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ABSTRACT
One of the concerns patients have when confronted with a
medical condition is which physician to trust. Any recom-
mendation system that seeks to answer this question must
ensure any sensitive medical information collected by the
system is properly secured. In this paper we codify these pri-
vacy concerns in a privacy-friendly framework and present
two architectures that realize it: the Secure Processing Ar-
chitecture (SPA) and the Anonymous Contributions Archi-
tecture (ACA). In SPA, patients submit their ratings in
a protected form without revealing any information about
their data, and the computation of recommendations pro-
ceeds over the protected data using secure multi-party com-
putation techniques. In ACA, patients submit their ratings
in the clear, but no link between a submission and patient
data can be made. We discuss various aspects of both ar-
chitectures including techniques for ensuring reliability of
computed recommendations and system performance, and
provide their comparison.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; H.4.m [Information
Systems Applications]: Miscellaneous

General Terms
Algorithms, Design, Reliability, Security.

Keywords
Recommendation systems, privacy, framework.

1. INTRODUCTION
It is evident that the health of an individual significantly

affects her quality of life. For this reason, finding appro-
priate physicians to diagnose and treat medical conditions
is one of the most important decisions that a patient must
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make. Currently, patients have two options that can aid
them in addressing this problem, but both are of limited ap-
plicability. The first option is to rely on friends and family
for advice on where to seek treatment. While recommenda-
tions produced by a close circle of friends can be assumed to
be very trustworthy, the likelihood that friends and family
have experience with the same medical history as the patient
is quite low. Furthermore, such advice can often be unavail-
able when, for instance, a patient moves to a new area and
does not have an established network from which to seek
advice; even when this is not the case, the number of physi-
cians which friends and family have had contact with may
not adequately cover the options in the given area. The sec-
ond option for patients is to seek public information about
and/or ratings for a physician available on, e.g., the inter-
net. Such ratings, however, are sparse as medical history is
often treated as personal, confidential information. Public
ratings also suffer from the problem of trustworthiness, as
the likelihood of inaccuracies is higher.

To combat the problem of a paucity of experience among
a patient’s trusted friends and the limited value of the exist-
ing types of rating systems, we propose a framework which
enables patients to gather reliable doctor recommendations
for their condition(s) while protecting the privacy of both
(i) the patients contributing their ratings to the system and
(ii) the patients making inquiries. In this framework patients
can rate physicians based on their satisfaction (defined on a
per condition basis) affording the patients more fine-grained
control over how to choose the physician who best suits their
needs. It also protects the reliability of the results, meaning
that (i) dishonest users cannot significantly influence the
outcome of a physician’s rating and (ii) no physician (or
small group of users) has the ability to tamper with the rat-
ings. This enables the system to maintain the integrity of
its ratings and ensure they are as unbiased as possible.

As our privacy-friendly framework can be realized using
a variety of techniques, we present alternative architectures.
Because each alternative has its own advantages and disad-
vantages, we provide a fair and detailed assessment of the
properties of each option, giving the community the ability
to evaluate both. Moreover, certain options might be prefer-
able over others in different contexts or application scenar-
ios. Finally, we describe specific realizations of the architec-
tures – which includes an implementation and experimental
evaluation of the system – and report the results.

Our contributions can therefore be summarized as follows:



• development of a privacy-friendly framework for a re-
liable recommendation system of physicians using pa-
tient experience.
• presenting two architectures that realize the frame-

work using different means from secure computation
and anonymous communication techniques.
• design and implementation of specific protocols for the

alternative architectures including experimental eval-
uation on a system prototype.

2. THE FRAMEWORK
In this section we develop the conceptual model of a privacy-

friendly and reliable medical recommendation system by spec-
ifying its requirements and functional structure. These re-
quirements will guarantee that patient privacy, as well as
system and recommendation integrity, are maintained.

2.1 Functional Requirements
In our framework we assume that the system maintains

a list of physicians and health conditions for which recom-
mendations can be provided. Each contributing patient i
submits her rating rijk for a specific physician j and specific
health condition k. Each rating reflects the patient’s satis-
faction with physician j treating condition k, and is selected
from a pre-defined and publicly known range. Without loss
of generality, let this range be [1, n], with the value of 0 be
reserved for when no rating is available. The system will
securely process or store the ratings to enable the following
functionalities for any interested patient:

• A patient interested in health condition k should be
able to obtain a physician recommendation for the con-
dition based on the aggregated satisfaction information
for all patients and all physicians treating the condi-
tion. Ideally, the recommendation is versatile enough
to include alternative best-ranked physicians instead
of providing only a single recommended name. That
is, let sjk denote the aggregate score for physician j
on condition k computed from individual ratings rijk.
(In this work, we use the term “rating” for individual
values contributed by patients and the term “score”
for the aggregate normalized value which is a function
of individual contributions.) Then instead of learning
the name of physician j with the highest score sjk, the
patient will be presented with a list of alternatives.

• A patient interested in a combination of health con-
ditions K = {k1, . . ., kℓ} should be able to obtain a
physician recommendation for the entire combination.
Furthermore, the patient should be able to assign dif-
ferent weights v1, . . ., vℓ to the conditions based on
their importance to the patient and obtain a recom-
mendation that takes into account these weights. That
is, the output will consist of best-ranked physicians
where the ranks are determined using the weighted
sum of the physicians’ scores for the individual con-
ditions, weighted by the patient-provided importance
values vi’s, i.e., the combined scores are computed as
sjK =

Pℓ

i=1 visjki
, where sjki

is the physician j’s score
for condition ki ∈ K. As before, a set of alternatives
is preferred over a single recommendation.

2.2 Rating Specification
When creating a recommendation system, an important

consideration is providing users with accurate and relevant

recommendations. In our system, we assume that the aver-
age rating given to a physician by her patients fits these cri-
teria. Such ratings, however, can be the result of a wide va-
riety of questions (e.g., overall satisfaction, time until cured,
etc.), which are outside the scope of this work. When evalu-
ating our system, we therefore assume that some overall rat-
ing for a physician exists. Moreover, we presume the rank-
ings are numeric in nature, and have been normalized; this
allows us to assume that an “average” rating makes sense,
and is consistent across the recommendation system. Since
none of the solutions presented in this work are reliant on
any specific representation or source of scores, this does not
affect any of the observations made in the paper.

