
Int. J. Inf. Secur.
DOI 10.1007/s10207-015-0301-1

REGULAR CONTRIBUTION

Private and oblivious set and multiset operations

Marina Blanton1 · Everaldo Aguiar1

© Springer-Verlag Berlin Heidelberg 2015

Abstract Privacy-preserving set operations are a popular
research topic. Despite a large body of literature, the great
majority of the available solutions are two-party protocols
and expect that each participant knows her input set in the
clear. In this work, we put forward a new framework for
secure multi-party set and multiset operations in which the
inputs can be arbitrarily partitioned among the participants,
knowledge of an input (multi)set is not required for any party,
and the secure set operations can be composed and can also
be securely outsourced to third-party computation providers.
In this framework, we construct a comprehensive suite of
secure protocols for set operations and their various exten-
sions. Our protocols are secure in the information-theoretic
sense and are designed to minimize the round complexity.
We then also build support for multiset operations by pro-
viding (i) a generic conversion from a multiset to a set,
which makes the protocols for set operations applicable to
multisets and (ii) direct instantiations of multiset operations
of improved performance. All of our protocols have com-
munication and computation complexity of O(m logm) and
logarithmic round complexity for sets or multisets of size

Portions of this work were sponsored by Grants
AFOSR-FA9550-09-1-0223 and AFOSR-FA9550-13-1-0066 from the
US Air Force Office of Scientific Research and Grants CNS-1223699
and CNS-1319090 from the US National Science Foundation. Any
opinions, findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not necessarily reflect
the views of the funding agencies.

B Marina Blanton
mblanton@nd.edu

Everaldo Aguiar
eaguiar@nd.edu

1 Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556, USA

m, which compares favorably with prior work. Practical-
ity of our solutions is shown through experimental results,
and novel optimizations based on set compaction allow us to
improve performance of our protocols in practice. Our pro-
tocols are secure in both semi-honest and malicious security
models.

Keywords Set and multiset operations · Oblivious
algorithms · Secure multi-party computation · Secret
sharing · Oblivious sorting

1 Introduction

The ability to securely perform set operations on private
inputs is widely recognized as an important topic with numer-
ous applications. One example is to compute intersection of
databases belonging to different agencies or organizations,
which by law or other provisions are not permitted to share
their records in the clear, but want to compute the set of
records common to both of them. This can be used in contexts
ranging from finding passengers of an airline who appear in
the national watch list to determining customers common to
two companies for more effective advertisement. The impor-
tance of the topic is also evidenced by a significant body of
prior work (see, e.g., [5,29,34,35,43,49,52]).

Work on privacy-preserving set operations started with the
seminal work of Freedman et al. [34]. Consequently, many
other publications appeared with the goal of extending the
functionality or improving its performance. Secure proto-
cols are known for set intersection (e.g., [29,34,42,49,52]),
set union (e.g., [35,43,52]), set intersection cardinality or
over-the-threshold cardinality (e.g., [32,68]), multiset ele-
ment reduction ([52]), and others. Most publications assume
the two-party setting, in which Alice and Bob each possess

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-015-0301-1&domain=pdf

M. Blanton, E. Aguiar

a private set A and B, respectively, apply a set operation to
the sets, and learn the result (or only one of them learns the
result). In such protocols, the knowledge of the private input
A or B is essential for correctly recovering the result.

While this problem formulation has a large number of
applications, the existing solutions cannot be securely used
as building blocks in larger protocols as they are not designed
to be composable.1 That is, a set operation has to comprise
the entire computation as neither the output can remain pri-
vate from both parties nor the existing solutions apply when
an input set is the result of prior secure computation and is
not known to either party. One example application that could
benefit from composable set operations is privacy-preserving
product network aggregation [62], in which set union and set
intersection operations are executed one after another. Prior
solutions to this problem had to reveal some information at
an intermediate step because the existing set union and inter-
section protocols were not composable. The literature that
provides solutions for the multi-party setting [35,52] like-
wise assumes that each participant has access to her private
set in the clear.

The recent emergence of cloud computing demands tech-
niques for secure outsourcing that will allow the benefits of
available cloud services to be utilized to the fullest extent,
which otherwise might not be used due to the fear of infor-
mation disclosure. In that setting, the computational parties
do not have access to the private inputs and it is essential that
they do not learn any information about the data they process,
while are able to carry out the computation correctly. In
other words, the computation needs to be data-independent or
oblivious. From that point of view, it is desirable to have pro-
tocols that are both composable and can be used in outsourced
tasks, which we set as one of our goals. Note that in many
existing solutions, the computation cannot be outsourced
because performing the computation requires knowledge of
some of the inputs.

We utilize secure multi-party computation (SMC) frame-
work, where n > 2 computational parties carry out the
computation using linear secret sharing and can be indepen-
dent from input owners or output recipients. This means that
the techniques are suitable for traditional secure multi-party
computation as well as secure outsourcing by one or more
parties who utilize multiple computational servers for secure
computation. In the case of secure outsourcing, each client
simply distributes its input to the servers and receives and
reconstructs the output at the end of the computation, i.e., the
computation is non-interactive for the client. As we employ
secret sharing, only a fraction t of the computational parties

1 Here by composability we mean the ability to use set operations as
building blocks in larger computation using sequential composition.
This is different from security under concurrent execution in the uni-
versal composability framework, which our protocols also achieve.

(or servers to which the computation is being outsourced)
can collude or misbehave to guarantee security, which often
implies that the majority of the computational parties must
be honest. Related problem formulations from the literature
include secure outsourcing to a single server (e.g., [70]),
secure outsourcing to two non-colluding servers (e.g., [10]),
and server-aided computation with a single server, where the
client’s work is not guaranteed to be linear in the input/output
size (e.g., [51]).

1.1 Our contributions

In this work, we provide a suite of secure multi-party proto-
cols for a number of set and multiset operations, which are:
union, intersection, difference, symmetric difference, equal-
ity, subset and superset relationships, and element reduction
(for multisets only). Besides computing the main function-
ality, we provide variants of the protocols that produce
cardinality of the resulting (multi)set, compute over-the-
threshold cardinality and produce a bit, or take multiple (i.e.,
more than two) input sets. Furthermore, our protocols can be
used to always hide the size of the input/output (multi)sets
or the size can be revealed to make any computation that
follows more efficient (since complexity of set operations is
proportional to the size of their representation).

After building secure solutions for sets, we provide a
generic conversion from a multiset to a set that allows us
to run our protocols for secure set operations on multisets. In
addition, we build direct and more efficient secure realization
of all multiset operations. Finally, we describe a number of
optimizations that allow for faster performance of our proto-
cols, including a novel technique based on set compaction.

In addition to minimizing the total number of operations,
substantial part of this work is dedicated to reducing the num-
ber of rounds (i.e., sequential interactive operations) of set
and multiset operations, which has a tremendous impact on
the performance of our protocols in practice. Lowering the
number of rounds is challenging for certain operations (and
multiset operations in particular), but we were able to reduce
the round complexity from linear in the size of the inputs to
logarithmic, where all but a constant number of rounds are
contributed by oblivious sorting used as a building block in
our protocols.

Security of our protocols is formally shown in both semi-
honest (honest-but-curious or passive) and malicious (active)
models.

We implement our solutions for selected set and multiset
operations and show that their performance is practical and
comparable to those of the latest (more restrictive) two-party
solutions.

The advantages of our solutions over previously available
results are as follows:

123

Private and oblivious set and multiset operations

1. The requirement that each input set/multiset is known by
a participant in the clear is removed. This implies that
the elements of the input sets can be arbitrarily parti-
tioned among the participants. The input sets can also be
a result of prior privacy-preserving computation and are
not known in the clear to any participant.

2. Our protocols are composable. Because both the inputs
and outputs are split among the participants, our protocols
can be composed an arbitrary number of times or they can
be used as building blocks in larger computations.

3. No intermediate results or other information are revealed
to the participants, which makes the solution suitable for
secure computation outsourcing. In other words, the par-
ties who provide the inputs and/or learn the output can
be different from the parties carrying out secure com-
putation. This is in contrast to prior results, where the
knowledge of a set in the clear was essential for correct-
ness of the computation.

4. Our solution provides natural support for hiding the sizes
of the sets. The input sets can be padded for additional
security, and the size of the result is never revealed, unless
the parties decide to do otherwise.

5. Unlike most prior literature, our techniques make no use
of expensive operations based on public-key cryptogra-
phy and achieve information-theoretic security (assum-
ing the existence of secure channels between the partici-
pants).

6. All of our protocols are efficient and have O(m logm)

communication and computation complexity where m is
the sum of the input sets’ sizes. This compares favorably
with the existing solutions (which we detail below).

Part of this work appeared in [9]. Major differences from [9]
include: (1) coverage of additional set and multiset opera-
tions, (2) rigorous security and complexity analyses, (3) new
constructions for multiset operations, (4) new optimizations,
(5) new experimental performance analysis, and (6) improve-
ments throughout this work.

2 Related work

2.1 Privacy-preserving set operations

The first custom solutions for securely computing set
operations were two-party set intersection and intersection
cardinality protocols of Freedman et al. [34] based on homo-
morphic encryption and polynomial representation of sets.
The authors also proposed an optimization using balanced
hash functions that reduced the computation overhead to
O(m ln lnm), while the overall communication complex-
ity of the protocols was O(m). Here m represents the set
size and n ≥ 2 will denote the number of parties. Kissner

and Song [52] extended that work by building a framework
of multiset operations which included set union, intersec-
tion, and element reduction. This work was also the first to
establish protocols secure against malicious players when
three or more parties were involved, which was done via
zero-knowledge proofs. The protocols secure in the honest-
but-curious model (and the set intersection protocol secure in
the malicious model) presented in [52] had communication
complexities of O(n2m), or O(c2m) when c < n dishonest
players collude, and computation complexity of O(n2m2).
Hazay and Lindell [42] proposed the first two-party private
set intersection protocol based on oblivious pseudorandom
functions (OPRFs). If we denote m1 and m2 to be the num-
ber of elements in the sets, where the first set is considered
to belong to the server and the second to the client, and t to
be the size of the binary representation of input elements, the
solution in [42] is constant round and have communication
and computation (modular exponentiations) complexities of
O(m1 · t+m2). An improvement to this work is presented by
Jarecki and Liu in [48], and a similar protocol that replaces
the OPRFs with unpredictable functions can be found in [49].

An efficient set union protocol for the malicious adver-
sary, with communication complexity of O(n2m2+n3m) and
O(n) rounds, was given by Frikken [35]. Hong et al. [46] sug-
gest another set union protocol for the malicious adversary,
which uses a modified ElGamal cryptosystem and achieves
constant-round communication. Additionally, [21,22,31,43]
provide protocols for privacy-preserving set intersection in
the two-party setting secure against malicious adversaries.
The approach of De Cristofaro et al. [31], building on the
efficient solution from [29], yields linear complexities (in the
number of set elements) for both communication and compu-
tation achieving higher efficiency than prior linear-time work
[48]. Also, publications [32,52,58,63,68] propose protocols
that compute the set intersection cardinality (rather than the
intersection itself), with [32] being the most efficient and
having linear-time computation and communication com-
plexities in the semi-honest model (in the random oracle
model). One noteworthy recent work by Ateniese et al. [5]
adds to the two-party set intersection operation the feature of
hiding the size of the input set (including the upper bound)
held by the participant who learns the result. The computa-
tion performed locally by that party is then no longer linear,
but instead is O(m logm), where m is size of that party’s
input set. Lastly, we highlight the work of Sang and Shen
[63], which describes protocols for several set operations
in the Universal Composability framework with malicious
adversaries and O(n2m2) complexities.

There are also publications that develop private set inter-
section protocols in the information-theoretic setting [56,
58–60]. Li and Wu [56] proposed the first unconditionally
secure protocol using polynomial representation of sets and
two-dimensional secret sharing (where values are shared

123

M. Blanton, E. Aguiar

among the players and each share is again shared among
them) with communication complexity of O(n4m2) in the
malicious model and t < n/3 parties under control of
an active adversary (though that complexity is contested
in [59]). Patra et al. [59] revisit the problem and provide
an information-theoretically secure set intersection proto-
col with communication complexity of O(n3m2 + n4). This
solution is used by the same authors in [60] to build a
protocol that works when the adversary controls t < n/2
parties, in which case communication complexity becomes
O(n4m2+n5). Narayanan et al. [58] addresses private match-
ing, set disjointness, and set intersection cardinality in the
information-theoretic setting with semi-honest adversaries.

The only implementations of private set operations that
we are aware of are for two-party set intersection in [47] that
uses garbled circuits and in [30] that implements the protocol
from [31].

Table 1 provides a brief comparison of the most rele-
vant protocols listing their complexities and functionality.
Notations PSI and PMI stand for “private set intersection”
and “private multiset intersection,” respectively. U stands for
“union,” ER stands for “element reduction,” CA means “car-
dinality,” SR denotes “subset relationship,” and “set equality”
and “superset relationship” are represented by SE and SuR.
All complexities are listed for the malicious adversary and
correspond to solutions with the best performance. In the
table, a solution is marked as size hiding if the sizes of the
input sets can be protected by means of padding. We note
that [5] achieves a stronger notion of size hiding in which no
information about one of the two input sets is revealed. We
additionally achieve that no information about the size of the

output set (beyond the bounds imposed by the sizes of the
(padded) input sets) is revealed to the parties. The complexity
of the results in Table 1 that rely on public-key cryptography
is measured in public-key operations reported in them (i.e.,
not the total number of operations), and the security parame-
ters for communication are implicit. The remaining solutions
achieve information-theoretic security with communication
measured in the number of field elements (of small size). All
reported complexities reflect the combined work and com-
munication of all parties.

2.2 Secure multi-party computation

The literature on SMC and function evaluation is very exten-
sive and its review is beyond the scope of this work. In
the multi-party setting, employed in this work, the avail-
able techniques are garbled circuit evaluation (e.g., [8,38]),
linear secret sharing techniques (e.g., [19,65]), and thresh-
old homomorphic encryption (e.g., [20,23,33]). We employ
linear secret sharing and design efficient and information-
theoretically secure protocols for set and multiset operations.

2.3 Parallel set operations

Set operations have also been examined in the realm of par-
allel computing. Early solutions [53,66] utilized specially
designed array structures to efficiently compute these oper-
ations directly in hardware. More recent parallel techniques
[11] involve a careful arrangement of the data into random
balanced binary trees. While these techniques allow set oper-
ations to be performed efficiently, they were not designed to

Table 1 Summary of secure set operations protocols with the best performance

Reference Operation Computation Communication Mult.
party

Uncond.
security

Size
hiding

Compos-
able

De Cristofaro et al. [31] PSI O(m) O(m)

De Cristofaro et al. [32] PSI-CA O(m) O(m)

Ateniese et al. [5] PSI O(m logm) O(m)
√

Kissner and Song [52] PSI, PSI-CA O(n2m2) O(n2m)
√

Cheon et al. [17] PSI O(n3m) O(n3m)
√

Dachman-Soled et al. [22] PSI O(nm2) O(nm +
m log2 m)

√

Hong et al. [46] PMU O(n2m2) O(n2m)
√

Patra et al. [59] PSI O(n3m2 + n4) O(n3m2 + n4)
√ √

This work PSI, PSU, PSDiff, PER, O(nm logm +
n2 logm + n3)

O(nm logm +
n2 logm + n3)

√ √ √ √
PSR, PSI-CA, PSU-CA,

PSDiff-CA, PER-CA,

PMI, PMU, PMDiff,

PSE, PSuR, PMI-CA,

PMU-CA, PMDiff-CA

123

Private and oblivious set and multiset operations

be secure, are not data-oblivious, and do not naturally lend
themselves to secure multi-party protocols.

