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Abstract. Recent advances in biometric recognition and the incrgasse of
biometric data prompt significant privacy challenges ais¢ed with the possible
misuse, loss, or theft of biometric data. Biometric matgh@often performed by
two mutually distrustful parties, one of which holds onerbairic image while
the other owns a possibly large biometric collection. Dugrigacy and liabil-
ity considerations, neither party is willing to share itdadarhis gives rise to
the need to develop secure computation techniques overehicndata where
no information is revealed to the parties except the outcofrtee comparison
or search. To address the problem, in this work we developiraptément the
first privacy-preserving identification protocol for irisaes. We also design and
implement a secure protocol for fingerprint identificatiaséd on FingerCodes
with a substantial improvement in the performance compéoeekisting solu-
tions. We show that new techniques and optimizations enapldg this work
allow us to achieve particularly efficient protocols suléator large data sets and
obtain notable performance gain compared to the stathes&it prior work.

1 Introduction

Recent advances in biometric recognition make the use oféfiac data more prevalent
for authentication and other purposes. Today large-sadlections of biometric data
include face, fingerprint, and iris images collected by ti&Department of Homeland
Security (DHS) from visitors through its US-VISIT progra@tl], iris images collected
by the United Arab Emirates (UAE) Ministry of Interior fronil foreigners and also
fingerprints and photographs from certain types of trage]2B], and several others.
While biometry serves as an excellent mechanism for autteitn and identification
of individuals, such data is undeniably extremely sensitimd must be well protected.
Furthermore, once leaked biometric data cannot be revokegbtaced. For these rea-
sons, biometric data cannot be easily shared between aegems or agencies. How-
ever, there could be legitimate reasons to carry out cortipnton biometric data be-
longing to different entities. For example, a non-governhagency may need to know
whether a biometric it possesses appears on the governrmagait-list. In this case the
agency would like to maintain the privacy of the individdald matches are found, and
the government also does not want to release its databdsedparties.

The above requires carrying out computation over biomdata in a way that keeps
the data private and reveals only the outcome of the comipatan particular, we study



the problem obiometric identificationwhere a client' is in a possession of a biomet-
ric X and a servef possesses a biometric databakeThe client would like to know
whetherX appears in the databageby comparing its biometric to the recordsin
The computation amounts to compariigo eachY” € D in a privacy-preserving man-
ner. This formulation is general enough to apply to a numbetter scenarios, ranging
from a single comparison o andY to the case where two parties need to compute
the intersection of their respective databases. We assuaéhie result of comparing
biometricsX andY is a bit, and no additional information aboit or Y should be
learned by the parties as a result of secure computatioh. &\it secure protocols, the
outcome can be made available to either party or both of tfi@nconcreteness in our
description, we have the client learn the outcome of eaclpaoison.

In this work we assume that both the client’s and the serbésisetric images have
been processed and have representations suitable fortoiomatching, i.e., each raw
biometric image has been processed by a feature extradtjorithm. For the types of
biometric considered in this work, this can be performedsfach image independently
and we do not discuss this further.

Prior work. Literature on secure multi-party computation is extensBtarting from
the seminal work on garbled circuit evaluation [39], it hagih known that any function
can be securely evaluated by representing it as a boolearitcBimilar results are also
known for securely evaluating any function using secretisgadechniques (e.g., [36])
or homomorphic encryption (e.g., [11]). In the last sevemdrs a number of tools
have been developed for automatically creating a secutegoifrom a function de-
scription written in a high-level language. Examples in@drairplay [30], VIFF [14],
TASTY [18], and others. It is, however, well-known that cust optimized protocols
are often constructed for specific applications due to te#igiency of generation solu-
tion. Such custom solutions are known for a wide range ofiegipbn (e.g., set opera-
tions [29, 17], DNA matching [38], k-means clustering [9.¢, and this work focuses
on secure biometric identification using iris codes and fipgets. Furthermore, some
of the optimizations employed in this work can find their useprotocol design for
other applications, as well as general compilers and taals as TASTY [18].

With the growing prevalence of applications that use bigiogtthe need for se-
cure biometric identification was recognized in the rese@ammunity. A number of
recent publications address the problem of privacy-pu@sgface recognition [16, 37,
33]. This problem was first treated by Erkin et al. [16], wh#re authors designed a
privacy-preserving face recognition protocol based onBlyenfaces algorithm. The
performance of that solution was consequently improveddmeghi et al. [37]. More
recently, Osadchy et al. [33] designed a new face recognaigorithm together with
its privacy-preserving realization called SCiFl. The desiargeted to simultaneously
address robustness to different viewing conditions andieffcy when used for secure
computation. As a result, SCiFl is currently recognizedreshiest face identification
algorithm with efficient privacy-preserving realizati@CiFI takes 0.31 sec (during the
online phase) [33] to compare two biometrics, and therefaneld take about 99 sec to
compare a biometric to a database of 320 images (which isataddse size used in the
experiments in several prior publications).



Another very recent work by Barni et al. [3] designs a priv@cgserving protocol
for fingerprint identification using FingerCodes [25]. FanGodes use texture informa-
tion from a fingerprint to compare two biometrics. The aljori is not as discrimi-
native as fingerprint matching techniques based on locationinutiae points, but it
was chosen by the authors as particularly suited for efficialization in the privacy-
preserving framework. As of the time of this writing, sinmitasults for other types of
biometrics or other fingerprint matching techniques areavailable in the literature.
We narrow this gap by providing a secure two-party protosoWidely used iris identi-
fication, as well as address fingerprint identification. Owtqcols follow the standard
algorithms for comparing two biometrics, yet they are vdfigient and outperform the
state-of-the-art protocols with a notable reduction indtierhead.

Bringer et al. [8] describe a biometric-based authenticatiechanism with privacy
protection of biometric, where the Hamming distance is usedhe distance metric.
The authentication server is composed of three entitiegstiiat not collude, and one
of them, the matcher, learns the computed Hamming distdnaaur work, however,
no information beyond the outcome of the comparison is ledgdahe computation
itself is more complex and corresponds to the actual alyoritsed for iris code com-
parisons, and there is no need for additional or third-pantyties. Barbosa et al. [2]
extend the framework with a classifier to improve authetitceaccuracy and propose
an instantiation based on Support Vector Machine using meonphic encryption.

