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Abstract. Secure multi-party computation allows a number of partici-
pants to securely evaluate a function on their private inputs and has a
growing number of applications. Two standard adversarial models that
treat the participants as semi-honest or malicious, respectively, are nor-
mally considered for showing security of constructions in this framework.
In this work, we go beyond the standard security model in the presence
of malicious participants and treat the problem of enforcing correct in-
puts to be entered into the computation. We achieve this by having a
certification authority certify user’s information, which is consequently
used in secure two-party computation based on garbled circuit evalua-
tion. The focus of this work on enforcing correctness of garbler’s inputs
via certification, as prior work already allows one to achieve this goal
for circuit evaluator’s input. Thus, in this work, we put forward a novel
approach for certifying user’s input and tying certification to garbler’s
input used during secure function evaluation based on garbled circuits.
Our construction achieves notable performance of adding only one (stan-
dard) signature verification and O(nρ) symmetric key/hash operations
to the cost of garbled circuit evaluation in the malicious model via cut-
and-choose, in which ρ circuits are garbled and n is the length of the
garbler’s input in bits. Security of our construction is rigorously proved
in the standard model.

Keywords: Garbled circuits, Input certification, Input verification, Secure func-
tion evaluation

1 Introduction

Secure multi-party computation (SMC) is a mature research area of computer
science that has experienced dramatic advances in recent years. A new secure
multi-party construction or protocol is expected to be shown secure against a
formal security definition specifying the adversarial model. The two most funda-
mental and now standard security models correspond to modeling the computa-
tion participants as semi-honest (or honest-but-curious or passive) or malicious
(or active). With semi-honest adversaries, the participants are trusted to follow



the prescribed computation, while a malicious adversary can instruct the par-
ticipants under its control to arbitrarily deviate from the computation in the
attempt to learn authorized information about the honest parties’ inputs. While
these definitions are strong and do not tolerate unintended information leakage,
the largest limitation of these standard definitions is that they provide no guar-
antees with respect to inputs of the computation.3 Thus, a dishonest participant
is able to modify its input into the computation, which results in other partici-
pants receiving incorrect results, while the dishonest party itself might be able to
compute true output based on its knowledge of the original data transformation.
This also allows a dishonest participant to set its inputs into the computation
in such a way as to learn the maximum amount of information about input of
other participant(s) from the output it receives.

The issue with inability of honest participants to control inputs of mali-
cious participants under the current security definitions has been recognized in
the literature and various techniques were proposed to mitigate the problem.
Examples include employing game-theoretic techniques to incentivize providing
truthful inputs into secure multi-party computation (see, e.g., [14, 15, 28]) and
input certification in the context of specific applications such as private set inter-
section [9, 11] and anonymous credentials [8]. More recently, input certification or
input validity verification in the form of any function has been added to general
secure computation techniques. In particular, Blanton and Bayatbabolghani [3]
put forward an efficient construction for server-aided secure two-party compu-
tation based on garbled circuit evaluation, where the inputs of the two users
are certified and equality of the signed data and inputs into the computation is
verified by utilizing signatures with protocols. Katz et al. [16] design an efficient
mechanism for adding input verification in the form of an arbitrary function to
two-party computation based on garbled circuits so that the computation takes
place only if the inputs pass verification (and the computation takes place on
the same inputs that were verified). We continue this line of work in this paper.

The focus of this article is on enforcing input correctness in secure computa-
tion via input certification. Because signature-based input certification is more
amenable to integration with existing malicious-adversary techniques based on
homomorphic encryption or secret sharing than garbled circuit evaluation, we
would like to tackle the more interesting case of garbled circuit evaluation. To
that extent, our starting point was the work of Blanton and Bayatbabolghani [3]
for the server-aided two-party setting. We aim to enforce input correctness of
both circuit garbler and evaluator in the standard two-party setting using garbled
circuit evaluation techniques. Toward this goal, we notice that the mechanism for
enforcing input correctness of the user evaluating the circuit in [3] will also work
with the regular two-party setup with no changes. In particular, that mechanism
requires the circuit evaluator to prove via zero-knowledge proofs of knowledge
that the inputs provided into the oblivious transfer (at the time of retrieving
garbled labels corresponding to the evaluator’s inputs) are consistent with the

3 Note that this does not refer to ill-formed inputs which can be detected in the be-
ginning of the computation, but rather to well-formed incorrect or deceptive inputs.



valued signed by a certification authority. The mechanism for enforcing input
correctness of the other user in [3], however, cannot be used for enforcing input
correctness of the circuit garbler in the conventional setup. Thus, the focus of
this work is on designing an efficient mechanism for enforcing input correctness
of the garbler with the help of a certification authority.

Our setup assumes the presence of a certification authority that can certify
users’ data. For example, in the case of genomic or medical data, the facility
performing genome sequencing or running a medical test will issue certification
that can later be used with secure two-party computation. Obviously, the use
of certification should not reveal any information about the certified values. For
example, [3] used signatures with protocols that allows the signature owner to
prove statements about signed values in zero-knowledge. Once the certification
step is complete, the user will be able to use that information with garbled circuit
evaluation to prove correctness of the supplied inputs.

In this work we put forward a novel, non-standard certification construction
for use with garbled circuit evaluation that favorably compares with existing
signature schemes and other prior work in terms of its performance. The cer-
tification authority’s work includes only one public-key operation (producing a
regular signature) for user’s input of any size and the number of symmetric key
or hash function operations is O(nρ), where n is the bitlength of the user’s input
to be certified and ρ is a statistical security parameter (that determines the num-
ber of circuits being garbled). The size of a certificate is O(n+ ρ), and the cost
of secure function evaluation is only insignificantly higher than that of regular
garbled circuit evaluation in the malicious model with no enforcement of input
correctness. In particular, the work associated with using garbler’s input certifi-
cation and verification in secure function evaluation based on garbled circuits is
only one signature verification and O(nρ) symmetric key/hash operations when
the garbler’s input is n bits long. The downside of the approach is that the cer-
tification authority’s work is linear in the number of times the certificate is to
be used in secure computation. That is, in order to use the same input in up
to k independent secure function evaluations (with possibly different functions),
the user will need to obtain a certificate of size O(n+ ρk) and the certification
authority’s work increases to O(nρk).

