
Secure and Efficient Protocols for Iris and Fingerprint
Identification

Marina Blanton1 and Paolo Gasti2

1 Department of Computer Science and Engineering, University of Notre Dame
2 Department of Information and Computer Science, University of California, Irvine

Abstract. Recent advances in biometric recognition and the increasing use of
biometric data prompt significant privacy challenges associated with the possible
misuse, loss, or theft of biometric data. Biometric matching is often performed by
two mutually distrustful parties, one of which holds one biometric image while
the other owns a possibly large biometric collection. Due toprivacy and liabil-
ity considerations, neither party is willing to share its data. This gives rise to
the need to develop secure computation techniques over biometric data where
no information is revealed to the parties except the outcomeof the comparison
or search. To address the problem, in this work we develop andimplement the
first privacy-preserving identification protocol for iris codes. We also design and
implement a secure protocol for fingerprint identification based on FingerCodes
with a substantial improvement in the performance comparedto existing solu-
tions. We show that new techniques and optimizations employed in this work
allow us to achieve particularly efficient protocols suitable for large data sets and
obtain notable performance gain compared to the state-of-the-art prior work.

1 Introduction

Recent advances in biometric recognition make the use of biometric data more prevalent
for authentication and other purposes. Today large-scale collections of biometric data
include face, fingerprint, and iris images collected by the US Department of Homeland
Security (DHS) from visitors through its US-VISIT program [21], iris images collected
by the United Arab Emirates (UAE) Ministry of Interior from all foreigners and also
fingerprints and photographs from certain types of travelers [23], and several others.
While biometry serves as an excellent mechanism for authentication and identification
of individuals, such data is undeniably extremely sensitive and must be well protected.
Furthermore, once leaked biometric data cannot be revoked or replaced. For these rea-
sons, biometric data cannot be easily shared between organizations or agencies. How-
ever, there could be legitimate reasons to carry out computations on biometric data be-
longing to different entities. For example, a non-government agency may need to know
whether a biometric it possesses appears on the government watch-list. In this case the
agency would like to maintain the privacy of the individual if no matches are found, and
the government also does not want to release its database to third parties.

The above requires carrying out computation over biometricdata in a way that keeps
the data private and reveals only the outcome of the computation. In particular, we study

the problem ofbiometric identification, where a clientC is in a possession of a biomet-
ric X and a serverS possesses a biometric databaseD. The client would like to know
whetherX appears in the databaseD by comparing its biometric to the records inD.
The computation amounts to comparingX to eachY ∈ D in a privacy-preserving man-
ner. This formulation is general enough to apply to a number of other scenarios, ranging
from a single comparison ofX andY to the case where two parties need to compute
the intersection of their respective databases. We assume that the result of comparing
biometricsX andY is a bit, and no additional information aboutX or Y should be
learned by the parties as a result of secure computation. With our secure protocols, the
outcome can be made available to either party or both of them;for concreteness in our
description, we have the client learn the outcome of each comparison.

In this work we assume that both the client’s and the server’sbiometric images have
been processed and have representations suitable for biometric matching, i.e., each raw
biometric image has been processed by a feature extraction algorithm. For the types of
biometric considered in this work, this can be performed foreach image independently
and we do not discuss this further.

Prior work. Literature on secure multi-party computation is extensive. Starting from
the seminal work on garbled circuit evaluation [39], it has been known that any function
can be securely evaluated by representing it as a boolean circuit. Similar results are also
known for securely evaluating any function using secret sharing techniques (e.g., [36])
or homomorphic encryption (e.g., [11]). In the last severalyears a number of tools
have been developed for automatically creating a secure protocol from a function de-
scription written in a high-level language. Examples include Fairplay [30], VIFF [14],
TASTY [18], and others. It is, however, well-known that custom optimized protocols
are often constructed for specific applications due to the inefficiency of generation solu-
tion. Such custom solutions are known for a wide range of application (e.g., set opera-
tions [29, 17], DNA matching [38], k-means clustering [9], etc.), and this work focuses
on secure biometric identification using iris codes and fingerprints. Furthermore, some
of the optimizations employed in this work can find their usesin protocol design for
other applications, as well as general compilers and tools such as TASTY [18].

With the growing prevalence of applications that use biometrics, the need for se-
cure biometric identification was recognized in the research community. A number of
recent publications address the problem of privacy-preserving face recognition [16, 37,
33]. This problem was first treated by Erkin et al. [16], wherethe authors designed a
privacy-preserving face recognition protocol based on theEigenfaces algorithm. The
performance of that solution was consequently improved by Sadeghi et al. [37]. More
recently, Osadchy et al. [33] designed a new face recognition algorithm together with
its privacy-preserving realization called SCiFI. The design targeted to simultaneously
address robustness to different viewing conditions and efficiency when used for secure
computation. As a result, SCiFI is currently recognized as the best face identification
algorithm with efficient privacy-preserving realization.SCiFI takes 0.31 sec (during the
online phase) [33] to compare two biometrics, and thereforewould take about 99 sec to
compare a biometric to a database of 320 images (which is the database size used in the
experiments in several prior publications).

Another very recent work by Barni et al. [3] designs a privacy-preserving protocol
for fingerprint identification using FingerCodes [25]. FingerCodes use texture informa-
tion from a fingerprint to compare two biometrics. The algorithm is not as discrimi-
native as fingerprint matching techniques based on locationof minutiae points, but it
was chosen by the authors as particularly suited for efficient realization in the privacy-
preserving framework. As of the time of this writing, similar results for other types of
biometrics or other fingerprint matching techniques are notavailable in the literature.
We narrow this gap by providing a secure two-party protocol for widely used iris identi-
fication, as well as address fingerprint identification. Our protocols follow the standard
algorithms for comparing two biometrics, yet they are very efficient and outperform the
state-of-the-art protocols with a notable reduction in theoverhead.

Bringer et al. [8] describe a biometric-based authentication mechanism with privacy
protection of biometric, where the Hamming distance is usedas the distance metric.
The authentication server is composed of three entities that must not collude, and one
of them, the matcher, learns the computed Hamming distance.In our work, however,
no information beyond the outcome of the comparison is revealed, the computation
itself is more complex and corresponds to the actual algorithm used for iris code com-
parisons, and there is no need for additional or third-partyentities. Barbosa et al. [2]
extend the framework with a classifier to improve authentication accuracy and propose
an instantiation based on Support Vector Machine using homomorphic encryption.

Our contributions. In this work we treat the problem of privacy preserving biomet-
ric identification. We develop new secure protocols for two types of biometric, iris and
fingerprints, and achieve security against semi-honest adversaries. While iris codes are
normally represented as binary strings and use very similarmatching algorithms, there
is a variety of representations and comparison algorithms for fingerprints. In this paper,
we study FingerCodes that use fixed-size representations and an efficient comparison
algorithm.3 Our protocols were designed with efficiency in mind to permittheir use on
relatively large databases, and possibly in real time. While direct performance compari-
son of our protocols and the results available in the literature is possible only in the case
of FingerCode, we can use complexity of the computation to draw certain conclusions.
The results we achieve in this work are as follows:

1. Our secure FingerCode protocol is extremely fast and allows the parties to com-
pare two fingerprintsX andY using a small fraction of a second. For a database
of 320 biometrics, the online computation can be carried outin 0.45 sec with the
communication of 279KB. This is an over 30-fold improvementin both communi-
cation and computation over the privacy-preserving solution of [3], as detailed in
Section 5, and a significant improvement over an adaptation of [37] to this context.