3 Preliminaries

3.1 Framework

In this work, we use the multi-party setting in which n > 2
parties P1, . . ., Pn jointly execute prescribed functionality on
private inputs. We utilize a linear secret sharing scheme (such
as [65]) for representation of, and secure computation over
private values. To ensure composability of our protocols, we
assume P1 through Pn receive their shares of the input prior
to the computation and compute shares of the output. Then
any party with private input will produce shares of it before
the computation starts, and upon computation completion,
P1 through Pn send their shares to the entities entitled to
learn the result. This gives flexibility to the problem setting in
that the input parties may be disjoint from the computational
parties (as in the case with outsourcing). Similarly, the parties
receiving the output do not have to coincide with the input
parties or computational parties.

Throughout this work, we assume that parties P1, . . ., Pn
are pair-wise connected by secure authenticated channels (the
underlying communication model depends on the employed
secret sharing; usually synchronous communication with
broadcast channels is assumed). Each input and output
party also establishes secure channels with P1 through
Pn . With (n, t)-secret sharing, any private value is secret-
shared among n parties such that any t + 1 shares can be
used to reconstruct it, while t or fewer shares information-
theoretically reveal no information about the shared value.
Therefore, the values of n and t should be chosen such that
an adversary is unable to corrupt more than t computational
parties.

In a linear secret sharing scheme, a linear combination of
secret-shared values can be computed by each computational
party locally, without any interaction, but multiplication of
two secret-shared values requires communication between
the computational parties. In other words, if we let [x] denote
that value x is secret-shared among P1, . . ., Pn , operations
[x]+ [y], [x] + c, and c[x] are performed by each Pi locally
on its shares of x and y, while computation of [x][y] is
interactive. The most common way of implementing a multi-
plication operation is by sending the total of O(n2) messages
(where each participant sends n − 1 messages, one to each
other participant) using, for instance, the techniques of [36],
but recent results [7,24,45] lower the communication to O(n)

messages per multiplication.
All operations are assumed to be performed in a field

Zp for a small prime p greater than the maximum value
used in the computation. We use � to denote the bitlength of
(multi)set elements, and therefore, it must hold that p ≥ 2�.

Without loss of generality, we assume that the domain of
set elements consists of integers greater than 0, i.e., it is
[1, 2� − 1] (i.e., if the domain is different, it can always be
mapped to [1, 2� − 1] for some �).

Performance of secure computation is of grand signifi-
cance, as protecting secrecy of data throughout the compu-
tation often incurs substantial computational costs. For that
reason, besides security, efficient performance of the devel-
oped techniques is one of our primary goals. Performance of
a protocol in our setting is typically measured in terms of:
(i) the number of interactive operations (multiplications, dis-
tributing shares of a private value or opening a secret-shared
value) necessary to perform the computation, or invocations,
and (ii) the number of sequential interactions, or rounds. We
employ the same metrics here.

3.2 Building blocks

We now proceed with a brief description of building blocks
which are used in our solutions, namely oblivious sorting,
comparisons, and prefix-AND.

3.2.1 Oblivious sorting

When sorting is utilized in secure computation, the sequence
of operations that the parties execute must be independent of
the set they are sorting, or data-oblivious, to ensure that no
information about the private data is revealed. While most
sorting algorithms are not oblivious, using a sorting net-
work results in an oblivious solution. Such techniques use
compare-and-exchange operations (CEO), which are fixed
and independent of the input. In our setting, a CEO can be
implemented as follows:

[s] ← GE([a], [b], �)
[c] ← [s][b] + (1 − [s])[a]
[d] ← [s][a] + (1 − [s])[b]

where GE denotes a “greater than or equal” operation for
�-bit operands (detailed below) that produces a bit. After
comparing a and b, c corresponds to min(a, b) and d to
max(a, b).

Ajtai et al. [1] describe a sorting network with O(m logm)

comparisons for a set of cardinality m, but it has a very
high constant behind the big-O notation. More practically,
Batcher’s network [6] uses O(m log2 m) comparisons and
was the basis of secure multi-party sorting by Jónsson et
al. [50]. More recent results [39,41,55] developed oblivious
randomized sorting algorithms with O(m logm) compar-
isons and low constants which succeed with very high proba-
bility. Another recent solution is due to Zhang [72], in which
oblivious sorting is achieved in constant round using O(m2)

or O(mR) communication and computation, where [0, R]

123

M. Blanton, E. Aguiar

is the range of numbers to be sorted. Throughout the paper,
we use notation ([y1], . . ., [ym]) ← Sort([x1], . . ., [xm], �)
to denote secure implementation of oblivious sorting on �-
bit values in this framework. In some cases, we also need to
sort tuples, where the comparisons are performed using the
first element of each tuple, but the entire tuples are swapped
based on the outcome of a comparison. We denote this
modification bySortT, e.g., 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉 ←
SortT(〈[a1], [b1]〉, . . ., 〈[am], [bm]〉, �) denotes sorting of 2-
tuples.

Because performance is of particular importance to us
and complexity of oblivious sorting dominates the com-
plexity of all of our algorithms, we analyze the solutions
of [39] and [6] in more detail. Goodrich’s shellsort [39]
uses asymptotically low 5m logm − 7.5m + 9 ≈ 5m logm
CEOs, but requires 5m − logm + 1 ≈ 5m of them to be
executed consecutively. The number of rounds then corre-
sponds to this value multiplied by the round complexity of
a CEO. Batcher’s network [6] that uses odd-even merge
sort involves 1

4m(log2 m − log n + 4) − 1 ≈ 1
4m log2 m

CEOs, but they can be more effectively parallelized using
1
2 logm(logm + 1) ≈ 1

2 log2 m consecutive CEOs. Also, for
m � 106, Batcher’s network involves fewer comparisons
than Goodrich’s shellsort.

In some cases, we also need to merge two sorted
arrays, which can be accomplished faster than sorting all
elements. For that reason, we define and use protocol
Merge(([x1], . . ., [xm1]), ([y1], . . ., [ym2]), �), which is part
of Batcher’s oblivious merge sort. Oblivious bitonic merge
from [6] uses 1

2m logm CEOs and has depth (i.e., the num-
ber of consecutive CEOs) of logm. Similar to sorting, use
MergeT to denote the tuple version of Merge.

3.2.2 Other protocols

We also rely on the following secure protocols from prior
literature:

– [b] ← Eq([x], [y], �) is an equality protocol that, on
input two secret-shared values x and y of length at most
� bits, outputs (shares of) a bit b which is set to 1 iff x =
y. The most efficient implementation of this operation
that we are aware of is from [15] which uses � + 4 log �

invocations in 4 rounds, where most of the cost is input
independent and can be performed ahead of time.

– [b] ← GE([x], [y], �) is a comparison protocol that, on
input two secret-shared �-bit values x and y, outputs a bit
b which is set to 1 iff x ≥ y. Efficient implementations
of this function also exist, e.g., we can use the protocol
from [15] with 4 rounds and 4� − 2 invocations, where
precomputation can also reduce the cost.

– ([y1], . . ., [yk]) ← PreAND([x1], . . ., [xk]) computes
prefix-AND, which on input a sequence of bits x1, . . ., xk ,
outputs bits y1, . . ., yk , where each yi = ∧i

j=1 x j .

Secure multi-party implementation of PreAND can be
realized by utilizing prefix-OR, PreOR, by calling
PreOR(1−[x1], . . ., 1−[xk]) and outputting the comple-
ments of the returned bits. ThePreOR protocol from [15]
uses three rounds and 5k − 1 invocations, where, as
before, input-independent precomputation can reduce the
cost.

The complexities of Eq, GE, and PreAND functionali-
ties cited above correspond to statistically secure protocols,
but alternative implementations that achieve perfect secrecy
are also available. All other parts of our solutions, with the
exception of another building block described in Protocol
17 in optimizations Sect. 7, are perfectly secure. Therefore,
by using perfectly secure implementations of these build-
ing blocks the overall solutions will be perfectly secure as
well. Because the separation between perfect and statistical
security might be important with respect to what security
properties we can obtain, we note that perfectly secure ver-
sions of Eq, GE, and PreAND that also run in a constant
number of rounds and have linear complexities (in � in case
of Eq and GE and in k in case of PreAND) are available
from [25]. They can be built from any linear secret sharing
scheme with a multiplication protocol. The main difference
between these protocols and the protocols from [15] is that the
perfectly secure versions of comparison operations assume
that the arguments are given in a bitwise form (i.e., x and
y are represented as shares of � bits each). This does not
impose a limitation for the type of computations used in this
work because the overwhelming number of operations are
contributed by comparisons. We therefore can use bitwise
representation of (multi)set elements throughout the proto-
cols without increasing their asymptotic complexity. If at any
point of the computation bit-decomposition is required (e.g.,
for computing over-the-threshold versions of set operations),
it is also available from [25] and other sources.

Finally, another recent work by Toft [67] provides equality
and comparison protocols of sublinear (in �) complex-
ity. In particular, the equality protocol in [67] uses O(δ)

invocations in a constant number of rounds, where δ is a
correctness parameter, and a comparison is performed using
O(log �(δ + log log �)) invocations in O(log �) rounds or
using O(

√
�(δ + log �)) interactive operations in a con-

stant number of rounds for the same δ. These protocols are,
however, more suitable for SMC based on homomorphic
encryption and are applicable to our setting only when t = 1.

3.3 Security model

For each presented protocol, we define its secure function-
ality such that the computational parties do not provide any
input and do not receive any output. Instead, it is assumed
that prior to the beginning of each protocol the input par-

123

Private and oblivious set and multiset operations

ties secret-share their sets among the computational parties.
Likewise, at the end of the computation, the computational
parties send their shares to the entities entitled to learn the
result who reconstruct the output.

We next formally define security using the standard def-
inition in secure multi-party computation for semi-honest
adversaries, who follow the protocol as prescribed, but
might try to learn more than they entitled from the proto-
col execution. For this case, we assume that the adversary
is static, i.e., the set of corrupted parties is fixed prior
to the protocol execution. When, however, treating the
case of malicious adversaries who can follow any arbitrary
strategy, we will assume the adaptive adversary who can
adaptively corrupt the participants throughout the protocol
execution.

Definition 1 Let parties P1, . . ., Pn with pair-wise secure
channels engage in a protocol π that computes a (possibly
probabilistic) n-ary function f : ({0, 1}∗)n → ({0, 1}∗)n ,
where Pi contributes input ini and receives output outi .
Let VIEWπ (Pi) denote the view of participant Pi during
the execution of protocol π . More precisely, Pi ’s view is
formed by its input and internal random coin tosses ri , as
well as messagesm1, . . .,mk passed between the parties dur-
ing protocol execution: VIEWπ (Pi) = (ini , ri ,m1, . . .,mk).

Let I = {Pi1 , Pi2 , . . ., Pit } denote a subset of the partici-
pants, VIEWπ (I) denote the combined view of participants
in I during the execution of protocol π (i.e., VIEWπ (I) =
(VIEWπ (Pi1), . . ., VIEWπ (Pit))), and f I (in1, . . ., inn)
denote the projection of f (in1, . . ., inn) on the coordinates
in I (i.e., f I (in1, . . ., inn) consists of the i1th, . . ., it th ele-
ments that f (in1, . . ., inn) outputs). We say that protocol
π is t-private in presence of static semi-honest adversaries
if for each coalition I of size at most t and all ini ∈
{0, 1}∗ there exists a probabilistic polynomial time simulator
SI such that {(SI (inI , f I (in1, . . ., inn)), f (in1, . . ., inn))} ≡
{(VIEWπ (I), (out1, . . .,outn))}, where inI = (ini1, . . .,
init) and “≡” denotes perfect or statistical indistinguisha-
bility.

By secure channels, we mean private authenticated chan-
nels, in which case security is information-theoretic. In case
of malicious adversaries, security is formalized by comparing
a protocol execution to an ideal model where the participants
simply send their inputs to a trusted third party and receive
their outputs back.

Definition 2 Let π be a protocol that computes function
f : ({0, 1}∗)n → ({0, 1}∗)n , with party Pi contributing
input ini . Let A be an arbitrary algorithm with auxiliary
input x and S be an adversary/simulator in the ideal model.
Let REALπ,A(x),I (in1, . . ., inn) denote the view of adver-
sary A controlling parties in I together with the honest
parties’ outputs after real protocol π execution. Similarly,

let IDEAL f,S(x),I (in1, . . ., inn) denote the view of S and
outputs of honest parties after ideal execution of func-
tion f . We say that π t-securely computes f if for each
coalition I of size at most t , every probabilistic A in the
real model, all in ∈ {0, 1}∗ and x ∈ {0, 1}∗, there is
probabilistic S in the ideal model that runs in time poly-
nomial in A’s runtime and {IDEAL f,S(x),I (in1, . . ., inn)} ≡
{REALπ,A(x),I (in1, . . ., inn)}.

Security in the semi-honest model holds for t < n/2 and
in malicious for t < n/3.

4 Set operations

This section presents our solutions for several set
operations—set intersection, union, asymmetric and sym-
metric difference, subset and superset relationships, and set
equality, as well as multiset element reduction. All other
multiset operations are treated in consecutive sections. Our
solutions assume that the set or multiset operations are per-
formed on �-bit values in integer representation, and the
parameter � is omitted from the notation.

Intuitively, correctly computing an operation on sets A and
B of sizem without any knowledge of what these sets contain
appears to be hard if fewer thanm2 comparisons are used (one
comparison for eachai ∈ A and b j ∈ B). Indeed, if any given
pair of elements ai , b j have not been (explicitly or implicitly)
compared, then for arbitrary sets A and B the result is not
guaranteed to be correct. If, however, the result is known to
be correct with fewer comparisons, then some information
about the input sets must be known which violates our secu-
rity requirements. Fortunately, relationships between some
pairs ai , b j can be determined implicitly, based on other
explicit comparisons of elements of A and B, which elim-
inates the need for m2 comparisons. We notice that once
data-oblivious sorting is used as a building block, we can real-
ize all of our set and multiset operations using O(m logm)

interactive operations (comparisons) and their round com-
plexity exceeds that of sorting by a small (additive) constant.
We mark all interactive operations and rounds in our proto-
cols.

4.1 Core protocols

The main idea behind our solutions consists of combining
the input sets into one, sorting the resulting set, and com-
paring adjacent elements of the sorted set to determine what
elements should be kept and what should be erased, depend-
ing on the desired set operation. For certain set operations
such as set difference, we also maintain information about
the origin of an element (e.g., coming from the first or the
second input set) to implement the desired functionality. A
more detailed description of each operation is given next.

123

M. Blanton, E. Aguiar

4.1.1 Set union

The first protocol that we describe computes the set union
C = A ∪ B, where A = {a1, . . ., am1}, B = {b1, . . ., bm2},
andC = {c1, . . ., cm1+m2}. Initially, the elements of A and B
are combined into a new set and subsequently sorted. Next,
we need to eliminate duplicates, as we wish to keep only a
single instance of each item appearing in either of the sets.
To accomplish this, our protocol looks at adjacent items in
the sorted set, xi and xi+1. If the elements are the same, the
first instance is erased by setting the corresponding item ci
in the resulting set to 0 (recall that 0 is not a valid element of
A or B). The protocol makes no changes to those items that
occur a single time.

