
Secure and Efficient Outsourcing of Sequence
Comparisons?

Marina Blanton1, Mikhail J. Atallah2, Keith B. Frikken3, and Qutaibah Malluhi4

1 Department of Computer Science and Engineering, University of Notre Dame
2 Department of Computer Science, Purdue University

3 Computer Science and Software Engineering, Miami University
4 Computer Science and Engineering Department, Qatar University

Abstract. In this work we treat the problem of secure outsourcing of sequence
comparisons by a client to remote servers. The sequence comparison problem,
given two strings λ and µ of respective lengths n and m, consists of finding a
minimum-cost sequence of insertions, deletions, and substitutions (also called an
edit script) that transform λ into µ. In our framework a client owns strings λ
and µ and outsources the computation to two remote servers without revealing
to them information about either the input strings or the output sequence. Our
solution is non-interactive for the client (who only sends information about the
inputs and receives the output) and the client’s work is linear in its input/output.
The servers’ performance is O(σmn) computation (which is optimal) and com-
munication, where σ is the alphabet size, and the solution is designed to work
when the servers have only O(σ(m + n)) memory. By utilizing garbled circuit
evaluation techniques in a novel way, we completely avoid the use of public-key
cryptography, which makes our solution efficient in practice.

1 Introduction

Design and development of secure outsourcing techniques of various functionalities to
untrusted servers are getting growing attention in the research community. The rapid
growth in availability of cloud services, makes such services attractive for clients with
limited computing or storage resources who are unwilling or unable to procure and
maintain their own computing infrastructure. Security and privacy considerations, how-
ever, stand on the way of harnessing the benefits of cloud computing to the fullest extent
and prevent clients from placing their private or sensitive data on the cloud. This is the
problem that secure outsourcing techniques aim to address.

This work develops efficient techniques for secure outsourcing of a specific type
of computation, namely sequence comparisons. Secure computation and outsourcing of
sequence comparisons, in particular for genomic sequences, has been a subject of prior
research. The results, e.g., include [1–3, 18, 19, 12, 9, 6, 11, 5], which securely imple-
ment computation of the edit distance, finite automata evaluation, the Smith-Waterman

? Portions of this work were supported by NSF Grants CNS-0915436, CNS-0913875, CNS-
0915843, and CCF-0939370; by an NPRP grant from the Qatar National Research Fund; by
Grant FA9550-09-1-0223 from AFOSR; and by sponsors of the CERIAS center.

and other algorithms. Because individual DNA and protein sequences commonly used
in such comparisons are highly sensitive and vulnerable to re-identification even when
anonymized, the need for techniques that allow such sequences to be privately pro-
cessed has been recognized and is reflected by the list of available publications above.
Furthermore, given the large lengths of such sequences, it is not surprising that there is
an increasing need for such computation to be outsourced by resource limited clients.
These outsourcing techniques should enable the desired computation without revealing
any information about the sequences to the parties carrying out the computation.

Techniques for securely computing the edit distance based on dynamic program-
ming have been studied in [1, 12, 11]. The work [2, 3] is the only one we are aware of
that treats the problem of secure outsourcing of the edit distance and [3] is the only
work that treats the computation of the edit script (defined as a minimum-cost sequence
of insertions, deletions, and substitutions that transform one input string λ into the other
input string µ). An edit script contains important information about the types of differ-
ences that cannot always be deduced from the edit distance alone. For that reason, we
revisit the problem of secure outsourcing of the edit distance and the corresponding edit
script computation and improve the performance of known results.

It is well known that computing the edit distance (or the edit script) of two strings
λ and µ of size n and m, respectively, requires O(mn) work. Because n and m are
often large in genomic computations, the need to reduce the memory footprint of secure
sequence comparisons was recognized in prior literature. In particular, the edit distance
can be computed one row or one column of the m×n matrix at a time, which uses only
O(m+n) memory. This is the approach taken in [3] based on homomorphic encryption,
and the publications that use garbled circuit evaluation [12, 11] also partition the circuit
into sub-circuits, so that the memory requirement of O(m+ n) can be achieved.

Unfortunately, the above partitioning approach does not work when the computation
consists of producing an edit script (rather than just the edit distance) while keeping the
memory requirement at O(m + n). Furthermore, the only known result for securely
computing an edit script with the linear memory requirement for the servers carrying
out the computation requires them to perform O(mnmin(m,n)) work with the same
amount of communication [3]. In this work, we substantially improve the performance
of the existing secure edit script outsourcing techniques to require the servers to perform
only O(mn) work with the same O(m+ n) memory requirement for the servers. This
also implies that when the servers have O(m + n) memory, the round complexity of
the solution improves from O((min(m,n)2) in [3] to O(min(m,n)) in this work (we
note that the number of rounds in this work is primarily bounded by the ratio of the
overall amount of communication and the amount of available memory, while it is fixed
at O((min(m,n)2) in [3]).

To emphasize that the memory requirements ofO(mn), or more generallyO(σmn),
where σ is the alphabet size, are unacceptable even when the computation is outsourced
to resourceful servers, consider, for example, a server with 32GB of RAM. Even when
σ is small (e.g., σ = 4), an efficient implementation based on garbled circuits or homo-
morphic encryption will allow the servers to process only strings a couple of thousands
characters long. As clients would be more inclined to outsource tasks of large rather
than small size, this imposes strict limits on the practicality of such an approach.

Besides the obvious complexity improvements, our solution has additional advan-
tages. Similar to [3], our solution assumes that a client outsources its computation to
two non-colluding computation servers, but unlike [3], no homomorphic encryption is
used. In fact, our solution completely avoids the use of public-key cryptography by uti-
lizing garbled circuit techniques in a novel way. To the best of our knowledge, this is
the first time secure two-party computation or outsourcing techniques are realized with-
out reliance on any public-key operations (e.g., the solutions in [12, 11] have to invoke
Oblivious Transfer (OT) protocols). This gives us the fastest general secure outsourcing
techniques, which are of independent interest.

Our solution is non-interactive for the client, who only sends information about its
inputs to the servers and receives the outcome of the computation from which it recon-
structs the output. The client’s communication and computation is therefore O(m+n).

Lastly, our solution works for any alphabet Σ of size σ, from which strings λ and
µ are drawn. Because σ may not be treated as constant, we explicitly include it in our
analysis. In particular, the servers’ space requirements are O(σ(m+ n)), their compu-
tation and communication are O(σmn), and the client’s work and communication are
O(σ(m+n)) (note that prior results also have the same factor σ in their complexities).

As noted above, our improvements make the same assumption of non-colluding
servers as the prior work that improve upon. A natural question that one might ask is
how viable such an assumption is. The practical viability of using non-colluding servers
has been well demonstrated, for instance, by the Sharemind system [8] and the company
that develops it, where three non-colluding servers are used (we only use two). One
possible instantiation of our solution would be to use two servers, each from a different
service provider. Collusion of both servers would require corruption of both service
providers, which is unlikely in practice.
Organization. We first state the problem and provide background review in section 2.
Section 3 provides an overview of the techniques that allow us to achieve the claimed
result. Section 4 describes an oblivious algorithm for the edit script problem which is
suitable for secure computation with O(σ(n + m)) memory requirements using only
O(σmn) overall work. Our preliminary protocol for secure outsourcing is given in sec-
tion 5. While that solution already provides significant complexity improvements over
prior work and does not use public-key operations, it requires the client to participate in
O(log(min(m,n))) rounds of the protocol. This disadvantage is mitigated in section 6,
where we describe our final result. Lastly, section 7 concludes this work.