Our contributions. In this work we treat the problem of privacy preserving bi¢me
ric identification. We develop new secure protocols for tyoeis of biometric, iris and
fingerprints, and achieve security against semi-honesradvies. While iris codes are
normally represented as binary strings and use very simigching algorithms, there
is a variety of representations and comparison algoritlanBrigerprints. In this paper,
we study FingerCodes that use fixed-size representatiahamefficient comparison
algorithm.2 Our protocols were designed with efficiency in mind to periméiir use on
relatively large databases, and possibly in real time. @tiilect performance compari-
son of our protocols and the results available in the literais possible only in the case
of FingerCode, we can use complexity of the computation &vdrertain conclusions.
The results we achieve in this work are as follows:

1. Our secure FingerCode protocol is extremely fast andvalline parties to com-
pare two fingerprints{ andY using a small fraction of a second. For a database
of 320 biometrics, the online computation can be carriedim@t45 sec with the
communication of 279KB. This is an over 30-fold improvemiartvoth communi-
cation and computation over the privacy-preserving sofutf [3], as detailed in
Section 5, and a significant improvement over an adaptafif8vjto this context.

2. Iris codes use significantly longer representationsu@hads of bits) and require
more complex transformation of the data. Despite the leagthcomplexity, our
solution allows two iris codes to be compared in 0.15 sechVWspect to the state-
of-the-art face recognition protocol SCiFIl, which alsaeslon Hamming distance
computation, our protocol achieves lower overhead desipitéact that the compu-
tation involves an order of magnitude larger number of momglex operations.

% We also construct a secure protocol for minutiae-basedrfinige comparisons, but its descrip-
tion and implementation appear in the full version of thigkd@] due to space constraints.



2 Description of Computation

In what follows, we assume that clieat holds a single biometricX' and serverS
holds a database of biometriés The goal is to learn whethér’s biometric appears
in S’s database without learning any additional informatiohisTis accomplished by
comparingX to each biometri@” € D, and as a result of each comparisgitearns a
bit that indicates whether the comparison resulted in almatc

Iris. Let an iris biometricX be represented as am-bit binary string. We useX; to
denotei-th bit of X. In iris-based recognition, after feature extractionnféric match-
ing is normally performed by computing the Hamming distanegveen two biometric
representations. Furthermore, the feature extractioogs®is such that some bits of
the extracted string{ are unreliable and are ignored in the matching processt-Info
mation about such bits is stored in an additionabit string, calledmask where its
i-th bit is set to 1 if thei-th bit of X should be used in the matching process and
is set to O otherwise. For biometri, we useM (X)) to denote the mask associated
with X. Often, a predetermined number of bits (e.g., 25% in [20] 3B%b in [4]) is
considered unreliable in each biometric template. Thusptopare two biometric rep-
resentations andY’, their Hamming distance takes into account the respectagkm
That s, if the Hamming distance between two iris codes witmoasks is computed as:
HD(X,Y) = (|X®Y])/m= (3", X;®Y;)/m, the computation of the Hamming
distance that uses masks becomes [15]:

[(XeY)NnM(X)NMY)|

HD(X,M(X),Y,M(Y)) = 1
(X, M(X),Y,M(Y)) M) N M) (1)
M (X @Yi)AM(X)AM(Y3))
In other words, we havél/ D(X, M (X),Y,M(Y)) = 12;11(1\4(Xi)mw(m)

Throughout this work, we assume that the latter formula é&dwd simplify the nota-
tionto HD(X,Y’). Then the computed Hamming distance is compared with afgpeci
thresholdT’, and the biometric&X’ andY are considered to be a match if the distance
is below the threshold, and a mismatch otherwise. The tbiéghis chosen based on
the distributions of authentic and impostor data. (In tkelli case of overlap of the two
distributions, the threshold is set to achieve the desieel$ of false accept and false
reject rates based on the security goals.)

Two iris representations can be slightly misaligned. Thabfem is caused by head
tilt during image acquisition. To account for this, the niabg process attempts to
compensate for the error and rotates the biometric reptatsem by a fixed amount
to determine the lowest distance. Each biometric is repiedeas a two-dimensional
array, therefore a circular shift is applied to each row biftisly its representation
by a small fixed number of times, which we denote doyThe minimum Hamming
distance across all runs is then compared to the threshiodd i if we letLS? (-) (resp.,
RS (-)) denote a circular left (resp., right) shift of the argumeyta fixed number of
bits (2 bits in experiments conducted by the biometrics grauour institution, where
application of the Gabor filter during feature extractioaulés in a complex number,
which is quantized into a 2-bit value), the matching proteEssomes:

min(HD(X,LS°(Y)),..., HD(X,LS'(Y)), HD(X,Y),

1 c ? (2)
HD(X,RS'(Y)),...,HD(X,RS“(Y))) < T



Throughout this work we assume that the algorithms for camgawo biometrics are
public, as well as any constant parameters such.&3ur protocols, however, maintain
their security and performance guarantees if the (fixedstiolds are known only to
the server who owns the database.

Fingerprints. Work on fingerprint identification dates many years back w&ittumber
of different approaches currently available (see, e.d.] {8 an overview). The most
popular and widely used techniques extract informatioruabunutiae from a finger-
print and store that information as a set of points in the divoensional plane. Fin-
gerprint matching can also be performed using a differgre tyf information extracted
from a fingerprintimage. One example is FingerCode [25] Whises texture informa-
tion from a fingerprint scan to form fingerprint represematX . While FingerCodes
are not as distinctive as minutiae-based representatimhsua@ best suited for use in
combination with minutiae to improve the overall matchiegaracy [31], FingerCode-
based identification can be implemented very efficiently prigacy-preserving proto-
col. In particular, each FingerCode consists of a fixed numbelements of bits each.
Then FingerCodeX = (z1,...,2,) andY = (y1, ..., yn) are considered a match if
the Euclidean distance between their elements is belovhtkstiold!™:

?

S (w2 <T ©)

Barni et al. [3] was the first to provide a privacy-preservorgtocol for FingerCode-
based biometric identification. We show that the techniguegloyed in this work im-
prove both computation and communication of the protoc§8pby a large factor.