2 Related Work

Literature on secure two-party and multi-party computation is extensive and
provides different mechanisms for securely evaluating a function on private in-
puts. Following the seminal work of Yao [30], it has been known that any com-
putable function can be securely evaluated. Consequent work focused on pro-
viding stronger security guarantees such as security in the presence of malicious
or covert adversaries (see, e.g., [21, 10] among many others) or improving per-
formance of existing techniques (see, e.g., [5, 2] among others). There is also a
large variety of custom constructions optimized for evaluating specific functions



with the goal of providing more efficient solutions than their generic counterparts
(see, e.g., [23, 4] among others).

The original Yao’s construction is secure against semi-honest participants,
and several solutions for making it resilient to malicious behavior exist. Early
examples of constructions secure in the malicious model include [13, 12] that
utilize zero knowledge proofs of knowledge. An alternative approach to making
secure function evaluation based on garbled circuits resilient to malicious be-
havior is to use cut-and-choose techniques [20, 24, 19], which we further detail in
Section 3.

Moving closer to the focus of this work, several publications treat the is-
sue of input consistency or correctness in different settings and using different
mechanisms. For example, the issue of input consistency arises in the context
of garbled circuit evaluation based on cut-and-choose techniques when multiple
circuits need to be evaluated on the same (consistent) inputs and was treated
in several publications [22, 20, 29]. Another work by Kolesnikov et al. [17] pro-
posed a solution for input consistency across multiple user interactions with the
help of a semi-honest server at low cost. That is, possibly malicious users engage
in executions of secure two-party function evaluation with each other, but the
user’s input must remain the same for multiple instances of secure computation.

With respect to enforcing input correctness, one line of research applies game
theory to function design to incentivize participants to provide their truthful in-
puts into the computation (see, e.g., [14, 26, 15, 27, 28] among others). These pub-
lications typically treat the parties as rational. For instance, Shoham and Ten-
nenholtz [26] studied the question of which boolean functions can be computed
by rational agents in a distributed setting and more recent work of Wallraben-
stein and Clifton [27, 28] revisits game specifications using the specifics of secure
multi-party computation setups. In addition, input certification was used with
certain types of functionalities to guarantee that computation is run on the
same inputs as the inputs previously signed by some certification authority. For
example, [9, 11] provide solutions for performing private set intersection on cer-
tified sets and [8] incorporates certification into anonymous credentials. These
techniques, however, are not applicable to general functionalities.

More recently, Blanton and Bayatbabolghani [3] incorporated input certifi-
cation into general secure function evaluation based on garbled circuits. In par-
ticular, the computation takes place between two possibly malicious users who
use the help of an untrusted semi-honest server and ensures that the users can
only enter inputs that were previously certified into the computation. The con-
struction uses signatures with protocols [6] for this purpose and ties them to the
way input is provided into the garbled circuit using zero-knowledge proofs. This
paper is used as the starting point for this work. As we mentioned earlier, their
mechanism for garbler’s input certification applies to regular two-party compu-
tation based on garbled circuits, but it is not the case for the circuit garbler and
this is why we focus on this task in this work.

Katz et al. [16] proposed a solution to enforce input validity of both garbler
and evaluator in secure function evaluation based on garbled circuits. It formu-



lates input validation in the form of two predicates f1(·) and f2(·) applied to the
input of the first and second participant, respectively. The construction then en-
sures that the main function f(·, ·) is evaluated on the the same inputs as those
provided during input validation. The underlying techniques include ElGamal-
based commitments and a special form of oblivious transfer (OT). Note that the
predicates f1 and f2 are specified in the form of Boolean circuits and are eval-
uated using garbled circuits themselves, which means that they could be used
to privately verify a private signature on a private input, but the resulting cir-
cuit is large. Concurrently with [16], Baum [1] treats a similar problem, but the
solution is based on universal hash functions and committed OT. In particular,
the predicates f1(·) and f2(·) are evaluated by the respective party locally, but
the join computation includes evaluation of a hash function on the output of the
predicate to verify consistency of the input into the computation. More generally,
the techniques of [1] improve performance of secure function evaluation based
on garbled circuits when portions of the computation (or sub-circuits) depend
only on one party’s input.

We note that it is possible to combine the techniques of [16, 1] with input
certification using signatures with protocols. For example, instead of evaluating
predicate f1 on private input x of the first party P1, P1 could prove in zero-
knowledge that it possesses a signature on input x and connect it to the evalua-
tion of f(x, y), where y is the input of the second party P2, in the same way as
in [16]. This will serve as an alternative construction to the techniques presented
in this paper. Suppose that P1 is the circuit garbler G and we only consider G’s
input certification, similar to the construction presented in this work. Then if we
take the approach of [16] and combine it with signatures with protocols (such as
[6, 7]), its performance compared to our approach can be evaluated as follows.
Besides the common components such as garbling and checking/evaluation of
O(ρ) circuits and executing OT for circuit evaluator’s input, the approach based
on the techniques of [16] requires O((n1 + n3)ρ) public-key operations (modulo
exponentiations), where n1 is the bitlength of G’s input and n3 is the bitlength
of the output. In our construction, however, only one signature is verified and
the parties perform O(n1ρ) symmetric key operations (PRF or hash function
evaluations) with small constants hidden behind the big-O notation.