2 Preliminaries

Problem statement. In this work we treat the problem of secure outsourcing of the edit
distance and the corresponding edit script computation by a clientC for any strings λ =
λ1. . .λn and µ = µ1. . .µm over alphabet Σ = {1, . . ., σ} to two computational servers
S1 and S2. In its general form considered here, the sequence comparisons problem
requires quadratic work [21].

In our outsourcing context, it is required that C performs only work linear in the
size of its inputs, with the super-linear work done by the remote servers. Furthermore,
the security requirement is such that neither S1 nor S2 learns anything about the client’s

inputs or output other than the lengths of the input stringsand the alphabet size (i.e., the
servers do not learn anything other than the problem size).

More formally, we assume that S1 and S2 do not collude and if they are semi-
honest, they follow the computation as prescribed but might attempt to learn additional
information from the messages that they observe. Security in this case is guaranteed
if both S1’s and S2’s views can be simulated by a simulator with no access to either
C’s inputs or output other than the parameters n, m, and σ and such simulation is
indistinguishable from the real protocol execution. This is a standard definition that can
be found, e.g., in [10]. While our solution can be made secure against malicious parties,
the semi-honest model can be generally acceptable for the following reasons:
1. With computation outsourcing, the current practice is that a cloud service provider

is bound with a client by a contractual agreement, violation of which exposes the
provider to loss of reputation and client’s business.

2. Cloud service providers themselves would like to minimize the amount of sensitive
information to which they are exposed during outsourced computation or storage
for legal liability issues.

Techniques secure against semi-honest participants are normally used as a foundation
for designing efficient protocols secure against stronger adversaries. Generic techniques
for modifying the garbled circuit techniques to enable security against covert or fully
malicious participants are known (see, e.g., [4, 15, 16]). Furthermore, the standard gar-
bled circuit techniques, as used in this work, already offer protection against one party,
namely, malicious circuit evaluator. The specifics of our setting, however, enable us to
design an effective mechanism for detecting and eliminating malicious behavior at low
cost. Because the techniques we use are resilient to misbehavior of one of the parties,
we can run the solution twice, with the roles of S1 and S2 swapped on the second run.
When the client obtains two results that disagree, it will know that one of the servers
did not comply with its prescribed behavior. As in our protocols neither server learns
any outputs, creation and evaluation of an incorrect circuit does not pose security risks
to the client. This means that the cost of the solution in the malicious model is twice the
cost of the solution in the semi-honest model.

Review of edit distance via dynamic programming. We briefly review the standard
dynamic programming algorithm for the edit distance, using the same notation and
terminology as in [3]. Let M(i, j), for 0 ≤ i ≤ m and 0 ≤ j ≤ n, be the minimum cost
of transforming the prefix of λ of length j into the prefix of µ of length i, i.e., the cost of
transforming λ1 . . . λj into µ1 . . . µi. Then M(0, 0) = 0, M(0, j) =

∑j
k=1D(λk) for

1 ≤ j ≤ n and M(i, 0) =
∑i
k=1 I(µk) for 1 ≤ i ≤ m. Furthermore, for all 1 ≤ i ≤ m

and 1 ≤ j ≤ n we have that

M(i, j) = min

M(i− 1, j − 1) + S(λj , µi)
M(i− 1, j) + I(µi)
M(i, j − 1) +D(λj)

where S(λj , µi) denotes the cost of substituting character λj with character µi, D(λj)
denotes the cost of deleting λj , and I(µi) denotes the cost of inserting µi. Hence
M(i, j) can be evaluated row-by-row or column-by-column in Θ(mn) time [20]. Ob-
serve that, of all entries of the M -matrix, only three M(i− 1, j − 1), M(i− 1, j), and
M(i, j − 1) are involved in the computation of the final value of M(i, j).

-

?
@
@R

-

?
@
@R

-

?
@
@R

-

?
@
@R

-

?
@
@R?-

?
@
@R

-

?
@
@R

-

?
@
@R

-

?
@
@R

-

?
@
@R?-

?
@
@R

-

?
@
@R

-

?
@
@R

-

?
@
@R

-

?
@
@R?- - - - -

source

sink

Fig. 1. Example of a 3× 5 grid DAG.

Our solution works when S : Σ × Σ → N, I : Σ → N, and D : Σ → N are
arbitrary functions that are implemented using table lookups as well as when they are
special cases of such functions.
Grid graph view of the problem. The interdependencies among the entries of the M -
matrix induce an (m+1)× (n+1) grid directed acyclic graph (DAG) associated with
the string editing problem. It is easy to see (and well-known) that the string editing
problem can be viewed as a shortest-path problem on a grid DAG, which is implicitly
described by the two input strings and the cost tables (otherwise there is no hope of
achieving the linear-space performance we seek). We say that an `1 × `2 grid DAG is
a directed acyclic graph whose vertices are the `1`2 points of an `1 × `2 grid, and such
that the only edges from grid point (i, j) are to grid points (i, j + 1), (i + 1, j), and
(i+1, j+1). Figure 1 shows an example of a grid DAG and our convention of drawing
the points such that point (i, j) is at the ith row from the top and the jth column from
the left. Note that the top-left point is (0, 0) and has no edge entering it (i.e., is a source),
and that the bottom-right point is (m,n) and has no edge leaving it (i.e., is a sink).

An (m+ 1)× (n+ 1) grid DAG G is associated with the string editing problem in
the natural way: The vertices of G are in one-to-one correspondence with the entries of
the M -matrix, and the cost of an edge from vertex (k, `) to (i, j) is equal to D(λj) if
k = i and ` = j − 1, to I(µi) if k = i − 1 and ` = j, and to S(λj , µi) if k = i − 1
and ` = j − 1. We restrict our attention to edit paths which do no obviously inefficient
moves (such as inserting then deleting the same symbol) and thus only consider edit
scripts that apply at most one edit operation to a given symbol. Such edit scripts that
transform λ into µ or vice versa are in one-to-one correspondence to the weighted paths
of G that originate at the source (which corresponds to M(0, 0)) and end at the sink
(which corresponds to M(m,n)).
Garbled circuit evaluation. Our solution uses techniques based on Yao’s two-party
garbled circuit evaluation originated in [22]. Garbled circuit evaluation allows two par-
ties to securely evaluate any function represented as a Boolean circuit. The basic idea is
that, given a circuit composed of gates, one party P1 creates a garbled circuit by assign-
ing to each wire i two randomly chosen labels or keys `(i)0 and `(i)1 , where `(i)b encodes
bit b. P1 also encodes gate information in a way that given keys corresponding to the
input wires (encoding specific inputs), the key corresponding to the output of the gate
on those inputs can be recovered. This is often achieved by representing each gate as
a table of encrypted values, where, e.g., for a binary gate g with input wires i, j and
output wire k, the table consists of four values of the form Enc

`
(i)
bi
,`

(j)
bj

(`
(k)
g(bi,bj)

).