3 Preliminaries

Security model. We use the standard security model for secure two-party atatipn

in presence of semi-honest participants (also known asdtdmg-curious or passive).
In particular, it means that the parties follow the presaditbehavior, but might try to

compute additional information from the information olbidl during protocol execu-
tion. Security in this setting is defined using simulatioguanent: the protocol is secure
if the view of protocol execution for each party is compudatlly indistinguishable

from the view simulated using that party’s input and outpriyoThis means that the

protocol execution does not reveal any additional infofamato the participants. The

definition below formalizes the notion of security for sehainest participants:

Definition 1. Let partiesP; and P, engage in a protocofr that computes function
f(in1,in2) = (outy,oute), wherein; and out; denote input and output of part,,
respectively. LeWIEW . (P;) denote the view of participarf®; during the execution

of protocolw. More precisely,P;’s view is formed by its input, internal random coin
tosses;, and messages, . . ., m; passed between the parties during protocol execu-
tion, i.e., VIEW(P;) = (in;, r;, m1, . ..,m:). We say that protocat is secure against
semi-honest adversaries if for each pardy there exists a probabilistic polynomial
time simulatorS; such that{.S;(in;, f(in1,in2))} = {VIEW(F;), out; }, where “="
denotes computational indistinguishability.



Homomorphic encryption. Our constructions use a semantically secure additively
homomorphic encryption scheme. In an additively homomiarphcryption scheme,
Enc(m1) - Enc(mz) = Enc(m; + ms) which also implies thaEnc(m)® = Enc(a - m).
While any encryption scheme with the above properties (as¢he well known Paillier
encryption scheme [34]) suffices for the purposes of thiskwibie construction due to
Damgard et al. [13, 12] (DGK) is of particular interest haté also note that in Paillier
encryption scheme, a public key consists éfhit RSA modulusV = pq, wherep and

q are prime, and an elemeptvhose order is a multiple d¥ in Z3,.. Given a message

m € Zy, encryption is performed @nc(m) = ¢g™r" mod N2, wherer & 7y and

notationa £ A means that is chosen uniformly at random from the sétIn DGK
encryption scheme [13, 12], which was designed to work witlals plaintext spaces
and has shorter ciphertext size than other randomized gti@mschemes, a public key
consists of (i) a (small, possibly prime) integethat defines the plaintext space, (ii)
k-bit RSA modulusN = pq such thap andq arek/2-bit primes,v,, andv, aret-bit
primes, andw,|(p — 1) anduv,|(¢ — 1), and (iii) elementg;, h € Z%, such thay has
orderuv,v, andh has ordew,v,. Given a message: € Z,, encryption is performed

asEnc(m) = g™h" mod N, wherer £ {0,115, We refer the reader to the original
publications [34] and [13, 12], respectively, for any additl information.

Garbled circuit evaluation. Originated in Yao’s work [39], garbled circuit evaluation
allows two parties to securely evaluate any function regressd as a boolean circuit.
The basic idea is that, given a circuit composed of gatespartg P, creates a garbled
circuit by assigning to each wire two randomly chosen kéysalso encodes gate in-
formation in a way that given keys corresponding to the inpitgs (encoding specific
inputs), the key corresponding to the output of the gate osdhinputs can be recov-
ered. The second part¥,, evaluates the circuit using keys corresponding to inpfits o
both P, and P, (without learning anything in the process). At the end, #muit of the
computation can be recovered by linking the output keysedits which they encode.

Recent literature provides optimizations that reduce adatpn and communi-
cation overhead associated with circuit construction araduation. Kolesnikov and
Schneider [27] describe an optimization that permits XOReg&o be evaluated for
free, i.e., there is no communication overhead associaitbdswch gates and their eval-
uation does no involve cryptographic functions. This ojtation is possible when the
hash function used for creating garbled gates can be asstanfedcorrelation robust
(see [28, 27] for more detail). Under the same assumptiankaP et al. [35] addition-
ally give a mechanism for reducing communication compyesdtbinary gates by 25%:
now each gate can be specified by encoding only three outcohties gate instead of
all four. Finally, Kolesnikov et al. [26] improve the compglty of certain commonly
used operations such as addition, multiplication, congparietc. by reducing the num-
ber of non-XOR gates: adding twio-bit integers requiresn gates,n of which are
non-XOR gates; comparing twe-bit integers requiredn gates,n of which are non-
XOR gates; and computing the minimumtat-bit integers (without the location of the
minimum value) requiredn(t — 1) gates2n(t — 1) of which are non-XOR gates.

With the above techniques, evaluating a non-XOR gateswegabne invocation of
the hash function (which is assumed to be correlation rpbDstring garbled circuit



evaluation P, directly obtains keys corresponding’s inputs fromP; and engages
in the oblivious transfer (OT) protocol to obtain keys cspending taPs’s inputs.

Oblivious Transfer. In 1-out-of-2 Oblivious Transfer)T?, one party, the sender,
has as its input two strings,g, m; and another party, the receiver, has as its input a
bit b. At the end of the protocol, the receiver learmg and the sender learns nothing.
Similarly, in 1-out-of#V OT the receiver obtains one of tiéstrings held by the sender.
There is a rich body of research literature on OT, and in tliskvwe use its efficient
implementation from [32] as well as techniques from [24} tiemluce a large number
of OT protocol executions te of them, wherex is the security parameter. This, in
particular, means that obtaining the keys corresponditg®inputs in garbled circuit
evaluation byP, incurs only small overhead.

4 Secure Iris ldentification

As indicated in equation 1, computing the distance betweeriris codes involves per-
forming the division operation. While techniques for camgyout this operation using
secure multi-party computation are known (see, e.g., B,29]), their performance in
practice even using very recent results is far from satisfgdor this application As an
example, Blanton [5] reports that two-party evaluation afftded circuits produced by
Fairplay takes several seconds for numbers of length 24#28doit circuits for longer

integers could not be constructed due to the rapidly inangasemory requirements
of Fairplay. Hoens et al. [19] report that building a muléifty division protocol us-

ing homomorphic encryption alone requires on the order ofi@ur to carry out the
operation for 32-bit integers. Fortunately, in our casedbmputation can be rewrit-
ten to completely avoid this operation and replace it witHtiplication. That is, using

the notationHD(X,Y) = [|(X @ Y) N M(X)n MY)||/||IM(X)n M(Y)| =

D(X,Y)/M(X,Y), instead of testing whethéf D(X,Y) % T, we can test whether

?
D(X,Y) < T - M(X,Y). While the computation of the minimum distance as used
in equation 2 is no longer possible, we can replace it withvadent computation that
does not increase its cost. Now the computation becomes:

(D(X, LSE(Y)) < T-M(X, LSC(Y))) VY (D(X, RSS(Y)) < T-M(X, RSC(Y)))
(4)
When this computation is carried over real numb@&tdies in the range [0, 1]. In our
case, we need to carry the computation over the integershwheans that we “scale
up” all values with the desired level of precision. That ig, using ¢ bits to achieve
desired precision, we multipl (X, Y) by 2¢ and letT range between 0 arf. Now
2!D(X,Y) andT - M(X,Y) can be represented usifigg m| + ¢ bits.
Security. Due to space constraints, we defer the security analysiardfie identifica-
tion protocol, described in Sections 4.1 and 4.2 below, tpeXplix A.