In the rest of this work we assume that a recommendation
is given for a specific condition (or a combination of condi-
tions) and is computed from ratings submitted by patients.
That is, patient i who has seen physician j for condition
k can submit a rating rijk on the scale 1 to n. We use
rjk =

P

i
rijk to denote the sum of all ratings for physician

j on condition k and weight wjk to denote the number of pa-
tients who contributed their ratings for physician j treating
condition k.

2.3 Privacy Requirements
In the vast majority of existing recommendation systems,

data contributed by users is assumed to be public informa-
tion. In most cases this is a reasonable assumption, as user
preferences are usually not sensitive in nature. While for
most applications public ratings are acceptable, in medical
applications they are not. This is due to the fact that even
the existence of certain medical conditions is extremely sen-
sitive data which the patient is highly unlikely to divulge.
Therefore, expecting users to publicly disclose their opinion
for doctors treating the conditions, without any assertion of
privacy, is impractical. As such, we believe that recommen-
dation systems which require users to divulge their recom-
mendation (or even its existence) without provable privacy
guarantees should be treated with suspicion.

This leads to the first privacy requirement of a recommen-
dation system for medical applications: the (lack of) exis-
tence of a recommendation for a patient is sensitive data
which must be protected and unavailable throughout the life-
time of the recommendation system. This also means that
if at any point in time the patient’s data is revealed to any
entity, there should be no link between the patient’s iden-
tifying information (e.g., name, IP address, etc.) and the
data the patient contributed to the system.

Similarly, a user querying the system for a recommenda-
tion for a specific condition should not be forced to reveal
that condition to the system. This means that the user will
be able to obtain a recommendation for a specific condition
or a combination of conditions without communicating her
preferences to the system in unprotected form.

2.4 Reliability Requirements
In addition to patient security, physicians must also be

protected from unreasonable users or dishonest competitors.
That is, a small group of users should not be able to sab-
otage a physician’s reputation. This is not limited to the
patients who the physician treats, but also those who are
refused, as well as other physicians competing for the same
patients. Protecting against such users has the added benefit
of creating a more robust recommendation system, thereby
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Figure 1: Submission of user ratings and recommen-
dation computation in SPA architecture.

increasing its utility. Thus, the reliability requirement of
medical recommendation systems can be stated as: the rep-
utation of the physicians in the system must be preserved,
or at least the effectiveness of a small number of malicious
users in altering physicians’ scores must be mitigated.

The above requirement immediately suggests two ways of
dealing with dishonest users: malicious behavior can either
(i) be prevented or (ii) detected and compensated for. As
with any system that solicits input from a number of parties,
each user can enter any rating even if it does not fully reflect
her true experience. It is, however, possible to recognize sev-
eral types of user misbehavior as abuse of the system. For
example, a user can influence the aggregate score of a physi-
cian treating a certain condition by repeatedly submitting
ratings for that physician. A user can also submit a rating
which is out of the range (i.e., negative or above n) which
has a larger effect on the physician’s score than a single cor-
rect rating (since normally the aggregate score is computed
as the average of individual ratings).

3. PROPOSED ARCHITECTURES AND RE-
ALIZATIONS THEREOF

Given the requirements presented above, we provide two
broad classes of architectures which fit the framework. We
call the first type the Secure Processing Architecture (SPA)
and the second type the Anonymous Contributions Architec-
ture (ACA). These architectures are described next, includ-
ing their properties and engineering challenges associated
with their realization. Concrete instantiations of the archi-
tectures, including implementation, are given in Sections 4
and 5, respectively.

3.1 Secure Processing Architecture (SPA)
In this architecture, as the name suggests, patients con-

tribute secured (e.g., encrypted) ratings, and the compu-
tation of all recommendations is performed over secured
data. The architecture, depicted in Figure 1, employs se-
cure multi-party computation, where a number of compu-
tational servers collect data from patients and jointly com-
pute recommendations. While identifying information of pa-
tients (who contribute or query data) may be available to the
servers running the system, all submitted data is processed
in a protected form and is not available to any entity. In the
figure, computational servers CSi maintain the system and
process patients’ data. A contributing patient can properly
secure her contribution and submit it to one or more com-
putational servers. The servers engage in joint computation
and make the recommendations available to queriers.

As customary in secure multi-party computation, a thresh-
old scheme is used whereby the computation is performed by
p computational servers with threshold t. In such schemes,
any t ≤ p servers are able to successfully carry out or finish
the computation, while any number less than t servers can-
not learn anything about the data they handle. In this way
the data remains secure assuming that t or more servers do
not collude to learn any extra information. To maintain such
security, in this framework the computational servers should
be maintained by mutually distrustful or competing entities,
so that any t of them are unlikely to conspire. For exam-
ple, the computational servers can be run by (i) competing
physician offices or hospitals, (ii) insurance companies, (iii)
consumer rights protection organizations or programs, or
(iv) a combination of the above.

In SPA, when a patient submits her secured rating for
physician j and condition k, the computational servers should
not be able to learn the value of j and k. The easiest way
to hide this information is to have the patient submit a (se-
cured) rating for each physician and each condition where
only one submitted rating has the actual rating and carries
a weight of 1, while all other submitted values have rating
and weight 0. The servers will then be able to update the
scores for all physicians and all conditions using the data
received from the patient without the ability to know which
particular value has been modified.

In particular, this can be accomplished as follows: the
computational servers maintain (protected) sums rjk and
weights wjk for each physician j and condition k. When
a new rating rijk of weight wijk is submitted, the sum of
ratings is updated as rjk + rijk and the weight is updated
as wjk + wijk. When rijk and wijk are both 0, nothing
is modified. The scores sjk can then be computed as the
average rating rjk/wjk or any other function of rjk and wjk.