2. Iris codes use significantly longer representations (thousands of bits) and require
more complex transformation of the data. Despite the lengthand complexity, our
solution allows two iris codes to be compared in 0.15 sec. With respect to the state-
of-the-art face recognition protocol SCiFI, which also relies on Hamming distance
computation, our protocol achieves lower overhead despitethe fact that the compu-
tation involves an order of magnitude larger number of more complex operations.

3 We also construct a secure protocol for minutiae-based fingerprint comparisons, but its descrip-
tion and implementation appear in the full version of this work [7] due to space constraints.

2 Description of Computation

In what follows, we assume that clientC holds a single biometricX and serverS
holds a database of biometricsD. The goal is to learn whetherC ’s biometric appears
in S’s database without learning any additional information. This is accomplished by
comparingX to each biometricY ∈ D, and as a result of each comparisonC learns a
bit that indicates whether the comparison resulted in a match.

Iris. Let an iris biometricX be represented as anm-bit binary string. We useXi to
denotei-th bit ofX . In iris-based recognition, after feature extraction, biometric match-
ing is normally performed by computing the Hamming distancebetween two biometric
representations. Furthermore, the feature extraction process is such that some bits of
the extracted stringX are unreliable and are ignored in the matching process. Infor-
mation about such bits is stored in an additionalm-bit string, calledmask, where its
i-th bit is set to 1 if thei-th bit of X should be used in the matching process and
is set to 0 otherwise. For biometricX , we useM(X) to denote the mask associated
with X . Often, a predetermined number of bits (e.g., 25% in [20] and35% in [4]) is
considered unreliable in each biometric template. Thus, tocompare two biometric rep-
resentationsX andY , their Hamming distance takes into account the respective masks.
That is, if the Hamming distance between two iris codes without masks is computed as:
HD(X, Y) = (||X ⊕ Y ||)/m = (

∑m

i=1 Xi⊕Yi)/m, the computation of the Hamming
distance that uses masks becomes [15]:

HD(X, M(X), Y, M(Y)) =
||(X ⊕ Y) ∩M(X) ∩M(Y)||

||M(X) ∩M(Y)||
(1)

In other words, we haveHD(X, M(X), Y, M(Y)) =
P

m
i=1

((Xi⊕Yi)∧M(Xi)∧M(Yi))
P

m
i=1

(M(Xi)∧M(Yi))
.

Throughout this work, we assume that the latter formula is used and simplify the nota-
tion toHD(X, Y). Then the computed Hamming distance is compared with a specific
thresholdT , and the biometricsX andY are considered to be a match if the distance
is below the threshold, and a mismatch otherwise. The threshold T is chosen based on
the distributions of authentic and impostor data. (In the likely case of overlap of the two
distributions, the threshold is set to achieve the desired levels of false accept and false
reject rates based on the security goals.)

Two iris representations can be slightly misaligned. This problem is caused by head
tilt during image acquisition. To account for this, the matching process attempts to
compensate for the error and rotates the biometric representation by a fixed amount
to determine the lowest distance. Each biometric is represented as a two-dimensional
array, therefore a circular shift is applied to each row by shifting its representation
by a small fixed number of times, which we denote byc. The minimum Hamming
distance across all runs is then compared to the threshold. That is, if we letLS

j(·) (resp.,
RS

j(·)) denote a circular left (resp., right) shift of the argumentby a fixed number of
bits (2 bits in experiments conducted by the biometrics group at our institution, where
application of the Gabor filter during feature extraction results in a complex number,
which is quantized into a 2-bit value), the matching processbecomes:

min(HD(X, LS
c(Y)), . . ., HD(X, LS

1(Y)), HD(X, Y),

HD(X, RS
1(Y)), . . ., HD(X, RS

c(Y)))
?
< T

(2)

Throughout this work we assume that the algorithms for comparing two biometrics are
public, as well as any constant parameters such asT . Our protocols, however, maintain
their security and performance guarantees if the (fixed) thresholds are known only to
the server who owns the database.

Fingerprints. Work on fingerprint identification dates many years back witha number
of different approaches currently available (see, e.g., [31] for an overview). The most
popular and widely used techniques extract information about minutiae from a finger-
print and store that information as a set of points in the two-dimensional plane. Fin-
gerprint matching can also be performed using a different type of information extracted
from a fingerprint image. One example is FingerCode [25] which uses texture informa-
tion from a fingerprint scan to form fingerprint representation X . While FingerCodes
are not as distinctive as minutiae-based representations and are best suited for use in
combination with minutiae to improve the overall matching accuracy [31], FingerCode-
based identification can be implemented very efficiently in aprivacy-preserving proto-
col. In particular, each FingerCode consists of a fixed number m elements ofℓ bits each.
Then FingerCodesX = (x1, . . ., xm) andY = (y1, . . ., ym) are considered a match if
the Euclidean distance between their elements is below the thresholdT :

√

∑m

i=1
(xi − yi)2

?
< T (3)

Barni et al. [3] was the first to provide a privacy-preservingprotocol for FingerCode-
based biometric identification. We show that the techniquesemployed in this work im-
prove both computation and communication of the protocol of[3] by a large factor.

3 Preliminaries

Security model. We use the standard security model for secure two-party computation
in presence of semi-honest participants (also known as honest-but-curious or passive).
In particular, it means that the parties follow the prescribed behavior, but might try to
compute additional information from the information obtained during protocol execu-
tion. Security in this setting is defined using simulation argument: the protocol is secure
if the view of protocol execution for each party is computationally indistinguishable
from the view simulated using that party’s input and output only. This means that the
protocol execution does not reveal any additional information to the participants. The
definition below formalizes the notion of security for semi-honest participants:

Definition 1. Let partiesP1 and P2 engage in a protocolπ that computes function
f(in1, in2) = (out1, out2), whereini and outi denote input and output of partyPi,
respectively. LetVIEWπ(Pi) denote the view of participantPi during the execution
of protocolπ. More precisely,Pi’s view is formed by its input, internal random coin
tossesri, and messagesm1, . . ., mt passed between the parties during protocol execu-
tion, i.e.,VIEWπ(Pi) = (ini, ri, m1, . . ., mt). We say that protocolπ is secure against
semi-honest adversaries if for each partyPi there exists a probabilistic polynomial
time simulatorSi such that{Si(ini, f(in1, in2))} ≡ {VIEWπ(Pi), outi}, where “≡”
denotes computational indistinguishability.

