
Efficient Correlated Action Selection?

Mikhail J. Atallah, Marina Blanton, Keith B. Frikken, and Jiangtao Li

Department of Computer Science
Purdue University

{mja,mbykova,kbf,jtli}@cs.purdue.edu

Abstract. Participants in e-commerce and other forms of online collab-
orations tend to be selfish and rational, and therefore game theory has
been recognized as particularly relevant to this area. In many common
games, the joint strategy of the players is described by a list of pairs of ac-
tions, and one of those pairs is chosen according to a specified correlated
probability distribution. In traditional game theory, a trusted third party
mediator carries out this random selection, and reveals to each player its
recommended action.In such games that have a correlated equilibrium,
each player follows the mediator’s recommendation because deviating
from it cannot increase a player’s expected payoff. Dodis, Halevi, and
Rabin [1] described a two-party protocol that eliminates, through cryp-
tographic means, the third party mediator. That protocol was designed
and works well for a uniform distribution, but can be quite inefficient if
applied to non-uniform distributions. Teague [2] has subsequently built
on this work and extended it to the case where the probabilistic strat-
egy no longer assigns equal probabilities to all the pairs of moves. Our
present paper improves on the work of Teague by providing, for the same
problem, a protocol whose worst-case complexity is exponentially better.
The protocol also uses tools that are of independent interest.

1 Introduction

Many potentially beneficial collaborations over the Internet do not take place,
even when both participants stand to gain from the interaction. One of the major
reasons for this is the difficulty of finding a third party that they can both trust
with not revealing (to their counterpart, or to outsiders) their private data or
planned future actions and business moves. This reluctance to engage in appar-
ently win-win collaborations results in organizations making lower-quality (and
sometimes far-reaching) decisions and plans. Although this reluctance to collab-
orate causes large potential benefits to go unrealized, there are good reasons for
it: the information learned by the third party mediator could be highly propri-
etary, help the competition, be inadvertently (or maliciously) leaked out and

? Portions of this work were supported by Grants IIS-0325345, IIS-0219560, IIS-
0312357, and IIS-0242421 from the National Science Foundation, Contract N00014-
02-1-0364 from the Office of Naval Research, by sponsors of the Center for Educa-
tion and Research in Information Assurance and Security, and by Purdue Discovery
Park’s e-enterprise Center.

cause embarrassment and lawsuits, be misused, etc. In addition to this, there
are substantial costs to being a mediator, not only in terms of the electronic
infrastructure but in other operational costs (such as liability insurance against
accidental data disclosure). Cryptography has much to contribute in solving the
problem, by obviating the need for a third-party mediator.This is why the recent
work of Dodis, Halevi, and Rabin [1] and Teague [2], in getting rid of the need
for a mediator, has such huge practical potential in addition to its intellectual
content. As our work builds on these papers, we briefly review these and explain
where our contribution lies.

The framework of this paper is the same as in [1, 2]: two entities want to
coordinate their respective actions, implementing a strategy that is described as
a set of m pairs of actions, with each pair having an associated probability of
being selected (the action choices are correlated). If a pair is selected, the first
(second) element of the pair is the first (second) entity’s recommended action; no
entity should learn the recommended action of the other (although, unavoidably
inferences can be made from their knowledge of the public strategy and their own
recommended action). Each party is incentivized to follow the recommendation
given that an equilibrium exists, i.e., deviating from the recommended action
cannot increase a party’s expected payoff.

1.1 Related Work

Dodis, Halevi, and Rabin [1] described a two-party protocol that eliminates,
through cryptographic means, the third party mediator: The protocol assumes
a uniform distribution, selects at random and reveals to each party their re-
spective selected action only (i.e., not the other party’s action). Since crypto-
graphic solutions have to be efficient, one might ask at what computational and
communication cost this is achieved. The protocol of [1] works efficiently for a
uniform distribution, but not if the distribution is non-uniform (particularly if
a pair can have an associated probability much smaller than the probability of
another pair). Teague [2] subsequently extended the work to non-uniform dis-
tributions, and gave a better (but still worst-case exponential) protocol for the
case where pairs of moves can have widely differing probabilities. Other prior
work that addresses the same problem without help from a third-party mediator
includes [3–6]. All of the protocols of [3, 4, 1, 2, 5] may require communication
exponential in the size of the binary description of the correlated equilibrium
strategies. Our present paper improves on the work of Teague by providing, for
the same problem, a protocol whose worst-case complexity is exponentially bet-
ter. In addition, our protocol uses tools that are of independent interest and
advantageously modify protocols recently presented in areas unrelated to the
game-theoretic framework, such as [7].

Our work is not comparable to the polynomial solution given in [6], which
does not apply to the important two-party case we consider here, and imposes
assumptions (akin to ideal envelopes) on the physical channels used: they use
general results to perform the computation for three or more parties, and then
extend the protocols to achieve complete fairness during output recovery. Our

work is also similar to the cryptographic randomized response techniques [8]:
the protocols in [8] allow a party to choose a value according to a probability
distribution. The primary difference is that in [8] one party (the pollster) learns
the result, but in our problem each of the two parties learns part of the result.