4.1 Base Protocol

In what follows, we first describe the protocol in its simplesm. Section 4.2 presents
optimizations and the resulting performance of the prdtoco



In our solution, the clien€ generates a public-private key péirk, sk) for a ho-
momorphic encryption scheme and distributes the public/keyThis is a one-time
setup cost for the client for all possible invocations ofthrotocol with any number
of servers. During the protocol itself, the secure compangbroceeds as specified in
equation 4. In the beginning; sends its inputs encrypted wittk to the servelS. At
the server side, the computation first proceeds using honmqntoencryption, but later
the client and the server convert the intermediate restdtarsplit form and finish the
computation using garbled circuit evaluation. This is du¢hie fact that secure two-
party computation of the comparison is the fastest usinplgdrcircuit evaluation [26],
but the rest of the computation in our case is best performashorypted values.

TocomputeD(X,Y) = > 1" | (X; Y;) AM(X;) AM(Y;) using algebraic compu-
tation, we useX; ®Y; = X;(1-Y;)+(1—X;)Y; and obtainD(X,Y) = > | (X,;(1—
Yi)+(1—X,)Y;)M(X;)M(Y;). M(X,Y) is computed a§~" | M (X;)M(Y;). Then
if S obtains encryptions oX; M (X;), (1 — X;)M(X;), andM (X;) for eachi from C,
the server will be able to compufe(X,Y) andM (X,Y") using its knowledge of the
Y;'s and the homomorphic properties of the encryption. Figudescribes the protocol,
in which after receiving>’s encrypted value$ producenc(M (X;))’s and proceeds
to computeD (X, Y7) and M (X, Y7) in parallel for eaclt” in its database, wheng’
denotes biometrit” shifted by; positions ang ranges from-cto c. At the end of steps
3(a).iand 3(a).ii the server obtaiBiac(2°D(X, Y7) +r%) for arandomly chosery, of
its choice, and at the end of step 3(a)SiiobtainsEnc(T'- M (X, Y7)+t%) for arandom
té of its choice. The server sends these values to the clientetiypt them. Therefore,
at the end of step 3(&@) holdsr’, = 2/D(X,Y7) + % andtl, = T - M(X,Y7) +t}
andsS holds—r% and—t,,, i.e., they additively sharg D(X,Y7) andT - M (X, Y7).

What remains to compute &: + 1 comparisons (one per eatH) followed by2c
OR operations as specified by equation 4. This is accompligbig garbled circuit
evaluation, wher€ entersr/,’'s andt/.’s and S entersrl’s andt’’s and they learn a
bit, which indicates whethér was a match.

Note that since.’s, r’s, t/.’s andt’s are used as inputs to the garbled circuit and
will need to be added inside the circuit, we want them to bevelsas possible. There-
fore, instead of providing unconditional hiding by choasify andr?, from Z}, (where
N is frompk), the protocol achieves statistical hiding by choosingé@ndom values
to bex bits longer than the values that they protect, wheiga security parameter.

4.2 Optimizations

Pre-computation and offline communication. Similar to prior literature on secure
biometric identification [16, 37, 33, 3], we distinguishween offline and online stages,
where any computation and computation that does not depetitednputs of the par-
ticipating parties can be moved to the offline stage. In oatqwol, first notice that most
modular exponentiations (the most expensive operatiohdrehcryption scheme) can
be precomputed. That is, the client needs to produeesncryptions of bits. Because
bothm and the average number of O's and 1's in a biometric and a nraskreown,
the client can produce a sufficient number of bit encryptioredvance. In particular,
X normally will have 50% of 0’s and 50% of 1's, while 75% (or a #an number)



Input: C has biometricX, M (X) and key paif(pk, sk); S has a database composed ot
M (Y') biometrics.
Output: C' learns what records ifv resulted in match withX if any, i.e., it learns a bit as |a
result of comparison oK with eachY € D.
Protocol steps
1. Foreach = 1,...,m,C computes encryptiong;1, a;2) = (Enc(X; M (X;)), Enc((1—
Xi)M(X;))) and sends them t§.
2. Foreach = 1,...,m, S computes encryption a¥/(X;) by settinga:s = a1 - a2 =
Enc(X; M (X5)) - Enc((1 — X;)M(X;)) = Enc(M(X3)).
3. For each recorl” in the database§ andC' perform the following steps in parallel:
(a) For each amount of shijt= —c¢,...,0,...,¢, S rotates the bits of” by the appro
priate number of positions to obtak¥ and proceeds with alt?'s in parallel.
i. To compute (X; @ Y/ )M(X))M(Y7) = (X:(1 — Y/) + (1 —

j in - a-y{)my)
X;)Y?)M(X;)M(Y?) in encrypted form,S computesh! = a;; -

arg M0 = Enc(XiM(X) (1 - Y7)M(Y?) + (1 — X)) M(X:)Y/ M(Y7)).
ii. S adds the values containedtifis to obtainy’ =[], b) = Enc(3>_", (X: @

Y/ )M(X:)M(Y?)) = Enc(||(X & Y7) 0 M(X) N M(Y7)|]). S then “lifts
up” the result, blinds, and randomizes ites= ()% - Enc(rl), wherer’, &
{0, 1} MeemI+£+= "and sends the resulting to C.

M(Y{)

iii. To obtainT'(||M(X) N M(Y?)||), S computest! = a;, = Enc(M(X;) -
M(Y))) andd’ = ([, d})" = Enc(T(X)", M(X:)M(Y;))). S blinds
and randomizes the result@s= d’ - Enc(t%,), wheret’, & {0, 1}1lesm1+¢+r
and sends’ to C.

iv. C decrypts the received values and sgts= Dec(c’) andt/, = Dec(e?).

(b) C andS perform2c+ 1 comparisons and OR of the results of the comparisons uysing

garbled circuit.C' entersri,’s andt’,’s, S enters—r%’s and —t%’s, andC' learns
. . ? . .
bit b computed a8/__.((r¢; — r§) < (t — t%)). To achieve thisS creates the

garbled circuit and sends it t@. C obtains keys corresponding to its inputs using OT,
evaluates the circuit, ansl sends ta”' the key-value mapping for the output gate.