There are two common techniques for computing over pro-
tected data1: (i) encryption with special properties, called
homomorphic encryption, which allows for operations on ci-
phertexts to translate into certain operations on the under-
lying plaintexts, and (ii) sharing the value to be protected
among multiple parties and computing using its shares. Ei-
ther technique will enable us to perform the computations
outlined above, as well as all other computations necessary
in computing recommendations. We chose to use homomor-
phic encryption in our instantiation of this architecture and
its prototype implementation (Section 4).

Now notice that in this architecture the physicians’ scores
sjk cannot be revealed because of the privacy requirements.
That is, suppose that the computational servers post the
scores which patients can use to compute necessary recom-
mendations. Then when the next patient contributes her
secured rating to the system and the scores get updated and
published, it is likely trivial to find out what value, and for
which physician and condition, the patient submitted a rat-
ing. Therefore, the aggregate scores must be protected as
well, with only the recommendation data (such as a sorted
list of best-ranked physicians) made available.

Because in this setup patients interested in learning rec-
ommendations have no impact on the way recommendation
data is computed, there is a need to carefully design the
function f(rjk, wjk) for computing scores so that it is useful
and appeals to as broad of a population of users as possible.

1Other mechanisms exist as well, but are of limited applica-
bility here.



We leave it to the community to determine what function
is most meaningful for use in medical recommendation sys-
tems, but for the purposes of our realization, we propose to
compute the scores as a combination of the average rating
rjk/wjk and the number of patients treated wjk. That is,
set sjk = rjk/wjk + bjk, where rjk/wjk ∈ [1, n], bjk ∈ [1, m],
and n and m are chosen as desired. The purpose of bjk is to
let experienced physicians with a large number of patients
have some advantage compared to physicians who treated a
small number of patients for condition k. The value of m de-
termines how much the extra factor bjk influences the final
score, and we propose to use a non-linear scale for the value
of bjk. Specifically, let (t1 = 0, t2, . . ., tq) and (b1, . . ., bq),
q ≤ m, be two increasing sequences which will determine
the value of bjk. We set bjk = bi (i.e., place wjk in bucket
i) if the value of wjk is between thresholds ti and ti+1, i.e.,
ti ≤ wjk < ti+1 if ti+1 exists. The values of ti’s and bi’s can
be set to any meaningful numbers as long as the sequences
are increasing and bq ≤ m. Since the appropriate choice is
not only disease dependent, but location dependent as well,
we leave it up to the community to determine the bins. For
example, we can have n = 10, m = 5, b = (1, 2, 3, 4, 5), and
t = (0, 3, 5, 10, 20). This ensures that physicians who treated
a sufficient number of patients will have the same value for
bjk (and thus the average ranking differentiates them), while
physicians with a very limited number of visits will have a
lower value of bjk, and thus have to be rated more highly in
order to rank ahead of their more experienced colleagues.

Given the above, a user who would like to learn a recom-
mendation for condition k first obtains a list of the physi-
cians sorted according to their scores sjk (or a sorted list
of top physicians only). We note that this outcome suffi-
ciently hides individual contributions, where the physicians’
ratings and the number of patients treated remain private.
As secure multi-party techniques are relatively expensive, we
suggest having the computational servers periodically com-
pute the recommendations for all conditions and make that
information publicly availably. In this way a patient inter-
ested in a specific condition is instantly able to obtain the
desired recommendation. This also has the added benefit
of hiding the recommendation of any individual, as the pe-
riodic update, if spaced appropriately, will include a large
number of new contributions from many patients.

The system’s design also allows patients to determine a
custom rating based on a combination of conditions (where
the combination is to remain private). In such cases, we
first note that the number of diseases in a combination will
be small since patients will seek separate specialists for un-
related conditions rather than one physician who can effec-
tively treat all of them. Let u be the maximum number of
conditions in commonly queried combinations (e.g., u = 3).
Then the following options can be implemented within SPA:
(i) the servers precompute and make available recommen-
dations for each combination of ≤ u conditions for their
choice of importance weights or (ii) the servers precompute
recommendations for common combinations of ≤ u condi-
tions and compute recommendations for other combinations
upon user request (note that the results cannot be saved for
any subsequent user to immediately obtain since the queried
conditions are private). While the first option results in a
higher load on the computational servers (as the number of
all possible combinations grows rapidly, i.e., O(nu

c ) for nc

conditions), the second requires patients with non-standard

queries to experience delays. Also, combinations with non-
standard weights will result in custom queries in both cases.
In addition, while the choice of the conditions in a queried
combination can be secured, the recommendation given to
the querier (i.e., a sorted list of physicians) is likely to leak
some information about the conditions. Thus, precomputed
recommendations where a patient can retrieve information
about all conditions at once is preferred from the patient
privacy point of view.

In order to satisfy the reliability requirements of the frame-
work, abuse of the system can be prevented using the fol-
lowing mechanisms. Each contributing patient can be re-
quired to submit only one rating rijk at a time. This al-
lows the computational servers to detect an abnormal num-
ber of contributions from a particular user, treat the con-
tributions as malicious, and disregard them. Additionally,
when a patient submits a rating, she will have to prove that
the submission is well-formed. This can be done through
Zero-Knowledge Proofs of Knowledge (ZKPK), which prove
the validity of certain statements over secured data with-
out revealing any other information. In this application, the
patient uses ZKPKs to prove that (i) all submitted pairs
(rijk, wijk) except one are set to 0, (ii) there is weight wijk

of value 1 and the corresponding rating rijk is in the range
[1, n]. ZKPKs for all necessary functions such as OR, AND,
equality, and a range are known and can be combined to
prove the overall statement.

While designing a specific system using SPA, it is impor-
tant to realize that there is a trade-off between privacy and
computational overhead on one side and data reliability on
the other. That is, instead of submitting np×nc pairs (where
np is the number of physicians and nc is the number of con-
ditions) to contribute a single recommendation, a patient
might choose to submit fewer pairs for a subset of physi-
cians and/or conditions. This will allow the computational
servers to reduce the patient’s conditions to a smaller set of
potential diseases, but reduces the patient’s computational
overhead of sending a rating. This will also allow the com-
putational servers to more effectively detect abuse of the
system by dishonest users who repeatedly submit ratings
for the same physician.