Homomorphic encryption. Our constructions use a semantically secure additively
homomorphic encryption scheme. In an additively homomorphic encryption scheme,
Enc(m1) · Enc(m2) = Enc(m1 + m2) which also implies thatEnc(m)a = Enc(a ·m).
While any encryption scheme with the above properties (suchas the well known Paillier
encryption scheme [34]) suffices for the purposes of this work, the construction due to
Damgård et al. [13, 12] (DGK) is of particular interest here. We also note that in Paillier
encryption scheme, a public key consists of ak-bit RSA modulusN = pq, wherep and
q are prime, and an elementg whose order is a multiple ofN in Z

∗

N2 . Given a message

m ∈ ZN , encryption is performed asEnc(m) = gmrn mod N2, wherer
R
← ZN and

notationa
R
← A means thata is chosen uniformly at random from the setA. In DGK

encryption scheme [13, 12], which was designed to work with small plaintext spaces
and has shorter ciphertext size than other randomized encryption schemes, a public key
consists of (i) a (small, possibly prime) integeru that defines the plaintext space, (ii)
k-bit RSA modulusN = pq such thatp andq arek/2-bit primes,vp andvq aret-bit
primes, anduvp|(p− 1) anduvq|(q − 1), and (iii) elementsg, h ∈ Z

∗
N such thatg has

orderuvpvq andh has ordervpvq. Given a messagem ∈ Zu, encryption is performed

asEnc(m) = gmhr mod N , wherer
R
← {0, 1}2.5t. We refer the reader to the original

publications [34] and [13, 12], respectively, for any additional information.

Garbled circuit evaluation. Originated in Yao’s work [39], garbled circuit evaluation
allows two parties to securely evaluate any function represented as a boolean circuit.
The basic idea is that, given a circuit composed of gates, onepartyP1 creates a garbled
circuit by assigning to each wire two randomly chosen keys.P1 also encodes gate in-
formation in a way that given keys corresponding to the inputwires (encoding specific
inputs), the key corresponding to the output of the gate on those inputs can be recov-
ered. The second party,P2, evaluates the circuit using keys corresponding to inputs of
bothP1 andP2 (without learning anything in the process). At the end, the result of the
computation can be recovered by linking the output keys to the bits which they encode.

Recent literature provides optimizations that reduce computation and communi-
cation overhead associated with circuit construction and evaluation. Kolesnikov and
Schneider [27] describe an optimization that permits XOR gates to be evaluated for
free, i.e., there is no communication overhead associated with such gates and their eval-
uation does no involve cryptographic functions. This optimization is possible when the
hash function used for creating garbled gates can be assumedto be correlation robust
(see [28, 27] for more detail). Under the same assumptions, Pinkas et al. [35] addition-
ally give a mechanism for reducing communication complexity of binary gates by 25%:
now each gate can be specified by encoding only three outcomesof the gate instead of
all four. Finally, Kolesnikov et al. [26] improve the complexity of certain commonly
used operations such as addition, multiplication, comparison, etc. by reducing the num-
ber of non-XOR gates: adding twon-bit integers requires5n gates,n of which are
non-XOR gates; comparing twon-bit integers requires4n gates,n of which are non-
XOR gates; and computing the minimum oft n-bit integers (without the location of the
minimum value) requires7n(t− 1) gates,2n(t− 1) of which are non-XOR gates.

With the above techniques, evaluating a non-XOR gates involves one invocation of
the hash function (which is assumed to be correlation robust). During garbled circuit

evaluation,P2 directly obtains keys corresponding toP1’s inputs fromP1 and engages
in the oblivious transfer (OT) protocol to obtain keys corresponding toP2’s inputs.

Oblivious Transfer. In 1-out-of-2 Oblivious Transfer,OT 2
1 , one party, the sender,

has as its input two stringsm0, m1 and another party, the receiver, has as its input a
bit b. At the end of the protocol, the receiver learnsmb and the sender learns nothing.
Similarly, in 1-out-of-N OT the receiver obtains one of theN strings held by the sender.
There is a rich body of research literature on OT, and in this work we use its efficient
implementation from [32] as well as techniques from [24] that reduce a large number
of OT protocol executions toκ of them, whereκ is the security parameter. This, in
particular, means that obtaining the keys corresponding toP2’s inputs in garbled circuit
evaluation byP2 incurs only small overhead.

4 Secure Iris Identification

As indicated in equation 1, computing the distance between two iris codes involves per-
forming the division operation. While techniques for carrying out this operation using
secure multi-party computation are known (see, e.g., [1, 9,6, 10]), their performance in
practice even using very recent results is far from satisfactory for this application As an
example, Blanton [5] reports that two-party evaluation of garbled circuits produced by
Fairplay takes several seconds for numbers of length 24–28 bits, but circuits for longer
integers could not be constructed due to the rapidly increasing memory requirements
of Fairplay. Hoens et al. [19] report that building a multi-party division protocol us-
ing homomorphic encryption alone requires on the order of anhour to carry out the
operation for 32-bit integers. Fortunately, in our case thecomputation can be rewrit-
ten to completely avoid this operation and replace it with multiplication. That is, using
the notationHD(X, Y) = ||(X ⊕ Y) ∩ M(X) ∩ M(Y)|| / ||M(X) ∩ M(Y)|| =

D(X, Y) / M(X, Y), instead of testing whetherHD(X, Y)
?
< T , we can test whether

D(X, Y)
?
< T ·M(X, Y). While the computation of the minimum distance as used

in equation 2 is no longer possible, we can replace it with equivalent computation that
does not increase its cost. Now the computation becomes:
(

D(X, LS
c(Y))

?
< T ·M(X, LS

c(Y))
)

∨· · ·∨
(

D(X, RS
c(Y))

?
< T ·M(X, RS

c(Y))
)

(4)
When this computation is carried over real numbers,T lies in the range [0, 1]. In our
case, we need to carry the computation over the integers, which means that we “scale
up” all values with the desired level of precision. That is, by usingℓ bits to achieve
desired precision, we multiplyD(X, Y) by 2ℓ and letT range between 0 and2ℓ. Now
2ℓD(X, Y) andT ·M(X, Y) can be represented using⌈log m⌉+ ℓ bits.

Security. Due to space constraints, we defer the security analysis of our iris identifica-
tion protocol, described in Sections 4.1 and 4.2 below, to Appendix A.

4.1 Base Protocol

In what follows, we first describe the protocol in its simplest form. Section 4.2 presents
optimizations and the resulting performance of the protocol.

In our solution, the clientC generates a public-private key pair(pk, sk) for a ho-
momorphic encryption scheme and distributes the public keypk. This is a one-time
setup cost for the client for all possible invocations of this protocol with any number
of servers. During the protocol itself, the secure computation proceeds as specified in
equation 4. In the beginning,C sends its inputs encrypted withpk to the serverS. At
the server side, the computation first proceeds using homomorphic encryption, but later
the client and the server convert the intermediate result into a split form and finish the
computation using garbled circuit evaluation. This is due to the fact that secure two-
party computation of the comparison is the fastest using garbled circuit evaluation [26],
but the rest of the computation in our case is best performed on encrypted values.