The second party, P2, evaluates the circuit using keys corresponding to inputs of
both P1 and P2 (without learning anything in the process). That is, P2 directly obtains

keys corresponding to P1’s input bits from P1 and engages in the OT protocol to obtain
keys corresponding to P2’s input bits. Garbled circuit evaluation consists of processing
the gates in topological order, during which one entry of each gate’s table is decrypted
allowing P2 to learn the output wire’s key. Security relies on the fact that P2 does not
have a correspondence between the labels it decrypts and the bits that they represent.
At the end, the result of the computation can be recovered by linking the output labels
to the bits which they encode (e.g., by having P1 send all output wire labels and their
meaning to P2). Recent literature [14, 17, 13] provides optimizations that significantly
reduce computation and communication overhead associated with garbled circuits.
Prior results. Using the fact that computing a row of the matrix depends only on en-
tries from its current and previous rows, computing the edit distance (not path) is done
with S1 and S2 in [2, 3] using O(σ(m+n)) space and O(σmn) time in O(min(m,n))
rounds. Similarly, securely computing the edit distance in the two-party setting using
garbled circuit evaluation is done in [12, 11] by partitioning the overall computation
into multiple sub-circuits or rounds to achieve the same result. Computing the path it-
self took in [3] an extra factor of min(m,n) work and rounds. One of our main goals
is therefore removing that extra factor for the path (as opposed to the distance) compu-
tation. Our solution is also more flexible in terms of its round complexity even for the
distance computation. In addition to asymptotic complexity savings, the fact that our so-
lution does not use expensive public-key operation makes it significantly more efficient
(even for the distance computation) than [2, 3] which made an extensive use of homo-
morphic encryption. Furthermore, our technique for removing the need for public-key
operations is of independent interest for secure computation outsourcing.

Lastly, while [11] implements the idea of partitioning a circuit into sub-circuits,
which is used in this work as well, and provides circuit optimizations for computing the
edit distance, that work is complementary to ours. Because a distance protocol is used
as a subroutine in our solution, these circuit optimization techniques can be used with
our result to create a fast circuit for computing the elements of the M matrix.

3 Overview of the Solution

Before describing our solution in detail, we provide an intuition behind it. First, notice
that if the amount of available memory is O(mn), it is easy to compute the edit script.
That is, first compute all elements of the matrix M . Then, starting from M(m,n), fol-
low the link to eitherM(i−1, j),M(i−1, j−1), orM(i, j−1) that produced the current
value of M(i, j) (breaking ties arbitrarily), until the process terminates at M(0, 0). The
produced path corresponds to the desired edit script that the client would like to learn.
This approach, however, does not work if the amount of available memory is o(mn)
because the value stored at any given M(i, j) might be necessary for reconstructing the
path. Because our goal is to use onlyO(σ(m+n)) memory, the servers will not be able
to maintain all necessary information and a different approach is needed.

To address this problem without increasing the cost of the overall computation be-
yond O(σmn), we can use a recursive solution, which works as follows: in the first
round, instead of computing all elements of M as described earlier, we compute the
elements in the “top half” of the matrix as before and also compute the elements of the

“bottom half” of the matrix in the reverse direction starting from M(m,n) (see sec-
tion 4 for detail). Then for each element M(m/2, j) of the middle row we add the dis-
tances computed from the top and from the bottom and determine the position of the ele-
ment with the minimum sum. In section 4 we denote this element byM(m/2, θ(m/2)).
Because we know that the computed element has to lie on a path that results in the mini-
mum edit distance, to determine other parts of this path, we can safely disregard all cells
from the top half that lie to the right of M(m/2, θ(m/2)) and all cells from the bottom
half that lie to the left ofM(m/2, θ(m/2)). We then recursively apply this algorithm to
the remaining portions of the matrix (which together contain only a half of the elements
ofM) which allows us to reconstruct all points of the path. While this approach doubles
the amount of computation (i.e., the work is ≤ 2mn compared to the original mn), it is
suitable for our situation when the amount of available space is only linear in m and n.

Now notice that this solution works in a traditional setting, but in our case reveal-
ing the position of the minimum element M(m/2, θ(m/2)) (which is necessary for
determining what parts of the matrix should be discarded for the next round), leaks
important information about the edit path to the computational servers and violates se-
curity requirements. Our solution is to recurse on sub-problems of slightly larger size
without revealing information about the value of θ(m/2). In particular, we form two
sub-problems of size 1/2 and 1/4 of the original, where the 1/2 sub-problem consists of
the top (resp. bottom) half and the 1/4 sub-problem consists of the right bottom (resp.
top left) quadrant when θ(m/2) ≥ n/2 (resp. θ(m/2) < n/2). This ensures that the
asymptotic complexity of the solution does not change (the work is≤ 4mn), while hid-
ing information about the path. This process, however, requires care because the strings
that form the sub-problems of fixed size must be padded based on the value of θ(m/2).
That is, we need to ensure that the way the strings are padded (as a prefix or suffix of
an existing string) should not affect the overall result. We achieve this by extending the
alphabet with a new character with carefully chosen insertion, substitution, and deletion
costs so as to take a certain path within the matrix and not alter the edit distance.

The last remaining bit that we want the computational servers to prevent from learn-
ing is whether the subtask of size 1/2 corresponds to the top or bottom portion of the
problem (which, once again, leaks information about the edit path). This is achieved by
always having the sub-tasks of different sizes in a fixed order and obliviously assigning
the correct portion of the grid to a sub-task. This allows us to obtain a solution that can
be safely outsourced to the computational servers and meets their space requirements.

Having arrived at the oblivious algorithm for computing an edit script withO(σ(m+
n)) memory andO(mn) overall work, we now need to see how this computation can be
securely outsourced. Recall that our solution relies on garbled circuit evaluation which
we use in a new way. The first idea that we employ is for the client to produce garbled
circuit’s random labels corresponding to the wires of its inputs only (two labels per in-
put bit). The client sends the labels for all wires to S1, who forms the rest of the circuit
for the computation. The client also sends to S2 one label per wire that corresponds to
its input value. Once the circuit is formed, S2 will be able to evaluate it using the labels.
In this case, no OT protocols (or any other public-key operations) are necessary.

Note that this approach is general and by itself would be sufficient to result in a se-
cure outsourcing solution for most types of functions with no public-key cryptography

involved at any point in the protocol. For our problem, however, it does not lead to a
non-interactive (for the client) solution because after the first round of the computation,
the servers will need to contact the client again to obtain the labels for the next round of
the computation (since they are not allowed to know what input values or labels are to
be reused in the consecutive round). Because the depth of the recursion in our algorithm
is O(log(min(m,n))), the client has to participate in O(log(min(m,n))) interactions
with the servers. This forms our preliminary solution in section 5.