Fig. 1. Secure two-party protocol for iris identification.

of M (X)’s bits are set to 1 and 25% to O during biometric processimgpl. andp,
(g0 and¢) denote the fraction of 0's and 1's in an iris code (resp.niesk), where
po + p1 = qo + ¢1 = 1. Therefore, to have a sufficient supply of ciphertexts tarfor
tuples(ai1, a;2), the client needs to precomputgy + ¢1(p1 + ) + q1(po + €))m =
(14 go + 2q1e)m encryptions of 0 andq: (p1 + €) + q1(po +€))m = q1(1 + 2e)m
encryptions of 1, where is used as a cushion since the number of 0's and 1% in
might not be exactly, andpy, respectively. Then at the time of the protocol the client
simply uses the appropriate ciphertexts to form its trassion. .
Similarly, the server can precompute a sufficient supplynaigptions ofr4's and
t}’s for all records. That is, the server needs for prod2@e + 1)|D| encryptions of
different random values of lengthiogm| + ¢ + x, where|D| denotes the size of the
databasé). The server also generates one garbled circuit per récandits database
(for step 3(b) of the protocol) and communicates the cisctgtthe client. In addition,



the most expensive part of the oblivious transfer can algebermed during the offline
stage, as detailed below.

Optimized multiplication. Server’'s computation in steps 3(a).i and 3(a).iii of the-pro
tocol can be significantly lowered as follows. To computeheiextsb], S needs to

calculates'] MY L o XMOD) since the bitg7 andM (Y7 are known taS, this
computation can be rewritten using one of the following sase ‘ ‘

- Y/ = 0andM(Y;) = 0:in this case botl{l — Y/ )M(Y;) andY/ M (Y;) are
zero, which means thaj should correspond to an encryption of O regardless of
anda;s. Instead of havings create an encryption 0, we slétto the empty value,
i.e., itis not used in the computation@fin step 3(a).ii.

- Y/ =1andM(Y/) = 0: the same as above.

- Y/ = 0andM(Y/) = 1:in this casgl — Y7 )M (Y/) = 1 andY/ M (Y}) = 0,
which means tha$ setsb = a;; .

- Y/ =1andM(Y/) = 1:in this casg1 — Y/)M(Y/) = 0 andY/ M (Y/) = 1,
andS therefore sets! = a;o.

The above implies that only;m ciphertextsb{ need to be added in step 3(a).ii to form
b (i.e.,¢ym — 1 modular multiplications to compute the hamming distancsvben
m-element strings). _

Similar optimization applies to the computationdjfandd’ in step 3(a).iii of the
protocol. That is, WheM(Yij) =0, d{ is set to the empty value and is not used in the
computation of#/; WhenM(Yij) =15 setsd{ = a;3. Consequentlyy; m ciphertexts
are used in computing/ .

To further reduce the number of modular multiplications, ee@ adopt the idea
from [33], which consists of precomputing all possible camations for ciphertexts at
positionsi andi 4 1 and reducing the number of modular multiplications usedndur
processing a database record in half. In our case, the vélughl , requires com-
putation only whenM (Y/) = M(Y7,,) = 1. In this case, computing;1a(s11,
ai10(i41)2, @i20(i+1)1, aNdaza ;4 1)2, for each odd between 1 ana» — 1 will cover
all possibilities. Note that these values need to be condparee for all possible shift
amounts of the biometrics (since only servéf’s are shifted). Depending on the distri-
bution of the set bits in each/ (Y"), the number of modular multiplication now will be
betweeny;m/2 (whenM (Y;) = M (Y;41) for each odd) andm(qo + (1 — 2¢0)/2) =
m/2 (whenM (Y;) # M (Y;41) for as many odd’s as possible). This approach can be
also applied to the computation @f (where only the value af;3a(i11)3 needs to be
precomputed for each odyiresulting in the same computational savings during com-
putation of the hamming distance. Furthermore, by precdimgthe combinations of
more than two values additional savings can be achievedglprocessing of eacH.

Optimized encryption scheme.As it is clear from the protocol description, its perfor-
mance crucially relies on the performance of the underljiognomorphic encryption
scheme for encryption, addition of two encrypted valuesl decryption. Instead of
utilizing a general purpose encryption scheme such asd?aille turn our attention to
schemes of restricted functionality which promise to oififieproved efficiency. In par-
ticular, the DGK additively homomorphic encryption schefh8, 12] was developed
to be used for secure comparison, where each ciphertextaa bit. In that setting,



it has faster encryption and decryption time than Paillied each ciphertext has size
k using ak-bit RSA modulus (while Paillier ciphertext has si2g). To be suitable
for our application, the encryption scheme needs to sugpaer plaintext sizes. The
DGK scheme can be modified to work with longer plaintextshit tase, at decryption
time, one needs to additionally solve the discrete logaritnoblem where the base is
2-smooth using Pohlig-Hellman algorithm. This means tleatgption uses additional
O(n) modular multiplications forn-bit plaintexts. Now recall that in the protocol we
encrypt messages of lengftogm| + ¢ + x bits. The use of the security parameter
significantly increases the length of the plaintexts. Wayéacer, notice that the DGK
encryption can be setup to permit arithmetic on encryptéaegsuch that all compu-
tations on the underlying plaintexts are carried modlidor anyn. For our protocol
it implies that (i) the blinding values’, and¢, can now be chosen from the range
[0,2™ — 1], wheren = [logm] + ¢, and (ii) this provides information-theoretic hiding
(thus improving the security properties of the protocobisTobservation has a pro-
found impact not only on the client decryption time in step)3¢ (which decreases by
about an order of magnitude), but also on the consecutivaleghcircuit evaluation,
where likewise the circuit size is significantly reducediires

Circuit construction. We construct garbled circuits using the most efficient témies
from [35] and references therein. By performing additiondmo 2™ and eliminating
gates which have a constant value as one of their inputs,dueeghe complexity of the
circuit for addition ton — 1 non-XOR gates andi(n — 1) — 1 total gates. Similarly, after
eliminating gates with one constant input, the complexitthe circuit for comparison
of n-bit values becomesnon-XOR gates and, — 2 gates overall. Since in the protocol
there are two additions and one comparison per gdctiowed by 2¢ OR gates, the
size of the overall circuit ig4(n — 1)(2¢ + 1) + 2c gates,(3n — 2)(2¢ + 1) + 2c of
which are non-XOR gates. Note that this circuit does not uskiptexers, which are
required (and add complexity) during direct computatiomafimum.