To computeD(X, Y) =
∑m

i=1(Xi⊕Yi)∧M(Xi)∧M(Yi) using algebraic compu-
tation, we useXi⊕Yi = Xi(1−Yi)+(1−Xi)Yi and obtainD(X, Y) =

∑m

i=1(Xi(1−
Yi)+ (1−Xi)Yi)M(Xi)M(Yi). M(X, Y) is computed as

∑m

i=1 M(Xi)M(Yi). Then
if S obtains encryptions ofXiM(Xi), (1−Xi)M(Xi), andM(Xi) for eachi from C,
the server will be able to computeD(X, Y) andM(X, Y) using its knowledge of the
Yi’s and the homomorphic properties of the encryption. Figure1 describes the protocol,
in which after receivingC ’s encrypted valuesS producesEnc(M(Xi))’s and proceeds
to computeD(X, Y j) andM(X, Y j) in parallel for eachY in its database, whereY j

denotes biometricY shifted byj positions andj ranges from−c to c. At the end of steps
3(a).i and 3(a).ii the server obtainsEnc(2ℓD(X, Y j)+rj

S) for a randomly chosenrj
S of

its choice, and at the end of step 3(a).iiiS obtainsEnc(T ·M(X, Y j)+tjS) for a random
tjS of its choice. The server sends these values to the client whodecrypt them. Therefore,
at the end of step 3(a)C holdsrj

C = 2ℓD(X, Y j) + rj
S andtjC = T ·M(X, Y j) + tjS

andS holds−rj
S and−tjC , i.e., they additively share2ℓD(X, Y j) andT ·M(X, Y j).

What remains to compute is2c + 1 comparisons (one per eachY j) followed by2c
OR operations as specified by equation 4. This is accomplished using garbled circuit
evaluation, whereC entersrj

C ’s andtjC ’s andS entersrj
S ’s andtjS ’s and they learn a

bit, which indicates whetherY was a match.
Note that sincerj

C ’s, rj
S ’s, tjC ’s andtjS ’s are used as inputs to the garbled circuit and

will need to be added inside the circuit, we want them to be as small as possible. There-
fore, instead of providing unconditional hiding by choosing tjS andrj

C from Z
∗
N (where

N is frompk), the protocol achieves statistical hiding by choosing these random values
to beκ bits longer than the values that they protect, whereκ is a security parameter.

4.2 Optimizations

Pre-computation and offline communication. Similar to prior literature on secure
biometric identification [16, 37, 33, 3], we distinguish between offline and online stages,
where any computation and computation that does not depend on the inputs of the par-
ticipating parties can be moved to the offline stage. In our protocol, first notice that most
modular exponentiations (the most expensive operation in the encryption scheme) can
be precomputed. That is, the client needs to produce2m encryptions of bits. Because
bothm and the average number of 0’s and 1’s in a biometric and a mask are known,
the client can produce a sufficient number of bit encryptionsin advance. In particular,
X normally will have 50% of 0’s and 50% of 1’s, while 75% (or a similar number)

Input: C has biometricX, M(X) and key pair(pk, sk); S has a databaseD composed ofY ,
M(Y) biometrics.
Output: C learns what records inD resulted in match withX if any, i.e., it learns a bit as a
result of comparison ofX with eachY ∈ D.
Protocol steps:

1. For eachi = 1, . . ., m, C computes encryptions〈ai1, ai2〉 = 〈Enc(XiM(Xi)), Enc((1−
Xi)M(Xi))〉 and sends them toS.

2. For eachi = 1, . . ., m, S computes encryption ofM(Xi) by settingai3 = ai1 · ai2 =
Enc(XiM(Xi)) · Enc((1−Xi)M(Xi)) = Enc(M(Xi)).

3. For each recordY in the database,S andC perform the following steps in parallel:
(a) For each amount of shiftj = −c, . . ., 0, . . ., c, S rotates the bits ofY by the appro-

priate number of positions to obtainY j and proceeds with allY j ’s in parallel.
i. To compute (Xi ⊕ Y

j
i)M(Xi)M(Y j

i) = (Xi(1 − Y
j

i) + (1 −

Xi)Y
j

i)M(Xi)M(Y j
i) in encrypted form,S computesbj

i = a
(1−Y

j
i

)M(Y
j

i
)

i1 ·

a
Y

j
i

M(Y
j

i
)

i2 = Enc(XiM(Xi)(1− Y
j

i)M(Y j
i) + (1−Xi)M(Xi)Y

j
i M(Y j

i)).
ii. S adds the values contained inb

j
i ’s to obtainbj =

Qm

i=1 b
j
i = Enc(

Pm

i=1(Xi ⊕
Y

j
i)M(Xi)M(Y j

i)) = Enc(||(X ⊕ Y j) ∩M(X) ∩M(Y j)||). S then “lifts

up” the result, blinds, and randomizes it ascj = (bj)2
ℓ

· Enc(rj
S), wherer

j
S

R
←

{0, 1}⌈log m⌉+ℓ+κ, and sends the resultingcj to C.

iii. To obtainT (||M(X) ∩M(Y j)||), S computesdj
i = a

M(Y
j
i

)

i3 = Enc(M(Xi) ·
M(Y j

i)) anddj = (
Qm

i=1 d
j
i)

T = Enc(T (
Pm

i=1 M(Xi)M(Y j
i))). S blinds

and randomizes the result asej = dj ·Enc(tj
S), wheret

j
S

R
← {0, 1}⌈log m⌉+ℓ+κ,

and sendsej to C.
iv. C decrypts the received values and setsr

j

C = Dec(cj) andt
j

C = Dec(ej).
(b) C andS perform2c + 1 comparisons and OR of the results of the comparisons using

garbled circuit.C entersr
j
C ’s and t

j
C ’s, S enters−r

j
S ’s and−t

j
S ’s, andC learns

bit b computed as
Wc

j=−c((r
j

C − r
j

S)
?
< (tj

C − t
j

S)). To achieve this,S creates the
garbled circuit and sends it toC. C obtains keys corresponding to its inputs using OT,
evaluates the circuit, andS sends toC the key-value mapping for the output gate.

Fig. 1.Secure two-party protocol for iris identification.

of M(X)’s bits are set to 1 and 25% to 0 during biometric processing. Let p0 andp1

(q0 andq1) denote the fraction of 0’s and 1’s in an iris code (resp., itsmask), where
p0 + p1 = q0 + q1 = 1. Therefore, to have a sufficient supply of ciphertexts to form
tuples〈ai1, ai2〉, the client needs to precompute(2q0 + q1(p1 + ε) + q1(p0 + ε))m =
(1 + q0 + 2q1ε)m encryptions of 0 and(q1(p1 + ε) + q1(p0 + ε))m = q1(1 + 2ε)m
encryptions of 1, whereε is used as a cushion since the number of 0’s and 1’s inX
might not be exactlyp0 andp1, respectively. Then at the time of the protocol the client
simply uses the appropriate ciphertexts to form its transmission.

Similarly, the server can precompute a sufficient supply of encryptions ofrj
S ’s and

tjS ’s for all records. That is, the server needs for produce2(2c + 1)|D| encryptions of
different random values of length⌈log m⌉ + ℓ + κ, where|D| denotes the size of the
databaseD. The server also generates one garbled circuit per recordY in its database
(for step 3(b) of the protocol) and communicates the circuits to the client. In addition,

the most expensive part of the oblivious transfer can also beperformed during the offline
stage, as detailed below.

