given below uses a zero-knowledge proof of knowledge
(ZKPK) of discrete logarithm. In a nutshell, a ZKPK of a discrete logarithm y to the
base g allows the prover to convince the verifier that she knows x such that y = gx

without revealing any information about x. Because standard and well-known solutions
for several discrete logarithm based ZKPKs exist, we do not list their details in this
work and refer the reader to, e.g., [20].

Enroll :
1. Server S sends challenge c to user U.
2. U sends c to device D for Gen protocol.
3. D sends to U (r,P).
4. U sends (gr,P) to S who stores the information along with c.

Auth :
1. S sends challenge (c,P) to the user U.
2. U sends (c,P) to device D for Rep protocol.
3. D sends r to U.
4. U and S engage in a ZKPK of discrete logarithm gr to the base g.

Clearly, the above scheme does not satisfy either authentication goal. That is, if the
adversary has access to the device and knows the server’s challenge, then it can obtain
the response and can impersonate the user without the device.

4.2 Preliminary Scheme Revisited

The problem with the previous scheme is that having the PUF (at any point in time)
allows an adversary to impersonate the user. In this section we modify the previous
scheme by adding a user password (and thus the adversary must have the device and
guess the user’s password). The password is integrated into the Enroll and Auth protocols
so that the password is necessary to do authentication. Furthermore, the password is not
stored anywhere. This prevents an adversary from being able to login in to the protocol
even if it has the device. While this scheme still does not require that the user have
the device, it does prevent a malicious outsider from impersonating the user (assuming
that the user can choose a strong password). In what follows, H : {0,1}∗ → Zq is a
cryptographic hash function and || denotes concatenation of strings.

3 To prevent tampering with this value the PUF could take the hash of the description of this
group with the challenge to form a modified challenge which it then responds to. So as not to
clutter the exposition we have omitted this step from our scheme.

270 K.B. Frikken, M. Blanton, and M.J. Atallah

Note that in this scheme the password is bound to the PUF-challenge in order to get
the PUF-response. Thus the password is not really stored anywhere, and thus in order
to perform a dictionary attack the adversary must have physical access to the PUF.

Enroll :
1. Server S sends challenge c to user U.
2. U sends H(c||pwd), where pwd is the password, to device D for Gen protocol.
3. Device D sends (r,P) to U..
4. U sends (gr,P) to server S who stores the information along with c.

Auth :
1. Server S sends challenge c and P to the user U.
2. User sends (H(c||pwd),P) to device D for Rep protocol.
3. D sends r to U.
4. User U and server S engage is ZKPK of discrete logarithm for gr to the base g.

At a high level, this scheme requires that the adversary enter the user’s password in
order to the actual challenge sent to the PUF, thus this prevents an adversary with the
PUF from being able to find the response r.

The proof of security of this approach has two parts. First, it is shown that if the
response is generated independently from the PUF then breaking the above authenti-
cation scheme implies that the discrete log problem can be solved. Thus this implies
(assuming discrete log problem is hard) that a computationally-bounded adversary has
a negligible success probability (in the security parameter for the size of the prime q) in
breaking the above scheme. The second part of the proof shows that if A can break the
scheme with non-negligible probability when a real PUF is used, then this could be used
to win the PUF response indistinguishability game with non-negligible probability. In
other words, to determine if a specific response came from the PUF, the adversary uses
A and if A succeeds then we assume that we are dealing with a real PUF (because if
we are not the success probability is negligible).

Lemma 1. If H is a random oracle and there exists an adversary, A , that successfully
authenticates with the above authentication protocol with probability 1/p(|q|) when
given a randomly generated challenge (that is independent from the PUF), then A con-
tains a knowledge extractor that can solve the discrete log problem with non-negligible
probability (in the length of q).

Proof. Assume that such an adversary A exists, and that an adversary B is given a dis-
crete log problem instance g,q,gr and is given access to a PUF. B sends the challenge
cs,gr,P for a randomly chosen cs and P to A . To simulate H, B creates a set of tuples
HSET and initializes it by choosing a random password pwd and adding (cs||pwd,hs)
to HSET for a randomly chosen hs. When A queries H on a value x, B does the follow-
ing: If there is a tuple (x,y) already in HSET , it responds with y; otherwise, it chooses
a random r′, adds (x,r′) to HSET , and responds with r′. When A queries PUF with
(cA ,PA), B does the following: If cA = hs and PA = P, B outputs FAIL. Otherwise B
queries its PUF with (cA ,PA) and receives rA. B then sends to A the value rA.