3.2 Anonymous Contributions Architecture (ACA)
In this architecture, unlike the prior approach, the pa-

tients submit their ratings in the clear. In order to ensure
that there is no connection between a patient’s identifying
information and her contribution, all submissions are made
anonymously. That is, patients use a system for anonymous
routing to submit her contribution to the entity that re-
ceives all patient ratings and publishes information about
them. Such anonymizer systems are readily available today
(see, e.g., Tor anonymity network [3] and other anonymizer
services and proxies such as [1, 2], among many others).

With this design, we can achieve the privacy requirements
listed in Section 2. That is, the privacy of a patient who
submits a rating rijk for physician j and condition k is not
compromised because the recommendation system service
learns no information about the user’s identity and thus is
unable to make any inferences about the health history of
any particular patient. The service then processes all re-
ceived ratings and makes aggregate information about the
ratings available to all parties to use. This means that the
privacy of all patients who would like to use the system is



protected, as they can download the entire published ta-
ble (i.e., information about all conditions) posted by the
recommendation service and then disregard any irrelevant
data. Alternatively, such users can use an anonymizer and
retrieve only information about specific conditions from the
published data.

To make the recommendation data available to the pa-
tients at least as flexible as in SPA, we suggest that the
recommendation system service publishes the following in-
formation: for each physician j and condition k publish a
pair 〈rjk/wjk, bjk〉, where as before wjk is the number of
patients that contributed their rankings for physician j and
condition k, rjk/wjk =

P

i
rijk/wjk is the average rating

for physician j and condition k, and bjk is the bucket value
for wjk. Availability of such data satisfies the functional
requirements of Section 2. Furthermore, the data provides
more information than the recommendations in SPA, as not
only the ordering of physicians by their scores is known, but
various other relevant information (e.g., the differences be-
tween the scores) can be computed as well. In particular, a
patient can compute a recommendation for any combination
of conditions using custom weights.

With respect to the reliability requirements, the anony-
mous nature of a patients’ submissions can make the sys-
tem prone to abuse. That is, dishonest users might attempt
to influence a physician’s overall rating by submitting bo-
gus or repeated values. While it is trivial to defend against
the former (i.e., all ratings are submitted in the clear, thus
out-of-the-range or malformed values are immediately dis-
carded as invalid), dealing with the latter requires architec-
tural support. To combat this issue, we split the recommen-
dation system service into two entities, called the Certifica-
tion Authority (CA) and the Tabulating Authority (TA)2.
The responsibility of the CA is to manage users, while the
responsibility of the TA is to collect, process, and publish
recommendation data.

The CA first registers users, issuing them anonymous cre-
dentials at the time of registration. Thus, users are required
to register prior to submitting rankings to the TA. A reg-
istered user can then send her ranking to the TA and au-
thenticate the submission using her anonymous credentials
issued by the CA. We note that the authentication is anony-
mous in the sense that the only information revealed is that
the user has been registered with the CA. By using a type
of anonymous authentication (e.g., group signatures) which
allows the identity of the sender to be uncovered under ex-
ceptional circumstances, abuse of the recommendation sys-
tem service can be mitigated. That is, if the TA observes
an unusually high volume of contributions that do not align
with already stored data, a large number of submissions for
the same (j, k) pair, or a number of extreme scores for the
same physician that contradict the existing scores, the TA
can provide the authentication records associated with the
submissions to the CA who can then uncover the identity
of the offending user(s). The process of when to request an
identity to be uncovered can be controlled by a wide variety
of parties including, but not limited to, the physicians.

Finally, because new users normally contribute for the
first time shortly after their registration, we would like to
prevent the CA from making correlations between the users
that register and the content of the messages transmitted to

2As with multiple entities in SPA, it is recommended the
CA and TA are run by different organizations.
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Figure 2: Submission of user ratings and recommen-
dation computation in ACA architecture.

the TA over the network. For that reason, we assume that
the TA has an encryption key and all contributions sent to
the TA will be encrypted with that key. Furthermore, to
prevent the CA from making similar correlations based on
the updated information that the TA publishes, the updates
by the TA to the published data should be infrequent, only
after a significant number of new contributions (which will
include contributions by both old and new users) has been
accumulated. Note that this is not a major restriction of
the system, as a small number of updates are unlikely to
drastically affect the ratings of the physicians. The ACA

architecture is depicted in Figure 2.

4. REALIZATION OF SECURE PROCESS-
ING ARCHITECTURE

In this section we describe our particular realization of
SPA. We first present the necessary background information,
then define the full protocol, and conclude the description
with a system implementation.

4.1 Preliminaries
As previously mentioned, techniques for implementing data

protection in SPA include homomorphic encryption and se-
cret sharing. In our solution, we use a semantically se-
cure additively homomorphic public key threshold encryp-
tion scheme as a building block. The additive homomorphic
property of such encryption schemes means that when one
multiplies two encrypted messages, the result is a ciphertext
that corresponds to an encryption of the sum of the mes-
sages. This property also implies that an encrypted message
can be multiplied by a constant c by raising the ciphertext
to power c. Semantic security means that no information
about the underlying text can be learned from a ciphertext.

Recall that in a threshold public key encryption scheme
anyone can encrypt using a public key, but decrypting values
requires at least t out of p computational servers (for some
t ≤ p) to combine their keys to decrypt the value. In order
to provide more security, we require the ability to generate
the key material used in homomorphic encryption (i.e., the
encryption and decryption keys) in a fully distributed man-
ner. This requirement removes the need for a trusted party
who has access to more data (i.e., the full key material) than
anyone else. This is especially important in the current ap-
plication, as this means that the security of each patient’s
data is not dependent upon any one party.

One scheme that encompasses the above properties is the
Paillier cryptosystem [26], which we use in our implementa-
tion. That is, the Paillier cryptosystem is a semantically se-



cure additively homomorphic encryption scheme, which can
be used as a threshold scheme [18, 11] whose key generation
can be performed in a fully distributed manner [4, 12].