Optimized multiplication. Server’s computation in steps 3(a).i and 3(a).iii of the pro-
tocol can be significantly lowered as follows. To compute ciphertextsbj

i , S needs to

calculatea
(1−Y

j

i
)M(Y j

i
)

i1 · a
Y

j

i
M(Y j

i
)

i2 . Since the bitsY j
i andM(Y j

i) are known toS, this
computation can be rewritten using one of the following cases:

– Y j
i = 0 andM(Y j

i) = 0: in this case both(1 − Y j
i)M(Y j

i) andY j
i M(Y j

i) are
zero, which means thatbj

i should correspond to an encryption of 0 regardless ofai1

andai2. Instead of havingS create an encryption 0, we setbj
i to the empty value,

i.e., it is not used in the computation ofbj in step 3(a).ii.
– Y j

i = 1 andM(Y j
i) = 0: the same as above.

– Y j
i = 0 andM(Y j

i) = 1: in this case(1 − Y j
i)M(Y j

i) = 1 andY j
i M(Y j

i) = 0,
which means thatS setsbj

i = ai1.
– Y j

i = 1 andM(Y j
i) = 1: in this case(1 − Y j

i)M(Y j
i) = 0 andY j

i M(Y j
i) = 1,

andS therefore setsbj
i = ai2.

The above implies that onlyq1m ciphertextsbj
i need to be added in step 3(a).ii to form

bj (i.e., q1m − 1 modular multiplications to compute the hamming distance between
m-element strings).

Similar optimization applies to the computation ofdj
i anddj in step 3(a).iii of the

protocol. That is, whenM(Y j
i) = 0, dj

i is set to the empty value and is not used in the
computation ofdj ; whenM(Y j

i) = 1, S setsdj
i = ai3. Consequently,q1m ciphertexts

are used in computingdj .
To further reduce the number of modular multiplications, wecan adopt the idea

from [33], which consists of precomputing all possible combinations for ciphertexts at
positionsi andi + 1 and reducing the number of modular multiplications used during
processing a database record in half. In our case, the value of bj

ib
j
i+1 requires com-

putation only whenM(Y j
i) = M(Y j

i+1) = 1. In this case, computingai1a(i+1)1,
ai1a(i+1)2, ai2a(i+1)1, andai2a(i+1)2, for each oddi between 1 andm − 1 will cover
all possibilities. Note that these values need to be computed once for all possible shift
amounts of the biometrics (since only server’sY ’s are shifted). Depending on the distri-
bution of the set bits in eachM(Y), the number of modular multiplication now will be
betweenq1m/2 (whenM(Yi) = M(Yi+1) for each oddi) andm(q0 + (1− 2q0)/2) =
m/2 (whenM(Yi) 6= M(Yi+1) for as many oddi’s as possible). This approach can be
also applied to the computation ofdj (where only the value ofai3a(i+1)3 needs to be
precomputed for each oddi) resulting in the same computational savings during com-
putation of the hamming distance. Furthermore, by precomputing the combinations of
more than two values additional savings can be achieved during processing of eachY .

Optimized encryption scheme.As it is clear from the protocol description, its perfor-
mance crucially relies on the performance of the underlyinghomomorphic encryption
scheme for encryption, addition of two encrypted values, and decryption. Instead of
utilizing a general purpose encryption scheme such as Paillier, we turn our attention to
schemes of restricted functionality which promise to offerimproved efficiency. In par-
ticular, the DGK additively homomorphic encryption scheme[13, 12] was developed
to be used for secure comparison, where each ciphertext encrypts a bit. In that setting,

it has faster encryption and decryption time than Paillier and each ciphertext has size
k using ak-bit RSA modulus (while Paillier ciphertext has size2k). To be suitable
for our application, the encryption scheme needs to supportlarger plaintext sizes. The
DGK scheme can be modified to work with longer plaintexts. In that case, at decryption
time, one needs to additionally solve the discrete logarithm problem where the base is
2-smooth using Pohlig-Hellman algorithm. This means that decryption uses additional
O(n) modular multiplications forn-bit plaintexts. Now recall that in the protocol we
encrypt messages of length⌈log m⌉ + ℓ + κ bits. The use of the security parameterκ
significantly increases the length of the plaintexts. We, however, notice that the DGK
encryption can be setup to permit arithmetic on encrypted values such that all compu-
tations on the underlying plaintexts are carried modulo2n for anyn. For our protocol
it implies that (i) the blinding valuesrj

S and tjS can now be chosen from the range
[0, 2n − 1], wheren = ⌈log m⌉+ ℓ, and (ii) this provides information-theoretic hiding
(thus improving the security properties of the protocol). This observation has a pro-
found impact not only on the client decryption time in step 3(a).iv (which decreases by
about an order of magnitude), but also on the consecutive garbled circuit evaluation,
where likewise the circuit size is significantly reduced in size.

Circuit construction. We construct garbled circuits using the most efficient techniques
from [35] and references therein. By performing addition modulo 2n and eliminating
gates which have a constant value as one of their inputs, we reduce the complexity of the
circuit for addition ton−1 non-XOR gates and5(n−1)−1 total gates. Similarly, after
eliminating gates with one constant input, the complexity of the circuit for comparison
of n-bit values becomesn non-XOR gates and4n−2 gates overall. Since in the protocol
there are two additions and one comparison per eachj followed by2c OR gates, the
size of the overall circuit is14(n − 1)(2c + 1) + 2c gates,(3n − 2)(2c + 1) + 2c of
which are non-XOR gates. Note that this circuit does not use multiplexers, which are
required (and add complexity) during direct computation ofminimum.

Oblivious transfer. The above circuit requires each party to supply2n(2c + 1) input
bits, and a new circuit is used for eachY in D. Similar to [18], the combination of
techniques from [24] and [32] achieves the best performancein our case. Let the server
create each circuit and the client evaluate them. Using the results of [24], performing
OT 2

1 the total of2n(2c + 1)|D| times, where the client receives aκ-bit string as a re-
sult of each OT for a a security parameterκ, can be reduced toκ invocations ofOT 2

1

(that communicates to the receiverκ-bit strings) at the cost of4κ · 2n(2n + 1)|D| bits
of communication and4n(2c + 1) applications of a hash function for the sender and
2n(2c+1) applications for the receiver. Thenκ OT 2

1 protocols can be implemented us-
ing the construction of [32] with low amortized complexity,where the sender performs
2 + κ and the receiver performs2κ modular exponentiations with the communication
of 2κ2 bits andκ public keys. The OT protocols can be performed during the offline
stage, while the additional communication takes place oncethe inputs are known.

Further reducing online communication. If transmitting2m ciphertexts during the
online stage of the protocol (which amounts to a few hundred KB for our set of param-
eters) constitutes a burden, this communication can be performed at the offline stage
before the protocol begins. This can be achieved using the technique of [33]. We refer
the reader to the full version [7] for details of applying this technique to our solution.

Offline Online
Setup enc circuit total enc circuit total

Serverc = 5 1398 + 71/rec1780 + 8.5/rec3178 + 79.5/rec108 + 148/rec1.2/rec 89 + 149.2/rec
c = 0 1398 + 6.5/rec1457 + 0.7/rec2855 + 7.2/rec 108 + 13.6/rec0.1/rec 89 + 13.7/rec

Client c = 5 11.93s 1693 + 3.4/rec13.62s + 3.4/rec 20/rec 2.6/rec 22.6/rec
c = 0 11.93s 1055 + 0.3/rec12.99s + 0.3/rec 1.8/rec 0.2/rec 2.0/rec

Commc = 5 512 11.6 + 22.1/rec524 + 22.1/rec 0.5 + 2.7/rec17.2/rec0.5 + 19.9/rec
c = 0 512 11.6 + 2/rec 524 + 2/rec 0.5 + 0.2/rec 1.6/rec 0.5 + 1.8/rec

Table 1. Breakdown of the performance of the iris identification protocol. Time is expressed in
milliseconds unless otherwise stated, and communication overhead in KB.