1.2 Notation

The rest of the paper uses the following notation. Let k denote a security pa-
rameter. The m action pairs are denoted as {(ai, bi)}

m
i=1. Each of these pairs is

chosen with a certain probability qi, such that their overall sum is equal to 1.
Each qi is given in the rational form (i.e., same form as in prior work in this
area) as a pair of integers αi, βi such that qi = αi/βi. As our protocol will use
a somewhat different representation, we next describe an input conversion that
we thereafter assume has already taken place prior to the protocol.

Input Conversion Our algorithms require us to convert each qi into an l-bit
integer pi such that qi = pi/

∑m

j=1 pj . If we let L denote the least common
multiple of all βj ’s, then we can set pi = L · qi = αi(L/βi), which implies that
∑m

j=1 pj = L and hence qi = pi/L. This conversion can be done in polynomial
time and results in the pi integers having a length l, which is polynomial in the
number of bits in the original representation. To achieve worst-case polynomial
time performance, it therefore suffices for our protocols to be polynomial in l. Let
` denote the integer such that 2`−1 < L ≤ 2`: if L < 2`, we pad the probabilities
with a “dummy” pm+1 = 2` − L, so that

∑m+1
i=1 pi = 2`. Note that this is done

only for ease of computation and the (1 + m)th outcome is never chosen: if a
protocol execution returns the (1+m)th outcome, the computation is restarted.
The probability of restart is pm+1/(2`) < 1/2. In the rest of this paper we assume
that the m tuples (ai, bi, pi) contain a dummy element (whose action pair is a
“restart protocol” recommendation to both parties) if necessary.

1.3 Comparison with Previous Work

Our results are the following: a protocol for the malicious (resp., honest-but-
curious) model has computation and communication complexity O(m`) (resp.,
O(m + ` log m)). See Table 1 for performance comparison with the prior work.

Note that secure function evaluation using generic garbled circuits constitutes
a viable alternative to the solutions given in this work, especially since recent
results (see, e.g., [9]) provide significant improvements over the initial results.
Any solution using circuits, however, will require at least O(m`) gates, while in
this work we concentrate on finding solutions asymptotically as low as possible.
In addition, any protocol that requires a majority of the players to be honest
(which is the case in [9]) does not provide security against malicious behavior in
the two-party case.

In the equal-probabilities case, the protocol of choice is that of [1]. Thus
the following discussion is for the case of unequal probabilities. For the mali-
cious model, our protocol is better than the previous approach of [2] in both

Teague [2] SFE [10, 11, 9] Our Protocols

honest-but-curious O(max{m, 2`}) O(m`) O(m + ` log m)

malicious O(σ · max{m, 2`}) O(m`) O(m`)

Table 1. Comparisons of worst case performance (computation and communication
cost) of our and prior work. Here m is the number of action pairs, ` is the number of
bits representing the probabilities, and σ is a security parameter for the cut-and-choose
technique (i.e., the adversary can cheat with the probability no more than 1/σ) that
must be linear in the payoffs to make the expected gain from cheating negative.

asymptotic worst-case and in practical sense, as our protocol is polynomial and
does not use the cut-and-choose technique as in [2]. For the honest-but-curious
model, however, we can only claim an improvement in the worst-case asymptotic
complexity, as there are inputs for which the approach of [2] is more practical,
e.g., inputs where the number of bits (call it t) representing the smallest input
probability is small enough that a complexity proportional to 2t can compete
with our poly(`) complexity. Of course, the honest-but-curious model is of lim-
ited practical value in the kind of environments where these protocols are used,
so one would almost always need to assume a stronger adversary model.

The rest of the paper is organized as follows. Section 2 gives preliminaries,
our protocol, and security proofs for the semi-curious model. In section 3, we
deal with malicious adversaries and provide additional cryptographic tools and
our protocols for that setting.

2 A Protocol for the Honest-but-Curious Case

2.1 Security Model

Informally, we say that a two-party protocol Π privately computes function f if
anything that can be obtained from a party’s view during a semi-honest execu-
tion of Π could also be obtained from the input and the output of that party
themselves. We use the standard model, and the following definition, similar to
the one given in [11], formalizes our notion of security.

Definition 1. Let f1(x, y) and f2(x, y) be the first and the second elements of
f(x, y), respectively. Let view

Π

1 (x, y) (resp., view
Π

2 (x, y)) denote the view of the
first (resp., second) party during an execution of Π on (x, y). The views are
defined as (x, r1, m1, . . ., md) and (y, r2, m1, . . ., md) for the first and second par-
ties, respectively, where r1 (resp., r2) is the outcome of internal coin tosses of the
first (resp. second) player and m1, . . ., md are the messages that it received dur-
ing the protocol execution. Also let output

Π

1 (x, y) (resp, output
Π

2 (x, y)) denote
the first (resp., second) player’s output after an execution Π on (x, y); and let
output

Π(x, y) = (output
Π

1 (x, y), output
Π

2 (x, y)). Then Π privately computes
f if there exist probabilistic polynomial-time algorithms M1 and M2 such that
the ensembles {M1(x, f1(x, y)), f(x, y)}x,y and {view

Π
1 (x, y), output

Π(x, y)}x,y

and the ensembles {M2(y, f2(x, y)), f(x, y)}x,y and {view
Π

2 (x, y), output
Π(x, y)}x,y

are computationally indistinguishable. Machine M1 (resp., M2) is called a simu-
lator for the interaction of the first (resp., second) player with the second (resp.,
first) player.