Protocol 1. [c1], . . ., [cm1+m2] ← Union([a1], . . ., [am1],
[b1], . . ., [bm2])
1. [x1], . . ., [xm1+m2] ← Sort([a1], . . ., [am1], [b1], . . .,

[bm2], �); // Sect. 3.2
2. for i = 1 to m1 + m2 − 1 do in parallel
3. [ui] ← Eq([xi], [xi+1], �); // Sect. 3.2
4. [ci] ← [xi](1 − [ui]); // 1 round, m1 +m2 − 1 inv
5. [cm1+m2] ← [xm1+m2];
6. return [c1], . . ., [cm1+m2];

For example, on input sets 〈2, 4, 1, 5〉 and 〈4, 3, 2〉, we
obtain 〈1, 2, 2, 3, 4, 4, 5〉 after step 1 and 〈1, 0, 2, 3, 0, 4, 5〉
after step 5. Note that the computation in the protocol can
be parallelized, and each element of the output is computed
independently of others. While this protocol provides the
most basic version, we subsequently describe how the size
of the set C can be reduced to contain only nonzero elements
(the actual members of the union) if desired.

4.1.2 Set intersection

Following the set union logic, we could implement our pro-
tocol for set intersection in a similar manner. This time, after
sorting the combined set of size m = m1 + m2, we wish to
erase (i.e., set to 0) each distinct element once (note that there
will be either one or two instances of each distinct element).
In its simplest form, in the protocol we could compare two
consecutive elements xi and xi+1 in the sorted set and keep
xi if they are equal. Huang et al. [47], however, notice that
the size of the output set can be reduced in half if instead we
compare each even element of the sorted set to its adjacent
elements. Then if either comparison results in 1, we keep the
current element and otherwise set it to 0. The output con-
sists of only even elements, which gives us m/2� elements
in the output set. Implementing this logic in our framework
results in similar (in fact, slightly more efficient) performance

compared to the simpler logic, but the output size is reduced
in half, which improves efficiency of the computations that
follow. We also note that from the set operations that we
implement in this work, set intersection is the only operation
where the output size can be reduced to a fraction of the input
set sizes without any knowledge of the inputs by computing
values at certain fixed locations.

In our set intersection protocol we implement the logic
described above, where we have to make an exception for
the last element in case m = m1 + m2 is even (i.e., in that
case the element at position m is compared only to its pre-
decessor at position m − 1). For any given element x2i of
the sorted set, let ui denote the result of the comparison of
x2i with x2i−1 and vi denote the result of x2i ’s comparison
with x2i+1. Then to compute the corresponding element of
the output set ci , we need to multiply x2i with the OR of ui
and vi . In general, Boolean OR a ∨ b can be implemented
as a + b − ab, but we note that in our case ui and vi will
never be simultaneously 1. This means that the sum ui + vi
will correspond to their OR, reducing the number of inter-
active operations. As before, computing all elements of the
result A ∩ B proceeds in parallel, which is of grand impor-
tance because the size of A and B can be very large. For our
example input sets, the protocol outputs 〈2, 0, 4〉.

Protocol 2. [c1], . . ., [cm/2�] ← Int([a1], . . ., [am1], [b1],
. . ., [bm2])
1. [x1], . . ., [xm]←Sort([a1], . . ., [am1],[b1], . . ., [bm2],�);

//Sect. 3.2
2. for i = 1 to (m − 1)/2� do in parallel
3. [ui] ← Eq([x2i], [x2i−1], �); // Sect. 3.2
4. [vi] ← Eq([x2i], [x2i+1], �); // Sect. 3.2
5. [ci] ← ([ui] + [vi])[x2i]; // 1 round, (m − 1)/2� inv
6. if (m mod 2 = 0)
7. [um/2] ← Eq([xm], [xm−1], �); // Sect. 3.2
8. [cm/2] ← [um/2][xm]; // 1 inv
9. return [c1], . . ., [cm/2�];

4.1.3 Subset relationship

The subset protocol computes whether a given set A is con-

tained in another set B, i.e., A
?⊆ B. It returns a bit which is

set to 1 if A ⊆ B and 0 otherwise. The algorithm proceeds
by comparing all pairs of adjacent elements in the aggregate
sorted array and returns 1 iff the number of elements that were
equal is exactly the size of the set A. Note that we run the
protocol only when m1 ≤ m2 (assuming no padding in the
input sets); otherwise, the output bit is automatically set to 0.
For example, for inputs 〈2, 4, 1, 5〉 and 〈4, 3, 2〉, the output is
0 because m1 > m2. For inputs 〈4, 3, 2〉 and 〈2, 4, 1, 5〉, on

123

Private and oblivious set and multiset operations

the other hand, the protocol is executed, but returns 0 because
t = 2 �= m1 = 3.

Protocol 3. [s] ← Sub([a1], . . ., [am1], [b1], . . ., [bm2])
1. [x1], . . ., [xm1+m2] ← Sort([a1], . . ., [am1], [b1], . . .,

[bm2], �); // Sect. 3.2
2. for i = 2 to m1 + m2 do in parallel [ui] ← Eq([xi],

[xi−1], �); // Sect. 3.2
3. [t] ← ∑m1+m2

i=2 [ui];
4. [s] ← Eq([t],m1, �logm1�); // Sect. 3.2
5. return [s];

Utilizing the logic above, we can also derive a similar pro-
tocol to compute set equality. In that scenario, our first
step would be to check if m1 = m2, as otherwise we can
automatically report that the sets are not equal. The rest of
the protocol will be exactly the same as the steps of Sub.
Similarly, we can also produce a protocol for verifying a
superset relationship between sets A and B from the logic
provided in Protocol 3. In fact, the algorithm need not be
changed in this case either, as a subset relationship directly
implies an inverse superset relation between the same sets.
That is, if the return bit [s] indicates that A is a subset
of B, we can conversely say that B is a superset of A.
Hence, the two operations can be done interchangeably by
simply switching the order in which the sets are passed to
Sub.

4.1.4 Set difference

An intuitive solution to computing the set difference A \ B
is to combine sets A and A ∩ B, sort the combined set,
and eliminate all values that appear twice in the resulting
multiset (by erasing both instances). This approach, how-
ever, results in running sorting twice (where the second time
it is executed on a set of size 2|A| + |B|) and thus more
than doubling the overhead compared to other protocols.
Our solution instead is to label the elements of the two sets
with opposite bits which will allow us to perform this oper-
ation using a single sort. In detail, we associate a 0 bit with
all elements of set A and a bit with value 1 with the ele-
ments of B and sort the concatenation of these tuples. After
sorting, we compare (in parallel) each element of the sorted
set to its successor and store the results into a bit vector u.
Based on these results, the protocol will then erase (set to 0)
each pair of elements that have the same value, while keep-
ing those that have unique values unchanged. To erase both
instances of duplicate elements, we can compute values ci ’s
as

[ci] ← [xi](1 − [ui]); [ci+1] ← [xi+1](1 − [ui]);

for each i , where xi ’s represent the previously sorted con-
catenation of the elements of A and B. Although this logic
can be safely realized when the computation is executed
sequentially, it needs to be modified if we want it to be
parallelized. To achieve this, we make sure that the value
of each ci in the resulting set depends on the result of
the comparison of xi with xi−1 and xi+1, and each ci is
set only once. In particular, we set ci to 0 if either ui−1

or ui is true and it is set to xi otherwise. Similar to the
OR computation in the set intersection, because at most
one of ui−1 and ui can be set for each value of i , the
OR computation is performed as ui−1 + ui instead of full
ui−1 + ui − ui−1ui .

Finally, as the last step of the protocol we compute the
elements ci ’s of the set difference A \ B by erasing all ele-
ments of B that still remain. This is accomplished using the
second element of each tuple of the sorted set, which stores
information about the input set from which the value orig-
inated. For the example inputs 〈2, 4, 1, 5〉 and 〈4, 3, 2〉, the
protocol produces c = 〈1, 0, 0, 3, 0, 0, 5〉 after step 5 and
c = 〈1, 0, 0, 0, 0, 0, 5〉 after step 6.

Protocol 4. [c1], . . ., [cm1+m2] ← Diff([a1], . . ., [am1], [b1],
. . ., [bm2])
1. 〈[x1], [y1]〉, . . ., 〈[xm1+m2], [ym1+m2]〉 ← SortT(〈[a1],

[0]〉, . . ., 〈[am1], [0]〉, 〈[b1], [1]〉, . . ., 〈[bm2], [1]〉, �);
// Sect. 3.2

2. for i = 1 to m1 +m2 − 1 do in parallel [ui] ← Eq([xi],
[xi+1], �); // Sect. 3.2

3. [c1] ← [x1](1 − [u1]); // 1 round, 1 inv
4. [cm1+m2] ← [xm](1 − [um1+m2−1]); // 1 inv
5. for i = 2 to m1 + m2 − 1 do in parallel [ci] ← [xi]·

(1 − [ui] − [ui−1]); // m1 + m2 − 2 inv
6. for i = 1 to m1 +m2 do in parallel [ci] ← [ci](1−[yi]);

// 1 round,m1+m2 inv
7. return [c1], . . ., [cm1+m2];

4.1.5 Symmetric difference

Given two sets A and B, symmetric difference AΔB com-
putes the elements that belong to either of the sets while not
being common to both. A naive approach to implementing
the operation would be to compose a new protocol that com-
putes (A ∪ B) \ (A ∩ B). To improve efficiency, however,
this operation can be done directly by modifying the above
set difference protocol. Note that the last step of Protocol 4
(line 6) removes from the resulting set the elements of B that
are not part of the intersection. Hence, by not executing that
operation, we automatically obtain the symmetric difference
protocol SDiff. This also implies that the SortT routine on
line 1 can be replaced by regular sorting.

123

M. Blanton, E. Aguiar

4.1.6 Element reduction

Element reduction is applied to a single multiset A, during
which one instance of each distinct element is erased. The
logic for its implementation is very similar to that of the intu-
itive implementation of set intersection (which we mention
but do not use), but now each distinct element can appear
any number of times in the sorted combined set instead of
only once or twice. We therefore erase the first instance of
each distinct element. This is implemented by comparing two
adjacent elements xi and xi+1 in the sorted multiset and set-
ting the element at position i +1 in the result, ci+1, to 0 iff xi
and xi+1 differ (i.e., xi+1 is a new distinct element). For cor-
rectness, the first element c1 is always set to 0. For example,
if the sorted input is 〈1, 2, 2, 3, 4, 5, 5, 5〉, the protocol out-
puts 〈0, 0, 2, 0, 0, 0, 5, 5〉. As before, computation of each
element of the resulting multiset can proceed in parallel.

Protocol 5. [c1], . . ., [cm] ← Red([a1], . . ., [am])
1. [x1], . . ., [xm] ← Sort([a1], . . ., [am], �); // Sect. 3.2
2. [c1] ← 0;
3. for i = 1 to m − 1 do in parallel
4. [ui] ← Eq([xi], [xi+1], �); // Sect. 3.2
5. [ci+1] ← [ui][xi+1]; // 1 round, m−1 inv
6. return [c1], . . ., [cm];

4.2 Protocol variants

The above protocols implement the basic functionality of
multi-party set operations. In this section, we show how they
can be modified or extended to enable a number of new fea-
tures.

4.2.1 Opening the result of a (multi)set operation

The output of the protocols presented in Sect. 4.1 cannot be
safely opened without leaking information about their inputs
because the locations of erased items will be revealed. If the
result is to be opened (e.g., when one of the above operations
is the last operation in the computation), the parties will need
to additionally sort the result, or randomly permute it, prior
to the opening to hide all patterns. To do so, the last line of
each protocol in Sect. 4.1 should be changed from

return [c1], . . ., [ck];
to

return Sort([c1], . . ., [ck], �);

for the appropriate value of k. In Sect. 7 we also show how this
step can be performed more efficiently using set compaction.

4.2.2 Reducing the size of the result of a (multi)set
operation

The way our protocols are specified does not reveal the size
of the resulting set or multiset. In certain cases, however,
for efficiency reasons it is desirable to reveal the size of
the output and eliminate all extra elements. We distinguish
between these two modes of computation by referring to
them as length-hiding and length-preserving, respectively.
To perform a length-preserving operation, the parties fol-
low each protocol as defined in Sect. 4.1, after which they
sort the outcome and discard zero elements by comparing
each of them to 0 and opening the result of the comparison.
More precisely, each “return [c1], . . ., [ck]” operation (for the
appropriate value of k) in the original protocol now needs to
be replaced with the following:

1. [d1], . . ., [dk] ← Sort([c1], . . ., [ck], �); // Sect. 3.2
2. S ← ∅;
3. for i = 1 to k in parallel
4. [b] ← Eq([di], 0, �); // Sect. 3.2
5. b ← Open([b]); // 1 round, 1 inv
6. if (b = 0) S ← S ∪ {[di]};
7. return S;

The Open operation corresponds to broadcasting the
shares of its argument, so that all parties can reconstruct its
value. As before, faster compaction can be used instead of
sorting.

4.2.3 Computing (multi)set cardinality or
over-the-threshold cardinality

Our basic protocols for set operations compute the resulting
set, while in certain applications different information such
as set cardinality needs to be computed. It is, however, rather
straightforward to modify our protocols to instead compute
the cardinality (e.g., |A∩ B| for set intersection) or over-the-

threshold cardinality (e.g., |A ∩ B| ?≥ T for set intersection
and threshold T) of the resulting set. For completeness, we
next describe such modifications, which give us even simpler
protocols than the original versions.

To compute set union cardinality, it is no longer neces-
sary to compute the ci ’s in the Union protocol. Instead, it
suffices to compute only the number of elements that differ
from the next adjacent element in the combined sorted set
x1, . . ., xm1+m2 . In particular, we replace lines 2–6 in Union
with the following computation:

2. for i = 1 to m1 + m2 − 1 do in parallel
[ui] ← Eq([xi], [xi+1], �); // Sect. 3.2

3. return m1 + m2 − ∑m1+m2−1
i=1 [ui];

123

Private and oblivious set and multiset operations

The set union over-the-threshold cardinality can likewise
compute and return GE(m1 + m2 − ∑m1+m2−1

i=1 [ui], T, �).
The set intersection cardinality and the cardinality of a

multiset after element reduction follow a similar logic, where
now the parties compute and return

∑m/2�
i=1 [ui]+∑m/2�

i=1 [vi]
and

∑m−1
i=1 [ui], respectively. The over-the-threshold versions

are formed analogously.
To compute the set difference cardinality, the parties need

to produce the count of the number of elements that do not
get erased from the resulting set. This can be achieved by
replacing lines 3–7 of the Diff protocol with the following:

3. return m1 −
∑m1+m2−1

i=1
[ui];

Finally, the symmetric difference cardinality can be obtained
by replacing lines 3–7 of theDiff protocol with the following:

3. return m1 + m2 − 2
∑m1+m2−1

i=1
[ui];

As before, the over-the-threshold cardinality version is
produced analogously.

4.2.4 Performing set operations on multiple input sets

Our protocols have been defined to work on two input sets,
while existing literature on multi-party set operations consid-
ers the problem of computing set intersection or union of n
input sets with n participating parties. Here we show that it is
not difficult to modify our set union, intersection, and equal-
ity protocols to work on k inputs for any k ≥ 2 (i.e., k may
or may not depend on n). We consider only these three set
operations as we are not aware of a standard way of defining
other operations on multiple input sets.

First, observe that a protocol for multiple-input set
union [c1], . . ., [cm] ← Union([a(1)

1], . . ., [a(1)
m1], . . ., [a(k)

1],
. . ., [a(k)

mk]), where C = ⋃k
i=1 A(i), A(i) = {a(i)

1 , . . ., a(i)
mi }

for i = 1, . . ., k, and m = ∑k
i=1 mi , can be obtained from

the original Protocol 1 with virtually no changes. The only
obvious difference is that the step 1 now consists of sorting
the concatenation of all of the A(i)’s, i.e., [x1], . . ., [xm] ←
Sort([a(1)

1], . . ., [a(1)
m1], . . ., [a(k)

1], . . ., [a(k)
mk], �). As before,

the algorithm keeps a single instance of each present distinct
value and eliminates the rest.