If instead of using signatures with protocols we directly compare the approach
of [16] to our work, then the number of public key operation in the solution of [16]
is still O((n1 + n3)ρ) and there is a need to securely verify a private signature
on private input using a garbled circuit. This circuit is expected to be large;
for example, based on the circuit sizes reported in [18] we can estimate that
verification of an RSA signature using a 1024-bit modulus uses over 40 million
gates, and the number is obviously several times higher for stronger RSA with
a 2048- or 3072-bit modulus (a circuit for producing a signature with RSA-1024
is over 40 billion gates in size).

The techniques of [1] are conceptually similar to those used in [16], but there
is no special output handling and public-key operations are used only in the
form of commitments and OT. Compared to our construction, the solution of [1]



requires invocation of O((n1 + ρ)ρ) OTs (no OTs or similar operations are used
for the garbler’s input in our construction), the size of the circuit that needs to
be evaluated in the malicious setting is larger due to the need to enforce input
consistency using a hash function evaluation, and the predicate in the form of a
signature verification needs to be evaluated once using a garbled circuit.

3 Garbled Circuit Evaluation

The use of garbled circuits allows two parties P1 and P2 to securely evaluate a
Boolean circuit of their choice. Given an arbitrary function f(x, y) that depends
on private inputs x and y of P1 and P2, respectively, the parties first represent
it as a Boolean circuit. One party acts as a circuit generator (or garbler) G
and creates a garbled representation of the circuit by associating both values of
each binary wire with random labels. The other party acts as a circuit evaluator
E and evaluates the circuit in its garbled representation without knowing the
meaning of the labels that it handles during the evaluation. The output labels
can be mapped to their meaning and revealed to either or both parties.

Once the circuit is garbled, the garbler communicates it (in the form of
garbled Boolean gates) to the evaluator together with the labels of the input
wires corresponding to the garbler’s input bits. The labels of the input wires
corresponding to the evaluator’s input bits are communicated to the evaluator
by means of 1-out-of-2 Oblivious Transfer (OT).

The standard construction used for the semi-honest setting also provides se-
curity in the presence of a malicious evaluator (i.e., if the evaluator deviates from
the prescribed computation, the evaluation might abort, but the evaluator will
not be able to learn unauthorized information). However, to guarantee security
in the malicious setting (with either malicious garbler or evaluator) additional
techniques need to be employed. A widely used approach to detecting incor-
rectly garbled circuits is based on cut-and-choose. Given a security parameter ρ,
G garbles O(ρ) circuits and sends them to E. The evaluator chooses a number
of them to be opened and checks them for correctness. The remaining circuits
are evaluated by E, with the algorithm specifying how possible differences in
the circuit outputs are to be reconciled (e.g., by using the majority) without
disclosing that information to G. This approach allows for the probability of E
accepting the output of incorrect circuit evaluation to be at most negligible in
ρ.

There are, however, additional attacks that can be mounted at the time of
input specification in the attempt to learn additional information about the
other party’s input and the corresponding countermeasures. First, the utilized
approach must enforce that the OT protocol is resilient to malicious behavior.
Second, it must enforce that both G and E input consistent bits into all evalua-
tion circuits. This is typically easy to achieve for the evaluator (i.e., the evaluator
specifies a single input bit and learns the corresponding labels for all circuits be-
ing evaluated), while additional techniques need to be used to enforce G’s input
consistency. Third, the protocol must be resilient to a selective failure attack, in



which G attempts to learn a bit of E’s input by providing incorrect information
during OT. For example, G could enter an incorrect wire label corresponding
to 0 for E’s input bit into OT. Then if E’s input is 0, it is unable to proceed
and aborts and otherwise it succeeds, allowing G to learn one bit of E’s input.
A solution to this problem is to use ρ input bits into the circuit for each bit of
E’s input, where all ρ bits are XORed together to result in E’s original input
bit. Now if G launches a selective-failure attack on a single bit, the leaked bit re-
veals no information about E’s original input. This attack is only successful and
results in revealing a bit of E’s input when G recovers all ρ corresponding bits
of the input, which only has a negligible (in security parameter ρ) probability of
success.

Lastly, we need to ensure that authentic output is delivered to both par-
ties after the evaluation. (Note that in general, fairness cannot be achieved in
two-party computation, preventing one of the parties from learning the output,
but at least we can require that only authentic outputs are accepted.) Various
mechanisms for achieving this goal exist and for the purposes of this work any
such mechanism will suffice. However, for concreteness of our security analysis,
we will assume the following: the meaning of the output wire labels is opened to
E. If G is also to learn the (same or different) output, the function is modified
as in [20] to compute G’s output in a protected form together with the corre-
sponding message authentication tag, which G can verify and recover its output
if verification was successful.

We now proceed with defining security of a two-party secure computation
protocol in the presence of malicious participants using the standard real-ideal
model setting and simulation paradigm. The execution of protocol Π takes place
between parties P1 and P2 and an adversary A who can corrupt one of them.
Each participant receives its input and security parameters 1κ and 1ρ, where
κ denotes the computation security parameter and ρ the statistical security
parameter. A receives all information that the party it corrupted has and can
also instruct the corresponding corrupted party to behave in a certain way. Let
VIEWΠ,A denote a tuple consisting of the view of A at the end of an execution
of Π and the output of the honest party.