Oblivious transfer. The above circuit requires each party to suphly2c¢ + 1) input
bits, and a new circuit is used for eathin D. Similar to [18], the combination of
techniques from [24] and [32] achieves the best performancar case. Let the server
create each circuit and the client evaluate them. Usingdhelts of [24], performing
OT? the total of2n(2c + 1)|D| times, where the client receives:abit string as a re-
sult of each OT for a a security parametercan be reduced te invocations ofOT}
(that communicates to the receivebit strings) at the cost ofx - 2n(2n + 1)|D| bits

of communication andn(2c + 1) applications of a hash function for the sender and
2n(2c+ 1) applications for the receiver. ThenOT? protocols can be implemented us-
ing the construction of [32] with low amortized complexiyhere the sender performs
2 + x and the receiver perforn®: modular exponentiations with the communication
of 2x2 bits andx public keys. The OT protocols can be performed during théneffl
stage, while the additional communication takes place tme@puts are known.

Further reducing online communication. If transmitting2m ciphertexts during the
online stage of the protocol (which amounts to a few hundrBdd¢ our set of param-
eters) constitutes a burden, this communication can bepeed at the offline stage
before the protocol begins. This can be achieved using tiaigue of [33]. We refer
the reader to the full version [7] for details of applyinggtéchnique to our solution.
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Setuy enc circuit total enc circuit total
Servelc = 5[1398 + 71/re¢1780 + 8.5/re¢3178 + 79.5/ref3108 + 148/rec1.2/rec|89 + 149.2/rec

¢ = 0/1398 + 6.5/recl457 + 0.7/re¢ 2855 + 7.2/req|108 + 13.6/rec0.1/rec| 89 + 13.7/req
Clientlc =5 11.93s |1693 + 3.4/re¢13.62s + 3.4/re¢c  20/rec 2.6/rec| 22.6/rec

c=0 11.93s |1055 + 0.3/re¢12.99s + 0.3/rec  1.8/rec 0.2/rec] 2.0/rec
Commc =5 512 11.6 + 22.1/rech24 + 22.1/rea| 0.5 + 2.7/rec|17.2/re¢0.5 + 19.9/re¢

c=0 512 11.6 + 2/rec| 524 + 2/rec || 0.5+ 0.2/rec 1.6/rec| 0.5 + 1.8/rec

Table 1. Breakdown of the performance of the iris identification poml. Time is expressed in
milliseconds unless otherwise stated, and communicatierhead in KB.

4.3 Implementation and Performance

We implemented the secure iris identification protocol insthg MIRACL library [22]
for cryptographic operations. The implementation used Dgbigryption scheme [13,
12] with a 1024-bit modulus and another security parameset to 160, as suggested
in [13,12]. To simplify comparisons with prior work, throlagut this work we use
k = 1024 security parameter for public-key cryptography ane= 80 for symmetric
and statistical security. The experiments were run on agl Dore 2 Duo 2.13 GHz
with 3GB of RAM andgccversion 4.4.5 on Linux.

Table 1 shows performance of the secure iris identificatiotgzol and its compo-
nents. The performance was obtained using the followingfggarameters: the size of
iris code and maskn = 2048 (this value ofm is used in commercial iris recognition
software), 75% of bits are reliable in each iris code, andghgthn of values is 20 bits.
All optimizations described earlier in this section werglemented. In our implemen-
tation, upon receipt of client’s data, the server precompatl combinations for pairs of
ciphertexts;b;1 in step 3(a).ii (one-time cost of the total4(fm /2) modular multipli-
cations) and all combinations of 4 elemenitd; 1d;12d;+3 in step 3(a).iii (one-time
cost of 11(m/4) modular multiplications). This cuts the server’s time foogessing
eachY by more than a half. Furthermore, the constant overheadiassd with the
OT (circuit) can be reduced in terms of both communicatioth @mputation for both
parties if public-key operations are implemented ovepgdicurves.

The table shows performance using different configuratiaittsthe amount of ro-
tationc = 5 and no rotation witle = 0 (this is used when the images are well aligned,
which is the case for iris biometrics collected at our ingiin). In the table, we divide
the computation and communication into offline precompoteand online protocol
execution. No inputs are assumed to be known by any partyegbprputation time.
Some of the overhead depends on the server’s databasesizech case the computa-
tion and communication are indicated per record (usingtiosta/rec”). The overhead
associated with the part of the protocol that uses homonmgaitryption is shown
separately from the overhead associated with garbleditsrcthe offline and online
computation for the part based on homomorphic encryptimomputed as described
in Section 4.2. For circuits, garbled circuit creation, ecoomication, and some of OT
is performed at the offline stage, while the rest of OT (asilesd in Section 4.2) and
garbled circuit evaluation takes place during the onlir@quol execution.



Input: C has biometricX = (z1,...,2») and DGK encryption key paifpk, sk); S has a
databaseé> composed of biometric® = (y1, ..., Ym).
Output: C' learns what records ifv resulted in match withX if any, i.e., it learns a bit as a
result of comparison oK with eachY € D.
Protocol steps
1. C computes and sends soencryptionsEnc(—2z1), . . ., Enc(—2zm), Enc(3", 7).
2. Foreaclt’ = (y1,...,ym) € D, S andC perform in parallel:
(a) S computes the encrypted distanééetweenX andY asd = Enc(3 ", z7) -
Enc(37, vi) - 17, Enc(—22:)¥ = Enc(3X™, (z: — yi)?), blinds it asd’ =
d - Enc(rs), whererg E {0,1}"™, and sendg’ to C'.
(b) C decrypts the value it receives and sets= Dec(d’).

(c) C andS engage in a secure protocol that compytes — rs) mod 2™) ; T2 using
garbled circuit evaluationS creates the circuit and sends it@along with the key-
value mapping for the output gat€.obtains keys corresponding to its inputs frém)
using OT, evaluates the circuit, and learns the result.

Fig. 2. Secure two-party protocol for FingerCode identification.