In order to implement multiple-input set intersection
[c1], . . ., [c�(m−1)/k�] ← Int([a(1)

1], . . ., [a(1)
m1], . . ., [a(k)

1],
. . ., [a(k)

mk]), where now C = ⋂k
i=1 A(i), the algorithm in

Protocol 2 needs to be modified. This time we would like
to keep only the elements that appear exactly k times in the
sorted array. To do that, instead of checking two consecutive
elements, we need to compare two elements k − 1 positions
apart. Similar to Protocol 2, instead of producing a set of size
m, this time we output a set of size �(m − 1)/k� and the OR

of multiple bits from which at most one is set is computed as
their sum. More precisely, we obtain:

Protocol 6. [c1], . . ., [c�(m−1)/k�] ← Int([a(1)
1], . . ., [a(1)

m1],
. . ., [a(k)

1], . . ., [a(k)
mk])

1. [x1], . . ., [xm] ← Sort([a(1)
1], . . ., [a(1)

m1], . . ., [a(k)
1], . . .,

[a(k)
mk], �); // Sect. 3.2

2. for i = 1 to m − k + 1 do in parallel
[ui] ← Eq([xi], [xi+k−1], �); // Sect. 3.2

3. d ← (m − 1)/k�;
4. for i = 1 to d do in parallel [ci] ← ∑k

j=1([u(i−1)k+ j] ·
[x(i−1)k+ j]); // 1 round, d · k inv

5. if ((m − 1) mod k �= 0)

c�(m−1)/k� ← ∑(m−1) mod k
j=1 [ud·k+ j][xd·k+ j];

// (m − 1) mod k inv
6. return [c1], . . ., [c�(m−1)/k�];

Lastly, to obtain a set equality protocol that works on mul-
tiple input sets, we only need to sort the concatenation of all
k sets and compare the elements of the sorted set k − 1 posi-
tions apart instead of the original 1 position apart in the Sub
protocol. It is obvious that mi = m j must also hold for every
i and j .

4.3 Length-hiding set operations

Recall that our original protocols do not reveal any informa-
tion about the size of the resulting set. To enable their use in
the full length-hiding mode, we need to make sure that our
protocols work correctly when the length of the input sets is
also protected. To hide the actual length of a set, one adds
to that set a number of additional elements that have value
0. In this framework, for instance, all sets can be padded to
be of the same size (or one of few fixed sizes). It remains to
show that correctness of our protocols is preserved when the
input sets contain dummy zero elements. We consider each
protocol in turn.

In the Union protocol, after the first step, all dummy ele-
ments will occupy the lowest indices in the sorted set which
we denote 1 through s. During the loop execution, the zero
elements will be set to 0 again, which has no effect on the
result of the operation. The only place where a care needs to
be exercised is during comparison of zero element xs and the
next nonzero element xs+1. Notice that in the Union proto-
col, the result of computing Eq([xs], [xs+1], �) has no effect
on xs+1. We therefore obtain that the output of the protocol
will be correct regardless of the number of regular elements
contained in the sets A and B (including the case when A and
B are entirely composed of dummy elements). By applying
similar reasoning to other protocols, we obtain that regardless
of whether zero elements are reset to zero or their values are

123

M. Blanton, E. Aguiar

preserved, the result of the computation is not affected. In the
intersection protocol Int, we have that computation “at the
border” of dummy and regular elements, namely xs and xs+1,
can possibly affect xs+1 only when s + 1 is even, but we see
that in that case c(s+1)/2 will be set correctly to the result of
the comparison of xs+1 and xs+2. Thus, the protocol works as
expected on padded inputs. In the element reduction protocol
Red, we can also see that the result ofEq([xs], [xs+1], �) will
be 0 and xs+1 will be set to 0 as required. Finally, in the set
difference protocols Diff and SDiff protocols, the value of us
will be 0 as well and therefore will not affect the correctness
of the value of cs+1.

The only protocol that cannot be executed as previously
described on padded inputs is subset relationship Sub. In
contrast to other protocols that erase elements from the input
sets, the subset protocol counts the number of matched ele-
ments (which the padding can increase) and requires the
knowledge of the input set size. We therefore next describe a
more elaborate version ofSub protocol that works on padded
input sets.

In the protocol below, we preserve information about the
origin of each element during sorting (note that elements
from set A are marked with bit 1). After comparing the
adjacent elements of the sorted set, we prepend the array
of computed bits ui with 1 if the first element of the sorted
set is 0, and with 0 otherwise. Now notice that if the sorted
set contains k zero elements (which will precede all other
elements), u1 = . . . = uk = 1, while uk+1 = 0. Thus, if we
perform prefix-AND on bits u1, . . ., um1+m2 , the output will
consist of k 1’s followed by m1 + m2 − k 0’s. This gives us
a mechanism to identify all zero elements within the sorted
set. We then count the number of nonzero elements in A
and store the value in t1, and count the number of matches
between nonzero elements in A and B and store the value
in t2. If the values are the same, the protocol outputs 1, and
otherwise it outputs 0.

Protocol 7. [s] ← Sub([a1], . . ., [am1], [b1], . . ., [bm2])
1. 〈[x1], [y1]〉, . . ., 〈[xm1+m2], [ym1+m2]〉 ← SortT(〈[a1],

[1]〉, . . ., 〈[am1], [1]〉, 〈[b1], [0]〉, . . ., 〈[bm2], [0]〉, �);
// Sect. 3.2

2. for i = 2 to m1 + m2 do in parallel
[ui] ← Eq([xi], [xi−1], �); // Sect. 3.2

3. [u1] ← Eq([x1], 0, �); // Sect. 3.2
4. ([v1], . . ., [vm1+m2]) ← PreAND([u1], . . ., [um1+m2]);

// Sect. 3.2
5. [t1] ← ∑m1+m2

i=1 ([yi](1 − [vi])); // 1 round, m1 +m2 inv
6. [t2] ← ∑m1+m2

i=1 ([ui] − [vi]);
7. [s] ← Eq([t1], [t2], �logm1�); // Sect. 3.2
8. return [s];

This protocol also computes set equality when m1 = m2.

We conclude that all our protocols except Sub can be
used unmodified on inputs padded with zero elements so
that the size of both the input and output sets is protected.
For the subset operation, Protocol 7 should be used instead
of Protocol 3.

4.4 Security

Correctness of the computation has been discussed with each
respective protocol. We only comment on the performance
of randomized sorting algorithms, and randomized shellsort
[39] in particular, that can fail to sort the input with a small
probability. In our context, failure to sort the input can poten-
tially become a security leak that reveals some information
about the input sets. Toward this end, we note that the algo-
rithm of [39] can fail with probability at most 1/mb for some
b ≥ 1 and has not failed on any tested input. Furthermore,
increasing the number c of region compare-and-exchange
operations can be used to reduce the probability of failure
to the desired 1/2κ for a security parameter κ , which will
result in statistical security. Lastly, we note that our protocols
can run in O(m logm) time even without using randomized
sorting algorithms by employing optimizations described in
Sect. 7.

Security of our protocols can be shown as follows:

Theorem 1 The above set operations protocols are t-private
in presence of semi-honest participants with private channels
with t < n/2.

Proof First, note that the (n, t)-threshold linear secret shar-
ing scheme achieves perfect secrecy in presence of collusions
of size at most t ≤ n (i.e., zero information can be learned
about secret-shared values by t or fewer parties) in the case of
passive adversaries. Also, the multiplication operation does
not reveal any information when t < n/2 (see, e.g., [3] for
a formal security proof). Furthermore, because most other
building blocks used in this work (i.e.,Eq,GE, andPreAND)
have been previously shown to be secure, information is not
revealed during their execution as well. Their most efficient
implementations are statistically secure (as opposed to per-
fectly secure) for any desired security parameter κ . Then
if our protocols call only secure building blocks, the secu-
rity of the overall protocols will follow. In particular, by
Canetti’s composition theorem [12], (sequential) composi-
tion of secure sub-protocols results in security of the overall
solution.

More formally, to comply with the security definition 1,
we need to build a simulator SI for each protocol that can sim-
ulate the views of the corrupted parties I using their inputs
and outputs in a way which is indistinguishable from real
protocol execution. We can easily build this simulator by
invoking simulators for the corresponding building blocks to
simulate views for the entire protocol. The resulting views

123

Private and oblivious set and multiset operations

are guaranteed to be indistinguishable from the real protocol
execution by the participants.

The only missing piece is security of Sort protocol. First,
note that any candidate sorting algorithm suitable for use in
secure computation consists of a sequence of compare-and-
exchange operations. Each compare-and-exchange operation
consists of a comparison GE, multiplications, and addi-
tions/subtractions as shown in Sect. 3.2. We thus can easily
build a simulator for it by invoking the corresponding sim-
ulators for the underlying operations. Second, we employ
only oblivious sort, in which the sequence of compare-
and-exchange operations is input-independent and therefore
cannot leak information about the input. Thus security of
the overall Sort follows from the security of compare-and-
exchange operations where we invoke the corresponding
simulator the necessary number of times.

Lastly, we mention that the extension to set operation pro-
tocols that allows the parties to learn information about the
actual size of the resulting set is also secure, because in this
case both the function f and our protocol π reveal this infor-
mation. ��

Before we proceed with security in presence of malicious
participants, we note that when the building blocks Eq, GE,
andPreAND are perfectly secure (i.e., implemented as arith-
metic circuits), all of our protocols are perfectly secure as
well. It then follows from [3,14] that security in presence
of adaptive adversaries comes “for free,” and the protocols
are secure in presence of both static and adaptive adversaries
(this applies to the malicious setting as well). When, how-
ever, the building blocks are statistically secure, according
to [14] static and adaptive models are equivalent when the
number of computational parties is small (as a function of
the security parameter), e.g., fixed, which means that we also
automatically obtain security against adaptive adversaries.

To show security in presence of malicious adversaries, we
need to ensure that (i) all participants prove that their input is
well-formed, (ii) all participants comply with the prescribed
computation by proving that each step was performed cor-
rectly, and (iii) if some dishonest participants quit, others
will be able to reconstruct their shares and proceed with
the rest of the computation. When the computation corre-
sponds to an arithmetic circuit, (ii) and (iii) are normally
achieved using a verifiable secret sharing scheme (VSS),
and a large number of results have been developed over the
years (e.g., [7,18,26–28,36,44,45] and many others). When,
however, the participants are expected to additionally per-
form other operations, we need to employ the corresponding
zero-knowledge proofs of knowledge. Similarly, if the input
has a specified form, zero-knowledge proofs will need to be
employed.

When each input is a set (as opposed to a multiset), each
element needs to be unique. Therefore, to ensure correctness

of a set operation, the participants need to verify this property
prior to execution of the operation. To minimize the overhead
associated with such verification, we suggest the following
approach: on input two or more sets, the participants sort each
set separately, then verify that the difference between two
consecutive elements in each sorted set is nonzero, merge
the sorted sets, and proceed with the rest of the operation
as before. Then if any observed value is zero, the partici-
pants abort the protocol. For example, if the input consists
of two sets a1, . . ., am1 and b1, . . ., bm2 , we replace sorting
Sort([a1], . . ., [am1], [b1], . . ., [bm2], �) in any protocol with
the following steps:

1. [x1], . . ., [xm1] ← Sort([a1], . . ., [am1], �);
2. [y1], . . ., [ym2] ← Sort([b1], . . ., [bm2], �);
3. for i = 1 to m1 − 1 do in parallel
4. [ci] ← Eq([xi+1] − [xi], 0, �);
5. ci ← Open([ci]);
6. if ci = 1, output ⊥;
7. for i = 1 to m2 − 1 do in parallel
8. [c′

i] ← Eq([yi+1] − [yi], 0, �);
9. c′

i ← Open([c′
i]);

10. if c′
i = 1, output ⊥;

11. [z1], . . ., [zm1+m2] ← Merge(([x1], . . ., [xm1]), ([y1],
. . ., [ym2]), �);

Clearly, opening the values on lines (5) and (9) does not
reveal any information about the private values and is exactly
the condition that the participants want to verify.

When padding is used, each input set is allowed to have
multiple instances of zero elements.2 In such a case, the dif-
ference between two consecutive elements in a sorted set
is allowed to be zero as long as the elements are zero. We
then modify the above verification to work with padded sets
as follows: now the participants privately compare each ele-
ment of the sorted set to 0, privately compare each difference
between two consecutive elements of the sorted set to 0, and
open the value of the form (di �= 0) ∨ ((di = 0) ∧ (xi = 0))

for each position i , where xi denotes the i th element of the
sorted set and di the difference between xi and xi+1. Let ui
denote the result of comparison of xi to 0 and vi the result
of comparison xi+1 − xi to 0. The participants then compute
and open value vi ui + 1 − vi for each i and abort if any of
the opened values is 0. It is straightforward to modify the
verification steps given above for sets with no padding to
incorporate the computation of the ui ’s and opening a mod-
ified expression on lines (5) and (9). It is interesting to note

2 The verification algorithm described above does not enforce absence
of padding, which is normally not needed. If, however, the participants
want to ensure that no zero elements are present, they can simply com-
pare the first element of the sorted set to 0 and open the result of the
comparison.

123

M. Blanton, E. Aguiar

that input verification is not needed when inputs are multisets
since the inputs can be arbitrary.

Theorem 2 Given a (n, n/3)-VSS scheme with support for
multiplication, generating a random field element, and open-
ing a secret-shared value, the above set operations protocols
are t-secure in presence of malicious participants with pri-
vate channels with t < n/3.

Proof When the overall computation corresponds to an arith-
metic circuit, all we need to obtain security in presence of
malicious participants is to employ a VSS scheme which
ensures that (i) each multiplication protocol is performed
correctly, (ii) each input is secret-shared correctly in case the
dealer is corrupt, and (iii) a secret can be properly recon-
structed from it shares (when not already implied by the
above). There are many such results for a variety of settings
and assumptions, normally for t < n/3, and we in particular
mention the result of [4] which provides perfect security with
t < n/3.

Then if at any point of the computation the participants
are required to input values of a specific form, they would
have to prove that the values they supplied are well formed.
For our constructions such proofs are necessary only if sta-
tistically secure building blocks (Eq, LE, and PreAND) are
used, where the computational parties need to supply pri-
vate random values of a specific length. While enforcement
of this constraint can be performed by using a range proof
from prior literature, e.g., [61], we propose an alternative
solution that avoids computational assumptions. In particu-
lar, when using Eq, LE, and PreAND from [15], collectively
choosing a random bit by the computational parties (using
protocol RandBit) involves only generating a random field
element that VSS techniques already cover. Then to generate
a random value of bitlength k, the parties can call RandBit k
times in parallel obtaining bits b0, . . ., bk−1, after which each
of them locally computes r = ∑k−1

i=0 2i bi . We thus obtain
that the security of our protocols in the malicious model
follows from VSS techniques (e.g., [4,19,36]) when either
perfectly secure or fast statistically secure implementations
of the building blocks from [15] are used. ��

Note that in the malicious model the complexity of
RandInt algorithm increases, which now uses O(k) inter-
active operations to generate a k-bit random value instead
of being local using PRSS in the semi-honest setting. This
slightly increases the overall number of interactive opera-
tions, but has no effect on the asymptotic complexity of set
operations.

As mentioned before, security in presence of adaptive
and static participants in the malicious model are equivalent
for perfectly secure protocols [14], and in that setting, we
automatically gain security in presence of adaptive adver-
saries. Then security in presence of adaptive adversaries

can only be obtained if the (statistically secure) building
blocks are proven secure in the adaptive adversarial model.
Lastly, security under concurrent general composition [57]
(or, equivalently, universal composability [13]) is also free in
the information-theoretic setting according to [54]. That is,
every perfectly secure protocol in the stand-alone setting is
also secure under concurrent general composition, and every
statistically secure protocol in the stand-alone setting can be
easily modified to be secure under concurrent general compo-
sition (by adding the so-called start synchronization to ensure
that all inputs are ready before the computation starts).