In the ideal model, all parties interact with a trusted party TP who evaluates
function f . The execution begins with each party receiving its inputs and security
parameters. Each honest party sends to TP its true input and a malicious party
can send an arbitrary value. If TP does not receive input from both parties or if it
receives an abort message, it outputs ⊥ (empty) to the participants. Otherwise,
the participants receive f evaluated on submitted inputs. Let VIEWf,S denote
a tuple consisting of the output that simulator S with access to the corrupted
party’s information produces based on its view and the output of the honest party
after ideal execution of function f . We obtain the following security definition:

Definition 1. Let Π be a protocol that computes function f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ × {0, 1}∗ with party P1 contributing input x and party P2 contributing
input y. We say that Π securely evaluates f if for each probabilistic polynomial-
time in κ adversary A in the real model and all x, y ∈ {0, 1}∗, there exists



probabilistic S in the ideal model that run in time polynomial in A’s runtime
and IDEALf,S(x, y) ∼= REALΠ,A(x, y). Here ∼= denotes computational indistin-
guishability (in the security parameter κ).

When inputs are certified, the participants have access to certification in
the real protocol execution, while in the ideal model the simulator will need to
simulate input certification of honest parties (without access to their inputs).
Furthermore, if we want to guarantee that the computation takes place on the
input equal to the input encoded in the certification, we need to show that a
malicious participant is unable to provide an input that differs from the certified
input and results in successful completed protocol with more than a negligible
probability.

4 Proposed Construction

In our construction we use three independent hash functions h1, h2, and h3 with
properties defined below. For the purposes of our security analysis, we need to
assume that h1 and h2 are universal hash functions, while collision resistance is
sufficient for h3. In addition, we require h1 to support homomorphic XOR as in
h1(x ⊕ y) = h1(x) ⊕ h1(y). A collection of hash functions H = {h : A → B}
is called universal if for any distinct x, y ∈ A, the probability that a uniformly
chosen h ∈ H satisfies that h(x) = h(y) is at most 1/|B|, i.e., its output is
uniformly distributed over the function’s range. An efficient implementation of a
universal hash function with homomorphic XOR can be found in [25]. Collision
resilience of a hash function h is defined as inability of an adversary to find two
distinct x and y such that h(x) = h(y) with more than a negligible probability
in the output size of h. For the purpose of this work, we let the output size of
hash functions be governed by the security parameter κ so that the probability
of finding collisions is negligible in κ. Collision resilience follows for our universal
hash functions h1 and h2.

Our construction also relies on a pseudo-random function (PRF) F : {0, 1}κ×
{0, 1}κ → {0, 1}κ, security of which is defined in a standard way. That is, for a
randomly chosen key k ∈ {0, 1}κ, an adversary who can query Fk on different
inputs a polynomial number of times is unable to distinguish Fk from a random
function f with more than a negligible probability.

The intuition behind our construction is to let the certification authority
(CA) associate input bits with random values, which are to be used in circuit
generation and evaluation, and generate some “fingerprint” information for en-
forcing correctness. In this scheme, the CA does not need to perform signing
of input bits as in traditional signature schemes, but only performs symmetric
key operations and computes one signature independent of the input or circuit
size. The evaluator consequently will use the “fingerprint” information to check
circuits, and both the garbler and evaluator use information provided by the CA
to generate input labels.

In more detail, for each input wire i corresponding to the garbler’s input,
the CA chooses two random strings s0i and s1i that mean 0 and 1, respectively,



and similarly two (pseudo-)random values for each input wire i of each garbled
circuit j (denoted by t2nj+2i and t2nj+2i+1 in the protocol description where n is
the input size). The CA also encodes information that binds all of these random
values by their meaning (i.e., all s and t values that correspond to 0 across all
input wires and the equivalent values that correspond to 1) and by input wire
(i.e., both t values that correspond to a given input wire in a given circuit).
These bindings are stored in an encrypted form and are opened to the evaluator
for circuits that are to be checked. The CA also releases information related to
G’s input x as sxi

i , s
1−xi
i (without revealing the meaning of these strings). These

values are used both during circuit checking (for opened circuits to verify their
correctness) and circuit evaluation (to compute labels corresponding to garbled
input wires using sxi

i ’s). In the following, we describe the proposed protocol in
detail.

In what follows, x is the input to be signed and sk is the private signing key of
the certification authority S. We assume that ρ circuits need to be garbled, where
a fraction of them is being checked and the remaining circuits are evaluated.

Input certification. The input consists of user’s input x = x0. . .xn−1 to be
certified and the signer S holds its private signing key sk (with the corresponding
public key pk available to all users).

1. For each input bit i = 0, . . ., n − 1, S chooses two random strings s0i , s
1
i ←

{0, 1}κ representing bits 0 and 1, respectively.
2. S computes H0 = h1(s00 ⊕ · · · ⊕ s0n−1) and H1 = h1(s10 ⊕ · · · ⊕ s1n−1).
3. S chooses a secret key k′ ← {0, 1}κ for a PRF F and for i = 0, . . ., 2nρ − 1

computes a pseudo-random string ti = Fk′(i).
4. For j = 0, . . ., ρ − 1, S computes P 0

j = H0 ⊕ h1(h2(t2nj) ⊕ h2(t2nj+2) ⊕
· · · ⊕ h2(t2nj+2n−2)), and P 1

j = H1 ⊕ h1(h2(t2nj+1) ⊕ h2(t2nj+3) ⊕ · · · ⊕
h2(t2nj+2n−1)).

5. For each j = 0, . . ., ρ − 1, S computes V0,j = h3(h1(h2(t2nj) ⊕ h2(t2nj+1))),
V1,j = h3(V0,j ||h1(h2(t2nj+2) ⊕ h2(t2nj+3)), . . . , and Vn−1,j = h3(Vn−2,j ||
h1(h2(t2nj+2n−2)⊕ h2(t2nj+2n−1))) and sets Qj = Vn−1,j .

6. For each j = 0, . . ., ρ− 1, S chooses a random encryption key ckj ← {0, 1}κ
and computes Encckj (P 0

j ||P 1
j ||Qj).

7. S concatenates (sxi
i ||s

1−xi
i )n−1i=0 , (Encckj (P 0

j ||P 1
j ||Qj))

ρ−1
j=0 , and stores the re-

sulting string as c. Here each sxi
i represents input bit xi and s1−xi

i its com-
plement. S signs c as Signsk(c).