2.2 Homomorphic Paillier Encryption

Our protocols in the honest-but-curious setting use the homomorphic Paillier
encryption scheme [12, 13], which was first developed by Paillier [12] and then
extended by Damg̊ard and Jurik [13]. Let n = pq be an RSA modulus, with
p = 2p′+1 and q = 2q′+1 where p, q, p′, and q′ are primes. Given a message M ∈
Zn, we use EncP (M) to denote encryption of M under the Paillier encryption
scheme. By the homomorphic property, EncP (a) · EncP (b) = E(a + b mod n).
It is easy to see that EncP (a)c = EncP (c · a mod n). A homomorphic Paillier
encryption scheme is semantically secure under the decisional composite residu-
osity assumption [12].

2.3 The Element Selection Protocol

As before, the (ai, bi) pairs are the move pairs in the joint strategy of the game,
where the ai’s (resp., bi’s) are possible moves for Alice (resp., Bob). During the
protocol, one of the indices {1, . . . , m} is selected randomly, where the proba-
bility of i being selected is pi/2`. The selected index (call it j) is not known
to either Alice or Bob, who learn only their respective recommended moves: aj

for Alice, bj for Bob. Note that, unavoidably, Alice’s learning of her move does
probabilistically reveal something about Bob’s recommended move, and vice-
versa (this comes from the game theoretic problem formulation and is true of
any protocol, including [1, 2]).

Our protocol can be thought of as a secure version of the following naive
(and in this form flawed) approach: Alice and Bob compute Pi =

∑i

k=1 pk for
1 ≤ i ≤ m, and then generate a random value r ∈ [0, 2`−1]. Since the probability
that r ∈ [Pi−1, Pi) equals to pi/2`, Alice and Bob find the index i corresponding
to the chosen r and choose actions ai and bi, respectively. Making the above
simple idea work involves many challenges. Our protocol is presented next.

Setup: Alice generates a key pair (pk, sk) for the homomorphic Paillier encryp-
tion scheme such that |n| = k and n > 2` + 1, where k is a security parameter.
We separate this step from the protocol itself, because in this application the
correlated element selection may be executed by two parties on a regular basis,
while it is sufficient to select the keys only once.

Input: Items {(ai, bi, pi)}
m
i=1 are known to both parties; public key pk is known

to both and secret key sk is known only to Alice.

Output: Alice obtains the value of aj , and Bob obtains the value of bj , where
j is the index selected according to the probability distribution.

Protocol Steps:

1. Alice encrypts each item in each triplet obtaining {(EncP (ai), EncP (bi),
EncP (pi))}

m
i=1. She then picks a random permutation πa over [m] and

permutes the encrypted triplets obtaining {EncP (aπa(i)), EncP (bπa(i)),
EncP (pπa(i))}

m
i=1 and sends them to Bob.

2. Bob picks a random permutation πb over [m] and permutes the encrypted
triplets received in the previous step. Let (EncP (a′

i), EncP (b′i), EncP (p′i))
denote (EncP (aπb(πa(i)), EncP (bπb(πa(i)), EncP (pπb(πa(i))) for i = 1, . . ., m.

3. We use P ′
i to denote

∑i

k=1 p′k. For each i = 1, . . . , m, Bob computes EncP (P ′
i) =

∏i

k=1 EncP (p′k) = EncP (p′1 + · · ·+ p′i).

4. For i = 1, . . ., m, Bob uniformly generates a random value yi
R
← Zn and

computes EncP (P ′
i − yi) = EncP (P ′

i) · EncP (−yi). He sends {EncP (P ′
i −

yi)}
m
i=1 to Alice.

5. Alice decrypts {EncP (P ′
i − yi)}

m
i=1 and obtains {P ′

i − yi mod n}mi=1. Let xi

denote P ′
i − yi mod n. At this point, Alice has {xi}

m
i=1 and Bob has {yi}

m
i=1,

such that xi + yi mod n = P ′
i .

6. Alice picks ra
R
← {0, 1}` and Bob picks rb

R
← {0, 1}`. Let r denote ra ⊕ rb.

Clearly, r is a random `-bit integer.
7. Alice and Bob jointly find the index of the value P ′

i such that r < P ′
i and r ≥

P ′
i−1 (if P ′

i−1 exists) from the list {P ′
i}

m
i=1 using the binary search protocol

described in section 2.4. Let the outcome of the search be index j.

8. Bob chooses a random ρ
R
← Zn, computes {γ1, γ2} = {EncP (a′

j+0), EncP (b′j−

ρ)}, and sends the pair to Alice1. Alice decrypts {γ1, γ2}, obtains {a′
j, b

′
j−ρ},

and sends b′j − ρ back to Bob. In the end, Alice learns a′
j and Bob learns b′j .

The complexity of this protocol is O(m + ` logm) and the round complexity
is O(log m). Note that any other known solution (e.g., using general circuit
simulation results) is less efficient and requires at least O(m`) computation.

2.4 Binary Search Protocol

This section gives an efficient search protocol for step 7 of the element selection
protocol for semi-honest players. We use binary search to compute which action
the randomly chosen r corresponds to, i.e., the index j such that r ∈ [P ′

i−1, P
′
i).

Input: Alice has {xi}
m
i=1 and Bob has {yi}

m
i=1 such that P ′

i = xi + yi mod n,
0 < P ′

i ≤ 2`, and P ′
i < P ′

i+1. Alice has ra and Bob has rb, such that r = ra ⊕ rb.