5 General conversion from a multiset to a set

Our previous protocols do not work correctly when they are
run on multisets. To enable computation on multisets, we
describe a general conversion from a multiset to a set, which
will allow all previous protocols to be run on multisets with
only notational changes.

Our solution converts a multiset a1, . . ., am to a represen-
tation 〈x1, y1〉, . . ., 〈xm, ym〉, where xi ’s correspond to the
ai ’s, and indices yi ’s count the number of instances of each
distinct value in the multiset. That is, if a value v appears k
times in the multiset, the indices of the corresponding ele-
ments in the multiset will be numbered 1 through k. This
makes each pair 〈xi , yi 〉 unique and our protocols for set
operations apply. The multiset-to-set protocol below illus-
trates how this multiset representation can be computed.

Protocol 8. 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉 ← M2S([a1], . . .,
[am])
1. [x1], . . ., [xm] ← Sort([a1], . . ., [am], �); // Sect. 3.2
2. [y1] ← 1;
3. for i = 1 to m − 1 do
4. [ui] ← Eq([xi], [xi+1], �); // Sect. 3.2
5. [yi+1] ← [ui][yi] + 1; // m − 1 rounds, m − 1 inv
6. return 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉;

In this protocol, the indices yi have to be computed
sequentially. In the attempt to design an algorithm that does
not require the number of rounds to be linear in the size of the
multiset, we resort to the techniques that were used in [25] to
design constant-round protocols for other integer arithmetic
operations. In particular, suppose we are given an associa-
tive binary operator ◦. Also suppose that we can securely
compute this operation on m inputs ◦mi=1[ai] in R rounds and
C(m) operations. Given this, Chandra et al. [16] describe a
method for computing prefix-◦, Pre◦, that uses 2R rounds
and

∑log2 m
i=1 2iC(m · 2−i) + mC(log2 m) ≤ log2 mC(m) +

mC(log2 m) operations. Secure prefix-◦ functionality is
defined as ([b1], . . ., [bm]) ← Pre◦([a1], . . ., [am]), where

123

Private and oblivious set and multiset operations

bi = ◦ij=1a j . In the context of Protocol 8, this means that if
we define a procedure for computing 〈[xm], [ym]〉 = ◦mi=1[ai]
in the multiset-to-set conversion using R rounds, we will
be able to use their method to compute all 〈[xi], [yi]〉 as
(〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉) ← Pre◦([a1], . . ., [am]) in
2R rounds.

Before we proceed with further description, we need to
specify the operator ◦ used to perform the conversion. The
M2S protocol can be viewed as starting with individual ele-
ments, each with count 1, and aggregating the first i of them
to compute the count at position i . Because the operator must
work on “individual” and “aggregate” values, we define it as:

〈[c1], [c2]〉 ← 〈[a1], [a2]〉 ◦ 〈[b1], [b2]〉
1. [u] ← Eq([a1], [b1], �); // Sect. 3.2
2. [c1] ← [b1];
3. [c2] ← [u][a2] + [b2]; // 1 round, 1 inv
4. return 〈[c1], [c2]〉;

The above assumes that the operands are well formed, i.e.,
b1 ≥ a1. We refer to this operation as addition with reset, i.e.,
the count is reset if the value of the current multiset element
has changed, and the count is incremented otherwise. The
operator can be shown to be associative.

To be able to use the method from [16] for computing
Pre◦([a1], . . ., [am]) using a solution to ◦mi=1[ai], we need
a constant-round procedure for computing ◦mi=1[ai], where
ai = 〈xi , yi 〉. We realize it as shown below. Note that in this
protocol, each yi can be an arbitrary count (i.e., if yi > 1, the
pair 〈xi , yi 〉 corresponds to an “aggregate” of several multiset
elements with the same value), but the xi ’s must form a non-
decreasing sequence.

Protocol 9. 〈[x], [y]〉 ← ◦mi=1〈[xi], [yi]〉
1. for i = 1 to m − 1 do in parallel

[ui] ← Eq([xi], [xi+1], �); // Sect. 3.2
2. ([vm−1], . . ., [v1]) ← PreAND([um−1], . . ., [u1]);

// Sect. 3.2
3. for i = 1 to m − 1 do in parallel [wi] ← [vi][yi];

// 1 round, m − 1 inv
4. [y] ← [ym] + ∑m−1

i=1 [wi];
5. [x] ← [xm];
6. return 〈[x], [y]〉;

In the protocol above, as a result of prefix-AND in step 2,
we obtain an array of bits vm−1, . . ., v1, where vi is set to 1 iff
all elements xi through xm are equal. This allows us to count
the number of elements in the input which have the same
value as xm . Their corresponding counts are added together
in step 4 and are returned as the count for the entire set. This
computation in particular implies that if xm > xm−1, then

the pair 〈xm, ym〉 will be returned as required. This protocol
allows us to obtain a new solution for multiset-to-set conver-
sion where the round complexity is the round complexity of
sorting plus a small constant.

Protocol 10. 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉 ← M2S([a1],
. . ., [am])
1. [x ′

1], . . ., [x ′
m] ← Sort([a1], . . ., [am], �); // Sect. 3.2

2. for i = 1 to m do in parallel [y′
i] ← 1;

3. 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉 ← Pre◦(〈[x ′
1], [y′

1]〉, . . .,
〈[x ′

m], [y′
m]〉); // Protocol 9

4. return 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉;

This concludes our description of the conversion. To illus-
trate how it can be used to perform multiset operations, we
sketch a solution for multiset union A ∪ B. It assumes that
the input multisets are already available in the proper for-
mat with numbered instances of each distinct value. This
can be achieved by executing the conversion protocol twice
as 〈[x ′

1], [y′
1]〉, . . ., 〈[x ′

m1
], [y′

m1
]〉 ← M2S([a1], . . ., [am1])

and 〈[x ′′
1], [y′′

1]〉, . . ., 〈[x ′′
m2

], [y′′
m2

]〉 ← M2S([b1], . . .,
[bm2]). Alternatively, the input multisets might already be
available in the proper format as a result of prior processing.
For instance, the output of the multiset union protocol pre-
sented next produces an (unsorted) multiset with properly
numbered elements. The only exception are zero elements
that have been erased as the result of union computation. In
particular, their counts are also set to 0 to ensure that such
elements do not affect correctness of our protocols during
their composition.

Protocol 11. 〈[x1], [y1]〉. . ., 〈[xm1+m2], [ym1+m2]〉 ←
MUnion(〈[x ′

1], [y′
1]〉, . . ., 〈[x ′

m1
], [y′

m1
]〉, 〈[x ′′

1], [y′′
1]〉, . . .,

〈[x ′′
m2

], [y′′
m2

]〉)
1. k ← max(m1,m2) + 1;
2. 〈[α1], [β1], [γ1]〉, . . ., 〈[αm1+m2], [βm1+m2], [γm1+m2]〉

← SortT(〈k[x ′
1]+ [y′

1], [x ′
1], [y′

1]〉, . . ., 〈k[x ′
m1

]+ [y′
m1

],
[x ′

m1
], [y′

m1
]]〉, 〈k[x ′′

1] + [y′′
1], [x ′′

1], [y′′
1]〉, . . ., 〈k[x ′′

m2
] +

[y′′
m2

], [x ′′
m2

], [y′′
m2

]〉, � + �log k�); // Sect. 3.2
3. for i = 1 to m1 + m2 − 1 do in parallel
4. [ui] ← Eq([αi], [αi+1], � + �log k�); // Sect. 3.2
5. [xi] ← [βi](1 − [ui]); // 1 round, m1 + m2 − 1 inv
6. [yi] ← [γi](1 − [ui]); // optional
7. [xm1+m2] ← [βm1+m2];
8. [ym1+m2] ← [γm1+m2]; // optional
9. return 〈[x1], [y1]〉, . . ., 〈[xm1+m2], [ym1+m2]〉;

In the protocol, k should be set to a value larger than any
y′
i and y′′

i (which are bounded by the size of the multisets).
In that way, the values will be sorted by the first elements
x ′
i ’s and x ′′

i ’s, but in case of their equality, the ties will be

123

M. Blanton, E. Aguiar

resolved—and the tuples will be sorted—by the second ele-
ments y′

i ’s and y′′
i ’s. The safest way to set k is therefore to

use k = max(m1,m2) + 1.
As we indicate above, lines 6 and 8 are optional. That is,

if the counts for each value do need to be maintained, the
protocol returns only [xi]’s. Otherwise, the counts can be
computed at low cost (i.e., significantly lower than executing
the M2S protocol).

The remaining operations (such as intersection, differ-
ence, etc.) can be constructed similarly, and we sketch such
protocols in “Appendix.” Security of these protocols can be
shown analogously to the security of set operations.

6 Direct operations on multisets

The previous section described efficient algorithms for pri-
vate multiset operations using a general multiset-to-set
conversion. It is, however, often the case that direct imple-
mentations are more efficient than utilizing general proce-
dures. This is true for secure multiset operations as well. In
particular, by directly computing a multiset operation, both
communication and round complexity is reduced approxi-
mately by a factor of two because sorting is used only once
instead of calling it once for the conversion procedure for
each input multiset and once on the combined multiset for
the set operation itself. Therefore in this section, we describe
our solutions that provide direct implementation of multiset
operations.

6.1 Overview of the technique

To be able to perform a multiset operation, we first sort the
concatenation of two input multisets in such a way that all
elements from the first input set A appear before the elements
of the same value from the second input set B. It is accom-
plished by setting indices associated with the elements of A
to 0 and indices associated with the elements of B to 1. We
then use values 2ai +0 and 2b j +1 to compare two elements
during sorting, where ai ’s and b j ’s are elements of A and B,
respectively. This will ensure that all elements with the same
original value will be grouped together in the sorted multiset,
but the elements from A appear before the elements with the
same value from B. After the sorting, we assign to all ele-
ments with the same value counts. The elements from A have
counts that start from 1 and increment, while the counts of the
elements from B decrement from the highest count of the ele-
ments with same value from A. That is, if the first occurrence
of a distinct value comes from A, its count is set to 1 (and oth-
erwise it is set to −1). When another element with the same
value from A is observed, its count is incremented, but once
elements from B with the same value are observed, the count
will be decremented after each occurrence. For instance, a
sorted combined multiset 〈1, 0〉, 〈2, 0〉, 〈2, 0〉, 〈2, 1〉, 〈2, 1〉,

〈2, 1〉, 〈3, 1〉 will be converted to the multiset with counts
〈1, 0, 1〉, 〈2, 0, 1〉, 〈2, 0, 2〉, 〈2, 1, 1〉, 〈2, 1, 0〉, 〈2, 1,−1〉,
〈3, 1,−1〉. The first element with a negative count corre-
sponds to an element from B for which there is no matching
element from A. Then depending on what operation needs
to be performed, either elements with non-negative or ele-
ments with negative counts might need to be erased. For
instance, to compute multiset union, we erase all elements
with non-negative counts from B (i.e., erase the duplicates);
to compute multiset intersection, we erase all element of A
and all elements of B with negative counts (i.e., those that
do not have matching elements from A). Verifying whether
a subset relation B ⊆ A exists is also very simple and it
requires only that we check for negative counts, since that
would indicate an unmatched element in B, denoting that a
subset relation does not hold.

In order to efficiently calculate the multiset difference, we
slightly modify the logic. This time, we associate index 1
with the elements of A and index 0 with the elements of B.
We then use 2ai + 1 and 2b j + 0 for comparisons, which
will force the elements of B to precede those from A in the
sorted multiset when the values of the elements are equal.
As before, following the sorting procedure we assign counts
to all elements (note that this time the elements of B will
have positive counts and the first distinct occurrences will
be given a −1 count if the element belongs to A). After this
preprocessing step, we can easily compute A \ B by erasing
all elements from B along with all elements of A with non-
negative counts.

The (non-private) algorithm below for direct multiset
union illustrates the logic for this operation, where the sorting
procedure Sort sorts tuples using their first elements.

Algorithm 1. c1, . . ., cm1+m2 ← DMUnion(a1, . . .,

am1 , b1, . . ., bm2)

1. 〈x1, y1, z1〉, . . ., 〈xm1+m2 , ym1+m2 , zm1+m2〉 ←
Sort (〈2a1, a1, 0〉, . . ., 〈2am1 , am1 , 0〉, 〈2b1 + 1, b1, 1〉,
. . ., 〈2bm2 + 1, bm2 , 1〉);

2. count1 ← 1 − 2z1;
3. for i = 2 to m1 + m2 do
4. if (yi−1 = yi)
5. if (zi) counti ← counti−1 − 1;
6. else counti ← counti−1 + 1;
7. else counti ← 1 − 2zi ;
8. c1 ← y1;
9. for i = 2 to m1 + m2 do in parallel
10. if (yi ∧ (counti ≥ 0)) ci ← 0;
11. else ci ← yi ;
12. return c1, . . ., cm1+m2 ;

The two for loops can be easily combined into one (i.e.,
the yi ’s can be reset to 0 inside the first loop). We separate

123

Private and oblivious set and multiset operations

them for clarity of presentation: the computation in the first
loop will be common to all of our multiset operations, and the
computation in the second loop is specific to multiset union.
We also note that, for the purposes of the above sequential
algorithm, it is not necessary to maintain negative counts.
Instead, all elements from the second multiset that have no
matching elements from the first multiset can have the same
count (e.g., −1). If the same count is used, the comparison
on line 10 can be replaced with an equality check, which
would result in a slightly more efficient implementation. We,
however, need to maintain the exact counts for the elements
coming from both multisets for the purposes of a constant-
round implementation of this functionality.

To compute multiset intersection, it is sufficient to replace
lines 8–11 above with:

8. c1 ← 0;
9. for i = 2 to m1 + m2 do in parallel

10. if (¬yi) ci ← 0;
11. else if (counti < 0) ci ← 0;
12. else ci ← xi ;

Computing the subset relation (B
?⊆ A) can be achieved

by replacing lines 8–12 with:

8. s ← 1;
9. for i = 1 to m1 + m2 do in parallel

10. if (counti < 0) s ← 0;
11. return s;

To compute multiset difference, we change line 1 of the
union algorithm to:

1. 〈x1, y1, z1〉, . . ., 〈xm1+m2 , ym1+m2 , zm1+m2〉 ←
Sort (〈2a1+1, a1, 1〉, . . ., 〈2am1+1, am1 , 1〉, 〈2b1, b1, 0〉,
. . ., 〈2bm2 , bm2 , 0〉);

and replace lines 8–11 with the appropriate logic:

8. for i = 1 to m1 + m2 do in parallel
9. if (¬yi) ci ← 0;

10. else if (counti ≥ 0) ci ← 0;
11. else ci ← xi ;

What is important to notice is that the proposed approach
for representing sorted multisets is asymmetric with respect
to the inputs A and B, which makes it a natural choice
for asymmetric (i.e., not commutative) set operations such
as (asymmetric) difference and subset relation. As shown
above, it also works for symmetric operations such as union
and intersection. If, however, we would like to implement an
improved logic for the set intersection that produces a mul-
tiset of size (m1 + m2)/2 instead of m1 + m2 or symmetric
difference, we are not aware of a convenient way to modify
Algorithm 1 for that purpose.

To use our multiset-to-set conversion approach for sym-
metric set operations, we observe that the procedure for

computing the counts can be applied to the input multisets
independently, after which the two multisets can be merged.
This gives us a mechanism for realizing symmetric function-
alities using an asymmetric function. We provide additional
information on how this functionality can be implemented
below.