8. S returns 〈c,Signsk(c), (ckj)
ρ−1
j=0 , k

′〉 to the user. Note that information in-
cluded in c does not reveal whether xi was 0 or 1.

The above information will be used for producing n garbled label pairs for
input wires corresponding to input x into ρ circuits. As described below, each gar-
bled pair for input wire i in circuit j will be formed as `0i,j = h1(s0i ⊕h2(t2n1j+2i))

and `1i,j = h1(s1i ⊕ h2(t2n1j+2i+1)). Then the values P 0
j , P 1

j , and Qj are used to
verify correctness and consistency of the garbled circuit j. For each garbled cir-
cuit j, these values are opened during the circuit checking phase and are used



by E to verify correctness of input labels. The intuition behind the checks is
that P 0

j encodes information about all inputs labels corresponding to input bits

equal to 0, while P 1
j encodes information about all labels corresponding to input

bits equal to 1. We refer to checks that use P 0
j and P 1

j as “horizontal checks.”
Additionally, information encoded in Qj encodes information about each pair of
labels `0i,j , `

1
i,j for each input wire i of the circuit. We refer to this check as the

“vertical check.”

Secure function evaluation with certified inputs. Garbler G holds private
input x = x0. . .xn1−1, (ckj)

ρ−1
j=0 , k′ and supplies public 〈c,Signsk(c)〉, where c =

(sxi
i ||s

1−xi
i )n1−1

i=0 ||(Encckj (P 0
j ||P 1

j ||Qj))
ρ−1
j=0 . Evaluator E holds private input y =

y0. . .yn2−1.

0. Initial check: E verifies signature on c using certification authority’s public
key pk and aborts if verification fails. E stores all components of c.

1. Circuit garbling:
(a) For each circuit j = 0, . . . , ρ, G generates labels for its own input wires

i = 0, . . . , n1 − 1 as `0i,j = h1(s0i ⊕ h2(t2n1j+2i)) and `1i,j = h1(s1i ⊕
h2(t2n1j+2i+1)), where each ti is computed as Fk′(i).

(b) G generates the rest of the circuits in the same way as traditional garbled
circuits and sends all circuits to E.

2. Circuit checking:
(a) E select a predefined number of circuits out of ρ of them at random as

checking circuits and asks G to open the selected circuits.
(b) G reveals each label pair for each wire of each checking circuit and E

verified them. If any circuit is malformed, E aborts the computation.
(c) For each checking circuit with its original index j, G sends to E the

key ckj . E decrypts P 0
j , P 1

j , and Qj and checks whether P 0
j is equal to

`00,j ⊕ · · · ⊕ `0n1−1,j and whether P 1
j is equal to `10,j ⊕ · · · ⊕ `1n1−1,j . If any

check fails, E aborts the computation.
(d) For each checking circuit with its original index j, E computes S0,j =

h3(`00,j⊕`10,j⊕h1(sx0
0 )⊕h1(s1−x0

0 )), S1,j = h3(S0,j ||`01,j⊕`11,j⊕h1(sx1
1 )⊕

h1(s1−x1
1 )), . . . , Sn1−1,j = h3(Sn1−1,j ||`0n1−1,j ⊕ `

1
n1−1,j ⊕ h1(s

xn1−1

n1−1 ) ⊕
h1(s

1−xn1−1

n1−1 )). If Sn1−1,j is not equal to Qj , E aborts.
3. Circuit evaluation:

(a) The circuits that have not been opened in step 2 are evaluation circuits.
For each evaluation circuit with the original index j, G sends to E values
t2n1j+x0

, . . . , t2n1j+2n1−2+xn1−1
.

(b) For each evaluation circuit with its original index j, E computes labels
for G’s input wires i = 0, . . . , n1 − 1 as `xi

i,j = h1(sxi
i ⊕ h2(t2n1j+2i+xi

)).
(c) G and E engage in OT for E to learn garbled labels corresponding to its

input and E evaluates each evaluation circuit and determines the output
in the same was as in traditional garbled circuits.

We can see that all circuits garbled by an honest G pass the checks of steps 2(c-
d). In particular, for each circuit j, each label `0i,j is constructed as `0i,j = h1(s0i ⊕



h2(t2n1j+2i)), so that
⊕n1−1

i=0 `0i,j = h1

((⊕n1−1
i=0 s0i

)
⊕
(⊕n1−1

i=0 h2(t2n1j+2i)
))

.

This is exactly how the value of P 0
j = h1

(⊕n1−1
i=0 s0i

)
⊕h1

(⊕n1−1
i=0 h2(t2n1j+2i)

)
=

h1

((⊕n1−1
i=0 s0i

)
⊕
(⊕n1−1

i=0 h2(t2n1j+2i)
))

was constructed by the certification

authority. The same applies to checking whether P 1
j is equal to

⊕n1−1
i=0 `1i,j . As far

as the check in step 2(d) does, we see that it will verify if the value of Si,j com-
puted by E for each i is identical to the value Vi,j computed by the certification
authority in step 5 of input certification. Note that S0,j = h3(`00,j⊕`10,j⊕h1(sx0

0 )⊕
h1(s1−x0

0 )) = h3(h1(s00⊕h2(t2n1j)⊕h1(s10⊕h2(t2n1j+1))⊕h1(sx0
0 )⊕h1(s1−x0

0 )) =
h3(h1(h2(t2n1j) ⊕ h2(t2n1j+1))) = V0,j . Similar derivations will apply to other
values of i as well, giving us correctness.

5 Security Analysis

We first demonstrate security according to the simulation paradigm in Defini-
tion 1 and then proceed with showing that the proposed construction enforces
input correctness. We use notation negl to denote a function negligible in its
input.