To eliminate the client’s involvement, we employ the second idea, which consists of
the servers using the output wire labels from the current round of the computation as the
input wire labels for the sub-problems in the next round. This solution requires a great
care to ensure that all input labels for the next round are formed correctly and computed
obliviously (inside a garbled circuit) and is described in section 6. We thus obtain our
target result in which the solution is non-interactive for the client, the client’s work is
O(σ(n+m)), the servers’ work is O(σmn), the entire computation can be carried out
within O(σ(m+ n)) space, and no public-key operations are used at any point.

4 Enabling the Computation to be Performed Obliviously

As a first step toward building our result, we design an algorithm that allows the com-
putation to be performed in O(σmn) time using O(σ(m+n)) space. To be suitable for
secure outsourcing, the algorithm must be oblivious or data-independent (i.e., it always
performs the same sequence of steps regardless of the inputs). This will ensure that no
information about the inputs is leaked based on the algorithm itself. We therefore first
describe a procedure for such computation and later refine and instantiate it with secure
building blocks to obtain the overall solution with the desired performance.

To build our solution, we first need to extend the distance-computation to the com-
putation of an optimal edit path (i.e., a minimum-cost sequence of operations on λ that
turn it into µ). We adapt the approach of [3] that combines the distance computation
algorithm with a backward version of it which we review next.

The backward version of the distance computation. The algorithm mentioned in
section 2 is a distance rather than path algorithm. It computes the length of a shortest
path from vertex (0, 0) to any vertex (i, j) in the grid graph G. We call this the forward
algorithm and denote its M matrix as MF where F is a mnemonic for “forward.” Let
GR denote the reverse ofG, i.e., the graph obtained fromG by reversing the direction of
every edge. Clearly, in GR vertex (m,n) is the source and vertex (0, 0) is the sink, and
every v-to-w shortest path in GR corresponds to a similar shortest path in G but in the
backwards direction (i.e., w-to-v). We thus use MB to denote the matrix that is to GR

what matrix MF was to graph G (B is a mnemonic for “backward”). Then MB(i, j)
denotes the length of a shortest path in GR from the source of GR (vertex (m,n)) to
vertex (i, j), which is equal to the length of a shortest path in G from (i, j) to (m,n).
The edit distance we seek is therefore MB(0, 0) (which is the same as MF (m,n)).
Defined in terms of the two input strings, MB(i, j) is the edit distance from the suffix
of λ of length n− j, to the suffix of µ of length m− i. Therefore computing MB in an
analogous manner to the computation ofMF involves filling in its entries by decreasing

(rather than increasing) row and column order. An algorithm for MB follows from any
algorithm for MF , which we thus assume and use in the subsequent description.

Note that MF (i, j) +MB(i, j) is the length of a shortest source-to-sink path con-
strained to go through vertex (i, j) and hence might not be the shortest possible source-
to-sink path. However, if the shortest source-to-sink path goes though vertex (i, j), then
MF (i, j) +MB(i, j) is equal to the length of the shortest path. We use MC to denote
MF +MB (where C stands for “constrained”).

Oblivious edit path computation. We can now describe our oblivious edit path algo-
rithm with the desired bounds. Similar to the structure of computation in [3], we find for
each row i ofMC the column θ(i) of the minimum entry of that row, with ties broken in
favor of the rightmost such entry. Note that MC(i, θ(i)) is the edit distance MF (m,n).
Computing the θ function provides an implicit description of the edit path because:

– If θ(i + 1) = θ(i) = j, then the edit path “leaves” row i through the vertical edge
from vertex (i, j) to vertex (i+1, j). The cost of that edge is that of inserting µi+1.

– If θ(i + 1) = θ(i) + δ, where δ > 0, then the client can “fill in” the portion of
the edit path from vertex (i, θ(i)) to (i + 1, θ(i) + δ) in O(δ) time (such a “thin”
problem on a 2× δ subgrid is trivially solvable in O(δ) time). The cumulative cost
of all such “thin problem solutions” is O(n) because the sum of all such δ’s is≤ n.

Without loss of generality, let m ≤ n. For reasons that will become apparent, similar to
[3] we introduce a new symbol ε that does not occur in Σ and denote Σε = Σ ∪ ε. We
assign to ε an insertion cost of 0, a deletion cost of∞, and an∞ cost for any substitution
in which it is involved. In practice,∞ can be set to be (m + n) times the largest cost
appearing in the cost tables for Σ (whether it is insertion, deletion, or substitution).

Because given θ(0), . . . , θ(m), C can compute the edit path in linear additional
time, we give an algorithm for computing the θ function. It proceeds in logm rounds,
the kth of which consists of 2k−1 grid graphs (each described implicitly by two sub-
strings of µ and λ) of respective dimensions (m/2k−1) × n1, . . ., (m/2k−1) × n2k−1 ,
where

∑2k−1

t=1 nt = (3/4)k−1n as explained below. The first round proceeds as follows:
1. Run the forward edit distance algorithm to compute row m/2 of MF .
2. Run the backward edit distance algorithm to compute row m/2 of MB .
3. Compute θ(m/2) as the minimum of MC(m/2, j) across all 0 ≤ j ≤ n.

The two subproblems of round 2 could, if one were not concerned about information
leakage, be defined by the following two sub-grids: (i) the (m/2)×θ(m/2) one that lies
to the left and above vertex (m/2, θ(m/2)) and is described implicitly by the strings
µ1, . . . , µm/2 and λ1, . . . , λθ(m/2); and (ii) the m/2 × (n − θ(m/2)) one that lies to
the right and below vertex (m/2, θ(m/2)) and is described implicitly by the strings
µ(m/2)+1, . . . , µm and λθ(m/2)+1, . . . , λn. The area of those two subgrids is half the
original, but their size would leak the value θ(m/2) during outsourced computation.
We fix this by using, for round 2, subgrids whose size does not depend on θ(m/2) and
yet their combined area is 3/4 of the original, as described below. In what follows,
we assume without loss of generality that θ(m/2) ≥ n/2. While in this description it
appears that the fact that θ(m/2) ≥ n/2 is leaked, in our actual protocol described later
this information is not revealed and the execution is fully oblivious.

– The first subgrid is of size (m/2) × n and is defined by the strings µ1, . . . , µm/2
and λ1, . . . , λθ(m/2), ε, . . . , ε. The appending of the n− θ(m/2) symbols of type ε

(a) MF

0 1 2 3 4
1 0 1 2 3
2 1 2 3 2
3 2 1 2 3
4 3 2 1 2

(b) MB

2 3 4 5 4
3 2 3 4 3
2 1 2 3 2
3 2 1 2 1
4 3 2 1 0

(c) MC

2 4 6 8 8
4 2 4 6 6
4 2 4 6 4
6 4 2 4 4
8 6 4 2 2

(d) θ

θ(0) = 0

θ(1) = 1

θ(2) = 1

θ(3) = 2

θ(4) = 4

Table 1. Matrices for edit distance between strings AACG and AGAC.

x

x

x

θ(m/2)
m

n

θ(3m/4)

θ(m/4)

Fig. 2. Illustration of θ function computation.

at the end of the second string hides θ(m/2) without changing the answer because
the edit path for that subproblem has to use the n − θ(m/2) horizontal edges of 0
cost that link vertex (m/2, θ(m/2)) to the vertex (m/2, n).