Output: The index j such that r < P ′
i and r ≥ P ′

i−1 (if P ′
i−1 exists).

Protocol Steps: Alice and Bob execute the following recursive procedure on
the list {P ′

i}
m
i=1:

1. If the size of the current working set |{P ′
i , . . ., P

′
j}| = 1, return i.

1 Here EncP (a′

j +0) is computed by EncP (a′

j) ·EncP (0). We intentionally randomize
EncP (a′

j).

2. Otherwise, Alice and Bob run a scrambled circuit evaluation protocol [10,
11] to compute whether r ≥ P ′

d j−i+1

2
e

(i.e., compute whether ra ⊕ rb ≥

xd j−i+1

2
e + yd j−i+1

2
e mod n). Let c denote the outcome of the protocol that

returns 1 if the condition holds, and 0 otherwise. Note that we can use the
technique from [14] to reduce the communication and computation from
being a function of k = |n| to a function of ` + 1 (i.e., the number of bits
required to represent the value P ′

d j−i+1

2
e
).

3. If c = 1, recurse on list {P ′
d j−i+1

2
e+1

, . . . , P ′
j}; otherwise, recurse on list {P ′

i ,

. . . , P ′
d j−i+1

2
e
}.

Step 2 takes O(`) communication and computation and O(1) rounds, therefore
the overall complexity is O(` log m) and the round complexity is O(log m).

Lemma 1. The protocol for binary search is secure against honest-but-curious
adversaries.

Proof (Sketch). The basic idea behind this proof is that from a particular index,
i.e., from the output of the binary search, one can easily simulate the individual
zigs and zags of the binary search. It is worth noting that this is similar to the
proof of [15]. 2

2.5 Security Proofs

To be able to show the correctness of the element-selection protocol, we first
prove that, if both Alice and Bob follow the protocol, the output pair of actions
is selected according to the probability distribution.

Lemma 2. For any i ∈ {1, . . . , m}, the probability that the randomly chosen
r ∈ {0, 1}` results in index i being returned, is equal to p′i/2`.

Proof. Let us set P ′
0 = 0. The probability that index i is returned, equals the

probability that r ∈ [P ′
i−1, P

′
i). This is equal to (P ′

i − P ′
i−1)/2` = p′i/2`. 2

Recall that the binary search step of the element-selection protocol reveals the
index, so we next prove that this index does not leak any information.

Lemma 3. Let π be a random permutation over [m] and let r be a random
value in {0, 1}`. Given any set {pi}

m
i=1 such that

∑m

i=1 pi = 2`, the probability of

r ∈
[

∑i−1
k=1 pπ(k),

∑i

k=1 pπ(k)

)

is equal to 1/m for i = 1, . . . , m.

Proof. Let us fix i. We have

Pr

[

r ∈ [

i−1
∑

k=1

pπ(k),

i
∑

k=1

pπ(k))

]

=
pk ·Pr[k = π(i)]

2`
=

1

2`

m
∑

k=1

pk

m
=

1

2`
·
2`

m
=

1

m

In other words, if π and r are random, the output of the binary search in the
element-selection protocol does not depend on {pi}

m
i=1 and is uniformly dis-

tributed over [1, m], i.e., it can be simulated by a random value in [1, m]. 2

Theorem 1. The element-selection protocol is secure against honest-but-curious
adversaries.

Proof. Correctness: Follows directly from Lemma 2.
Secrecy: To show that the element-selection protocol is secure, it is sufficient
to show that there exists a simulator M1 (resp., M2) that, given Alice’s (resp.,
Bob’s) input and output, can simulate Alice’s (resp., Bob’s) interaction with
Bob (resp., Alice) during the execution of the protocol, such the Alice’s (resp.,
Bob’s) view in real execution is computationally indistinguishable from the view
produced by the simulator. That is, according to Definition 1:

{M1(x, f1(x, y)), f(x, y)}x,y

c
≡ {view

Π

1 (x, y),output
Π(x, y)}x,y

{M2(y, f2(x, y)), f(x, y)}x,y

c
≡ {view

Π

2 (x, y),output
Π(x, y)}x,y

where
c
≡ denotes computational indistinguishability by families of polynomial-

size circuits.
Consider the following simulator M1({(ai, bi, pi)}

m
i=1, a

′
j):

1. On receipt of the first message from Alice, for i = 1, . . ., m randomly select

xi
R
← Zn and send {EncP (xi)}

m
i=1 to Alice.

2. Select rb
R
← {0, 1}`. At random select m distinct values from {0, 1}`, sort

them in the increasing order obtaining {r1, . . ., rm}, and set yi = EncP (ri−
xi mod n) for i = 1, . . ., m. Engage in the execution of the binary search
protocol with Alice using rb and {yi}

m
i=1 as input. At the end of the execution

Alice receives a random index i as the outcome of the protocol.

3. Select a random ω
R
← Zn, compute {EncP (a′

j), EncP (ω)}, and send the pair
to Alice.

According to Definition 1, Alice’s view during an execution of the element-
selection protocol Π is view

Π

1 = (x, r1, m1, m2, m3). The distribution of x and
r1 remains the same for all possible input values, regardless of whether M1 is
used or a real protocol execution is performed. Next, we examine the messages
that Alice receives. Let M1(x, f1(x, y)) = (x′, r′1, m

′
1, m

′
2, m

′
3).