It is straightforward to show that if B does not output FAIL, then the above view is
the same as the view when engaging in the protocol. In the following we show that: (i)

Robust Authentication Using Physically Unclonable Functions 271

B outputs FAIL with negligible probability, and (ii) if B does not output FAIL and A
succeeds with non-negligible probability, then B can use A to obtain r.

B outputs FAIL only when A asks for the PUF response for a challenge (d,P) and
d = hs. There are two situations: (i) A queries H on c||pwd or (ii) A does not query H
on cs||pwd. The first case implies that A knows pwd (which we assume is a negligible
event), and the second case corresponds to A randomly guessing hs which is negligible.
Thus, B outputs FAIL with negligible probability.

Now if B does not output FAIL and A can create a ZKPK of the discrete log of
gr, then by the properties of zero-knowledge, there must a be knowledge extractor for
A that produces the secret r. B uses this knowledge extractor to solve the discrete log
problem. Notice that if A succeeds then so does B , and therefore assuming discrete log
problem is hard, an adversary A does not exist. �
We now utilize the above lemma to show that an adversary cannot break the above
protocol if a real PUF is used (except with negligible probability). The lynchpin to
this argument is that if such an adversary exists, then this adversary could be used to
distinguish between a fake and real PUF, which violates the assumed security of the
PUF response indistinguishability game.

Theorem 1. Any polynomial-time adversary with access to the PUF (with security pa-
rameter �) and server information has a negligible probability of passing the authen-
tication protocol for a previously generated enrollment, assuming that H is a random
oracle, the discrete log problem is hard, and the passwords are chosen from a large
enough domain to make guessing the password succeed with negligible probability.

Proof. Assume that such an adversary A exists, we then use this as a black-box to
construct an adversary B for the PUF response indistinguishability game that succeeds
with non-negligible probability. B proceeds as follows: it chooses a random challenge
value cs and a random password pwd. It computes c′ = H(cs||pwd) and chooses c′ as
its challenge. B then receives a pair (r,P) where with probability 1/2 the value r is
PUFD(c) and is otherwise a randomly chosen value. B constructs server information
cs,gr,P and invokes the adversary A on these values while B provides oracle access
to the PUF and to the random oracle H in the exact same manner as in Lemma 1.
Eventually A will output a proof of knowledge. If this proof of knowledge is correct,
then B outputs 0; otherwise, B chooses a random guess for b′ and outputs this value.

We now analyze the probability Pr[b = b′]. Let F be the event the B outputs FAIL.
Since F was shown to be a negligible event in Lemma 1, we concentrate on Pr[b = b′|F].
We condition it based on event b = 0 or b = 1, which gives us:

Pr[b = b′|F] =
1
2

Pr[b = b′|F ,b = 0]+
1
2

Pr[b = b′|F ,b = 1]

Let G be the event that A outputs a correct proof of knowledge. We condition both of
the above cases on G. In case of b = 1:

Pr[b = b′|F ,b = 1] = Pr[b = b′|F,b = 1,G]Pr[G|F,b = 1]+Pr[b = b′|F ,b = 1,G]Pr[G|F,b = 1].

Here, Pr[b = b′|F,b = 1,G] = 0, Pr[b = b′|F ,b = 1,G] = 1
2 , and Pr[G|F ,b = 1] is neg-

ligible (by Lemma 1). This gives us:

272 K.B. Frikken, M. Blanton, and M.J. Atallah

Pr[b = b′|F ,b = 1] >
1
2
−neg2(�)

for some negligible function neg2. Next, let us consider b = 0, in which case we have:

Pr[b = b′|F ,b = 0] = Pr[b = b′|F,b = 0,G]Pr[G|F,b = 0]+Pr[b = b′|F ,b = 0,G]Pr[G|F,b = 0].

Here, Pr[b = b′|F ,b = 0,G]= 1, Pr[b = b′|F,b = 0,G] = 1
2 , and Pr[G|F ,b = 0] > 1

f (�) for
some polynomial f (this follows from our assumption that A breaks the authentication
with non-negligible probability). Putting all of this together, it is straightforward to
show that Pr[b = b′|F ,b = 0] > 1

2 + 1
h(�) for some polynomial h.