– The second subgrid is of size (m/2)×(n/2) and is defined by the strings µ(m/2)+1,
. . . , µm and ε, . . . , ε, λθ(m/2)+1, . . . , λn. The pre-pending of the (n/2) − θ(m/2)
ε symbols at the beginning of the second string hides θ(m/2) without changing the
answer because the edit path for that subproblem has to use the (n/2) − θ(m/2)
horizontal edges of 0 cost that link vertex (m/2, n/2) to the vertex (m/2, θ(m/2)).

A pair of 3rd-round sub-problems is derived from each 2nd-round subgrid in the same
way as above, thus the third round consists of 4 subgrids whose total (combined) num-
ber of columns is 9n/16 (namely, n/4, n/8, n/8, and n/16) and the total number of
rows is m (m/4 rows for each).

Because the total (combined) problem size decreases by a factor of 3/4 from one
round to the next, the overall work of the above algorithm is as claimed: O(σmn).
More precisely, the recurrence is T (m,n) = T (m2 , n) + T (m2 ,

n
2) + ασmn, and by

easy induction it can be shown that T (m,n) ≤ 4ασmn. Space is linear because each
invocation of the edit-distance protocol uses linear space.

To clarify many of the above notions, we give a small example using strings AACG
and AGAC with insertion and deletion costs of 1, and substitution cost of 0 for equal
characters and 2 for non-equal characters. The 5 × 5 DAG for this example is like the
one in Figure 1, and Table 4 provides matrices MF , MB , MC and the values for θ.
Notice that MB(0, 0) = MF (4, 4) = 2, which is the edit distance between these two
strings. Further, note that the shortest path goes through M(i, θ(i)) for any row i.

Also, Figure 2 demonstrates our algorithm for edit path computation, where at each
iteration a given (sub-)grid is partitioned into two subgrids of 1/2 and 1/4 of its original
size and the remaining 1/4 is removed. In the figure, shaded areas correspond to string
padding with character ε. In the figure, because θ(m/2) < n/2, the top subgrid has
size 1/4 and the bottom subgrid has size 1/2. In the second round, θ(m/4) > n/4

and therefore the top subgrid is further partitioned into subgrids of size 1/8 and 1/16,
respectively; also, θ(3m/4) > n/2 and therefore the bottom grid is partitioned into
subgrids of size 1/4 and 1/8, respectively.

5 Preliminary Protocol for Secure Edit Path Outsourcing

The above algorithm can be executed in the secure outsourcing setting using the round
complexity of O(logm) – or, more generally, O(log(min(m,n))) – if the servers can
afford O(σmn) space. If, however, the servers have only linear space O(σ(m + n)),
their round complexity increases to O(min(m,n)) because the computation uses the
total of O(σmn) space. This does not affect the client’s round complexity, which in our
preliminary solution described next is O(log(min(m,n))). We subsequently improve
it in section 6 to make it non-interactive for the client at no extra (for the client) cost.

Having described the structure of the computation, we now proceed with the de-
scription of the secure outsourcing protocol for the edit path. Recall that the client’s
work should be O(σ(m+ n)), while the servers perform O(σmn) work. The protocol
consists of executing the same procedure for each sub-problem in each round (start-
ing with the problem of size m × n in round 1), at the end of which the client learns
the value of the θ function at a single point. That is, for a subgrid defined by strings
µ̂k+1, . . ., µ̂k+a and λ̂`+1, . . ., λ̂`+b, the client learns θ(k + a/2) and the servers learn
nothing. Here µ̂i and λ̂j are from Σε since after the first round each subgrid is formed
by prepending or appending a number of ε characters to portions of the original strings.

In this protocol the client performsO(σ(a+b)) work for a subgrid of size a×b, and
the servers performO(σab) work. The client’s work is thus characterized by recurrence
T (m,n) = T (m2 , n) + T (m2 ,

n
2) + βσ(m+ n) and can be shown to be ≤ 4βσ(m+ n)

using the total ofO(logm) rounds. In what follows, we describe a protocol for a subgrid
defined by strings µ̂k+1, . . ., µ̂k+a and λ̂`+1, . . ., λ̂`+b, in which the client learns the θ
value and prepares two subgrids for the next round.

For the sake of the current description, suppose that S1 has access to µ̂k+1, . . . ,
µ̂k+a, but wants to keep the string private from S2, and S2 has access to λ̂`+1, . . ., λ̂`+b,
but likewise wants to keep its string private from S1. S1 and S2 can engage in secure
two-party computation, where S1 inputs each µ̂i and the corresponding I(µ̂i), and S2

inputs each λ̂j , the corresponding D(λ̂j), and a vector S(λ̂j , ·) that defines the cost of
substituting λ̂j with every character in Σε. Then to be able to proceed with each step of
the dynamic programming problem, they compute each M(i, j) as specified, where the
computation proceeds in an oblivious way as follows:
1. for t = 1 to σ + 1 do
2. c = (µ̂i

?
= t);

3. st = c · S(λ̂j , t);
4. s =

∑σ+1
t=1 st;

5. M(i, j) = min(M(i− 1, j − 1) + s,M(i− 1, j) + I(µ̂i),M(i, j − 1) +D(λ̂j));

Here (x
?
= y) denotes an equality test that outputs a bit which is set to 1 iff x = y. The

procedure obliviously chooses the correct substitution cost from the vector S(λ̂j , ·) and
uses it to compute M(i, j). The cost of computing each M(i, j) is thus linear in σ.

To take this to the outsourcing context in which neither S1 nor S2 have access to
the input strings or the output, we will now have the client C provide all of the inputs
that S1 and S2 will use without learning any information about them (other than the
lengths m, n, and σ). In particular, one server, say S1, will be responsible for garbled
circuit construction for a subgrid problem using oblivious execution described above,
while the second server, S2, will evaluate it on the client’s inputs without knowing the
meaning of the random labels that it handles. In a traditional implementation, we would
have S1 build a garbled circuit and send it to S2, after which the client and S1 engage in
OT so that the client learns the (random) labels of the input wires corresponding to all
of its inputs (namely, µ̂k+1, . . ., µ̂k+a, λ̂`+1, . . ., λ̂`+b, I(µ̂i) for each k < i ≤ k + a,
and D(λ̂j) and S(λ̂j , ·) for each ` < j ≤ ` + b). The client then would send the
labels it received from S1 to S2, S2 would evaluate the garbled circuit on the client-
supplied input wire labels and send the labels corresponding to the output wires to C.
S1 then would send to C the meaning of all output wire labels and C learns the result.
We, however, propose a more efficient solution in which the need for computationally-
intensive OTs is entirely eliminated. In detail, we have the client generate all input wire
labels that it consequently sends to S1. S1 uses these labels to produce a garbled circuit
that it sends to S2. S1 also sends all output wires and their meaning to C. C then sends
the labels corresponding to its private input to S2, who evaluates the circuit as before
and sends the labels corresponding to the output to C.