4.3 Implementation and Performance

We implemented the secure iris identification protocol in C using MIRACL library [22]
for cryptographic operations. The implementation used DGKencryption scheme [13,
12] with a 1024-bit modulus and another security parametert set to 160, as suggested
in [13, 12]. To simplify comparisons with prior work, throughout this work we use
k = 1024 security parameter for public-key cryptography andκ = 80 for symmetric
and statistical security. The experiments were run on an Intel Core 2 Duo 2.13 GHz
with 3GB of RAM andgccversion 4.4.5 on Linux.

Table 1 shows performance of the secure iris identification protocol and its compo-
nents. The performance was obtained using the following setof parameters: the size of
iris code and maskm = 2048 (this value ofm is used in commercial iris recognition
software), 75% of bits are reliable in each iris code, and thelengthn of values is 20 bits.
All optimizations described earlier in this section were implemented. In our implemen-
tation, upon receipt of client’s data, the server precomputes all combinations for pairs of
ciphertextsbibi+1 in step 3(a).ii (one-time cost of the total of4(m/2) modular multipli-
cations) and all combinations of 4 elementsdidi+1di+2di+3 in step 3(a).iii (one-time
cost of11(m/4) modular multiplications). This cuts the server’s time for processing
eachY by more than a half. Furthermore, the constant overhead associated with the
OT (circuit) can be reduced in terms of both communication and computation for both
parties if public-key operations are implemented over elliptic curves.

The table shows performance using different configurationswith the amount of ro-
tationc = 5 and no rotation withc = 0 (this is used when the images are well aligned,
which is the case for iris biometrics collected at our institution). In the table, we divide
the computation and communication into offline precomputation and online protocol
execution. No inputs are assumed to be known by any party at precomputation time.
Some of the overhead depends on the server’s database size, in which case the computa-
tion and communication are indicated per record (using notation “/rec”). The overhead
associated with the part of the protocol that uses homomorphic encryption is shown
separately from the overhead associated with garbled circuits. The offline and online
computation for the part based on homomorphic encryption iscomputed as described
in Section 4.2. For circuits, garbled circuit creation, communication, and some of OT
is performed at the offline stage, while the rest of OT (as described in Section 4.2) and
garbled circuit evaluation takes place during the online protocol execution.

Input: C has biometricX = (x1, . . ., xm) and DGK encryption key pair(pk, sk); S has a
databaseD composed of biometricsY = (y1, . . ., ym).
Output: C learns what records inD resulted in match withX if any, i.e., it learns a bit as a
result of comparison ofX with eachY ∈ D.
Protocol steps:

1. C computes and sends toS encryptionsEnc(−2x1), . . ., Enc(−2xm), Enc(
Pm

i=1 x2
i).

2. For eachY = (y1, . . ., ym) ∈ D, S andC perform in parallel:
(a) S computes the encrypted distanced betweenX andY asd = Enc(

Pm

i=1 x2
i) ·

Enc(
Pm

i=1 y2
i) ·

Qm

i=1 Enc(−2xi)
yi = Enc(

Pm

i=1(xi − yi)
2), blinds it asd′ =

d · Enc(rS), whererS
R
← {0, 1}n, and sendsd′ to C.

(b) C decrypts the value it receives and setsrC = Dec(d′).

(c) C andS engage in a secure protocol that computes((rC − rS) mod 2n)
?
< T 2 using

garbled circuit evaluation.S creates the circuit and sends it toC along with the key-
value mapping for the output gate.C obtains keys corresponding to its inputs fromS
using OT, evaluates the circuit, and learns the result.

Fig. 2. Secure two-party protocol for FingerCode identification.

It is evident that our protocol design and optimizations allow us to achieve notable
performance. In particular, comparison of two iris codes, which includes computation of
2(2c+1) = 22 Hamming distances over 2048-bit biometrics in encrypted form, is done
in 0.15 sec. This is noticeably lower than 0.3 sec online timeper record reported by the
best currently known face recognition protocol SCiFI [33],which computes a single
Hamming distance over 900-bit values. That is, despite an order of magnitude larger
number of operations and more complex operations such as division, computation of
minimum, etc., we are able to outperform prior work by roughly 50%. This in particular
implies that using the techniques suggested in this work (and DGK encryption scheme
in particular) performance of SCiFI and other existing protocols can be improved to
a fraction of the previously reported time. When iris imagesare well aligned and no
rotation is necessary our protocol requires only 14 msec online computation time and
under 2KB of data to compare two biometrics.

5 Secure Fingerprint Identification

In this section we illustrate how a number of the techniques developed in this work
for iris identification can be applied to other types of biometric computations such as
FingerCodes. In particular, we show that the efficiency of the secure protocol for Fin-
gerCode identification [3] can be improved by an order of magnitude.

The computation involved in FingerCode comparisons is verysimple, which re-
sults in an extremely efficient privacy-preserving realization. Similar to [3], we rewrite
the computation in equation 3 as

∑m

i=1(xi − yi)
2 =

∑m

i=1(xi)
2 +

∑m

i=1(yi)
2 −

∑m

i=1 2xiyi < T 2. In our protocol, the Euclidean distance is computed using ho-
momorphic encryption, while the comparisons are performedusing garbled circuits.
The secure FingerCode protocol is given in Figure 2: the client contributes encryp-
tions of−2xi and

∑

(xi)
2 to the computation, while the server contributes

∑

(yi)
2 and

Offline Online
enc circuit total enc circuit total

Server3.6 + 3.9/rec1448 + 0.37/rec1451.6 + 4.3/rec0.22 + 1.37/rec0.05/rec0.22 + 1.42/rec
Client 61 1025 + 0.15/rec1086 + 0.15/rec 4.7 + 0.92/rec0.16/rec4.7 + 1.08/rec
Comm 0 11.6 + 1.26/rec11.6 + 1.26/rec 2.12 + 0.12/rec0.74/rec2.12 + 0.86/rec

Table 2. Breakdown of the performance of the FingerCode identification protocol. Time is ex-
pressed in milliseconds and communication overhead in KB.

computes encryption of−2xiyi from −2xi. Note that by usingEnc(−2xi) instead of
Enc(xi), the server’s work for eachY is reduced since negative values use significantly
longer representations. The protocol in Figure 2 uses DGK encryption with the plain-
text space of[0, 2n − 1]. To be able to represent the Euclidean distance, we need to set
n = ⌈log m⌉+ 2ℓ + 1, whereℓ is the bitlength of elementsxi andyi. This implies that
all computation on plaintexts is performed modulo2n; for instance,2n − 2xi is used
in step 1 to formEnc(−2xi). The circuit used in step 2(c) takes twon-bit values, adds
them modulo2n, and compares the result to a constant as described in Section 4.2.