In summary, Pr[b = b′|F]− 1
2 is non-negligible, hence so is Pr[b = b′]− 1

2 . �

4.3 Final Scheme

Here we present the final scheme, where any user is required to currently possess the
device in order to be able to successfully authenticate. The principal idea behind this
approach is that the device does not reveal the response r in any protocol. The device
produces only zero-knowledge proofs that it possesses the secret r. And since the proofs
are zero-knowledge an adversary cannot learn r by observing the device. Unlike the pre-
vious two protocols, this protocol assumes that the PUF can also perform computation.

Enroll :
1. Server S sends challenge c to user U along with description of the group Gq, de-

noted by 〈Gq〉 and which could consists of a pair (p,q), and its generator g.
2. User U sends H(c||pwd),〈Gq〉,g, where pwd is a user password, to device D for

a modified Gen protocol.
3. Device D calculates a challenge d = H(H(c||pwd),〈Gq〉,g) and runs Gen on this

value to obtain response r,P. D then sends to the user (gr,P).
4. User forwards (gr,P) to server S , which stores the information along with

c,g,〈Gq〉.
Auth :
1. Server S sends challenge c,〈Gq〉,g,P, and a nonce N to the user U.
2. U sends (H(c||pwd),〈Gq〉,g,P,N) to device D for Rep protocol.
3. Device D calculates a challenge d = H(H(c||pwd),g, p) and runs Rep on this value

to obtain response r. D chooses a random value v ∈ Zq and calculates t = gv. D
then calculates c′ = H(g,gr,t,N) and w = v− c′r mod q, and sends c′,w to the U.

4. User U sends these values to the server S . S calculates t ′ = gwgrc′ and accepts the
authentication if c′ = H(g,gr, t ′,N), and otherwise rejects the value.

What is implicit in this and previous schemes is the step where the user provides its
account number or some other identifying information that permits the server to locate
the user’s record with the corresponding helper data P and authentication verification
information. What form this account information takes is not essential in our solution,
and different mechanisms would be acceptable. For example, since we assume that the
device does not store information permanently, the account number can be computed at
the user side as a function of the user’s identity and the bank name.

Robust Authentication Using Physically Unclonable Functions 273

We first show security of a simpler (but very similar) system that uses an oracle.
In this system, the oracle is initialized by obtaining the group setup 〈Gq〉 and g, after
which it chooses a random value r and publishes gr. This operation is performed once,
and all consecutive interactions with the oracle will use the same value r. After the setup
stage, a user can query the oracle with a nonce N. On each query, the oracle chooses
a random value v ∈ Zq and calculates t = gv. It then computes c′ = H(g,gr, t,N) and
w = v− c′r mod q, and replies with c′,w to the querier. We denote this oracle by Oauth.

The difference between this system and the PUF-based system is that the value r is
randomly chosen (rather than produced by the PUF) and the system cannot be used for
authentications on different challenges c. Let an adversary be given black box access to
oracle Oauth and a challenge nonce N. The adversary is allowed to query the oracle on
all values except the challenge nonce. We now argue that, assuming that H is a random
oracle, the adversary cannot forge a proof for the nonce N to the challenger.

The core of the computation performed by the above oracle (and the device in our
Auth protocol) is basically a proof of knowledge of the exponent of gr to the base
g, where the proof uses a priori specified value of nonce N. The basic form of this
proof of knowledge was used in different authentication protocols, including the stan-
dard Schnorr identification protocol [21]. It is well known that in Schnorr’s protocol,
if an adversary can produce the proof with a non-negligible probability, then there is
a knowledge extractor that can produce r with non-negligible probability. That basic
argument is that t must be chosen before c′ and thus for a given value of t there must be
a non-negligible portion of c′ values for which an adversary can construct a proof. Fur-
thermore, if the adversary can construct two proofs for the same t value but different c′
values, then they can obtain r. We now argue that, if such a knowledge extractor exists,
then assuming the random oracle model, there is a polynomial time adversary that can
solve the discrete logarithm problem.

Lemma 2. Any polynomial-time user has at most negligible probability of success au-
thenticating in the above modified system with oracle Oauth.