In what follows, we use [a] to denote an encrypted value
of a. With the techniques we employ, some operations on
encrypted values (such as addition and multiplication by a
constant) can be performed locally, while other operations
(such as multiplication or comparison of encrypted values)
require interaction of the computational servers. Further-
more, comparison requires the operands to be available in
bitwise form, which means that an encrypted value first
needs to be transformed into an encryptions of its bits. We
use [a]ℓB to denote encryption of the individual bits of a, i.e.,
[a]ℓB = 〈[a0], . . ., [aℓ−1]〉, where ai ∈ {0, 1} for i = 0, . . ., ℓ−1

and a =
Pℓ−1

i=0 ai2
i (the length ℓ is explicit in the notation

to permit a variable-length representation). It follows that
our solution will need to rely on the following sub-protocols
from the literature (see, e.g., [19, 28, 5]):

mult: a protocol that, on input [a] and [b], produces [a · b].
bits: a protocol that, on input [a] and ℓ, produces en-

cryption of ℓ least significant bits of the underlying
plaintext of [a], i.e., [a]ℓB .

bit-le: a protocol that, given [a1]ℓB and [a2]ℓB outputs an
encrypted bit [b], where b = 1 iff a1 ≤ a2.

4.2 Protocol
In the description of the protocol, for simplicity of presen-

tation, we assume that physicians 1 through np are used to
produce recommendations for condition k (in practice, some
physicians with specialization far from condition k can be
eliminated).

At a high level, the computation in the protocol proceeds
as follows: First, for each physician we compute her score
sjk from the corresponding ranking (rjk, wjk). This means
that the weight wjk needs to be compared to all thresholds

t1, . . ., tq as ti

?

≤ wjk. After the results of the comparisons
are available in the encrypted form as a binary vector of
length q, we set the encryption of bjk to the sum of com-
puted bits in the vector, where bit i is weighted by the value
bi − bi−1 (and by bi when i = 1). Because the computed
vector will always consist of a number of 1’s followed by a
number of 0’s (if any), this approach computes the value
of the bucket bjk correctly. This mechanism minimizes the
amount of interactive computation, and thus the amount of
time, for the computation.

As a result of this step, we store sjk as a numerator-
denominator pair ([s′jk], [wjk]) = ([rjk+bjkwjk], [wjk]). This
representation allows us to finish the computation and sort
the scores without performing expensive division operations.
That is, to compare the scores of two physicians j1 and j2,
we compare s′j1kwj2k to s′j2kwj1k.

The above computation raises an interesting technical point
in that the comparison must be performed correctly even
if one or both of the scores have no contributions and are
therefore 0. That is, if a physician j1 has no ratings for
condition k, both rj1k and wj1k are 0 (and thus s′j1k = 0).
According to the above comparison method, when the score
of such a physician is being compared to the score of an-
other physician who has a patient ratings, both values be-
ing compared will become 0, and the resulting outcome (as
defined by the comparison protocol) is random. To en-
sure that the result of such comparisons is always correct,

we modify the computation to add a flag which indicates
whether wjk is non-zero. That is, the comparison becomes

s′j1kwj2k +non-zero(wj1k)
?

≤ s′j2kwj1k +non-zero(wj2k). The
output of non-zero(wjk) is true (or 1) iff the OR of the bits
of wjk is 1. In the protocol, we denote this additional func-
tion by or([wjk]ℓB), which will produce an encrypted bit.
Notice that the function is not difficult to implement using
a number of multiplications and additions.

An important observation is that this modification does
not affect other comparisons in the system, i.e., when physi-
cians j1 and j2 have ratings for condition k, s′j1kwj2k + 1 ≤
s′j2kwj1k + 1 iff s′j1kwj2k ≤ s′j2kwj1k. Similarly, when both
physicians have no ratings, the result is unchanged.

In the protocol, we use various optimizations to ensure
that its runtime is as low as possible. In particular, we
use varying-length representation in bit decomposition bits

and comparison bit-le operations. Let ℓw denote the max-
imum length of counts wjk, ℓs denote the maximum length
of scores sjk = rjk/wjk + bjk (i.e., if the ratings are in
the range [1, n] and the bucket values in the range [1, m],
ℓs = ⌈log2(n + m)⌉), and ℓ = 2ℓw + ℓs the maximum length
of values used in the computation (i.e., for representation of
s′j1kwj2k). We expect a normal choice of these parameters
to be: ℓ = 32, ℓw = 13, and ℓs = 6.

To optimize the performance of comparing weights wjk

to the thresholds ti, notice that the weights wjk can gen-
erally be longer than a value ti, but by considering only
log2⌈ti⌉ + 1 bits we can always compare the values cor-
rectly. To form the (log2⌈ti⌉+ 1)-bit representation of wjk,
we leave the log2⌈ti⌉ least significant bits of wjk unchanged
and replace the remaining bit with the OR of the remaining
ℓw − log2⌈ti⌉ most significant bits of wjk. Thus, when the
length of wjk is greater than the length ti, the optimized
comparison will always result in wjk being larger than ti,
otherwise the comparison proceeds as usual. When consid-
ering performance, note that such shortened representations
of wjk for the lengths of ti’s can be computed using O(ℓw)
multiplications, regardless of the number of thresholds q.

The above optimization due to the variable-length repre-
sentations allows us to reduce the runtime of the protocol
by at least 40%. We are now ready to present the protocol.

Rank(k, ([r1k], [w1k]), . . ., ([rnpk], [wnpk])):

1. The computational servers set δ1 = bi and δi = bi −
bi−1; then for j = 1, . . ., np they compute in parallel:
(a) execute [wjk]ℓwB ← bits([wjk], ℓw).
(b) using [wjk]ℓwB compute shortened representations

[wjk](log
2
⌈ti⌉+1)B of wjk for i = 2, . . ., q and also

compute [fjk] = or([wjk]ℓwB).
(c) set [c1] = [1] and execute [ci]← bit-le(ti,

[wjk](log
2
⌈ti⌉+1)B) for i = 2, . . ., q.

(d) locally compute [bjk] = [
Pm

i=1 ciδi] =
Qm

i=1[ci]
δi .

(e) execute [d] ← mult([bjk], [wjk]) and locally set
[s′jk] = [sjk + d] = [sjk] · [d].