6.2 Efficient secure implementation

All of the algorithms for performing multiset operations
directly that we described so far are sequential and involve a
linear number of rounds. To be able to compute these mul-
tiset operations in a constant number of rounds, all that is
necessary is to design a mechanism for computing all counts
counti in a constant number of rounds. Using the intuition
developed in the previous section, we define a new operator
for the purposes of computing counts, which can be securely
implemented on two operands as follows:

〈[x], [y], [count]〉 ← 〈[x1], [y1], [count1]〉 � 〈[x2], [y2],
[count2]〉
1. [u] ← Eq([x1], [x2], �); // Sect. 3.2
2. [x] ← [x2];
3. [y] ← [y2];
4. [count] ← [u][count1] + [count2]; // 1 round, 1 inv
5. return 〈[x], [y], [count]〉;

In the above, each x1 and x2 is a multiset element and y1

and y2 are bits. It is expected that the inputs are well formed,
which means that x1 ≤ x2 and if x1 = x2, then y1 ≤ y2.
Then we obtain that if x1 = x2, the counts are simply added.
Otherwise, count1 is ignored and count2 is used in the result.
This operator can also be shown to be associative.

The last piece that remains before we are ready to present
our direct implementations of private multiset operations
is to show how to compute unbounded fan-in � operator
�mi=1〈xi , yi , counti 〉 in a constant number of rounds. This can
be accomplished in a similar way to computing ◦mi=1〈xi , yi 〉
in Sect. 5. In more detail, we have:

Protocol 12. 〈[x], [y], [count]〉 ← �mi=1〈[xi], [yi], [counti]〉
1. for i = 1 to m − 1 do in parallel

[ui] ← Eq([xi], [xi+1], �); // Sect. 3.2
2. ([vm−1], . . ., [v1]) ← PreAND([um−1], . . ., [u1]);

// Sect. 3.2
3. for i = 1 to m − 1 do in parallel [wi] ← [vi][counti];

// 1 round, m − 1 inv
4. [x] ← [xm];
5. [y] ← [ym];
6. [count] ← [countm] + ∑m−1

i=1 [wi];
7. return 〈[x], [y], [count]〉;

123

M. Blanton, E. Aguiar

Now, for example, the multiset union protocol becomes:

Protocol 13. [c1], . . ., [cm1+m2] ← DMUnion([a1], . . .,
[am1], [b1], . . ., [bm2])
1. 〈[x ′

1], [y′
1], [z′1]〉, . . ., 〈[x ′

m1+m2
], [y′

m1+m2
], [z′m1+m2

]〉
← SortT(〈2[a1], [a1], [0]〉, . . ., 〈2[am1], [am1], [0]〉, 〈2
[b1] + 1, [b1], [1]〉, . . ., 〈2[bm2] + 1, [bm2], [1]〉, � + 1);

// Sect. 3.2
2. for i = 1 to m1 + m2 do in parallel

[count ′i] ← 1 − 2[y′
i];

3. 〈[x1], [y1], [count1]〉, . . ., 〈[xm1+m2], [ym1+m2],
[countm1+m2]〉 ← Pre�(〈[y′

1], [z′1], [count ′1]〉 . . .,

〈[y′
m1+m2

], [z′m1+m2
], [count ′m1+m2

]); // Protocol 12
4. for i = 2 to m1 + m2 do in parallel

[ui] ← GE([counti], 0, �log max(m1,m2)�);
// Sect. 3.2

5. for i = 2 to m1 + m2 do in parallel
[vi] ← [xi][yi]; // m1 +m2 − 1 inv

6. [c1] ← [x1];
7. for i = 2 to m1 + m2 do in parallel

[ci] ← [xi] − [ui][vi]; // 1 round, m1 + m2 − 1 inv
8. return [c1], . . ., [cm1+m2];

The subset relation protocolDMSub can be obtained from
DMUnion by replacing lines 4–8 with:

4. for i = 1 to m1 +m2 do in parallel [ui] ← GE([counti],
0, �logm1�); // Sect. 3.2

5. [t] ← ∑m1+m2
i=1 [ui];

6. [s] ← Eq([t],m1 + m2, �log(m1 + m2)�); // Sect. 3.2
7. return [s];

It is assumed above that m1 ≥ m2; otherwise, the result
of the operation is 0 based on the multiset sizes (when no
padding is used). To form a private multiset difference pro-
tocol DMDiff, one needs to change the loops on lines 4 and
5 of the DMUnion protocol to start from i = 1, as well as
replace line 1 with:

1. 〈[x ′
1], [y′

1], [z′1]〉, . . ., 〈[x ′
m1+m2

], [y′
m1+m2

], [z′m1+m2
]〉←

SortT(〈2[a1]+1, [a1], [1]〉, . . ., 〈2[am1]+1, [am1], [1]〉,
〈2[b1], [b1], [0]〉, . . ., 〈2[bm2], [bm2], [0]〉, � + 1);

// Sect. 3.2

and lines 6–7 with:

6. for i = 1 to m1 +m2 do in parallel [ci] ← (1−[ui])[vi];
// 1 round, m1 +m2 inv

As was mentioned earlier, we use a different logic for set
intersection and symmetric difference protocols, in which
Pre� is executed on each input multiset separately, and the
results are merged to produce a single sorted set. In what fol-
lows, we provide a set intersection protocol that implements
the same computation for multisets as Protocol 2 for sets,
but uses different variable naming for ease of consecutive
description. Below, m = m1 + m2.

Protocol 14. [c1], . . ., [cm/2�] ← DMInt([a1], . . ., [am1], [b1], . . ., [bm2])
1. [a′

1], . . ., [a′
m1

] ← Sort([a1], . . ., [am1], �); // Sect. 3.2
2. [b′

1], . . ., [b′
m2

] ← Sort([b1], . . ., [bm2], �); // Sect. 3.2
3. 〈[x ′

1], [y′
1], [count ′1]〉, . . ., 〈[x ′

m1
], [y′

m1
], [count ′m1

]〉 ← Pre�(〈[a1], [0], [1]〉, . . ., 〈[am1], [0], [1]〉); // Protocol 12
4. 〈[x ′′

1], [y′′
1], [count ′′1]〉, . . ., 〈[x ′′

m2
], [y′′

m2
], [count ′′m2

]〉 ← Pre�(〈[b1], [0], [1]〉, . . ., 〈[bm2], [0], [1]〉); // Protocol 12
5. k = max(m1,m2) + 1;
6. 〈[z1], [x1], [count1]〉, . . ., 〈[zm], [xm], [countm]〉 ← MergeT((〈k[x ′

1] + [count ′1], [x ′
1], [count ′1]〉, . . ., 〈k[x ′

m1
]+

[count ′m1
], [x ′

m1
], [count ′m1

]〉), (〈k[x ′′
1] + [count ′′1], [x ′′

1], [count ′′1]〉, . . ., 〈k[x ′′
m2

] + [count ′′m2
], [x ′′

m2
], [count ′′m2

]〉), � +
�log k�); // Sect. 3.2

7. for i = 1 to m − 1 do in parallel [ui] ← GE(k[xi] + [counti], k[xi+1] + [counti+1], � + �log k�); // Sect. 3.2
8. for i = 1 to (m − 1)/2� do in parallel [ci] ← ([u2i−1] + [u2i])[x2i]; // 1 round, (m − 1)/2� inv
9. if (m mod 2 = 0) [cm/2] = [um−1][xm]; // 1 inv
10. return [c1], . . ., [cm/2�];

To implement multiset symmetric differenceDMSDiff, all
we need is to replace lines 8–10 inDMInt with the following:

8. [c1] ← [x1](1 − [u1]); // 1 round, 1 inv
9. [cm] ← [xm](1 − [um−1]); // 1 inv
10. for i = 2 to m − 1 do in parallel

[ci] ← [xi](1 − [ui] − [ui−1]); // m − 2 inv
11. return [c1], . . ., [cm];

123

Private and oblivious set and multiset operations

As before, security of these protocols can be shown in
both passive and active models using the same argument as
in Sect. 4.4.

While in the most general case our direct implementation
of multiset operations yields more efficient results, there are
circumstances when the general approach described in Sect. 5
achieves a performance not significantly different from the
direct implementation of the respective multiset operation.
In particular, if we can guarantee that the conversion proce-

dure M2S will be executed over the elements of all multisets
as the initial step and that, as a result, each input multiset
is properly sorted, it then becomes possible to replace the
SortT procedure present on all set operations protocols by
a more efficient MergeT. In that case, the cost of using the
general conversion and running the protocols for regular set
operations will be very close to that of executing the pro-
tocols presented in this section. The main difference in the
performance of the two solutions then comes from the need to
operate on longer values in the general conversion than in the
direct solutions for most multiset operations while compar-
ing the multiset elements. For example, sorting (or merging)
in MUnion executes compare-and-exchange operations on
(�+�log k�)-bit values, while DMUnion performs this oper-
ation on values of length �+ 1. In both cases, the modulus p
of the secret sharing scheme must be chosen appropriately to
allow for correct representation of integers of the specified
length.

We next show how the multiset protocols described in this
section can be made suitable for length-hiding operations.
Similar to set operations, all direct operations on multisets
with the exception of subset relationship work correctly when
input multisets are padded with zero elements to hide the
actual number of elements in a multiset. It therefore remains
to show how DMSub needs to be modified to be suitable for
length-hiding computation.

To ensure correct operation of DMSub on padded multi-
sets, what is needed is to guarantee that zero elements will not

affect the outcome. This means that the excess of zero ele-
ments in the second multiset B which have negative counts
needs to be ignored in determining the result of the operation.
The simplest way to achieve this is to compare each element
of the merged sorted set to 0 and disregard zero elements with
negative counts. This is what the protocol below computes,
where the total number of nonzero elements with negative
counts should be 0 to result in the output bit being set.

Protocol 15. [s] ← DMSub([a1], . . ., [am1], [b1], . . ., [bm2])
1. 〈[x ′

1], [y′
1], [z′1]〉, . . ., 〈[x ′

m1+m2
], [y′

m1+m2
], [z′m1+m2

]〉 ← SortT(〈2[a1], [a1], [0]〉, . . ., 〈2[am1], [am1], [0]〉, 〈2[b1] + 1,

[b1], [1]〉, . . ., 〈2[bm2] + 1, [bm2], [1]〉, � + 1); // Sect. 3.2
2. for i = 1 to m1 + m2 do in parallel [count ′i] ← 1 − 2[y′

i];
3. 〈[x1], [y1], [count1]〉, . . ., 〈[xm1+m2], [ym1+m2], [countm1+m2]〉 ← Pre�(〈[y′

1], [z′1], [count ′1]〉 . . ., 〈[y′
m1+m2

],
[z′m1+m2

], [count ′m1+m2
]); // Protocol 12

4. for i = 1 to m1 + m2 do in parallel [ui] ← GE([counti], 0, �log max(m1,m2)�); // Sect. 3.2
5. for i = 1 to m1 + m2 do in parallel [vi] ← Eq([xi], 0, �); // Sect. 3.2
6. [t] ← ∑m1+m2

i=1 (1 − [ui])[vi];// 1 round, m1 + m2 inv
7. [s] ← Eq([t], 0, �log max(m1,m2)�); // Sect. 3.2
8. return [s];

This change to the original DMSub, however, involves
m1 + m2 additional equality tests, which generally can be
avoided. In particular, as we represent multiset elements
using positive numbers, we can replace lines 5–7 above with

5. [t] ← ∑m1+m2
i=1 (1 − [ui])[xi]; // 1 round, m1 + m2 inv

6. [s] ← Eq([t], 0, � + �log max(m1,m2)�); // Sect. 3.2

which completely avoids the extra equality tests. Note that,
instead of being the sum of bits, the value of t is now larger
and contains the sum of the elements themselves with neg-
ative counts. The correctness of the result, however, is still
guaranteed if we appropriately increase the number of bits
considered in the final equality test when comparing the value
of t to 0. Unlike adding m1 +m2 equality checks, this change
has a negligible effect on the performance of the operation.

7 Optimizations

In this section, we describe techniques for improving effi-
ciency of the protocols by optimizing sorting or replacing it
with more efficient alternatives.

7.1 Operating on sorted inputs

As the first optimization, we notice that if the input sets in
our set operations are always given in a sorted form, the

123

M. Blanton, E. Aguiar

sorting step of our algorithms (which introduces their main
complexity) can be replaced by a merge operation. Because
the merging step has lower complexity than sorting, the effi-
ciency of the overall protocol improves. In particular, as
mentioned earlier, oblivious bitonic merge [6] uses 1

2m logm
compare-and-exchange operations and, perhaps more impor-
tantly, has depth of logm as opposed to 1

4m log2 m and
1
2 log2 m, respectively, for merge sort.

In order to be able to use merging instead of sorting in our
protocols, we need to ensure that inputs are given in a sorted
form and the outputs also correspond to sorted (multi)sets.
When each set is originally coming from a single input party,
it can be locally sorted prior to distributing its shares to the
computational parties. Alternatively, if the entire set is not
known to any individual party, every portion of it known to
a single party can still be sorted and multiple portions are
merged by the computational parties prior to a protocol exe-
cution. Then the complexity of the first set operation which
handles that set will be higher than that of merging, but all
other uses of the same set save the cost of sorting.

To ensure that the output produced by a protocol is a sorted
set, notice that nonzero elements of all output sets are already
sorted. Thus, instead of performing full sorting to produce
a sorted set, all that is necessary is to use set compaction
which will place all zero elements before nonzero elements.
Producing a sorted set as the output will also eliminate the
need to sort the set at the end of the overall computation
when the set is to be revealed to the output parties. Efficient
oblivious set compaction is therefore what we address next.

7.2 Utilizing (multi)set compaction

Our starting point for realizing set compaction obliviously
was tight order-preserving compaction for the external mem-
ory [40] that places all zero elements before nonzero elements
while preserving the order of the nonzero elements. We adopt
the solution of [40] to our setting and optimize to minimize
the number of interactive operation as well as the number of
rounds. The algorithm uses butterfly-like network that con-
sists of logm levels for sets of size m x1, . . ., xm . Initially,
at level L0, the cells store the original set to be compacted
(cells with nonzero values x j are considered occupied). Cell
j at level Li is connected to cells j and j − 2i at level Li+1,
which means that it can be routed to either cell at the next
level. Initially, each nonzero element is labeled with the num-
ber of cells that it needs to be moved to the left to create a
tight compaction. In other words, the label corresponds to
the number of 0s in front of a nonzero element. For instance,
if the input set is 1, 0, 2, 0, 0, 3, the labels of 1, 2, and 3
will be 0, 1, and 3, respectively (and zero elements can be
assumed to be labeled with 0). These labels can be produced
by a single scan of the array, which we parallelize to run

only in one round in our solution. Then for each level Li

for 0 ≤ i ≤ logm − 1, the content of each occupied cell j
with label y j is routed to cell j − (y j mod 2i+1) (which will
be either j or j − 2i) at level Li+1, after which the label is
updated to y j = y j − (y j mod 2i+1).

Note that in the above description, nonzero elements of the
input set are collected on the left, at low indices, while for our
set protocols we would like zero elements to be moved to the
left. This can be easily corrected by calling set compaction
on the set xm, . . ., x1 with the order of the element reversed
instead of the original x1, . . ., xm and consequently reversing
the order of the elements in the returned set. Because the
compaction algorithm is order preserving, it will work in
either situation.