Proof. Let A be a proof generator with oracle access to Oauth that succeeds in answering
the challenge for nonce N with non-negligible probability. Assume that algorithm B
with access to A is given a value gr and is asked to provide r. B provides A’s access
to random oracles H and Oauth and answers such queries as follows. Recall that in all
queries to Oauth the same g,gr are used.

1. B creates a list of values LOH that will store queries to Oauth and H. The list is
initially empty.

2. When A queries Oauth on a nonce value N, B does the following: it chooses a ran-
dom response w ∈ Zq and a random value c ∈ Zq. It sets t = gwgrc and then adds
the pair (t,N,c) to LOH ; but if there is already a tuple (t,N, ĉ) in LH , ĉ �= c, then B
outputs FAIL. It returns w,c to A.

3. When A queries H on (g,gr,t,N), B searches LOH for a value of the form (t,N,c)
for some c. If it exists, it responds with c. If not, B chooses a random value c, adds
(t,N,c) to LOH , and responds with c.

We first argue that B outputs FAIL with negligible probability. The only way it happens
is if, when answering a query to Oauth, the chosen value t is already in LOH . However, t

274 K.B. Frikken, M. Blanton, and M.J. Atallah

will be a randomly chosen value in Gq and, since there are at most a polynomial number
of tuples in LOH , the probability of an overlap is negligible. Therefore, if A succeeds
with non-negligible probability, a knowledge extractor would exist that allows B to
obtain r. Thus, no such A exists, assuming the discrete logarithm problem is hard. �
Now consider a challenger that provides an adversary with oracle access to a PUF.
The adversary queries a challenger with either Enroll or Auth queries. The challenger
answers all queries with the PUF. Eventually the adversary asks for a challenge and
is given c,〈Gq〉,g, and a nonce N. The adversary can then continue to ask Enroll and
Auth queries (but cannot ask for Auth on the specific nonce N and the specific chal-
lenge). The goal of the adversary is to be able to construct a response to the challenge
that would pass the authentication verification at the server. The adversary wins if the
authentication is successful.

Theorem 2. Any polynomial-time adversary without the proper I-PUF device is unable
to successfully authenticate with more than negligible probability in the Auth protocol.
Proof omitted due to page constraints.

5 Adding Emergency Capabilities

We would like to provide a user under duress with the possibility to lie about her secrets
in such a way that a “silent alarm” is triggered at the server. The coercer should be un-
able to distinguish between an authentication protocol with real password and one with
an emergency password; nor should it be detectable that the authentication protocol has
provisions for using different secrets. More precisely, we consider an adversary who can
record the user’s communication with the server during successful authentication proto-
cols, but does not have access to the communication between the user and the server at
the enrollment stage. The adversary then forces to the user to reveal all information the
user possesses in relation to authentication, including all secrets such as passwords, and
also obtains physical access to the user’s device. The adversary engages in an authenti-
cation protocol with the server on behalf of the user. We require that all information the
adversary observes with full access to the user-provided data and the device does not
allow it to distinguish its communication with the bank from the previously-recorded
communication of the user with more than negligible probability. This means that all
messages must follow exactly the same format and the distributions of data on different
executions are not distinguishable.

We next present a scheme that has this capability. Often the above problem of co-
ercion is addressed by letting the user choose two different passwords (or PINs), the
first for normal operation and second for emergencies (i.e., it also sets off an alarm).
This simple approach no longer works for PUFs because of the noisy nature of their
responses. That is, the server will need to send the appropriate helper data P prior to
knowing what password is being used; sending two helpers would be a tipoff to the co-
ercer. We solve this problem by splitting each password (real and false) in two parts: the
first part is identical in both passwords and it used by PUF to compute its challenge and
response. The second halves are different, but the PUF is not queried on their values.