Message m1 is received in Step 4 of Π and is m1 = {EncP (P ′
i − yi)}

m
i=1;

message m′
1 is received in Step 1 of simulation and is m′

1 = {EncP (xi)}
m
i=1.

Due to the semantic security of the encryption scheme, encrypted values are
uniformly distributed over the entire range resulting in identical distributions.
After Alice decrypts the values, she still cannot distinguish between P ′

i − yi and
xi because yi’s and xi’s are uniformly distributed over Zn.

Let us use Πs to denote the binary search protocol of section 2.4. Then m2 =
(view

Πs

1 (xs, ys), i) and m′
2 = (view

Πs

1 (x′
s, y

′
s), i

′), where xs = ({xi}
m
i=1, ra), ys =

({yi}
m
i=1, rb), x′

s = ({x′
i}

m
i=1, r

′
a), and y′

s = ({y′
i}

m
i=1, r

′
b), and all of {xi}

m
i=1 and

{x′
i}

m
i=1, {yi}

m
i=1 and {y′

i}
m
i=1, ra and r′a, and rb and r′b are pair-wise identically

distributed. From Lemma 1 we obtain that the execution of Π does not leak any
private information, and Lemma 3 tells us that i is uniformly distributed over
[1, m], and so is i′. Therefore m2 and m′

2 are also indistinguishable.

Lastly, m3 = {EncP (a′
j), EncP (b′j − ρ)} and m′

3 = {EncP (a′
j), EncP (ω)}.

After Alice decrypts the values, the value of b′j − ρ is identically distributed to
ω, and a′

j is the same in both messages. Also, no information can be gained from
the encrypted values themselves. Thus m3 and m′

3 are also indistinguishable.
Since we had f(x, y) = output

Π(x, y), we conclude Alice’s view during an
execution of Π is computationally indistinguishable from a simulation. The simu-
lator M2 for Bob’s interaction can be constructed in a similar way and is omitted.
Thus, Π privately computes the correlated action selection function. 2

3 Handling Dishonest Behavior

In the previous section, we gave an efficient element-selection protocol for the
honest-but-curious model. However, it is inefficient to make the preceding proto-
col secure against malicious adversaries, as the zero-knowledge proofs for certain
steps of the protocol are very expensive. Instead, we present a new protocol for
the malicious model, which uses two-party computation based on the conditional
gate and relies on the use of threshold homomorphic ElGamal encryption.

3.1 Review of Cryptographic Tools Used

Homomorphic ElGamal Encryption Let Gq be a finite cyclic group of a
prime order q, |q| = k, and g be the group’s generator such that the Decision
Diffie-Hellman (DDH) problem for Gq is assumed to be hard.2 Given a published
generator g, a public-private key pair for ElGamal encryption is generated as (pk,

sk) = (y, x), where x
R
← Zq and y = gx. Given a public key y and a message

M ∈ Zq, encryption is performed as EncG
y (M) = (α, β) = (gr, gMyr), where

r
R
← Zq. Given the private key x, decryption of (α, β) = (gr, gMyr) is performed

by first computing β/αx = gM and then solving it for M ∈ Zq. This amounts
to solving a discrete log problem and thus the message space must be small. In
our protocols, the message space is {0, 1} in most cases.

Such encryption is additively homomorphic, that is EncG
y (a1) · EncG

y (a2) =

(gr1 ·gr2 , ga1yr1 ·ga2yr2) = (gr1+r2 , ga1+a2yr1+r2) = EncG
y (a1 +a2). In addition,

EncG
pk(a)b = EncG

pk(ab). Also, homomorphic ElGamal encryption is semantically
secure assuming that the DDH problem is hard. When it is clear from the context
or not essential to the discussion, we omit the encryption key from the notation
and use EncG(x) instead.

When Alice generates a ciphertext using homomorphic ElGamal encryption,
she can prove that she knows the plaintext for the encryption using the tech-
niques of [16]. She can make this a non-interactive proof of knowledge using
Fiat-Shamir techniques [17]. Another proof of knowledge used in our protocols
is a proof that a particular encryption is the encryption of 0 or 1. This protocol
follows from the ability to prove the disjunction of two boolean values [18], and
was given in [19].

2 From this point on, arithmetic is assumed to be modulo q and operator mod q is
implicit for each arithmetic operation.

Threshold Homomorphic ElGamal Encryption Homomorphic ElGamal
encryption scheme can be used to construct (t, n)-threshold cryptosystem, where
0 < t ≤ n. In this case, the key is generated jointly by n parties, and decryption
succeeds only if at least t parties participate. Encryption is performed in the
traditional way, where anyone can use the public key y to encrypt messages.

Let A1, . . ., An denote n players. As before, let the public key be y and let
the private key be x with y = gx. Then player Ai has a share xi of the private
key, where yi = gxi is public. Such shares can be generated using a secure dis-
tributed key generation protocol such as [20, 21], with communication complexity
of O(n2k) and a small hidden constant, where k is a security parameter.