Input: C has private strings µ̂k+1, . . ., µ̂k+a and λ̂`+1, . . ., λ̂`+b and the corresponding
insertion, deletion, and substitution costs, namely, I(µ̂i) for k < i ≤ k + a and D(λ̂j)

and S(λ̂j , ·) for ` < j ≤ `+ b. S1 and S2 contribute no input.

Output:C obtains θ(k+a/2) and new pairs of strings µ̂′k′+1, . . ., µ̂
′
k′+a/2, λ̂′`′+1, . . ., λ̂

′
`′+b

and µ̂′′k′′+1, . . ., µ̂
′′
k′′+a/2, λ̂′′`′′+1, . . ., λ̂

′′
`′′+b/2 that define subgrids for the next round. S1

and S2 learn nothing.

Protocol 1:
1. C generates a(sΣ + sC)+ b(sΣ + sC + sC |Σε|) pairs of random labels (`(t)0 , `(t)1),

where sΣ = dlog(|Σε|)e = dlog(σ + 1)e is the size of binary representation of an
alphabet character, sC is the size of binary representation of costs5 in tables I(·),
D(·), and S(·, ·), and t ∈ [1, sΣ(a+ b) + sC(a+ 2b+ σb)].

2. C sends all (`(t)0 , `
(t)
1) to S1 who uses them as the input wire labels in constructing

a garbled circuit.
3. C sends a single label `(t)bt for each t to S2, where bt is 0 or 1 depending on the

corresponding bit of C’s input.
4. S1 sends the garbled circuit to S2 and all output wire labels to C, which we de-

note by (ˆ̀
(t)
0 , ˆ̀

(t)
1) for t = 1, . . ., sb, where sb = dlog be is the size of the binary

representation of the output θ(k + a/2) which takes on b possible values.
5. S2 evaluates the garbled circuit using the input labels received from C and sends

labels ˆ̀(t)
bt

that correspond to the computed output for t ∈ [1, sb] to C.

5 For simplicity of representation we use fixed length sC for costs in all tables, but this does not
need to be the case. Also, because ε character is not present in the original strings, the values
of sΣ and sC can be adjusted accordingly in the first round.

6. C recovers the meaning of the output (i.e., the bit bt) for each ˆ̀(t)
bt

using the labels

(ˆ̀
(t)
0 , ˆ̀

(t)
1) it previously received from S1. Let b′ denote the output θ(k + a/2).

7. C forms two new sub-problems based on the value of b′. If b′ ≥ b/2, C sets:
– µ̂′k′+1, . . ., µ̂

′
k′+a/2 = µ̂k+1, . . ., µ̂k+a/2,

– λ̂′`′+1, . . ., λ̂
′
`′+b = λ̂`+1, . . ., λ̂`+b′ , ε, . . .ε,

– µ̂′′k′′+1, . . ., µ̂
′′
k′′+a/2 = µ̂k+(a/2)+1, . . ., µ̂k+a,

– λ̂′′`′′+1, . . ., λ̂
′′
`′′+b/2 = ε, . . ., ε, λ̂`+b′+1, . . ., λ̂`+b.

Otherwise, C sets:
– µ̂′k′+1, . . ., µ̂

′
k′+a/2 = µ̂k+(a/2)+1, . . ., µ̂k+a,

– λ̂′`′+1, . . ., λ̂
′
`′+b = ε, . . ., ε, λ̂`+b′+1, . . ., λ̂`+b,

– µ̂′′k′′+1, . . ., µ̂
′′
k′′+a/2 = µ̂k+1, . . ., µ̂k+a/2,

– λ̂′′`′′+1, . . ., λ̂
′′
`′′+b/2 = λ̂`+1, . . ., λ̂`+b′ , ε, . . ., ε.

C and the servers can now engage in the next round of computation using two newly
determined subgrids. Note that this solution works even when the cost tables that de-
fine insertion, deletion, and substitution are private and known only to the client. This
concludes our description of secure edit path outsourcing.

6 Reducing Client’s Involvement

While the solution above already significantly outperforms prior work, in this section
we further improve it by making the protocol non-interactive for the client. Now the
client initially sends data to S1 and S2 and at the end of the computation receives the
result from S1 and S2 and recovers the edit path.

Our idea in eliminating the client’s interaction such that no oblivious transfer for
garbled circuit evaluation has to be introduced consists of using output wires of a gar-
bled circuit as input wires for the garbled circuits used in the next round. To be able
to do so, the server needs to obliviously compute the input strings for the next round
of computation, the wires of which will then be reused in subsequent garbled circuits.
Let S1 and S2 compute θ(m/2) in the first round of the computation, where C pro-
vides inputs µ1, . . ., µm, λ1, . . ., λn, I(µi) for i = 1, . . .,m, and D(λj) and S(λj , ·)
for j = 1, . . ., n in the manner described above. After determining the value of θ(m/2),
S1 and S2 can proceed with obliviously computing strings µ′1, . . ., µ

′
m/2, λ′1, . . ., λ

′
n and

µ′′1 , . . ., µ
′′
m/2, λ′′1 , . . ., λ

′′
n/2 (with the corresponding insertion, deletion, and substitution

costs) which will become inputs for the next round as follows:

1. c = (θ(m/2)
?
< n/2);

2. for i = 1 to m/2 do
3. µ′i = (1− c)µi + cµ(m/2)+i;
4. µ′′i = cµi + (1− c)µ(m/2)+i;
5. for j = 1 to n do

6. cj = (θ(m/2)
?
≤ j); // can always set cn = 1

7. λ′j = (1− c⊕ cj)λj + (c⊕ cj)ε;
8. for j = 1 to n/2 do
9. λ′′j = c(cjε+ (1− cj)λj) + (1− c)(c(n/2)+jλ(n/2)+j + (1− c(n/2)+j)ε);

The computation of the µ′i’s and µ′′i ’s above is rather straightforward. To compute λ′j’s
(for the larger 1/2 part), when c is set, the larger area corresponds to the bottom rows
and the beginning needs to be populated with ε characters. So we keep λj if cj is set
and replace it with ε otherwise. When c is not set, the larger area comes from the top
rows and erasing happens at the end. In this case, we keep λj if cj is not set and replace
it with ε otherwise. The expression for λ′j above corresponds to this logic in a more
compact form. To compute λ′′j ’s (for the 1/4 part), when c is set, the top left quadrant
is used and padding happens at the end. Thus, if cj is set, use ε, and use λj otherwise.
When c is not set, we are using the bottom right quadrant with padding in the beginning.
So if c(n/2)+j is set, use λ(n/2)+j and use ε otherwise.

Referring back to the example in Figure 2, the value of c determines whether the
size of the top or bottom subgrid should be reduced and the values of cj determine
what portions of the strings should be replaced with ε. As part of the computation, the
servers always process the 1/2-sized and 1/4-sized grids in the same way, regardless of
from what portion of the original grid they come. This means that a subgrid processing
purely depends on its size, while the origin of a subgrid of any given size is protected
(i.e., unlike this computation, the positioning of subgrids in Figure 2 is not oblivious).