Robust Authentication Using Physically Unclonable Functions 275

Enroll :
1. Server S sends challenge c to user U along with 〈Gq〉 and generator g of Gq.
2. User U sends c,〈Gq〉,g, pwd1, pwd2, pwd3, where pwdi’s are three user passwords,

to device D for a modified Gen protocol.
3. Device D calculates a challenge d = H(H(c||pwd1),〈Gq〉,g) and runs Gen on this

value to obtain response r,P. D then sends to the user (gH(r||pwd2),gH(r||pwd3),P).
4. User U forwards (gH(r||pwd2),gH(r||pwd3),P) to server S , which stores the informa-

tion along with c,g,〈Gq〉.
Auth :
1. Server S sends challenge c,〈Gq〉,g,P, and a nonce N to the user U.
2. U sends (c,〈Gq〉,g,P,N, pwd) to device D for Rep protocol, where pwd =

pwd1||pwd2 in a normal login and pwd = pwd1||pwd3 in an emergency login.
3. Device D splits pwd into two parts pwd′ and pwd′′. D then calculates its chal-

lenge d = H(H(c||pwd′),g, p) and runs Rep on this value to obtain response
r. D chooses a random value v ∈ Zq and calculates t = gv. D then calculates
c′ = H(g,gH(r,pwd′′),t,N) and w = v− c′H(r||pwd′′) mod q, and sends c′,w to the
U.

4. User U sends these values to the server S . S calculates t ′ = gwgH(r||pwd2)c′ and
accepts the authentication as normal if c′ = H(g,gH(r||pwd2), t,N). If this fails, then
S calculates t ′ = gwgH(r||pwd3)c′ and accepts the authentication as an emergency
login if c′ = H(g,gH(r||pwd3),t,N).

We now argue the coercer’s inability distinguish between normal and emergency ex-
ecutions. As stated earlier, the coercer can record U’s normal authentications prior
to coercion. The communication between U and S during Auth consists of values
(c,〈Gq〉,g,P,N,c′,w), where the first five are sent by the server as a challenge and the
last two are the user’s reply. Coercion gives the adversary the device D and user’s pass-
word pwd = pwd1||pwd3, that he then uses in the protocol. We now formally state (the
proof is omitted due to page constraints) that the adversary’s view of the protocol after
the coercion is indistinguishable from its view of previous invocations of the protocol
by the user.

Theorem 3. A polynomial-time coercer with access to private user data and I-PUF
has negligible probability of distinguishing between normal and emergency executions.

In the above solution, our goal was to provide an authentication mechanism where
the communication during the protocol upon use of emergency password cannot be
distinguished from normal communication, i.e., the observable response remains the
same regardless of what password is used. The actions taken by the server, however,
can be different depending on what password is used (e.g., in emergency, a silent alarm
can sound at the bank and the ATM can issue marked bills). The work of Clark and
Hengartner [1] ties the use of a panic password (or passwords) to the context in which
this functionality is used, as well as the goals and capabilities of the adversary. It is
assumed that the system design is open, in which case the adversary will be aware of
the emergency capabilities of the system. The adversary is also capable of forcing the
user to authenticate several times, possibly using different passwords. The adversary
thus can force the user to open all (regular and panic) passwords he has. In our case,

276 K.B. Frikken, M. Blanton, and M.J. Atallah

the goals of the adversary can be to avoid detection (i.e., not trigger the alarm at the
bank) or escape with unmarked money (i.e., authenticate at least once with the regular
password). We refer the reader to [1] for more information on how such goals can be
achieved with one or more panic passwords. The goal of this section is to provide a
protocol to support emergency capabilities that can be combined with any policy the
system wants to employ in terms of how to use and respond to panic passwords.

One weakness of our protocol is that the adversary could force a user to reveal two
passwords, and then choose one of the passwords at random. Once the user reveals mul-
tiple passwords, the adversary would then either have a 50% chance of either catching
the user in a lie (if the user provided a bad password) or a 50% chance of using the
non-emergency password (if the user did not provide a bad password). We leave the
mitigation of this problem for future work.

6 Conclusions

In this work we describe authentication solutions based on a PUF device that provide
stronger security guarantees to the user than what previously could be achieved. In
particular, in our solution each user is issued a device that aids in authentication and
cannot be copied or cloned. We ensure that: (i) the device alone is not sufficient for
authenticating; (ii) the user must have the device in order to successfully authenticate;
(iii) anyone with complete access to the authentication data at the server side and the
device itself is still unable to impersonate the user (even if the access to the device is
possible prior to account setup). These guarantees hold in the random oracle model.