To recover message M from its encryption (α, β), each player Ai computes
a decryption share di = αxi and a proof that logα di = logg hi. Then having t

correct decryption shares, M can be recovered from gM = β/αx by computing
αx from these shares using Lagrange interpolation. Decryption of private outputs
is also possible in this framework, and it was shown in [7] how private output
decryption used in RSA-like cryptosystem (such as Paillier’s) can be modified to
avoid having to decrypt an ElGamal encryption of a random messages in Zq. A
non-interactive version of the protocol is also possible and can be found in [7].

Threshold homomorphic ElGamal cryptosystem is robust for t < n/2, but
(non-robust) fairness can also be achieved for the two-party case using (2, 2)-
threshold scheme. Note that neither party gains any advantage by quitting at an
intermediate step of a protocol, and thus to achieve fairness, only the decryption
phase of the protocols needs to be considered. This can be done using gradual
release of information for a security parameter k′ < log q. See [7] for more detail.
Note that allowing parties to prematurely quit during protocol execution will
not allow us to finish the execution (and thus prove indistinguishability with the
view in the ideal setting), and the protocol must be restarted.

Two-Party Computation Based on the Conditional Gate A recent work
of Schoenmakers and Tuyls [7] introduced a new type of multiplication gate
called conditional gate that permits efficient computation of two-party multipli-
cation. In short, conditional gates permit efficient multiplication of x and y using
homomorphic threshold ElGamal, where x is from a two-valued domain and y
is unrestricted. In that work, conditional gates are also used to perform other
types of secure computations such as XOR and different kinds of comparisons.
In particular, the authors show how to perform comparison of two bitwise en-
crypted values x and y. Such operation requires ` rounds and 2`− 1 conditional
gates, where |x| = |y| = `, with the total of about 12` modular exponentiations.

While individual operations are rather efficient and secure against malicious
adversaries, the difficulty in applying these techniques to general function evalu-
ation is in different representation of operands in such operations. That is, some
operands are encrypted integers x ∈ Zq, while others are required to be en-
crypted in bitwise form, and there is no conversion procedure available between
the two encryption formats.

Mixes One of the building blocks in our work is a mix, which was introduced in
[22]. The parties “mix” a list of values by re-encrypting the values and permuting
the order of the individual values. Furthermore, our protocols for the malicious
model require that the mixing party be able to prove that the values were mixed
properly. Also, we require that the protocols be able to mix vectors of values
(where the vector consists of several encrypted values and the vector must be
preserved). Examples of efficient mixes are [23, 24], and protocols for achieving
a permutation of vectors can be found in [25].

3.2 The Element Selection Protocol

As before, we assume that
∑m

i=1 pi = 2`. We use [ai]`−1. . .[ai]0 to denote the
binary representation of ai. For the purposes of this and subsequent sections,
homomorphic ElGamal (2, 2)-threshold encryption is used.

Setup: Alice and Bob generate a key pair (pk, sk) for a security parameter k,
where public key pk is known to both, but secret key sk is shared and is not
known to either party.

Input: Items {(ai, bi, pi)}
m
i=1 are known to both parties; public key pk is known

to both and secret key sk is not known to either.

Output: Alice learns aj , and Bob learns bj, where j is the index selected ac-
cording to the probability distribution.

Protocol Steps:

1. Alice encrypts tuples {(ai, bi, [pi]`, [pi]`−1. . .[pi]0)}
m
i=1 with pk and then mixes

them using a permutation πa that she randomly generates. In the above, each
of ai and bi are encrypted as an integer, but pi’s are encrypted bit by bit as
` + 1 bit integers (i.e., the most significant bit is always 0).
Alice proves in zero-knowledge that the output of this step was obtained
using mixing πa on the tuples {(ai, bi, pi)}

m
i=1. Note that in order for Alice

to prove proper mixing using known techniques, she first encrypts the list
using no randomness (i.e., 0 in place of random values) and then proves that
her output is a blinded permuted re-encryption of this list.

2. Bob blinds each of the items (EncG(aπa(i)), EncG(bπa(i)), EncG([pπa(i)]`),
. . . , EncG([pπa(i)]0)) by multiplying each value with EncG(0) and mixes the
tuples using a random permutation πb. Let (EncG(a′

i), EncG(b′i), EncG(p′i))
denote (EncG(aπb(πa(i)), EncG(bπb(πa(i)), EncG(pπb(πa(i))) for i = 1, . . ., m.
Bob proves in zero-knowledge that his output was constructed by applying
a random mix πb to his input.

3. Alice and Bob compute (EncG(a′
i), EncG(b′i), EncG([P ′

i]`), . . ., EncG([P ′
i]0)),

where P ′
i =

∑m

i=1 p′i. The description of this step (i.e., the addition opera-
tion) is given in section 3.3.

4. Alice picks ra
R
← {0, 1}`, computes {EncG([ra]`−1), . . ., EncG([ra]0)} and

sends it to Bob. She also proves in zero-knowledge that each [ra]i in the

encryptions corresponds to either 0 or 1. Similarly, Bob picks rb
R
← {0, 1}`,

sends Alice {EncG([rb]`−1), . . ., EncG([rb]0)}, and proves in zero-knowledge
that each [rb]i corresponds to a single bit.

5. Alice and Bob compute the bitwise encrypted value of x = ra + rb mod 2`

using the addition protocol of section 3.3. They prepend bitwise encrypted
x with EncG(0) to obtain (` + 1)-bit representation of x.