The above allows the servers to compute the strings themselves for the next round
of the computation, but we also want to ensure that they are able to compute the rest of
the input which consists of insertion, deletion, and substitution costs. Here we demon-
strate oblivious computation of such values on the example of strings µ′1, . . ., µ

′
m/2,

λ′1, . . ., λ
′
n. The costs for strings µ′′1 , . . ., µ

′′
m/2, λ′′1 , . . ., λ

′′
n/2 can be computed analo-

gously. From the privacy point of view, we distinguish between two cases: (i) the inser-
tion, deletion, and substitution cost tables are public (i.e., known to the servers) and (ii)
the cost tables are private (i.e., known only to the client). Whether the cost tables are
public or not will affect how a garbled circuit is constructed, but the computation built
into the circuit must proceed obliviously regardless of that fact. In particular, when the
cost tables are public, their values will be input into circuits as constants (in which case
two inputs wires – one encoding a 0 and another encoding a 1 – can be used to encode
all constants), while when they are private, the client will need to additionally produce
input wires for all constant values that comprise the cost tables and communicate their
values to S1 and S2 in the same manner as for all other private inputs. What follows
describes oblivious computation of I(µ′i), D(λ′j), and S(λ′j , ·) for the next round.
1. for i = 1 to m/2 do
2. I(µ′i) = 0;
3. for t = 1 to σ + 1 do
4. c = (µ′i

?
= t);

5. I(µ′i) = I(µ′i) + c · I(t);
6. for j = 1 to n do
7. D(λ′j) = 0;
8. S(λ′j , ·) = 〈0, . . ., 0〉;
9. for t = 1 to σ + 1 do

10. c = (λ′j
?
= t);

11. D(λ′j) = D(λ′j) + c ·D(t);
12. S(λ′j , ·) = S(λ′j , ·) + c · S(t, ·);

For compactness of presentation above, we define operations on vectors S(λ′i, ·) and
S(t, ·) in a single step, but it should be understood that all addition, multiplication, and
assignment operations in this case are performed element-wise.

The above allows S1 and S2 to produce all inputs for the next round of the com-
putation. Because the cost tables for insertion, deletion, and substitution are needed for
each subgrid computation, when their values are public, S1 will as before encode the
constants into each circuit it forms. When, on the other hand, such values are private and
should not be revealed to S1 or S2, S1 will use the same wire labels for the constants
as the ones provided by the client in the first round, and S2 will also reuse the labels
that it received from the client for these constants in the first round of the computation.
We note that while in general reuse of garbled circuits or their parts is not safe from the
privacy point of view, in this case the servers can use the same wires in multiple circuits
because the labels (or inputs) on which S2 evaluates the circuits are always the same.
This means that the labels themselves do not change and do not allow S2 to learn any
information contained in the cost tables. All other labels in garbled circuits are chosen
anew and therefore S2 cannot deduce any information as a result of gate evaluation.
This allows us to obtain the overall protocol as follows:

Input: C has private strings µ1, . . ., µm and λ1, . . ., λn. The insertion, deletion, and
substitution cost tables can be C’s additional private input or known to all parties. S1

and S2 do not contribute any input.

Output: C obtains the edit path. S1 and S2 learn nothing.

Protocol 2:
1. C generates two random labels (`(t)0 , `(t)1) for each bit of its input µ1, . . ., µm,
λ1, . . ., λn, I(µi) for each i ∈ [1,m], D(λj) and S(λj , ·) for each j ∈ [1, n],
I(·), D(·), and S(·, ·) resulting in t ∈ [1, sΣ(m+ n) + sC(m+ n+ 3σ + σ2))].

2. C sends all (`(t)0 , `
(t)
1) to S1, and it sends a single label `(t)bt for each t to S2, where

bt is 0 or 1 depending on the corresponding bit of C’s input.
3. S1 uses the pairs of labels it received from C as the input wire labels in construct-

ing a garbled circuit that produces θ(m/2), strings µ′1, . . ., µ
′
m/2, λ′1, . . ., λ

′
n and

the corresponding I(µ′i), D(λ′j), and S(λ′j , ·), as well as strings µ′′1 , . . ., µ
′′
m/2,

λ′′1 , . . ., λ
′′
n/2 and the corresponding I(µ′′i),D(λ′′j), and S(λ′′j , ·). Let the pairs of the

output wire labels that correspond to θ(m/2) be denoted by (ˆ̀
(t)
0 , ˆ̀

(t)
1), where t ∈

[1, dlog(n)e], the labels corresponding to the output labels for the first sub-problem
be denoted by (`

′(t)
0 , `

′(t)
1), where t ∈ [1, sΣ(m/2+n)+ sC(m/2+n+ σn)], and

the labels corresponding to the output labels for the second sub-problem be denoted
by (`

′′(t)
0 , `

′′(t)
1), where t ∈ [1, sΣ(m+ n)/2 + sC(m+ n+ σn)/2].

4. S1 sends its garbled circuit to S2, which S2 evaluates using the input labels received
from C. S1 stores for later reference pairs of labels (ˆ̀

(t)
0 , ˆ̀

(t)
1) and S2 stores the

labels for the same wires ˆ̀(t)
bt

that it computed.
5. S1 and S2 now engage in the second round of the computation, where for the first

circuit S1 uses pairs (`′(t)0 , `
′(t)
1) as the input wire labels as well as the pairs of the

input wire labels from C that correspond to cost tables I(·), D(·), and S(·, ·). After
the circuit is formed S1 sends it to S2 who uses the labels `′(t)bt

it computed in the

first round as well as the labels for the cost tables supplied by C in the first round
to evaluate this circuit.

6. S1 forms and S2 evaluates the second circuit of the second round and all circuits
in consecutive rounds analogously. As before, for each circuit they store the labels
of the output wires that correspond to evaluation of θ(·) on a specific point (i.e., S1

stores a pair for encoding each bit of the output and S2 stores a label per output bit
that it obtained as a result of circuit evaluation).

7. When S1 and S2 reach the bottom of recursion, S1 sends pairs (ˆ̀
(t)
0 , ˆ̀

(t)
1) and S2

sends values ˆ̀(t)
bt

from each circuit to C. C uses the labels to reconstruct the values
of the θ function on all evaluated points, from which it reconstructs the edit path as
described in section 4.

We obtain the final result in which the servers’ communication and computation is
O(σmn) and the work is dominated by the same number of symmetric key or hash
function operations for garbled circuit evaluation. The solution works when the servers
have only O(σ(m + n)) available space. The client’s communication and computa-
tion is O(σ(m + n)), where work is dominated by generation of the same number of
random labels. The round complexity for the client is O(1) and the round complexity
for the servers can be expressed as a function of their space. When the servers’ space
is O(σmn), the round complexity is O(log(min(m,n))). When the servers’ space is
lower, the round complexity increases as detailed later in this section. Security analysis
is omitted due to space considerations and can be found in the full version.