2. The servers sort all tuples ([s′jk], [wjk], [fjk]) for j =
1, . . ., np using a suitable sorting algorithm and out-
put the result, where each comparison is performed on
([s′xk], [wxk], [fxk]) and ([s′yk], [wyk], [fyk]) as follows:
(a) execute [vx]← mult([s′xk], [wyk]) and [vy ]←

mult([s′yk], [wxk]).
(b) locally compute [v′

x] = [vx] · [fxk] = [vx + fxk] and
[v′

y ] = [vy ] · [fyk] = [vy + fyk].



(c) execute [v′
x]ℓB ← bits([v′

x], ℓ) and [vy ]ℓB ← bits([v′
y],

ℓ).
(d) execute [z]← bit-le([vx]ℓB , [vy ]ℓB) and open the

value of z.
Note that in the above protocol the exact sorting algorithm
is not defined. For our implementation we chose merge sort
due to its simplicity, speed, and ease of being parallelized.
The results are presented in the next section.

The security of the Rank protocol follows from the fact
that only secure building blocks are used and the composi-
tion theorem [6] that states that composition of secure build-
ing blocks results in security of the overall construction.

To permit users to obtain recommendations for a combi-
nation of conditions K, we briefly discuss the modifications
to the protocol above for two options: (i) the servers pre-
compute the recommendation for conditions K using their
choice of importance weights vi’s for the individual condi-
tions in K and (ii) a patient asks the servers to compute
a custom recommendation for her choice of conditions and
corresponding weights which are to remain private. In the
first case, the servers perform step 1 of the above protocol
as specified for all physicians and all conditions in K. Then
for each physician j with scores ([s′jki

], [wjki
]) for ki ∈ K,

they compute the combined score ([s′jK ], [wjK ]) as wjK =
Q

ki∈K
wjki

and s′jK =
P

ki∈K
(vis

′
jki

Q

kx∈K,i6=x
wjkx ) in

the encrypted form. Note that this computation uses only
multiplications and additions, but results in values of larger
length, which has an impact on the performance of sorting
in the algorithm. Given such scores, step 2 of the protocol
is then carried out unchanged using larger bit length.

To implement case (ii), the patient encrypts her weights vi

for conditions ki in K. If the patient does not wish to reveal
any information about the conditions in K, she can include
all possible conditions and assign an importance weight of
0 to the irrelevant conditions. This will incur a significant
overhead on the computational servers and unbearable wait
time on the patient. To reduce the runtime, the patient in-
stead can use only a few extra conditions in K to hide the
ones in which she is interested. While this significantly re-
duces the computational overhead, this approach also leaks
information about the patient’s conditions of interest. (Note
that the query result also may leak information.) The rest
of the computation then proceeds as with option (i) with
the exception that the weights vi are processed encrypted.

4.3 Implementation
To test the feasibility of the protocol, we implemented it

in Java using Paillier encryption with a 1024-bit key. Java
was chosen due to its large number support and the ease
of implementing distributed algorithms. All sub-protocols
(i.e., bits, mult, bit-le) were implemented as in [19].

As the computations were distributed, we simulated each
computational server as its own PC on a 100Mb LAN. The
computers used were Dell workstations with 3.20 GHz Pen-
tium 4 processors and 1 GB of memory. To make the tests
more general, and applicable to a wider range of settings,
we tested the computation separately in the two steps of
the Rank protocol. By presenting timing results for each
step individually we provide the ability to estimate perfor-
mance of the protocol on a variety of different parameters
(e.g., number of bits in each ti, number of buckets, etc.).

To test step 1, we varied the length of bucket thresholds ti

used in determining the value of bjk. Specifically, we timed

step 1 using thresholds of size 2, 5, 10, 15, and 20 as mea-
sured in number of bits. Note that the higher threshold
sizes on this list are present only to demonstrate how the
techniques scale to larger values, as they are unlikely to be
applicable to a recommendation system in practice. We also
varied the number of physicians in the experiments; using 5,
10, 20, 50, 75, and 100 physicians. Given this, we provide
a good estimate as to how long it will take to compute the
scores for a specific number of physicians given an arbitrary
number of buckets (with thresholds of varying sizes).

To test step 2, we timed how long it took to sort the var-
ious number of physicians when each was given a randomly
assigned score and weight. The length ℓ = 32 was used
for bit decomposition and comparison. Combining this with
the results obtained from the timing of step 1, we can then
estimate how long it will take to compute the full protocol.

The data used when measuring the timing results was
simulated. The use of simulated data does not adversely
affect the timing results obtained, as the performance only
depends upon: (i) the number and size of thresholds t and
(ii) the performance of the sorting algorithm (as measured
in the number of comparisons). The former is independent
of the data and the sorting algorithm is not dependent on
how the actual underlying data was obtained. To ensure
that the simulated data accurately reflected a real world
scenario, we generated a sorted list of unique ranking/weight
pairs. We then permuted this list randomly, ensuring that
the sorting algorithm had to perform the average number of
comparisons to sort the list. This process was then repeated
to determine the average time required to sort the list.

The results for step 1 are presented in Table 1. In this ta-
ble the number of physicians is represented vertically, while
the number of bits in threshold ti is represented horizon-
tally. To estimate the performance for thresholds t, one first
chooses the row corresponding to the number of physicians
(e.g., 5). One then chooses the columns which correspond
to the number of bits in each ti. Thus, if buckets are defined
by thresholds 3, 16, 31, 100, 520, and 1000, the columns se-
lected correspond to 2, 5, 5, 7, 10, and 10 bits, respectively.
Note that this example is given for demonstration purposes
only and is not meant as suggested values for ti. Given these
columns, the approximate timing is obtained by adding the
denominator for the first threshold, and the numerator for
the remaining thresholds. The denominator represents tim-
ing for running step 1 of the protocol using a single threshold
of the specified size; and the numerator corresponds only to
a single comparison with a threshold (of the specified size)
in step 1(c) of the protocol. Thus in our example, we have
524 + 381 + 381 + 428 + 499 = 2212 seconds (approximately
36 minutes) for step 1 (using the same thresholds for 100
physicians requires approximately 12 hours).