As another contribution of this work, we add protective mechanisms to the protocol
that allow institutions to quickly recognize attacks when a user is coerced into revealing
her secrets. We allow the user to have an alternative secret that triggers an alarm at the
corresponding institution, but allows for successful authentication in such a way that
the adversary is unable to distinguish between protocol executions that use the regular
and alternative secrets.

A future direction of research is to achieve similar results, but without the random
oracle model. More broadly, there is a need for a systematic investigation of the impli-
cations of PUFs for security functionalities other than authentication, such as fighting
piracy, policy enforcement, tamper-resistance, and anti-counterfeiting.

Acknowledgments

The authors thank the anonymous reviewers for their comments and useful suggestions.

References

1. Clark, J., Hengartner, U.: Panic passwords: Authenticating under duress. In: USENIX Work-
shop on Hot Topics in Security, HotSec 2008 (2008)

2. Suh, G., Devadas, S.: Physical unclonable functions for device authentication and secret key
generation. In: DAC, pp. 9–14 (2007)

Robust Authentication Using Physically Unclonable Functions 277

3. Ozturk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for pervasive
devices. In: IEEE International Conference on Pervasive Computing and Communications,
pp. 170–178 (2008)

4. Simpson, E., Schaumont, P.: Offline hardware/software authentication for reconfigurable
platforms. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 311–323.
Springer, Heidelberg (2006)

5. Guajardo, J., Kumar, S., Schrijen, G.J., Tuyls, P.: Physical unclonable functions and public-
key crypto for fpga ip protection. In: International Conference on Field Programmable Logic
and Applications, pp. 189–195 (2007)

6. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic pUFs and their use for IP
protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80.
Springer, Heidelberg (2007)

7. Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: Pointcheval, D. (ed.) CT-RSA
2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)

8. Bolotnyy, L., Robins, G.: Physically unclonable function-based security and privacy in rfid
systems. In: IEEE International Conference on Pervasive Computing and Communications
(PerCom 2007), pp. 211–220 (2007)

9. Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P., Verbauwhede, I.: Public-key cryp-
tography for rfid-tags. In: Pervasive Computing and Communications Workshops, pp. 217–
222 (2007)

10. Hammouri, G., Sunar, B.: PUF-HB: A tamper-resilient HB based authentication protocol.
In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 346–365. Springer, Heidelberg (2008)

11. Hammouri, G., Ozturk, E., Birand, B., Sunar, B.: Unclonable lightweight authentication
scheme. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008. LNCS, vol. 5308, pp. 33–48.
Springer, Heidelberg (2008)

12. Park, Y.M., Park, S.K.: Two factor authenticated key exchange (TAKE) protocol in public
wireless LANs. IEICE Transactions on Communications E87-B(5), 1382–1385 (2004)

13. Pietro, R.D., Me, G., Strangio, M.: A two-factor mobile authentication scheme for secure
financial transactions. In: International Conference on Mobile Business (ICMB 2005), pp.
28–34 (2005)

14. Bhargav-Spantzel, A., Sqicciarini, A., Modi, S., Young, M., Bertino, E., Elliott, S.: Privacy
preserving multi-factor authentication with biometrics. Journal of Computer Security 15(5),
529–560 (2007)

15. Stebila, D., Udupi, P., Chang, S.: Multi-factor password-authenticated key exchange. Tech-
nical Report ePrint Cryptology Archive 2008/214 (2008)

16. Boyen, X.: Reusable cryptographic fuzzy extractors. In: ACM Conference on Computer and
Communications Security (CCS 2004), pp. 82–91 (2004)

17. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In:
ACM Conference on Computer and Communications Security (CCS 2002), pp. 148–160
(2002)

18. Skoric, B., Tuyls, P.: Secret key generation from classical physics. Philips Research Book
Series (2005)

19. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biomet-
rics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

20. Chaum, D., Evertse, J.H., van de Graaf, J.: An improved protocol for demonstrating pos-
session of discrete logarithms and some generalizations. In: Price, W.L., Chaum, D. (eds.)
EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)

21. Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–
174 (1991)

	Robust Authentication Using Physically Unclonable Functions
	Introduction
	Related Work
	Security Model
	Problem Description
	Modeling PUFs
	Security Requirements

	Schemes
	Preliminary Scheme
	Preliminary Scheme Revisited
	Final Scheme

	Adding Emergency Capabilities
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