To prove that no information leakage takes place during protocol execution,
we rely on the following result:

Lemma 1. Information (sxi
i , s

1−xi
i )n−1i=0 , P

0
j , P

1
j , Qj computed as part of certifi-

cation for n-bit x for some fixed j together with pairs (`0i,j = h1(s0i ⊕h2(t2nj+2i)),

`1i,j = h1(s0i⊕h2(t2nj+2i+1)))n−1i=0 is indistinguishable for any PPT adversary from
the same information computed for any n-bit x′ 6= x.

Proof. We show that the above values reveal no information about x, from which
the claim of the lemma will follow. First, note that the values sxi

i , s
1−xi
i were

chosen uniformly at random and in the absence of other information about xi,
s0i ’s or s11, the ordering reveals no information about x. In other words, the pairs
sxi
i , s

1−xi
i are distributed identically to uniformly chosen random values in the

absence of additional information. In what follows, we construct a number of
hybrid views and demonstrate that the views are indistinguishable from each
other.

Hybrid 0: The same as the original set of values consisting of sxi
i ’s, s1−xi

i ’s, P 0
j ,

P 1
j , Qj , `

0
i,j ’s, and `1i,j ’s for a fixed j and i = 0, . . ., n− 1.

Hybrid 1: In this view, we replace each h2(t2nj+2i) and h2(t2nj+2i+1) used
in the creation of P 0

j , P 1
j , Qj , and each `0i,j and `1i,j with strings ri,j,0 and

ri,j,1, respectively, chosen uniformly at random over h2’ range. Because we are
modifying all values constituently, any relationships between them (such as P 0

j =⊕n−1
i=0 `

0
i,j , etc.) will still hold. These values are indistinguishable from the values

in Hybrid 0 because h2 is a universal hash function. In particular, inputs t2nj+2i

and t2nj+2i+1 into the hash function are pseudo-random and satisfy the min-
entropy requirements for the output of h2 to be treated as pseudo-random [25].



Hybrid 2: In this view, we replace s0i⊕ri,j,0 and s1i⊕ri,j,1 with uniformly chosen
random strings r′i,j,0 and r′i,j,1, respectively, of the same length (or, equivalently,

we replace h1(sbi ⊕ ri,j,b) = h1(sbi )⊕h1(ri,j,b) with h1(r′i,j,b) for b = {0, 1}) in the

creation of P 0
j , P 1

j , and each `0i,j and `1i,j . This view is distributed identically to
Hybrid 1 because XOR of a uniformly chosen string with any value produces a
uniformly chosen string.

Now we arrive at a view where all s0i ’s and s1i ’s have been completely elimi-
nated. The remaining information is the pairs sxi

i , s
1−xi
i and values derived from

random ri,j,b and r′i,j,b. It is clear that no information about x is revealed to a
computationally bounded adversary and the claim of this lemma follows. �

Now we are ready to proceed with showing that the construction complies with
the security requirements for secure two-party function evaluation in the presence
of malicious adversaries. In our result and its proof below, we assume a secure
realization of the OT protocol secure in the presence of malicious parties is
available to the participants, which they can call as a sub-protocol. Similarly,
we rely on a secure realization of garbled circuit evaluation (in the presence of
a semi-honest garbler).

Theorem 1. Given an OT protocol secure against malicious participants and a
circuit garbling and evaluation scheme secure against a semi-honest garbler and
malicious evaluator, the proposed construction for secure function evaluation
with certified inputs is secure according to Definition 1.

Proof. First, suppose G is malicious and we denote the corresponding adversary
as AG. In the ideal world, simulator SG resides between AG and the trusted
party and simulates G’s view during the protocol execution as follows:

1. SG invokes AG on its input.
2. At the initial check step, SG acts as honest E and verifies the signature on
c. If verification fails, SG aborts the execution.

3. SG continues to act as an honest E would in steps 1 and 2, i.e., it receives
the circuits, asks a predefined fraction of them at randomly chosen indices
to be opened, and checks the opened circuits. If any of the checks fail, SG
aborts the execution.

4. In step 3(a), SG simulates the OT with AG. If any malicious behavior
is detected, SG aborts the execution and otherwise receives t2n1j+x0 , . . . ,
t2n1j+2n1−2+xn1−1 from AG for each evaluation circuit j.

5. SG obtains f(x, y) from TP and communicates G’s output according to the
protocol to AG.

We now need to analyze the differences in the real and simulated views. The
first difference comes from the fact that SG simulates the OT in step 4 as it
does not possess E’s real input. AG, however, has a negligible chance in observ-
ing any differences because of the security of the underlying OT protocol (i.e.,
its simulation is indistinguishable from real execution). The second difference
comes from the fact that in real execution E might fail to output the correct



output because the circuits that it evaluated were incorrect. This, however, can
happen only with probability negl(ρ). We therefore obtain that AG is unable
to distinguish the views with more than a negligible probability and they are
indistinguishable.

Now suppose E is malicious. In the ideal world, simulator SE resides between
E and TP and simulates E’s view during the protocol execution as follows:

1. SE obtains certification 〈c,Signsk(c), (ckj)
ρ−1
j=0 , k

′〉 from the certification au-
thority for some input x′ = x′0. . .x

′
n1−1 of its choice.

2. SE invokes AE on its input.
3. SE extracts AE ’s choices j for which circuits are to be opened during circuit

checking and constructs those circuits correctly as an honest G would using
information from c and the corresponding strings ti’s derived using k′.

4. To construct evaluation circuits, SE creates G’s input labels as an honest G
would using certification information obtained for input x′. SE then receives
f(x, y) from TP and construct the remaining portion of the garbled circuits
so that they always output f(x, y) (i.e., the circuits are input-insensitive).