In practice, we suggest using thresholds t = (0, 3, 5, 10, 20).
While a practicing physician is likely to treat a significantly
larger number of patients, the number of users who con-
tribute to a recommendation system is likely to be signifi-
cantly lower. Therefore, even a few patient ratings indicate
significant experience in treating a particular condition. In
this example, the largest threshold uses only 5 bits.

The performance of step 2 is presented by the lower curve
in Figure 3. We see that the amount of time spent sorting
100 physicians is quite high (approximately 1 day). Note,
however, that this computation needs to be done quite in-
frequently (e.g., semi-annually or quarterly), as the score for



Number of The length of bucket threshold value in bits
physicians 2 5 7 10 15 20

5 310 / 524 381 / 594 428 / 641 499 / 713 621 / 835 742 / 955
10 618 / 1047 765 / 1194 864 / 1294 1013 / 1442 1265 / 1693 1519 / 1948
20 1238 / 2094 1536 / 2393 1738 / 2594 2041 / 2897 2554 / 3410 3079 / 3934
30 1855 / 3139 2304 / 3588 2608 / 3892 3064 / 4348 3840 / 5124 4633 / 5917
40 2477 / 4191 3078 / 4793 3484 / 5199 4094 / 5809 5132 / 6846 6188 / 7901
50 3094 / 5237 3848 / 5991 4356 / 6499 5119 / 7263 6418 / 8561 7741 / 9884
60 3714 / 6287 4619 / 7192 5229 / 7802 6147 / 8720 7704 / 10277 9297 / 11870
70 4334 / 7335 5392 / 8392 6103 / 9103 7176 / 10176 8995 / 11996 10854 / 13854
80 4956 / 8385 6164 / 9594 6977 / 10407 8206 / 11635 10281 / 13710 12408 / 15838
90 5575 / 9433 6935 / 10793 7850 / 11708 9234 / 13092 11567 / 15425 13965 / 17823
100 6199 / 10488 7712 / 12001 8729 / 13018 10265 / 14554 12861 / 17150 15524 / 19813

Table 1: Timing results for step 1 of the Rank protocol. The denominator denotes the time required for
computing the entire step 1 with a single threshold of specified size. The numerator denotes the time required
to perform an additional threshold comparison of the specified size in step 1(c).
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Figure 3: Timing results for steps 1 and 2 of the
Rank protocol.

a doctor is not expected to be highly volatile. As previously
mentioned, this also has the added benefit of providing more
security for each of the users, as the wider the spacing be-
tween updates, the less likely that any one recommendation
will be recognized.

The upper curve in Figure 3 shows the results of the over-
all Rank protocol. The difference corresponds to the run-
time of step 1 using the 5 suggested threshold values. As
we can see from this figure, the bucket computation time
decreases in significance when compared to the amount of
time used for sorting as the number of physicians grows.
This is to be expected, as the sorting algorithm requires
more comparisons than the bucket computation.

5. REALIZATION OF ANONYMOUS CON-
TRIBUTIONS ARCHITECTURE

Similarly to the previous section, here we describe our
realization of ACA. We first present the background infor-
mation, and then present a description of the protocol.

5.1 Preliminaries
In our description of ACA, we employ group signatures to

implement the means of anonymous authentication that per-
mits user identity to be uncovered in case of misuse. Group
signature schemes, introduced in [9], allow any member of a
given group to sign a message on behalf of the group. When
any member of the group signs the message, her anonymity
is preserved, i.e., no one inside or outside of the group can
determine the signer of the message, only that an individual

is in fact a member of the group. In such schemes, the entity
who sets up the group possesses a private key which allows
her to ascertain the identity of any message’s signer.

In general, a group signature scheme consists of five al-
gorithms: Setup, Join, Sign, Verify, and Open. The
algorithm Setup creates public parameters for the system
and generates the master key msk. Join allows a user U to
become a member of the group and obtain a key gskU by
engaging in a protocol with the group manager. Sign allows
a member with a valid key to sign a message m anonymously
on behalf of the group and produce signature gsig(m). Ver-

ify allows anyone with a group signature gsig(m) and the
group’s public key to verify the authenticity of a signature.
Open is an algorithm that, given the master key msk and a
signature gsig(m), allows the authority to recover the iden-
tity of the group member who signed the message. A secure
group signature satisfies the security (i.e., message unforge-
ability by non-members) and privacy (i.e., inability to link
two signed messages to the same user) properties.

Using this building block, the Tabulating Authority can
be easily run by multiple entities who collect the data from
the patients and post information about the combined data.

In our solution we also utilize Tor anonymizing network,
which patients use to submit their contributions anonymously.
In Tor [3], a message is routed through a number of partic-
ipating hosts in such a way that each host knows only from
what machine the message arrived and to which it should be
sent next, but no other information (i.e., only the first Tor
host will have information about the source and only the
last one about the destination). This is achieved by multi-
ple layers of encryption which are removed as the message
moves through the network.

In ACA, the patients submit their information in an en-
crypted form. The easiest way to achieve this is to employ
standard tools such as the widely used SSL/TLS suite [13,
14, 15]. Therefore, we assume that the TAs support the
means of establishing secure channels via SSL which the
contributing patients can use.

5.2 Protocol
Because the data processing in this architecture is over

plaintext data (and the exact computation is as previously
described), the most interesting component of ACA is data
submission, which we detail next. Prior to any data submis-
sion, the CA runs the Setup algorithm and announces the
public parameters and keys pk of the system. Additionally,



each entity serving the role of the TA publishes her public
key which enables the patients to establish secure commu-
nication channels.

Register: User U and the CA engage in the Join protocol,
during which the user obtains her credentials gskU .

Submit:
1. Registered user Ui who would like to contribute rank-

ing rijk first produces a signature gsig(rijk)← Sign(rijk,
gskUi

).
2. Ui uses Tor and SSL to establish a secure and anony-

mous connection with the TA.
3. Ui communicates the pair (rijk, gsig(rijk)) to the TA

through the established channel.