In our compaction protocol Comp below, we first deter-
mine all nonzero elements and produce their labels. The
labels are incremented from element j to j+1 only if element
j + 1 is nonzero. Then the labels of zero elements are erased
(reset to 0). Because all additions are performed locally, pro-
ducing the labels (lines 2–4) involves only a single round.
After computing the labels, we process one level of the rout-
ing network at a time, during which for each cell j at level i

we compute the bit v j = (y j mod 2i+1 ?= 0). The value of
the cell j at level i+1 is then determined based on the routing
decisions for cells j and j +2i at level i . That is, if both cells
j and j + 2i at level i are occupied, the content of either of
them can be copied to cell j at level i + 1. Otherwise, it may
or may not be occupied. Due to the algorithm’s correctness
at most one occupied cell from level i will be routed to any
given cell j at level i + 1. This logic is encoded on lines
9–14 of the protocol, which updates the cell contents as well
as their labels for level i + 1.

Protocol 16. [x1], . . ., [xm] ← Comp([a1], . . ., [am])
1. for i = 1 to m do in parallel [zi] ← Eq([ai], 0, �);

// Sect. 3.2
2. [count1] ← [z1];
3. for i = 2 to m do [counti] ← [counti−1] + [zi];
4. for i = 1 to m do in parallel [yi] ← (1 − [zi])[counti];

// 1 round, m inv
5. for i = 1 to m do in parallel [xi] ← [ai];
6. for i = 0 to logm − 1 do
7. for j = 1 to m do in parallel

[u j] ← Mod2k([y j], �, i + 1); // see below
8. for j = 1 to m do in parallel

[v j] ← Eq([u j], 0, i + 1); // Sect. 3.2
9. for j = 1 to m − 2i do in parallel

10. [x j] ← [v j][x j] + (1 − [v j+2i])[x j+2i];
// 1 round, 2(m − 2i) inv

11. [y j] ← [v j][y j] + (1 − [v j+2i])([y j+2i] − (1 −
[u j+2i])2i); // 2(m − 2i) inv

12. for j = m − 2i to m do in parallel
13. [x j] ← [v j][x j]; // 2 · 2i inv
14. [y j] ← [v j][y j]; // 2 · 2i inv
15. return [x1], . . ., [xm];

123

Private and oblivious set and multiset operations

This protocol uses a new function which computes
a mod 2k for a secret-shared integer a, the description of
which we present next. Our protocol Mod2k takes a secret-
shared value a, its length � in bits and an integer k and
produces value a mod 2k − 2ku (modulo p), where u is a
bit. Our protocol is a much reduced version of similar func-
tionality in [15], which computes the operation precisely as
a mod 2k by removing the error factor 2ku. We next describe
our protocol and then explain why the error factor does not
affect correctness of compaction.

Protocol 17. [b] ← Mod2k([a], �, k)
1. [r ′′] ← RandInt(κ + � − k);
2. [r ′] ← RandInt(k);
3. c ← Open([a] + 2k[r ′′] + [r ′]); // 1 round, 1 inv
4. c′ ← c mod 2k ;
5. [b] ← c′ − [r ′];
6. return [b];

In the above, RandInt produces a random value of the
bitlength given as its argument and requires no interaction
(see, e.g., [15] for more detail). Also recall that Open allows
the parties to reconstruct the value given as its argument. In
the protocol, κ corresponds to the statistical security parame-
ter, and after the first three steps of the protocol the parties
learn a + r , where the length of random r = 2kr ′′ + r ′ is
at least κ bits more than the length of a. Then note that the
output b is equal to (a mod 2k) − 2ku, where bit u = 1 iff
(a mod 2k) + r ′ > 2k . We obtain that the result is a mod 2k

when (a mod 2k) + r ′ < 2k , otherwise, when the sum over-
flows k-bit integers, the result is (a mod 2k) − 2k .

Returning back to compaction, we note that the above
computation with a possible error 2k does not pose a problem
for our compaction algorithm. That is, the only values that
a mod 2k can take during compaction are 0 and 2k−1. This
means that 0 will always be computed correctly (no overflow
is possible), while 2k−1 can be computed as either 2k−1 or
2k−1 − 2k . Because the only information that we need based
on this computation is whether the result was equal to zero
or not (i.e., equality test on line 7 of Comp), the result of
the comparison will always be correct, i.e., neither 2k−1 nor
2k−1 − 2k can be 0 in our representation to produce an error.
This is true in our setting (i.e., for any odd modulus p) even
if we consider only k + 1 significant bits when comparing
the result of Mod2k to 0.

Remarkably, we obtain the cost of (reduced) modulo
reduction in only one interactive operation. We obtain that
the overall cost of compaction is dominated by m logm
equality tests, where each Eq protocol is executed on short
values and the operation itself is substantially faster than GE
used in compare-and-exchange operations. This means that

compaction runs in a small fraction of time of either sort-
ing or merging protocols. The round complexity of Comp
is (round(Eq) + 1)(logm + 1), i.e., similar to that of
merging.

Finally, we would like to mention that compaction is not
the only mechanism of a cost lower than sorting for protecting
private information about the output of a (multi)set operation
before revealing it to the output parties. Huang et al. [47], for
example, use Waksman switching network [69] that com-
putes a random permutation of a set, which allows the parties
to randomly shuffle the elements of the output set and thus
hide any patterns in it. Waksman network is implemented
in [47] for the two-party setting based on garbled circuits
using a number of computation optimizations which allow
for an efficient implementation of the switching network. In
particular, in [47] one party supplies a random permutation
and “hard-wires” it in the circuit, and the representation of
the wires associated with the comparison operations in the
switching network is optimized as well. In our setting, how-
ever, implementing such a network becomes substantially
more costly. That is, in addition to having the computa-
tional parties obliviously choose a random permutation not
known to any of them, implementing the network itself will
include ≈ m logm GE operations as well as other compu-
tation. The compaction algorithm that we instead choose in
this work to accomplish this (and other) goal allows for a
significantly faster implementation: while requiring a sim-
ilar number of operations, it uses only equality tests Eq
which are noticeably faster in our framework than GE com-
parisons and does not involve a significant amount of other
work.

The security of the protocols presented in this section fol-
lows the same argument as before. In particular, it relies on
the same elementary building blocks as other sub-protocols
from prior literature used throughout our solutions (such as
comparisons).

8 Complexity analysis

After presenting optimizations to the protocols, we are ready
to evaluate their complexities under different security set-
tings. The complexities of all of our protocols are dominated
by O(m logm) compare-and-exchange operations needed
for sorting, where m is the combined size of the input
(multi)sets, or O(�m logm) invocations, where � is the
bitlength of set elements. When the computation proceeds
on sorted sets, the depth or round complexity of all protocols
is O(logm) (with and without compaction). The communi-
cation complexity of our protocols measured in the number
of field elements is shown in Table 2 using the results from
prior literature. The computation is the same as communica-
tion.

123

M. Blanton, E. Aguiar

Table 2 Communication
complexity of set and multiset
protocols measured in the
number of field elements

Adversary Security Communication References

Passive Perfect/statistical O(n�m logm + n2) [24]

Active Perfect O(n�m logm + n2 logm + n3) [7]

Active Statistical O(n(� + κ)m logm + n2 logm + n3) [7]

The results assume t < n/2 for passive adversaries and
t < n/3 for active adversaries (although results for t < n/2
are available as well). The results with perfect security use
perfectly secure building blocks. When statistically secure
building blocks are used in the malicious setting, as discussed
in Sect. 4.4, complexity of LT, Eq, and PreAND becomes
O(�+κ) invocations, where κ is a (statistical) security para-
meter. This is due to the fact that protocol RandInt is called
to generate random integers κ bits longer than integers used
in the computation. This change is reflected in Table 2. The
constants, however, are small enough that we expect the solu-
tion that uses statistically secure building blocks is faster in
the malicious model as well. When statistically secure build-
ing blocks are used in any more, the field size is increased
by a security parameter κ .

9 Performance evaluation

In order to fully evaluate performance of our techniques, we
implemented several protocols and measured their runtime
for a number of set sizes. We used 32-bit integers to represent
set elements (i.e., � = 32), and following the implementa-
tion of related primitives in [64] set the statistical security
parameter κ to 48. This requires that the field Zp used for
the secret sharing scheme has modulus p of size greater than
� + κ , and we use |p| = 81 in our implementation of set
operations. For the multiset operations, the modulus size is
increased by log(max(m1,m2)+1) bits, where as before m1

and m2 are the number of elements in the input multisets.
For the experiments, we used (3, 1)-secret sharing scheme,
where each of the three computational parties was run on
a 2.4GHz AMD Opteron computer. The computational par-
ties were connected by 1Gb Ethernet. The code was written
in C++ using the GMP library [37] for large number arith-
metic. All integer operations were implemented as described
in [2].

We implemented optimized set union and intersection
protocols, as well as multiset-to-set conversion which corre-
spondingly allows us to run multiset union and intersection.
In more detail, we used bitonic merge [6] instead of full
sort together with the building blocks’ instantiations listed in
Sect. 3.2. As described in Sect. 7, this setup assumes that the
input sets are already individually sorted.

Our implementation used a limited degree of parallelism.
In particular, when a number of operations of the same type

could be carried out in parallel, they were executed in a sin-
gle batch. For instance, in bitonic merge m/2 independent
compare-and-exchange operations can be carried out simul-
taneously, and in our implementation each computational
party first batched computation and communication of all
of them together using the same number of rounds as that of
a single compare-and-exchange operation. While this type
of processing allows us to greatly reduce the communication
time compared to the sequential execution of each operation
by the computational parties, it by no means is optimal in
terms of its runtime and the performance can be improved. In
particular, with a full support for parallelism, the computation
could be split among the multiple cores of the computational
parties. In addition, the number of communication rounds
could be lowered as data-independent rounds of the compar-
ison protocol of a bitonic merge iteration could be carried out
in parallel with the comparison computation of its previous
iteration.

We measured performance of implemented protocols on
sets of size from 16 to 2048, where the set size was increased
by a factor of 2 for each consecutive experiment. Table 3
lists the running times of our set union (Protocol 1), set inter-
section (Protocol 2), set intersection followed by compaction
(Protocols 2 and 16), and multiset intersection (Protocol 18 in
“Appendix” in seconds. Each reported runtime corresponds
to the average running time over five identical runs of the cor-
responding operation and the set size. As can be seen from
the table, we obtain practical results which can scale to sets
and multisets of rather large sizes. As expected, the runtime
grows slightly faster than a linear function in the size of the
(multi)set.

One can notice that the performance of the set union pro-
tocol is very close to that of set intersection. This is due
to the fact that almost all of the time is being spent in the
merging step common to both operations, and the remaining
computations are also very similar. Both Table 3 and Fig. 1
report times for the set intersection protocol with and with-
out compaction. As can be seen, despite a larger constant in
the complexity of compaction compared to that of merging,
performance of compaction is noticeably faster than that of
the set intersection itself.

Table 3 also shows that performance of multiset opera-
tions is only slightly slower than that of the corresponding
set operations.

Lastly, we measure the amount of time used for commu-
nication compared to that for computation. As previously

123

Private and oblivious set and multiset operations

Table 3 Runtime of set and
multiset operations protocols in
seconds

Protocol Set size

16 32 64 128 256 512 1024 2048

Set union 0.127 0.247 0.515 1.104 2.411 5.384 11.886 24.880

Set intersection 0.125 0.245 0.510 1.097 2.359 5.327 11.734 24.875

Set intersection with compaction 0.164 0.316 0.640 1.337 2.880 6.323 13.849 30.716

Multiset intersection 0.163 0.310 0.634 1.297 2.855 6.287 14.242 29.598

Intersection with compaction
Intersection without compaction

T
im

e
in

 s
ec

on
ds

0

5

10

15

20

25

30

Set size
16 32 64 128 256 512 1024 2048

Fr
ac

tio
n

of
 r
un

ni
ng

 ti
m

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

Set size

16 32 64 128 256 512 1024 2048

Communication
Computation

Fig. 1 Performance of set intersection protocols

discussed, our protocols were designed to minimize the
round complexity and consequently reduce the communi-
cation time. We therefore were interested in determining the
portion of the overall runtime due to communication, and the
results for the set intersection protocol (without compaction)
are given in Fig. 1. Following our expectation, for small set
sizes most of the overall runtime is due to communication,
and the fraction of time spent on communication gradually
decreases as we increase the set size.

Recently, implementations of secure set intersection pro-
tocols in the two-party setting have appeared in the litera-
ture [30,47]. Because of the drastic differences in our setting
and the setting adopted in those publications, a direct perfor-
mance comparison of our solutions and those in [30,47] is
not possible. We can therefore only provide a discussion of
the relative performance and capabilities of the solutions.
In particular, Huang et al. [47] propose protocols for set

intersection in the two-party setting based on Yao’s generic
garbled circuit evaluation [71]. For sets with 1024 elements
and the security parameter set to guarantee short-term secu-
rity (112 bits), their most efficient implementation yields
a runtime of 11.8 seconds for elements represented using
32 bits (exact runtimes are not available for sets of other
sizes). In another recent implementation of two-party set
intersection [30], the authors measured the performance of
a custom linear-time RSA-based protocol from [29]. The
implementation was optimized and fully parallelized, in that
the computation was partitioned among the cores of a 4-core
server and dual core client. The authors achieve a notable
runtime of 1.8 seconds for sets of size 1000 and the same
112-bit short-term security parameter. Although our imple-
mentation results in a slower performance, this gap is largely
expected for a variety of reasons. The most prominent reason
is the fact that our multi-party framework incurs numerous
interactive rounds during computation while these two-party
solutions require a single interaction. Second, our solution
is oblivious with respect to the inputs, while in the solu-
tions implemented in both [47] and [30] the fact that the
parties have knowledge of the sets (and in some cases other
information) results in faster performance. Third, not tak-
ing advantage of the available multiple CPU cores in our
implementation contributes to the amount of time spent on
computation, although this can be substantially reduced in
an implementation that parallelizes the computation. Lastly,
the flexibility of our framework, composability of the pro-
tocols, and support for a large number of set and multiset
operations offer advantages not available in other settings,
and our solution can be preferred for those reasons despite
its longer runtime.

10 Conclusions

This work is the first to provide a comprehensive suite of
protocols for multi-party set and multiset operations that are
data-oblivious and composable. The list of covered opera-
tions consists of set and multiset union, intersection, equality,
symmetric and asymmetric difference, subset and super-
set relationships, and element reduction (for multisets). The
flexibility of the framework allows these operations to be

123

M. Blanton, E. Aguiar

employed in a variety of settings ranging from the tradi-
tional secure multi-party computation to secure outsourcing
by one or more parties. The solutions have a natural sup-
port for hiding the output size and can be easily extended

to compute cardinality or over-the-threshold cardinality of
the result. All solutions are information-theoretically secure
against malicious adversaries, achieve low communication
and computation cost of O(m logm) for data sets of size m,
and were designed to minimize round complexity. Experi-
mental results show practicality of our solution.