It is evident that our protocol design and optimizationswlls to achieve notable
performance. In particular, comparison of two iris coddsiglvincludes computation of
2(2¢+1) = 22 Hamming distances over 2048-bit biometrics in encryptechfas done
in 0.15 sec. This is noticeably lower than 0.3 sec online fi@erecord reported by the
best currently known face recognition protocol SCiFI [38hich computes a single
Hamming distance over 900-bit values. That is, despite derasf magnitude larger
number of operations and more complex operations such &adiy computation of
minimum, etc., we are able to outperform prior work by roydgs0%. This in particular
implies that using the techniques suggested in this worll RBK encryption scheme
in particular) performance of SCiFl and other existing pomis can be improved to
a fraction of the previously reported time. When iris images well aligned and no
rotation is necessary our protocol requires only 14 mseimemomputation time and
under 2KB of data to compare two biometrics.

5 Secure Fingerprint Identification

In this section we illustrate how a number of the techniquegetbped in this work
for iris identification can be applied to other types of bidrirecomputations such as
FingerCodes. In particular, we show that the efficiency efghcure protocol for Fin-
gerCode identification [3] can be improved by an order of nitagie.

The computation involved in FingerCode comparisons is &myple, which re-
sults in an extremely efficient privacy-preserving realma Similar to [3], we rewrite
the computation in equation 3 35 (z; — v:)? = Sim (z:)? + Y (wi)? —
S 2y, < T2 In our protocol, the Euclidean distance is computed usiag h
momorphic encryption, while the comparisons are performgdg garbled circuits.
The secure FingerCode protocol is given in Figure 2: thentl@ntributes encryp-
tions of —2z; and>_ (z;)? to the computation, while the server contribu}e$y;)? and



Offline Online
enc circuit total enc | circuit total
Serve[3.6 + 3.9/ref1448 + 0.37/re{d451.6 + 4.3/r€¢0.22 + 1.37/rel0.05/re¢0.22 + 1.42/re
Client 61 1025 + 0.15/recdl086 + 0.15/req 4.7 + 0.92/re¢0.16/re¢ 4.7 + 1.08/req
Comm 0 11.6 + 1.26/rec11.6 + 1.26/re¢|2.12 + 0.12/re|®.74/re 12.12 + 0.86/re

C

Table 2. Breakdown of the performance of the FingerCode identificagirotocol. Time is ex-
pressed in milliseconds and communication overhead in KB.

computes encryption of 2x,y; from —2z;. Note that by usindeEnc(—2z;) instead of
Enc(x;), the server's work for eacH is reduced since negative values use significantly
longer representations. The protocol in Figure 2 uses DGiygtion with the plain-
text space of0, 2™ — 1]. To be able to represent the Euclidean distance, we need to se
n = [logm] + 2¢ + 1, where/ is the bitlength of elements; andy;. This implies that
all computation on plaintexts is performed modalyg for instance2” — 2z; is used
in step 1 to formEnc(—2x;). The circuit used in step 2(c) takes twebit values, adds
them modul®”, and compares the result to a constant as described in 5dcfio
Finally, some of the computation can be performed offlinetlie client it includes
precomputing the random values used inithhe- 1 ciphertexts it sends in step 1 (com-
putation of,” mod N), and for the server includes precomputtg:(rs) and prepar-
ing a garbled circuit for eack, as well as one-time computation of random values for
Enc(3>":" , (v:)?) since the reuse of such randomness does not affect sed@imgtglient
and the server also perform some of OT functionality prigortotocol initiation.
In the FingerCode protocol of [3], each fingerprint in thevee’s database is rep-
resented by FingerCodes that correspond to different orientationtefsame finger-
print, which improves the accuracy of matching. The prota¢¢3], however, reports
all matches within the FingerCodes corresponding to the same fingerprint, andsthis
what our protocol in Figure 2 computes. If it is desirable tvput only a single bit for
all ¢ instances of a fingerprint, it is easy to modify the circuidlenated in step 2(c) of
the protocol to compute the OR of the bits produced by thdralg circuits.

Security. The security of this protocol is straightforward to show amel omit the
details of the simulator from the current description.

Implementation and performance. The FingerCode parameters can rangenas-
16-640,/ = 4-8, andc = 5. We implement the protocol using parameters= 16
and? = 7 (the same as in [3]) and therefore= 19. The performance of our secure
FingerCode identification protocol is given in Table 2. Nputs (X or Y) are assumed
to be known at the offline stage when the parties compute raizdbion values of
the ciphertexts. For that reason, a small fixed cost is irguin the beginning of the
protocol to finish forming the ciphertext using the datalfta&/e also note that, based
on our additional experiments, by using Paillier encrypiitstead of DGK encryption,
the server’s online work increases by an order of magnitenden if packing is used.

It is evident that the overhead reported in the table is mahiamd the protocol is
well suited for processing fingerprint data in real time. &rtigular, for a database of
320 records used in prior work (64 fingerprints with 5 Fingedl€s each used in [3]),
client’s online work is 0.35 sec and the server’s online wisrk.45 sec, with online



communication of 279KB. As can be seen from these resultspadation is no longer
the bottleneck and this secure two-party protocol can baechout extremely effi-
ciently. Compared to the solution in [3] that took 16 sec foe bnline stage with
the same setup, the computation speed up is by a factor of @dntinication effi-
ciency, however, is what was specifically emphasized in tbeopol of [3] resulting in
10101KB online overhead for a database of size 320. Ouriealtherefore improves
such result by a factor of 35. We also would like to note thiadfline work in [3] is for
ciphertext precomputation (since no garbled circuits aedy and is non-interactive,
while in our protocol circuit transmission and input-inéeglent portions of OT can
be done prior to the protocol itself and involve interactigve, however, note that the
overall (offline and online) computation f¢P| = 320 is 1.48 sec for the client and
3.27 sec for the server with the total of 692KB communicatishich is still at least
several times lower than the online portion of the time andmmanication in [3].

Privacy-preserving face recognition techniques by Sadeigal. [37] can also be
adapted to perform secure FingerCode comparisons. Theydeseloped for a differ-
ent context, but also involve computing Euclidean distaneging homomorphic en-
cryption, followed by garbled circuits-based comparisohthe results. (Comparison
of face images also includes projecting a client’s face tdfarént vector space as the
first step of the protocol, but it is not needed here.) The awstlof [37] use Paillier
homomorphic encryption for distance computation, wherekimey of multiple values
into a single ciphertext is used at certain points of theqarolt In particular, ciphertext
d’ that the server sends to the client in step 2(b) contains ulp:toL’“;n"J distances
(for k-bit modulus and statistical security parametgrwheret = 49 in our case. This
results in feweEnc(rg) to form, transmit, and decrypt.