4. The TA verifies the signature as rijk
?
= Verify(gsig(rijk),

pk), and if the verification succeeds, sends the confir-
mation of the receipt through the channel.

Security and privacy of this interaction follows from the
properties of the building blocks we use.

While the protocol for SPA required results from secure
multi-party computation, this solution relies on group sig-
natures and secure communication with anonymous routing.
Since the amount of required computation is low, we do not
provide the results of a sample implementation.

6. RELATED WORK
Prior research on privacy preserving recommendation sys-

tems has two main focuses: trust-based systems, and sys-
tems that preserve privacy of user preferences. In trust-
based recommendation systems [20, 24], trust is modeled
using a graph where each edge weight represents the trust
between the two parties it connects. One example of the this
is TrustWalker [20], where ratings of items are determined
based on the trust network and an item similarity metric.

Work that focuses on preserving the privacy of user pref-
erences is also prevalent. Unlike trust-based systems, these
systems ensure that no user preferences are leaked during
system operation. Such publications mainly focus on col-
laborative filtering (where a user has a set of preferences
and the system attempts to suggest related products based
on similarities with other users) which take user privacy into
account. Most commonly the techniques are based on ho-
momorphic encryption [7, 8] and data perturbation [27, 21,
29]. These techniques, however, were designed for a different
problem than what we solve here.

An example more similar to our work is a system by
Katzenbeisser and Petković [22]. In that system a secure
medical recommendation is obtained by first encoding all
relevant information (symptoms, diseases, etc.) into a stan-
dardized binary vector. The system then uses a matching
protocol to determine which doctors have the best matching
expertise via a secure matching algorithm, with the most
suitable result returned as the recommendation. This solves
a slightly different problem than our protocol, as we attempt
to match patients with the optimal doctor for their relevant
conditions, whereas their system makes no such guarantees.

In addition to privacy, another goal of our system is to
be robust against misbehaving users. One common way
misbehaving users attempt to influence the rating of a spe-
cific physician are known as “shilling attacks.” Lam and
Reidl [23] describe the attacks and discuss how they can af-
fect the recommender system. Specifically, the authors con-
sider various attack motivations (e.g., increasing/decreasing

the rating of an item, hindering the credibility of the rec-
ommendation system as a whole) and their effect on recom-
mendation systems. Importantly, they also note that while
observing sharp changes in scores is an obvious way to de-
tect (some) shilling attacks, non-trivial attacks against the
system could potentially succeed. Detecting such attacks is
proposed as a future area of research. Chirita, Nejdl, and
Zamfir [10] provide further insight into shilling attacks and
outline a detection algorithm which depends upon the dis-
tribution of scores that each user has made so far. The
algorithm proved to be quite robust, providing not many
false positives while catching many of the shilling attacks.

Another recent notion of privacy which is also used in rec-
ommendation systems is called“differential privacy.” Loosely
speaking, differential privacy [16, 17] for statistical databases
guarantees that two data sets from the same population
which differ by one element will occur with almost the same
probability. Intuitively, this means that for each element in
the database there exist very similar elements. Differential
privacy is usually achieved by adding noise to the dataset,
and the amount and type of noise is heavily dependent on the
statistical queries that users are allowed to execute on the
database. This means that there is a trade-off between ac-
curacy and privacy. In application to recommendation sys-
tems, McSherry and Mironov [25] built a system to achieve
differential privacy over the Netflix dataset. Experiments
on their system showed that the accuracy of results was not
severely effected throughout the query execution by main-
taining privacy of user data.

7. CONCLUSIONS AND DISCUSSION
This work puts forward a framework for building medical

recommendation systems in which (i) privacy of patient data
is provably preserved, (ii) reliability of data is maintained
by mitigating system abuse by dishonest users, and (iii) the
functionality is flexible enough to provide recommendations
on individual conditions as well as their combinations. We
provide two alternative architectures, SPA and ACA, that
satisfy the framework requirements.

While both architectures are functional and can be de-
ployed in practice, each has drawbacks in comparison to the
other. For example, in SPA:

1. Using modern secure multiparty techniques, comput-
ing recommendations incurs heavy computational load
on the servers. The load depends on the number of
physicians present in the recommendation system and
the number of supported health conditions, but re-
quires new recommendations to be produced infrequently.

2. Custom queries for user-specified combinations of con-
ditions and weights cannot be executed often due to
their computational cost on the servers (and signifi-
cant wait time for users). Furthermore, such queries
are likely to leak some information about the condi-
tions included in the query (otherwise, the queries are
infeasible to execute).

3. Honest users contributing to the system pay a (notice-
able) computational price for proving correctness of
their submission.

4. Finding mutually distrustful parties to perform the
computations may not be easy (or possible); without
such entities, the system does not guarantee privacy.

While in ACA we have:



1. Users must be willing to register with the system in
order to make any contributions, but the concept of
anonymous authentication might be difficult to explain
to the average user. In addition, the fact that a user’s
identity may be revealed in exceptional circumstances
may make a user believe that her privacy is not guar-
anteed, and thus hesitant to participate.

2. Privacy of user ratings is achieved by hiding among
other users in the system. That is, when the system is
not used by a large enough user base, privacy guaran-
tees weaken. In the extreme case when there is only
one registered user, no privacy can be achieved when
a rating is submitted. The users of the system need to
be aware of such potential vulnerability.

3. Dishonest behavior is more difficult to detect than in
SPA. That is, in SPA the servers might decide to re-
ject a contribution from a particular user if that user
submits too many ratings (above a reasonable number
of conditions that an individual or family might have).
In ACA a large number of submissions by the same
user is difficult to recognize and abuse needs to be de-
tected based on other cues. A user wishing to change
the rating of a particular physician might mask their
behavior by submitting ratings for that physician with
(fictitious) submissions for other physicians or condi-
tions (thereby also potentially affecting ratings of other
physicians). This behavior can go undetected unless
the submission pattern significantly differs from the
normal operation of the system. We, however, antic-
ipate the abuse cases to be rare, especially since the
users are made aware that there exists the ability to
uncover their identity.

Based on this comparison, we leave it for the community
to decide which architecture may be most beneficial for a
particular context.
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