6. Alice and Bob jointly find the index of the value P ′
i such that x < P ′

i and
x ≥ P ′

i−1 (if P ′
i−1 exists) from the list {EncG([P ′

i]`), . . ., EncG([P ′
i]0)}

m
i=1

using the binary search algorithm described in section 3.5. Let the outcome
of the search be index j.

7. Having EncG(a′
j) and EncG(b′j), Alice helps Bob to decrypt b′j and Bob

helps Alice to decrypt a′
j (see section 3.1 for detail).

Note that most of the work done in step 1 can be performed in advance (if
the public key is available prior to protocol execution), by generating as many
encryptions of 0’s and 1’s as needed. At the time of protocol execution, Alice
then just selects the right combination of such encryptions to match the pi’s.
Similarly, values for the zero-knowledge proof in that step and encryptions of 0 in
step 2 can be pre-computed, thus reducing computational cost of asymptotically
least efficient parts of the protocol.

The security proof of the protocol is omitted. One interesting direction for
future work is to narrow the gap in the complexities between the semi-honest
and malicious models.

3.3 Addition of Bitwise Encrypted Values

Here we first present an addition protocol with computational and round com-
plexity of O(`). After its description we show how its round complexity can be
significantly lowered using standard techniques.

Input: Common input consists of encryptions {EncG([x]`−1), . . . , EncG([x]0)}
and {EncG([y]`−1), . . . , EncG([y]0)}.

Output: Alice and Bob obtain {EncG([z]`−1), . . . , EncG([z]0)}, where z = x+y
mod 2`.

Protocol Steps:

1. Alice and Bob compute encryptions of [z]0 = [x]0 XOR [y]0 and c = x0 AND y0

as follows. Computation of EncG(c) = EncG([x]0 · [y]0) is performed using
the conditional gate; then computation of EncG([z]0) = EncG([x]0 + [y]0 −
2[x]0 · [y]0) = EncG([x]0 + [y]0 − 2c) is performed locally using common
randomness.

2. For i = 1, . . ., `− 1, Alice and Bob compute encryptions of [z]i = (([x]i XOR
[y]i) XOR c) and c = MAJ([x]i, [y]i, c) as follows:

(a) Using the conditional gate, Alice and Bob compute EncG(axy) = EncG([x]i·
[y]i), EncG(axc) = Enc([x]i·c), EncG(ayc) = EncG([y]i·c), and EncG(axyc) =
EncG([x]i · [y]i · c).

(b) Using common randomness, Alice and Bob locally compute EncG([z]i) =
EncG(4axyc − 2axy − 2axc − 2ayc + [x]i + [y]i + c) and then EncG(c) =
EncG(axy + axc + ayc − 2axyc).

Logarithmic depth addition of two integers is carried out by the textbook carry-
lookahead addition circuit [26] that has logarithmic depth and linear size (num-
ber of Boolean gates). Given p1, . . . , pm, the prefix sum problem [27] is to com-
pute all the sums p1 + . . . + pi, i = 1, . . . , m. It can be solved by a logarithmic
depth circuit with a linear number of addition nodes [27]. If each addition node
of the circuit of [27] is replaced by the circuit of [26], then the resulting Boolean
circuit for the prefix problem for `-bit numbers has O(m`) gates and depth
O(log m log `). However, the use of the Wallace tree technique [28] is known to
reduce the depth to O(log m + log `) (see, e.g., [29]).

3.4 Constant-Round Comparison

Although we could carry out comparison in our model using the method given
in [7], this would require O(`) number of rounds. Below we give a constant-round
comparison protocol, which is of independent interest.

Input: Alice and Bob each have encryptions {EncG([x]`−1), . . . , EncG([x]0)}
and {EncG([y]`−1), . . . , EncG([y]0)}.

Output: Alice and Bob obtain 1 if x ≥ y, and 0 otherwise.

Protocol Steps:

1. Alice and Bob both locally compute EncG(e`−1) = EncG(x`−1 − y`−1) and
then compute EncG(ei) = EncG(2ei+1 + xi − yi) for all i ∈ {` − 2, . . . , 0}.
Note that the value ei will be 0 until the first difference between x and y.

2. Alice and Bob locally compute EncG(f`−1) = EncG(y`−1 − x`−1 − 1) and
then EncG(fi) = EncG(3ei+1 + yi − xi − 1) for all i ∈ {` − 2, . . . , 0}. Note
that the value fi will be 0 if the first i− 1 bits are equal and the ith bit of
x is false and the ith bit of y is true. Thus if there is a single 0 entry (and
there will be at most one) then x < y and otherwise x ≥ y.

3. Alice and Bob raise EncG(fi) to a random power (a protocol for doing this
was described in [30]). Note that now the list of values will contain a 0 if
x < y and will be a set of random non-zero values otherwise.

4. Alice mixes the list and sends the mixed list to Bob along with a proof of
proper mixing. Similarly, Bob mixes the list and sends the mixed list to Alice
along with a proof of proper mixing.

5. Alice and Bob jointly decrypt the list and if a single entry is 0, then they
output 0. If no entry is 0, then they output 1.

3.5 Binary Search

Here we give an efficient search protocol for step 6 of the main protocol. The
overall complexity is O(` log m) and the round complexity is O(log m).

Input: A list of sorted bitwise encrypted m values {EncG([yi]`−1), . . . , EncG([yi]0)}
m
i=1

and value x bitwise encrypted as EncG([x]`−1), . . . , EncG([x]0).