Achieving linear space at the servers. As previously mentioned, our solution was
designed to ensure that the servers will be able to carry out the computation using as
little asO(σ(m+n)) space asm and n can be large. Because the circuit size starts from
O(σmn) (before it exponentially reduces in each round), S1 will generate and send to
S2 a part of the overall circuit before the next portion can be produced. Similarly, S2

will receive and evaluate a part of a circuit at a time. Because the entries of the M -
matrix can be computed row by row (or column by column), when the servers’ space
is constrained, the part of the circuit generated and evaluated in each round will follow
the same structure of the computation (i.e., a circuit corresponding to the computation
of one or more rows is produced and evaluated at a time). This causes the number
of times S1 and S2 interact to increase from the minimum O(logmin(m,n)). As the
size of each circuit reduces in consecutive rounds, S1 and S2 will be able to process a
larger portion of a circuit and then multiple circuits per interaction. Thus, the number of
interactions for the servers is O(min(m,n)) when they only have O(σ(m+ n)) space
available. In other words, for servers with memory constraints of o(σmn), there is a
tradeoff between their space capacity and the number of interactions. This obviously
does not affect the client who only sends and later receives its data.

Performance. To gain insights into performance of our solution, we compute the size of
garbled circuits as a function of parameters m, n, and σ and approximate the protocol’s
runtime. For concreteness, we set the cost of insertion and deletion to be 1, and the cost
of substitution with a different character to be 2 and with the same character to be 0.

In the circuit, we want to use the smallest possible number of bits to represent values
and store intermediate results. This in particular means that the size of representation
of input characters, substitution costs, and intermediate matrix values will differ. Also,

Value of n = m Number of gates Computation Communication
250 50× 106 8.3 min 1.4 GB
500 221× 106 36.6 min 6.2 GB

1000 966× 106 161 min 27.0 GB
Table 2. Servers’ combined computation and communication.

with the free XOR gates technique of [14], we can implement equality testing of two
`-bit values using ` − 1 non-free gates (i.e., XOR the inputs and compute OR of the
resulting bits), multiplication of an `-bit value by a bit using ` AND gates, addition of k
`-bit values from which at most one is non-zero (as on line 4 of matrix cell computation
in section 5) using k` OR gates, and regular addition and minimum as in [13]. All
constants are encoded using the total of two input wires. For an m × n matrix with
σ = 4, this gives us < (n − 1)(m − 1)(7 log(n + m) + 18) non-XOR gates for
the first round (without using ε) and < (n − 1)(m − 1)(25 log(n + m) + 16) for all
consecutive rounds. Thus, implementing the preliminary protocol in section 5 involves
< (n− 1)(m− 1)(82 log(n+m) + 64) non-XOR gates. O(log(n+m)) bits are used
to represent matrix elements M(i, j). Removing client’s involvement in the protocol
introduces additional≈ 84m+3n(54 log(n+m)+log n+29) non-XOR gates. We note
that the number of gates in our edit distance computation is larger than, e.g., in [11] for
computing the Levenshtein’s distance due to the generality of the edit distance problem
we are solving. Some of the circuit optimizations from [11] can be applied to special
cases of our problem to result in smaller circuits and faster performance.

Table 2 provides estimated number of gates and runtime of our solution assuming
100 non-free gates per msec (based on evaluation results in [11, 7]) on single-threaded
commodity hardware (which can be reduced with more powerful or multi-core servers).
Communication is computed using 25% savings per gate [17]. The client’s work is only
to generate 9n +m pairs of short random labels and communicate them to the servers
(180n+20m bytes). This is computed assuming that the costs of insertion and deletion
are known and fixed and the servers can add costs for ε to the circuits. We conclude that
our techniques can be applied even to problems of large size, which was not feasible
with other secure computation or outsourcing techniques.

7 Conclusions

This work treats the problem of secure outsourcing of sequence comparisons by a com-
putationally limited client C to two servers S1 and S2. The client obtains the edit path
of transforming string λ of length n into string µ of length m over an alphabet of size
σ. Our solution uses new techniques to enable the servers to carry out the computa-
tion obliviously using O(σnm) computation and communication, while the solution is
non-interactive for the client who only sends its data to and receives the result from the
servers using the total of O(σ(m + n)) work. Our solution was designed to work with
servers that have only O(σ(m+ n)) space as m and n can be large in practice. By us-
ing garbled circuit evaluation techniques in a novel way – which may be of independent
interest – we were able to completely avoid public-key cryptography. This makes our

solution particularly practical, resulting in fast techniques for the edit distance and edit
path computation in the privacy-preserving setting.

References
1. M. Atallah, F. Kerschbaum, and W. Du. Secure and private sequence comparisons. In ACM

Workshop on the Privacy in Electronic Society (WPES), 2003.
2. M. Atallah and J. Li. Secure outsourcing of sequence comparisons. In Workshop on Privacy

Enhancing Technologies (PET), pages 63–78, 2004.
3. M. Atallah and J. Li. Secure outsourcing of sequence comparisons. International Journal of

Information Security, 4(4):277–287, 2005.
4. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for real-

istic adversaries. In Theory of Cryptography Conference (TCC), pages 137–156, 2007.
5. P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik. Countering GATTACA:

Efficient and secure testing of fully-sequenced human genomes. In ACM Conference on
Computer and Communications Security (CCS), pages 691–702, 2011.

6. M. Blanton and M. Aliasgari. Secure outsourcing of DNA searching via finite automata. In
DBSec, pages 49–64, 2010.

7. M. Blanton and P. Gasti. Secure and efficient protocols for iris and fingerprint identification.
In ESORICS, pages 190–209, 2011.

8. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-
preserving computations. In ESORICS, pages 192–206, 2008.

9. K. Frikken. Practical private DNA string searching and matching through efficient oblivious
automata evaluation. In DBSec, pages 81–94, 2009.

10. O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, 2004.

11. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using
garbled circuits. In USENIX Security Symposium, 2011.

12. S. Jha, L. Kruger, and V. Shmatikov. Toward practical privacy for genomic computation. In
IEEE Symposium on Security and Privacy, pages 216–230, 2008.

13. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building blocks
and applications to auctions and computing minima. In CANS, pages 1–20, 2009.

14. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications.
In ICALP, pages 486–498, 2008.

15. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the
presence of malicious adversaries. In EUROCRYPT, pages 52–78, 2007.

16. Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious trans-
fer. In Theory of Cryptography Conference (TCC), pages 329–346, 2011.

17. B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation is practi-
cal. In Advances in Cryptology – ASIACRYPT, pages 250–267, 2009.

18. D. Szajda, M. Pohl, J. Owen, and B. Lawson. Toward a practical data privacy scheme for a
distributed implementation of the Smith-Waterman genome sequence comparison algorithm.
In Network and Distributed System Security Symposium (NDSS), 2006.

19. J. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy preserving error resilient
DNA searching through oblivious automata. In CCS, pages 519–528, 2007.

20. R. Wagner and M. Fischer. The string to string correction problem. Journal of the ACM,
21(1):168–173, 1974.

21. C. Wong and A. Chandra. Bounds for the string editing problem. Journal of the ACM,
23(1):13–16, 1976.

22. A. Yao. How to generate and exchange secrets. In IEEE Symposium on Foundations of
Computer Science (FOCS), pages 162–167, 1986.