5. SE sends all circuits to AE and opens the checking circuits upon AE ’s request
as an honest G would.

6. During circuit evaluation, SE executes the OT with AE as an honest G
would. If any malicious behavior is detected, SE aborts the execution and
otherwise it sends t2n1j+x′0

, . . . , t2n1j+2n1−2+x′n1−1
generated using k′ to AE

for each evaluation circuit j.
7. SE continues as an honest G would.

With this simulation, we have two sources of potential differences between the
real and simulated views. The first comes from modifying the way the evaluation
circuits are constructed in step 4 to output a fixed value. This change has been
shown in [20] to be indistinguishable to an adversary who has only a single set
of labels corresponding to the inputs. That is, evaluation of modified circuits on
arbitrary inputs is indistinguishable from evaluation of correct circuits on inputs
x and y.

The second difference is that the certification corresponds to a randomly
chosen x′ instead of actual G’s input x, which we need to analyze in more detail.

In particular, c that AE observes includes the pair s
x′i
i , s

1−x′i
i for each input bit

x′i of x′. Because the certification authority chooses these strings uniformly at

random for any possible input, the pairs sxi
i , s

1−xi
i and s

x′i
i , s

1−x′i
i are distributed

identically in the real and simulated views. For each opened (checking) circuit
j, AE also learns the values of P 0

j , P 1
j , Qj , as well as G’s input wire label pairs

`0i,j , `
1
i,j for each input wire i. From Lemma 1 we learn that these values are

indistinguishable for inputs x and x′ as well.

Lastly, for each evaluation circuit j,AE only sees values s
x′i
i , s

1−x′i
i , t2n1j+2i+x′i

,

Encckj (P 0
j ||P 1

j ||Qj). Assuming CPA-security of the underlying encryption scheme,

there is only a negligible chance that ciphertexts Encckj (P 0
j ||P 1

j ||Qj) reveal any
information to AE . Lastly, in the absence of other relevant information, triples



s
x′i
i , s

1−x′i
i , t2n1j+2i+x′i

and sxi
i , s

1−xi
i , t2n1j+2i+xi are identically distributed, giv-

ing AE no information about the input bit to which the triple corresponds. Thus,
the views in ideal and real executions are indistinguishable as well.

We obtain that the real and simulated views are indistinguishable when either
G or E is corrupt, which concludes the proof. �

Recall that we rely on current countermeasures for defeating G’s incorrect be-
havior such as cut-and-choose that instructs garbling of O(ρ) circuits, checking
a fraction of them, and evaluating the rest. Then according to the previously
showed results, we obtain that any property verified at the circuit checking time
will hold in the computed result with probability 1− negl(ρ). Our input correct-
ness result for the garbler is as follows:

Theorem 2. If all checking circuits pass all tests at the checking phase, the
function is evaluated using garbler’s inputs certified by the certification authority
with probability 1− negl(κ)− negl(ρ).

In order to show this, we first prove a supplementary result.

Lemma 2. If the checks of steps 2(c) and 2(d) hold for a garbled circuit and E
can successfully evaluate the circuit (i.e., evaluation does not abort), the circuit
used correct label pairs (`0i , `

1
i ) generated by the certification authority for each

of G’s input wire i with probability 1− negl(κ).

Proof. For simplicity of presentation, in this proof we omit notation j corre-
sponding to the jth garbled circuit. Recall that we refer to the tests of step 2(c)
as the “horizontal check,” i.e., a consistency check performed over all inputs
with the same value (such as zero bits and one bits) across all input bits, and
the tests of step 2(d) as the “vertical check,” i.e., a consistency check performed
over both inputs of each input bit.

Recall that E evaluates a garbled circuit on labels `xi
i computed as h1(sxi

i ⊕
h2(t2i+xi

)), where each sxi
i comes from the certification authority. Thus, the goal

of a corrupt G is to create a garbled circuit in such a way that E will compute
a valid label for bit 1− xi using sxi

i supplied by the certification authority. This
could involve providing E with an incorrect value of t2i+xi or simply using `xi

i to
represent bit 1− xi for the ith input wire in the circuit. As we show below, the
probability that the adversary is successful in carrying out either of this attacks
is negligible in the security parameter κ.

Suppose that malicious G selects one specific input wire i for which it wants to
corrupt labels. In what follows, we analyze two cases: (1) the adversary supplies

the correct t2i+xi
value to E, sets ˆ̀1−xi

i = h1(sxi
i ⊕ h2(t2i+xi

)) in the circuit,
and adjusts other values accordingly and (2) the adversary supplies an incorrect

t̂2i+xi to E, sets ˆ̀1−xi
i = h1(sxi

i ⊕ h2(t̂2i+xi)) in the circuit, and adjusts other
values as needed. Recall that it is given that the circuit passes the checks of steps
2(c) and 2(d) and that the circuit could be successfully evaluated (i.e., the gates
are correctly formed and use the labels that E computes). In what follows, we
refer to the adversary and G interchangeably.



1. In this case, G communicates t2i+xi
to E who will compute the value h1(sxi

i ⊕
h2(t2i+xi

)) at circuit evaluation time, while G’s intent is to set ˆ̀1−xi
i = `xi

i =
h1(sxi

i ⊕h2(t2i+xi
)) instead of the original `1−xi

i during circuit garbling. Then

if G sets ˆ̀1−xi
i = `xi

i , it will need to set ˆ̀xi
i = `1−xi

i to be able to pass the
vertical check (or break collision resistance of h3 which only has a negligible
probability of success). Now because the labels for both input bits of the ith
input wire are modified from their expected values, the adversary needs to
use other input labels to compensate for the difference to be able to pass
the horizontal check. In particular, P 0 and P 1 values computed in step 2(c)
of the protocol will be different by `xi

i ⊕ `
1−xi
i from its expected value and

G might use labels from k ≥ 1 other input wires to compensate for the
difference.