Finally, some of the computation can be performed offline: for the client it includes
precomputing the random values used in them + 1 ciphertexts it sends in step 1 (com-
putation ofhr mod N), and for the server includes precomputingEnc(rS) and prepar-
ing a garbled circuit for eachY , as well as one-time computation of random values for
Enc(

∑m

i=1(yi)
2) since the reuse of such randomness does not affect security.The client

and the server also perform some of OT functionality prior toprotocol initiation.
In the FingerCode protocol of [3], each fingerprint in the server’s database is rep-

resented byc FingerCodes that correspond to different orientations of the same finger-
print, which improves the accuracy of matching. The protocol of [3], however, reports
all matches within thec FingerCodes corresponding to the same fingerprint, and thisis
what our protocol in Figure 2 computes. If it is desirable to output only a single bit for
all c instances of a fingerprint, it is easy to modify the circuit evaluated in step 2(c) of
the protocol to compute the OR of the bits produced by the original c circuits.

Security. The security of this protocol is straightforward to show andwe omit the
details of the simulator from the current description.

Implementation and performance. The FingerCode parameters can range asm =
16–640,ℓ = 4–8, andc = 5. We implement the protocol using parametersm = 16
andℓ = 7 (the same as in [3]) and thereforen = 19. The performance of our secure
FingerCode identification protocol is given in Table 2. No inputs (X or Y) are assumed
to be known at the offline stage when the parties compute randomization values of
the ciphertexts. For that reason, a small fixed cost is inquired in the beginning of the
protocol to finish forming the ciphertext using the data itself. We also note that, based
on our additional experiments, by using Paillier encryption instead of DGK encryption,
the server’s online work increases by an order of magnitude,even if packing is used.

It is evident that the overhead reported in the table is minimal and the protocol is
well suited for processing fingerprint data in real time. In particular, for a database of
320 records used in prior work (64 fingerprints with 5 FingerCodes each used in [3]),
client’s online work is 0.35 sec and the server’s online workis 0.45 sec, with online

communication of 279KB. As can be seen from these results, computation is no longer
the bottleneck and this secure two-party protocol can be carried out extremely effi-
ciently. Compared to the solution in [3] that took 16 sec for the online stage with
the same setup, the computation speed up is by a factor of 35. Communication effi-
ciency, however, is what was specifically emphasized in the protocol of [3] resulting in
10101KB online overhead for a database of size 320. Our solution therefore improves
such result by a factor of 35. We also would like to note that all offline work in [3] is for
ciphertext precomputation (since no garbled circuits are used) and is non-interactive,
while in our protocol circuit transmission and input-independent portions of OT can
be done prior to the protocol itself and involve interaction. We, however, note that the
overall (offline and online) computation for|D| = 320 is 1.48 sec for the client and
3.27 sec for the server with the total of 692KB communication, which is still at least
several times lower than the online portion of the time and communication in [3].

Privacy-preserving face recognition techniques by Sadeghi et al. [37] can also be
adapted to perform secure FingerCode comparisons. They were developed for a differ-
ent context, but also involve computing Euclidean distances using homomorphic en-
cryption, followed by garbled circuits-based comparisonsof the results. (Comparison
of face images also includes projecting a client’s face to a different vector space as the
first step of the protocol, but it is not needed here.) The authors of [37] use Paillier
homomorphic encryption for distance computation, where packing of multiple values
into a single ciphertext is used at certain points of the protocol. In particular, ciphertext
d′ that the server sends to the client in step 2(b) contains up tot = ⌊k−κ

n
⌋ distances

(for k-bit modulus and statistical security parameterκ), wheret = 49 in our case. This
results in fewerEnc(rS) to form, transmit, and decrypt.

When we compare communication of our protocol with that based on techniques
of [37], we obtain that the initial transmission of client biometric is lower by a factor
of 2 in our protocol. The circuit size, and thus corresponding work and communica-
tion, is slightly larger in [37] due to handling of additional κ bits pert distances. The
communication associated with transmission of encrypted blinded distances, however,
is significantly lower in [37] due to packing. Overall, we obtain that communication
of both solutions is very similar because the communicationoverhead is heavily domi-
nated by garbled circuits. For the distance computation, [37] report runtime of 6.08 sec
for the client and 0.47 sec for the server for|D| = 320, while distance computation
in our protocol (including precomputation) is 0.36 sec for the client and 1.69 sec for
the server for the same|D|. In [37] the number of dimensionsm = 12, while we have
m = 16, but the length of values isn = 50 in [37], while we haven = 19. The compu-
tation itself in [37] is more expensive (including interaction between the parties, which
we do not have) due to the need to transform client’s data, butfaster machines are used.

To obtain a better insight on how performance of Paillier encryption with packing
compares to that of DGK encryption for our application, we implemented our protocol
using techniques of [37] (note that distance computation ismore efficient than what is
described in [37]). We used a 1024-bit modulus and a number ofoptimizations sug-
gested in [34] for best performance. In particular, small generatorg = 2 was used
to achieve lower encryption time, and decryption is sped up using pre-computation
and Chinese remainder computation (see [34], section 7 for more detail). For opti-

mally packed values which result in the lowest overhead per record, we obtain that
the server’s precomputation is 31.9 + 1.31/rec (all in msec), server’s online work is
1.0 + 24.68/rec, client’s precomputation is 545.4, and client’s online work is 509.6 +
0.22/rec. For|D| = 320, we obtain the client’s overall runtime of 1.13 sec and server’s
runtime of 8.24 sec, where the increase in time compared to the performance in [37]
can be explained by largerm and slower machines (note that this is the opposite of
what is reported in [37]; the server clearly performs the majority of distance computa-
tion work). We obtain that our approach is faster by a factor of almost 5 than the use
of Paillier encryption with packing as suggested in [37] andonline work is faster by a
factor of 9.3. And as previously described, the circuit overhead of [37] is slightly larger
due to the need to achieve statistical hiding of computed distances.

6 Conclusions

The protocol design presented in this work suggests certainprinciples that lead to an
efficient implementation of a privacy-preserving protocolfor biometric identification:
(i) representation of client’s biometric plays an important role; (ii) operations that ma-
nipulate bits are the fastest using tools other than encryption; (iii) a proper tuning of
encryption tools can result in a significant speedup. Using these principles and a num-
ber of new techniques in this work we develop and implement secure protocols for iris
and fingerprint identification that use standard biometric recognition algorithms. The
optimization techniques employed in this work allow us to achieve notable performance
results for different secure biometric identification protocols.

In particular, we develop the first privacy-preserving two-party protocol for iris
codes using current biometric recognition algorithms. Despite the length of iris codes’
representation and the complexity of their processing, ourprotocol allows a secure com-
parison between two biometrics to be performed in 0.15 sec with communication of
under 18KB. Furthermore, when the iris codes are known to be well-aligned and their
rotation is not necessary, the overhead decreases by an order of magnitude to 14 msec
computation and 2KB communication per comparison.

Two FingerCodes used for fingerprint recognition can be compared at low cost,
which allowed us to develop an extremely efficient privacy-preserving protocol. Com-
paring two fingerprints requires approximately 1 msec of computation, allowing thou-
sands of biometrics to be processed in a matter of seconds. Communication overhead
is also very modest with less than 1KB per biometric comparison. Compared to prior
privacy-preserving implementation of FingerCode [3], we simultaneously improve on-
line computation and communication by a factor of more than 30.