When we compare communication of our protocol with that base techniques
of [37], we obtain that the initial transmission of clienbhietric is lower by a factor
of 2 in our protocol. The circuit size, and thus correspogdirork and communica-
tion, is slightly larger in [37] due to handling of additidnabits pert distances. The
communication associated with transmission of encryptiediéd distances, however,
is significantly lower in [37] due to packing. Overall, we alt that communication
of both solutions is very similar because the communicati@rhead is heavily domi-
nated by garbled circuits. For the distance computatiofi,f@ort runtime of 6.08 sec
for the client and 0.47 sec for the server f@| = 320, while distance computation
in our protocol (including precomputation) is 0.36 sec foe tlient and 1.69 sec for
the server for the sam®]|. In [37] the number of dimensions = 12, while we have
m = 16, but the length of values is = 50 in [37], while we haven = 19. The compu-
tation itself in [37] is more expensive (including interiact between the parties, which
we do not have) due to the need to transform client’s datdalster machines are used.

To obtain a better insight on how performance of Paillierrgpgon with packing
compares to that of DGK encryption for our application, w@liemented our protocol
using techniques of [37] (note that distance computationase efficient than what is
described in [37]). We used a 1024-bit modulus and a numbeptinizations sug-
gested in [34] for best performance. In particular, smaliggatorg = 2 was used
to achieve lower encryption time, and decryption is sped sipgipre-computation
and Chinese remainder computation (see [34], section 7 foerdetail). For opti-



mally packed values which result in the lowest overhead peond, we obtain that
the server’s precomputation is 31.9 + 1.31/rec (all in mssejver’s online work is
1.0 + 24.68/rec, client's precomputation is 545.4, andn¢keonline work is 509.6 +
0.22/rec. FotD| = 320, we obtain the client’s overall runtime of 1.13 sec and sesve
runtime of 8.24 sec, where the increase in time comparede@dénformance in [37]
can be explained by largen and slower machines (note that this is the opposite of
what is reported in [37]; the server clearly performs thearigj of distance computa-
tion work). We obtain that our approach is faster by a facfalmost 5 than the use
of Paillier encryption with packing as suggested in [37] andne work is faster by a
factor of 9.3. And as previously described, the circuit tiead of [37] is slightly larger
due to the need to achieve statistical hiding of computediéies.

6 Conclusions

The protocol design presented in this work suggests ceptanciples that lead to an
efficient implementation of a privacy-preserving protofml biometric identification:
(i) representation of client’'s biometric plays an impottesie; (ii) operations that ma-
nipulate bits are the fastest using tools other than enicnyp(iii) a proper tuning of
encryption tools can result in a significant speedup. Udiegé principles and a num-
ber of new techniques in this work we develop and implemerurgeprotocols for iris
and fingerprint identification that use standard biomegimognition algorithms. The
optimization techniques employed in this work allow us tbiage notable performance
results for different secure biometric identification jrels.

In particular, we develop the first privacy-preserving tparty protocol for iris
codes using current biometric recognition algorithms.fiteshe length of iris codes’
representation and the complexity of their processingpoatocol allows a secure com-
parison between two biometrics to be performed in 0.15 sélc @mmunication of
under 18KB. Furthermore, when the iris codes are known to dlealigned and their
rotation is not necessary, the overhead decreases by anodntk@gnitude to 14 msec
computation and 2KB communication per comparison.

Two FingerCodes used for fingerprint recognition can be @mexb at low cost,
which allowed us to develop an extremely efficient privacggerving protocol. Com-
paring two fingerprints requires approximately 1 msec of potation, allowing thou-
sands of biometrics to be processed in a matter of seconasim@aication overhead
is also very modest with less than 1KB per biometric compari€ompared to prior
privacy-preserving implementation of FingerCode [3], waldtaneously improve on-
line computation and communication by a factor of more th@n 3
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Security Analysis of the Iris Protocol

Security of the iris protocol relies on the security of thederlying building blocks.
In particular, we need to assume that (i) the DGK encryptreme is semantically
secure (which was shown under a hardness assumption tisadwisgroups of an RSA



modulus [13, 12]); (ii) garbled circuit evaluation is seewhich was shown assuming
that the hash function is correlation robust [27], or if in®deled as a random ora-
cle); and (iii) the oblivious transfer is secure as well (thiave this, techniques of [24]

require the hash function to be correlation robust and tkeofia pseudo-random num-
ber generator, while techniques of [32] model the hash fanstas a random oracle
and use the computational Diffie-Hellman (CDH) assumptidinerefore, assuming

the security of the DGK encryption, CDH, and using the randoatle model for hash

functions is sufficient for our solution.

To show the security of the protocol, we sketch how to sineuthe view of each
party using its inputs and outputs alone. If such simulaimdistinguishable from
the real execution of the protocol, for semi-honest pattiessimplies that the protocol
does not reveal any unintended information to the partitdipé.e., they learn only the
output and what can be deduced from their respective inpuat®atputs).

First, consider the client’. The client’s input consists of its biometri, M (X)
and the private key, and its outputs consists of @ lbdr each record int’s database
D. A simulator that is given these values simulat&s view by sending encrypted
bits of C’s input to the server as prescribed in step 1 of the protdttien simulates
the messages received by the client in step 3(a).iii usitgyptions of two randomly
chosen strings, and¢}, of lengthn. The simulator next creates a garbled circuit for
the computation given in step 3(b) that, on input cliemgSS andtjc’s computes bib,
sends the circuit to the client, and simulates the OT. Itésucthat given secure imple-
mentation of garbled circuit evaluation in the real proiotitee client cannot distinguish
simulation from real protocol execution. Furthermore \thkeies that” recovers in step
3(a).iv of the protocol are distributed identically to thelwes used in the real protocol
execution that uses DGK encryption (and they are statltisaistinguishable when
other encryption schemes are used).

Now consider the server’'s view. The server has its datathasensisting ofY,
M(Y) and the threshold” as the input and no output. In this case, a simulator with
access tad first sends ta5' ciphertexts (as in step 1 of the protocol) that encrypt Hits o
its choice. For eacl € D, S performs its computation in step 3(a) of the protocol and
forms garbled circuits as specified in step 3(b). The semeértle simulator engage in
the OT protocol, where the simulator uses arbitrary bitdsamput to the OT protocol
and the server sends the key-value mapping for the outpeitigé clear that the server
cannot distinguish the above interaction from the realquoltexecution. In particular,
due to semantic security of the encryption schefrlearns no information about the
encrypted values and due to security of @Tearns no information about the values
chosen by the simulator for the garbled circuit.