Appendix: Multiset protocols using general
multiset-to-set conversion

The multiset intersection protocol,MInt, is somewhat similar
to MUnion. To obtain MInt with the optimized performance

of Protocol 2, we replace lines 3–9 in MUnion (Protocol 11)
with the appropriate logic, resulting in the following protocol
(as before, m is compact for m1 + m2):

Protocol 18. 〈[x1], [y1]〉. . ., 〈[xm1+m2], [ym1+m2]〉 ← MInt (〈[x ′
1], [y′

1]〉, . . ., 〈[x ′
m1

], [y′
m1

]〉, 〈[x ′′
1], [y′′

1]〉, . . ., 〈[x ′′
m2

], [y′′
m2

]〉)

1. k ← max(m1,m2) + 1;
2. 〈[α1], [β1], [γ1]〉, . . ., 〈[αm1+m2], [βm1+m2], [γm1+m2]〉 ← SortT(〈k[x ′

1] + [y′
1], [x ′

1], [y′
1]〉, . . ., 〈k[x ′

m1
] + [y′

m1
], [x ′

m1
],

[y′
m1

]〉, 〈k[x ′′
1] + [y′′

1], [x ′′
1], [y′′

1]〉, . . ., 〈k[x ′′
m2

] + [y′′
m2

], [x ′′
m2

], [y′′
m2

]〉, � + �log k�); // Sect. 3.2
3. for i = 1 to (m − 1)/2� do in parallel
4. [ui] ← Eq([α2i], [α2i−1], � + �log k�); // Sect. 3.2
5. [vi] ← Eq([α2i], [α2i+1], � + �log k�); // Sect. 3.2
6. [xi] ← ([ui] + [vi])[βi]; // 1 round, (m − 1)/2� inv
7. [yi] ← ([ui] + [vi])[γi]; // optional
8. if (m mod 2 = 0)
9. [um/2] ← Eq([αm], [αm−1], � + �log k�); // Sect. 3.2
10. [xm/2] ← [um/2][βm]; // 1 inv
11. [ym/2] ← [um/2][γm]; // optional
12. return [x1], . . ., [xm/2�];

The multiset version of our subset relation protocolMSub
returns only a single bit and can be constructed from the
multiset union by simply replacing lines 3–9 with:

3. for i = 2 to m1 + m2 do in parallel [ui] ←
Eq([γi], [γi−1], � + �log k�); // Sect. 3.2

4. [t] ← ∑m1+m2
i=2 [ui];

5. [s] ← Eq([t],m1, �logm1�); // Sect. 3.2
6. return [s];

It is also not very difficult to derive the multiset difference
protocol MDiff from its set version Diff, which we provide
next.

123

Private and oblivious set and multiset operations

Protocol 19. 〈[x1], [y1]〉. . ., 〈[xm1+m2], [ym1+m2]〉←MDiff (〈[x ′
1], [y′

1]〉, . . ., 〈[x ′
m1

], [y′
m1

]〉, 〈[x ′′
1], [y′′

1]〉, . . ., 〈[x ′′
m2

], [y′′
m2

]〉)
1. k ← max(m1,m2) + 1;
2. 〈[α1], [β1], [γ1], [δ1]〉, . . ., 〈[αm1+m2], [βm1+m2], [γm1+m2], [δm1+m2]〉 ← SortT(〈k[x ′

1] + [y′
1], [x ′

1], [y′
1], [0]〉, . . .,

〈k[x ′
m1

] +[y′
m1

], [x ′
m1

], [y′
m1

], [0]〉, . . ., 〈k[x ′′
1] + [y′′

1], [x ′′
1], [y′′

1], [1]〉, . . ., 〈k[x ′′
m2

] + [y′′
m2

], [x ′′
m2

], [y′′
m2

], [1]〉, �+
�log k�); // Sect. 3.2

3. for i = 1 to m1 + m2 − 1 do in parallel [ui] ← Eq([αi], [αi+1], � + �log k�); // Sect. 3.2
4. [x1] ← [β1](1 − [u1]); // 1 round, 1 inv
5. [y1] ← [γ1](1 − [u1]); // optional
6. [xm1+m2] ← [βm1+m2](1 − [um1+m2−1]); // 1 inv
7. [ym1+m2] ← [γm1+m2](1 − [um1+m2−1]); // optional
8. for i = 2 to m1 + m2 do in parallel
9. [xi] ← [βi](1 − [ui] − [ui−1]); // m1 + m2 − 2 inv

10. [yi] ← [γi](1 − [ui] − [ui−1]); // optional
11. for i = 1 to m1 + m2 do in parallel
12. [xi] ← [βi](1 − [δi]); // 1 round, m1 + m2 inv
13. [yi] ← [γi](1 − [δi]); // optional
14. return 〈[x1], [y1]〉, . . ., 〈[xm1+m2], [ym1+m2]〉;

In this protocol, sorting is done with respect to the first
element of each (4-)tuple. Symmetric difference can be
obtained by skipping lines 11–13. As before, we will exe-
cute the lines marked as optional only if the counts need to be
preserved.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting net-
work. In: STOC, pp. 1–9 (1983)

2. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computa-
tion on floating point numbers. In: Network and Distributed System
Security Symposium (NDSS) (2013)

3. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for
perfectly-secure multiparty computation. In: Electronic Colloqium
on Computational Complexity (ECCC), Report No. 36 (2011)

4. Asharov, G., Lindell, Y., Rabin, T.: Perfectly-secure multiplication
for any t < n/3. In: CRYPTO (2011)

5. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-
hiding private set intersection. In: Public Key Cryptography (PKC),
LNCS, vol. 6571, pp. 156–173 (2011)

6. Batcher, K.: Sorting networks and their applications. In: AFIPS
Spring Joint Computer Conference (1968)

7. Beerliova-Trubiniova, Z., Hirt, M.: Perfectly-secure MPC with
linear communication complexity. In: Theory of Cryptography
Conference (TCC), pp. 213–230 (2008)

8. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: A system for
secure multi-party computation. In: ACM Conference on Computer
and Communications Security (CCS), pp. 257–266 (2008)

9. Blanton, M., Aguiar, E.: Private and oblivious set and multiset
operations. In: ASIACCS (2012)

10. Blanton, M., Atallah, M., Frikken, K., Malluhi, Q.: Secure and
efficient outsourcing of sequence comparisons. In: ESORICS, pp.
505–522 (2012)

11. Blelloch, G., Reid-Miller, M.: Fast set operations using treaps. In:
SPAA, pp. 16–26 (1998)

12. Canetti, R.: Security and composition of multiparty cryptographic
protocols. J. Cryptol. 13(1), 143–202 (2000)

13. Canetti, R.: Universally composable security: a new paradigm for
cryptographic protocols. In: FOCS (2001)

14. Canetti, R., Damgård, I., Dziembowski, S., Ishai, Y., Malkin, T.:
Adaptive versus non-adaptive security of multi-party protocols. J.
Cryptol. 17(3), 153–207 (2004)

15. Catrina, O., de Hoogh, S.: Improved primitives for secure mul-
tiparty integer computation. In: Security and Cryptography for
Networks (SCN), pp. 182–199 (2010)

16. Chandra, A., Fortune, S., Lipton, R.: Unbounded fan-in circuits and
associative functions. In: ACM Symposium on Theory of Comput-
ing (STOC), pp. 52–60 (1983)

17. Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving
set intersection with quasi-linear complexity. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. E95–A(8), 1366–1378
(2012)

18. Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Effi-
cient multiparty computations secure against an adaptive adversary.
In: Advances in Cryptology—EUROCRYPT, pp. 311–326 (1999)

19. Cramer, R., Damgård, I., Maurer, U.: General secure multi-party
computation from any linear secret-sharing scheme. In: Advances
in Cryptology—EUROCRYPT, pp. 316–334 (2000)

20. Cramer, R., Damgård, I., Nielsen, J.: Multiparty computation from
threshold homomorphic encryption. In: Advances in Cryptology—
EUROCRYPT, pp. 280–300 (2001)

21. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient
robust private set intersection. In: Applied Cryptography and Net-
work Security (ACNS), pp. 125–142 (2009)

22. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Secure
efficient multiparty computing of multivariate polynomials and
applications. In: ACNS, pp. 130–146 (2011)

23. Damgård, I., Jurik, M.: A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In: Public
Key Cryptography (PKC), pp. 119–136 (2001)

24. Damgård, I., Nielsen, J.: Scalable and unconditionally secure mul-
tiparty computation. In: CRYPTO, pp. 572–590 (2007)

25. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Uncondi-
tionally secure constant-rounds multi-party computation for equal-

123

M. Blanton, E. Aguiar

ity, comparison, bits and exponentiation. In: TCC, pp. 285–304
(2006)

26. Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J., Smith, A.:
Scalable multiparty computation with nearly optimal work and
resilience. In: Advances in Cryptology—CRYPTO, pp. 241–261
(2008)

27. Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.: Asynchronous
multiparty computation: theory and implementation. In: Public Key
Cryptography (PKC), pp. 160–179 (2009)

28. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty
computation and the computational overhead of cryptography. In:
Advances in Cryptology—EUROCRYPT, pp. 445–465 (2010)

29. De Cristofaro, E., Tsudik, G.: Practical private set intersection pro-
tocols with linear complexity. In: Financial Cryptography and Data
Security (FC), LNCS, vol. 6052, pp. 143–159 (2010)

30. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set
intersection. In: International Conference on Trust and Trustworthy
Computing (TRUST), pp. 55–73 (2012)

31. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set
intersection protocols secure in malicious model. In: Advances in
Cryptology—ASIACRYPT, LNCS, vol. 6477, pp. 213–231 (2010)

32. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computa-
tion of cardinality of set intersection and union. In: International
Conference on Cryptology and Network Security (CANS) (2012)

33. Fouque, P.A., Poupard, G., Stern, J.: Sharing decryption in the con-
text of voting or lotteries. In: International Conference on Financial
Cryptography (FC), LNCS, vol. 1962, pp. 90–104 (2000)

34. Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching
and set intersection. In: Advances in Cryptology—EUROCRYPT,
LNCS, vol. 3027, pp. 1–19 (2004)

35. Frikken, K.: Privacy-preserving set union. In: ACNS, LNCS, vol.
4521, pp. 237–252 (2007)

36. Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and fast-track
multiparty computations with applications to threshold cryptogra-
phy. In: ACM PODC, pp. 101–111 (1998)

37. GMP.: The GNU multiple precision arithmetic library release 5.0.5.
http://gmplib.org/ (2012)

38. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental
game. In: STOC, pp. 218–229 (1987)

39. Goodrich, M.: Randomized Shellsort: a simple oblivious sorting
algorithm. In: SODA, pp. 1262–1277 (2010)

40. Goodrich, M.: Data-oblivious external-memory algorithms for the
compaction, selection, and sorting of outsourced data. In: ACM
Symposium on Parallelism in Algorithms and Architectures, pp.
379–388 (2011a)

41. Goodrich, M.: Spin-the-bottle sort and annealing sort: oblivious
sorting via round-robin random comparisons. In: Workshop on
Analytic Algorithmics and Combinatorics (ANALCO) (2011b)

42. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and
pattern matching with security against malicious and covert adver-
saries. In: Theory of Cryptography Conference (TCC), pp. 155–175
(2008)

43. Hazay, C., Nissim, K.: Efficient set operations in the presence of
malicious adversaries. In: PKC (2010)

44. Hirt, M., Maurer, U.: Robustness for free in unconditional multi-
party computation. In: Advances in Cryptology—CRYPTO, pp.
101–118 (2001)

45. Hirt, M., Nielsen, J.: Robust multiparty computation with linear
communication complexity. In: CRYPTO, pp. 463–482 (2006)

46. Hong, J., Kim, J.W., Kim, J., Park, K., Cheon, J.H.: Constant-round
privacy preserving multiset union. In: Cryptology ePrint Achive
Report 2011/138. http://eprint.iacr.org/2011/138 (2011)

47. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled
circuits better than custom protocols? In: Network & Distributed
System Security Symposium (NDSS) (2012)

48. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with
applications to adaptive OT and secure computation of set intersec-
tion. In: Theory of Cryptography Conference (TCC), pp. 577–594
(2009)

49. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In:
SCN, pp. 418–435 (2010)

50. Jónsson, K., Kreitz, G., Uddin, M.: Secure multi-party sorting and
applications. Cryptology ePrint Archive Report 2011/122 (2011)

51. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party
computation. Cryptology ePrint Archive report 2011/272 (2011)

52. Kissner, L., Song, D.: Privacy-preserving set operations. In:
CRYPTO, pp. 241–257 (2005)

53. Kung, H.T., Lehman, P.: Systolic (VLSI) arrays for relational data-
base operations. In: ACM SIGMOD International Conference on
Management of Data, pp. 105–116 (1980)

54. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically
secure protocols and security under composition. SIAM J. Comput.
39(5), 2090–2112 (2010)

55. Leighton, T., Plaxton, C.: Hypercubic sorting networks. SIAM J.
Comput. 27, 1–47 (1998)

56. Li, R., Wu, C.: An unconditionally secure protocol for multi-party
set intersection. In: ACNS (2007)

57. Lindell, Y.: General composition and universal composability in
secure multi-party computation. In: FOCS, pp. 394–403 (2003)

58. Narayanan, G., Aishwarya, T., Agrawal, A., Patra, A., Choud-
hary, A., Rangan, C.: Multi party distributed private matching, set
disjointness and cardinality of set intersection with information
theoretic security. In: Cryptology and Network Security (CANS),
pp. 21–40 (2009)

59. Patra, A., Choudhary, A., Rangan, C.: Information theoretically
secure multi party set intersection re-visited. In: Selected Areas in
Cryptography, pp. 71–91 (2009a)

60. Patra, A., Choudhary, A., Rangan, C.: Round efficient uncondi-
tionally secure MPC and multiparty set intersection with optimal
resilience. In: INDOCRYPT, pp. 398–417 (2009b)

61. Peng, K., Bao, F.: An efficient range proof scheme. In: IEEE PAS-
SAT, pp. 826–833 (2010)

62. Raeder, T., Blanton, M., Chawla, N., Frikken, K.: Privacy-
preserving network aggregation. In: Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), pp. 198–207
(2010)

63. Sang, Y., Shen, H.: Efficient and secure protocols for privacy-
preserving set operations. ACM Trans. Inf. Syst. Secur. 13(1),
9:1–9:35 (2009)

64. SecureSCM (2009) Information security in supply chain man-
agement (SecureSCM) project deliverable D9.2. University of
Mannheim

65. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–
613 (1979)

66. Sood, A.K., Abdelguerfi, M.: Parallel and pipelined processing of
some relational algebra operations. Int. J. Electron. 59(4), 477–482
(1985)

67. Toft, T.: Sub-linear, secure comparison with two non-colluding
parties. In: PKC, pp. 174–191 (2011)

68. Vaidya, J., Clifton, C.: Secure set intersection cardinality with
applications to association rule mining. J. Comput. Secur. 13(4),
593–622 (2005)

69. Waksman, A.: A permutation network. J. ACM 15(1), 159–163
(1968)

70. Wang, C., Ren, K., Wang, J.: Secure and practical outsourcing of
linear programming in cloud computing. In: INFOCOM, pp. 820–
828 (2011)

71. Yao, A.: How to generate and exchange secrets. In: FOCS, pp.
162–167 (1986)

72. Zhang, B.: Generic constant-round oblivious sorting algorithm for
MPC. In: ProvSec, pp. 240–256 (2011)

123

http://gmplib.org/
http://eprint.iacr.org/2011/138

	Private and oblivious set and multiset operations
	Abstract
	1 Introduction
	1.1 Our contributions

	2 Related work
	2.1 Privacy-preserving set operations
	2.2 Secure multi-party computation
	2.3 Parallel set operations

	3 Preliminaries
	3.1 Framework
	3.2 Building blocks
	3.2.1 Oblivious sorting
	3.2.2 Other protocols

	3.3 Security model

	4 Set operations
	4.1 Core protocols
	4.1.1 Set union
	4.1.2 Set intersection
	4.1.3 Subset relationship
	4.1.4 Set difference
	4.1.5 Symmetric difference
	4.1.6 Element reduction

	4.2 Protocol variants
	4.2.1 Opening the result of a (multi)set operation
	4.2.2 Reducing the size of the result of a (multi)set operation
	4.2.3 Computing (multi)set cardinality or over-the-threshold cardinality
	4.2.4 Performing set operations on multiple input sets

	4.3 Length-hiding set operations
	4.4 Security

	5 General conversion from a multiset to a set
	6 Direct operations on multisets
	6.1 Overview of the technique
	6.2 Efficient secure implementation

	7 Optimizations
	7.1 Operating on sorted inputs
	7.2 Utilizing (multi)set compaction

	8 Complexity analysis
	9 Performance evaluation
	10 Conclusions
	Appendix: Multiset protocols using general multiset-to-set conversion
	References