Output: The smallest index j such that yj > x.

Protocol Steps: Alice and Bob execute the following recursive procedure on
the bitwise-encrypted list {yi}

m
i=1:

1. If the size of the current working set |{yi, . . ., yj}| = 1, return i.
2. Otherwise, Alice and Bob execute the constant-round comparison protocol

(see section 3.4) on (the encrypted values of) x and yd j−i+1

2
e (i.e., check

whether x ≥ yd j−i+1

2
e). Let c denote the outcome of the protocol.

3. If c = 1, recurse on list {yd j−i+1

2
e+1, . . . , yj}; otherwise, recurse on list {yi,

. . . , yd j−i+1

2
e}.

Acknowledgments

The authors are thankful to anonymous reviewers for their valuable feedback on
this work.

References

1. Dodis, Y., Halevi, S., Rabin, T.: A cryptographic solution to a game theoretic
problem. In: Advances in Cryptology – Crypto’00. (2000)

2. Teague, V.: Selecting correlated random actions. In: Financial Cryptography.
Volume 3110. (2004) 181–195

3. Bárány, I.: Fair distribution protocols or how the players replace fortune. Mathe-
matics of Operation Research 17 (1992) 327–341

4. Ben-Porath, E.: Correlation without mediation: Expanding the set of equilibria
outcomes by “cheap” pre-play procedures. Journal of Economic Theory 80 (1998)
108–122

5. Gerardi, D.: Unmediated communication in games with complete and incomplete
information. Journal of Economic Theory 114 (2004)

6. Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair SFE and
coalition-safe cheap talk. In: Symposium on Principles of Distributed Comput-
ing (PODC’04). (2004) 1–10

7. Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the con-
ditional gate. In: ASIACRYPT’04. Volume 3329. (2004) 119–136

8. Ambainis, A., Jakobsson, M., Lipmaa, H.: Cryptographic randomized response
techniques. In: Workshop on Theory and Practice in Public Key Cryptography
(PKC’04). Volume 2947 of LNCS. (2004) 425–438

9. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Advances in Cryptology – CRYPTO’05. Volume 3621
of LNCS. (2005) 378–411

10. Yao, A.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society Press
(1986) 162–167

11. Goldreich, O.: The Foundations of Cryptography — Volume 2. Cambridge Uni-
versity Press (2004)

12. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Advances in Cryptology: EUROCRYPT ’99. Volume 1592 of Lecture
Notes in Computer Science., Springer (1999) 223–238

13. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: PKC ’01: Proceedings of the 4th Inter-
national Workshop on Practice and Theory in Public Key Cryptography, Springer
(2001) 119–136

14. Frikken, K., Atallah, M.: Privacy preserving route planning. In: Proceedings of the
3rd ACM Workshop on Privacy in the Electronic Society, Washington, DC, USA
(2004) 8–15

15. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the k th-ranked
element. In: Advances in Cryptology – EUROCRYPT’04. Volume 3027 of LNCS.
(2004) 40–55

16. Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology
4 (1991) 161–174

17. Fiat, A., Shmair, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Advances in Cryptology – CRYPTO’86. Volume 263
of LNCS. (1986) 186–194

18. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Advances in Cryptology – EURO-
CRYPT’94. Volume 839 of Lecture Notes in Computer Science., Springer (1994)
174–187

19. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via cipher-
texts. In: Advances in Cryptology – ASIASCRYPT’00. Volume 1976 of LNCS.
(2000) 162–177

20. Pedersen, T.: A threshold cryptosystem without a trusted party. In: Advances in
Cryptology – EUROCRYPT’91. Volume 547 of LNCS. (1991) 522–526

21. Gennaro, R., Jarecki, S., Krawzyk, H., Rabin, T.: Secure distributed key gener-
ation for discrete-log based cryptosystem. In: Advances in Cryptology – EURO-
CRYPT’99. Volume 1592 of LNCS. (1999) 295–310

22. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
In: Communications of the ACM. Volume 24(2). (1981) 84–88

23. Jakobsson, M.: A practical mix. In: Advances in Cryptology – EUROCRYPT ’98.
Volume 1403. (1998) 448–461

24. Jakobsson, M., Juels, A., , Rivest, R.: Making mix nets robust for electronic voting
by randomized partial checking. In: USENIX. (2002) 339–353

25. Golle, P., Jakobsson, M.: Reusable anonymous return channels. In: ACM Workshop
on Privacy in the Electronic Society (WPES’03). (2003) 94–100

26. Ofman, Y.P.: On the algorithmic complexity of discrete functions. English trans-
lation of Soviet Physics Doklady 7 (1963) 589–591

27. Ladner, R., Fischer, M.: Parallel prefix computation. Journal of the Association
for Computing Machinery (27) (1980) 831–838

28. Wallace, C.: A suggestion for a fast multiplier. IEEE Transactions on Electronic
Computers 13 (1964) 14–17

29. Zheng, S., Yang, M., Masetti, F.: Constructing schedulers for high-speed, high-cap
acity switches/routers. International Journal of Computers and Applications 26

(2003) 4–271
30. Brandt, F.: Fully private auctions in a constant number of rounds. In: Financial

Cryptography Conference (FC’03). Volume 2742 of LNCS. (2003) 223–238