Now note that because h1 is a universal hash function and its output is
distributed uniformly over the entire space, `xi

i ⊕`
1−xi
i will also be uniformly

distributed over the output space. Thus, if the adversary attempts to swap
the input labels for any number of other input wires, it has only a negligible
chance of matching the difference exactly. That is, for every new combination
of input wires with swapped labels there is only a negligible probability of
eliminating the difference and the adversary is limited to trying a polynomial
number of such combinations.

If the adversary employs some strategy other than swapping input labels to
compensate for the difference, it will be equivalent to solving case 2 below.

2. In this case, G sets ˆ̀1−xi
i = h1(sxi

i ⊕ h2(t̂2i+xi
)) for some t̂2i+xi

6= t2i+xi

instead of the original `1−xi
i during circuit garbling. We can further sub-

divide this into two cases:

(a) The adversary was able to produce ˆ̀1−xi
i = h1(sxi

i ⊕ h2(t̂2i+xi
)) to have

the same value as the expected label `1−xi
i = h1(s1−xi

i ⊕h2(t2i+xi
)). Then

if sxi
i ⊕ h2(t̂2i+xi) = s1−xi

i ⊕ h2(t2i+xi) and consequently h2(t̂2i+xi) =
sxi
i ⊕s

1−xi
i ⊕h2(t2i+xi), the adversary has to break the one-way property

of hash function h2 to succeed in determining t̂2i+xi
, which it has to

provide to E. This has only a negligible probability of success. Otherwise,
sxi
i ⊕ h2(t̂2i+xi

) 6= s1−xi
i ⊕ h2(t2i+xi

) and the adversary has to break
the collision resistance property of h2 to succeed, which also has only a
negligible probability of success.

(b) The adversary produces label ˆ̀1−xi
i = h1(sxi

i ⊕ h2(t̂2i+xi
)) that differs

from the expected label `1−xi
i . Then in order to pass the vertical check,

the adversary will need to compute ˆ̀xi
i such that ˆ̀xi

i ⊕ ˆ̀1−xi
i = `xi

i ⊕`
1−xi
i

or break the collision resilience property of hash function h3. The proba-
bility of success in the latter case is negligible in the security parameter,
while the former case can be analyzed as follows.

Suppose G computes ˆ̀xi
i = ˆ̀1−xi

i ⊕ `xi
i ⊕ `

1−xi
i 6= `xi

i . Then the use of
ˆ̀xi
i will fail the horizontal check if other labels are not modified. Conse-

quently, the adversary might attempt to modify other labels to pass the
check. Suppose the adversary chooses other k ≥ 1 input wires i1, . . . , ik
for which it will modify labels `xi

ij
in the attempt to pass the horizontal



check. That is, G is to compute ˆ̀xi
i1
, . . . , ˆ̀xi

ik
, where

⊕k
j=1

ˆ̀xi
ij

equals a
specific value. First, suppose that k = 1. This means that G is to com-
pute ˆ̀xi

i1
that simultaneously satisfies ˆ̀xi

i ⊕ ˆ̀xi
i1

= t1 and ˆ̀xi
i1
⊕ `1−xi

i1
= t2

for some fixed values t1 and t2 to pass the horizontal check using P xi

and the vertical check for input wire i1. Because ˆ̀xi
i and `1−xi

i1
are pro-

duced using hash function h1, their values are uniformly distributed over
the hash function’s output space. This means that ˆ̀xi

i1
can meet both of

these requirements only with a negligible probability if `1−xi
i1

remains
unchanged. Thus, G could also change both labels for input wire i1 (i.e.,

it sets ˆ̀x1
i1

= t1⊕ ˆ̀xi
i and ˆ̀1−x1

i1
= t2⊕ ˆ̀xi

i1
). This, however, will require G

to supply a consistent t̂2i1+xi1
to E (for bit xi1 which is equal to either

xi or 1− xi) to produce ˆ̀xi1
i1

using authentic s
xi1
i1

, which in turn can be
done only if G inverts h2.
Now if we generalize the analysis to k > 1, we will still run into the
case that there are more contradicting constraints on the values of ˆ̀xi

ij
than the number of labels that G needs to set resulting in inability of
the adversary to meet all of the constraints simultaneously or G will be
required to invert h2 at least for one input wire ij .

Thus, we obtain that the adversary can succeed in modifying its input with
probability at most negligible in κ in every possible case, which concludes the
proof. �

We can now return to proving our main input correctness result.

Proof (Theorem 2). Recall that based on prior results, all properties verified
during the circuit checking phase will hold for the computed result with prob-
ability 1 − negl(ρ). This means that the conditions of Lemma 2 will also be
satisfied with probability p1 = 1−negl(ρ). Furthermore, the result of Theorem 2
guarantees garbler’s input correctness with probability p2 = 1 − negl(κ), and
input correctness will hold when both conditions are true. This happens with
probability p1 · p2 giving us probability of input correctness 1− negl(κ)− negl(ρ)
as desired. �

6 Conclusions

In this work, we treat the problem of strengthening the security guarantees of
traditional formulations of secure multi-party computation. This is achieved by
enforcing input correctness through input certification and tying certification
to instances of secure function evaluation. The focus of this work is specifically
on enforcing correctness of the garbler’s input in secure two-party computation
based on garbled circuit evaluation in the malicious model. We put forward a
new certification mechanism specifically designed to be used with garbled cir-
cuit evaluation and show how to integrate certificates into secure computation to
guarantee correctness of garbler’s input. Our construction incurs minimal over-
head and adds only one signature verification and O(nρ) symmetric key/hash



operations to conventional garbled circuit evaluation using cut-and-choose in the
malicious model that consist of garbling ρ circuits and where n is the size of the
garbler’s input in bits. We formally prove security of our construction.
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