Acknowledgments

We would like to thank Keith Frikken for suggestion to reducecommunication of the
iris identification protocol from3m to 2m ciphertexts. We would also like to thank
Stefan Katzenbeisser and the anonymous reviewers for theirinsightful comments and
observations. Portions of this work were sponsored by the Air Force Office of Scientific
Research grant AFOSR-FA9550-09-1-0223.

References

1. M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara. Private collaborative forecasting
and benchmarking. InACM Workshop on Privacy in the Electronic Society (WPES), pages
103–114, 2004.

2. M. Barbosa, T. Brouard, S. Cauchie, and S. de Sousa. Securebiometric authentication
with improved accuracy. InAustralasian conference on Information Security and Privacy
(ACISP), pages 21–36, 2008.

3. M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Labati, P. Failla, D. Fiore,
R. Lazzeretti, V. Piuri, F. Scotti, and A. Piva. Privacy-preserving fingercode authentication.
In ACM Workshop on Multimedia and Security (MM&Sec), pages 231–240, 2010.

4. N. Barzegar and M. Moin. A new user dependent iris recognition system based on an area
preserving pointwise level set segmentation approach.EURASIP Journal on Advances in
Signal Processing, pages 1–13, 2009.

5. M. Blanton. Empirical evaluation of secure two-party computation models. Technical Report
TR 2005-58, CERIAS, Purdue University, 2005.

6. M. Blanton and M. Aliasgari. Secure computation of biometric matching. Technical Report
2009-03, Department of Computer Science and Engineering, University of Notre Dame,
2009.

7. M. Blanton and P. Gasti. Secure and Efficient Protocols forIris and Fingerprint Identification.
Cryptology ePrint Archive, Report 2010/627, 2010. http://eprint.iacr.org/.

8. J. Bringer, H. Chabanne, M. Izabachene, D. Pointcheval, Q. Tang, and S. Zimmer. An appli-
cation of the Goldwasser-Micali cryptosystem to biometricauthentication. InAustralasian
conference on Information Security and Privacy (ACISP), volume 4586 ofLNCS, pages 96–
106, 2007.

9. P. Bunn and R. Ostrovsky. Secure two-party k-means clustering. In ACM Conference on
Computer and Communications Security (CCS), pages 486–497, 2007.

10. O. Catrina and A. Saxena. Secure computation with fixed-point numbers. InFinancial
Cryptography and Data Security, pages 35–50, 2010.

11. R. Cramer, I. Damgård, and J. Nielsen. Multiparty computation from threshold homomorphic
encryption. InAdvances in Cryptology – EUROCRYPT, pages 280–300, 2001.

12. I. Damgård, M. Geisler, and M. Krøigård. A correction to efficient and secure comparison
for on-line auctions. Cryptology ePrint Archive, Report 2008/321, 2008.

13. I. Damgård, M. Geisler, and M. Krøigård. Homomorphic encryption and secure comparison.
Journal of Applied Cryptology, 1(1):22–31, 2008.

14. I. Damgård, M. Geisler, and M. Krøigård. Asynchronousmultiparty computation: Theory
and implementation. InPublic Key Cryptography (PKC), pages 160–179, 2009.

15. J. Daugman. How iris recognition works.IEEE Transactions on Circuits and Systems for
Video Technology, 14(1):21–30, 2004.

16. Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft. Privacy-
preserving face recognition. InPrivacy Enchancing Technologies Symposium (PETS), pages
235–253, 2009.

17. K. Frikken. Privacy-preserving set union. InApplied Cryptography and Network Security
(ACNS), pages 237–252, 2007.

18. W. Henecka, S. Kogl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for
Automating Secure Two-partY computations. InACM Conference on Computer and Com-
munications Security (CCS), pages 451–462, 2010.

19. T. Hoens, M. Blanton, and N. Chawla. A private and reliable recommendation system using
a social network. InIEEE International Conference on Information Privacy, Security, Risk
and Trust (PASSAT), pages 816–825, 2010.

20. K. Hollingsworth, K. Bowyer, and P. Flynn. The best bits in an iris code.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 31(6):964–973, June 2009.

21. U.S. DHS US-VISIThttp://www.dhs.gov/files/programs/usv.shtm.
22. Multiprecision Integer and Rational Arithmetic C/C++ Library. http://www.shamus.ie/.
23. IrisGuard Press Release. http://cl.ly/3KIB.
24. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extendingoblivious tranfers efficiently. In

Advances in Cryptology – CRYPTO, pages 145–161, 2003.
25. A. Jain, S. Prabhakar, L. Hong, and S. Pankanti. Filterbank-based fingerprint matching.IEEE

Transactions on Image Processing, 9(5):846–859, 2000.
26. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building blocks

and applications to auctions and computing minima. InCryptology and Network Security
(CANS), pages 1–20, 2009.

27. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications.
In International Colloquium on Automata, Languages and Programming (ICALP), pages
486–498, 2008.

28. Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation efficiently with
security against malicious adversaries. InSecurity and Cryptography for Networks (SCN),
pages 2–20, 2008.

29. K. Nissim M. Freedman and B. Pinkas. Efficient private matching and set intersection. In
Advances in Cryptology – EUROCRYPT, pages 1–19, 2004.

30. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – a secure two-party computation
system. InUSENIX Security Symposium, pages 287–302, 2004.

31. D. Maltoni, D. Maio, A. Jain, and S. Prabhakar.Hanbook of Fingerprint Recognition.
Springer, second edition, 2009.

32. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. InACM-SIAM Symposium On
Discrete Algorithms (SODA), pages 448–457, 2001.

33. M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI – A system for secure face
identification. InIEEE Symposium on Security and Privacy, pages 239–254, 2010.

34. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Advances in Cryptology – EUROCRYPT’99, volume 1592 ofLNCS, pages 223–238, 1999.

35. B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation is prac-
tical. In Advances in Cryptology – ASIACRYPT, volume 5912 ofLNCS, pages 250–267,
2009.

36. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. InACM Symposium on Theory of Computing (STOC), pages 73–85, 1989.

37. A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face recogni-
tion. In International Conference on Information Security and Cryptology (ICISC), pages
229–244, 2009.

38. J. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik.Privacy preserving error resilient
DNA searching through oblivious automata. InACM Conference on Computer and Commu-
nications Security (CCS), pages 519–528, 2007.

39. A. Yao. How to generate and exchange secrets. InIEEE Symposium on Foundations of
Computer Science (FOCS), pages 162–167, 1986.

A Security Analysis of the Iris Protocol

Security of the iris protocol relies on the security of the underlying building blocks.
In particular, we need to assume that (i) the DGK encryption scheme is semantically
secure (which was shown under a hardness assumption that uses subgroups of an RSA

modulus [13, 12]); (ii) garbled circuit evaluation is secure (which was shown assuming
that the hash function is correlation robust [27], or if it ismodeled as a random ora-
cle); and (iii) the oblivious transfer is secure as well (to achieve this, techniques of [24]
require the hash function to be correlation robust and the use of a pseudo-random num-
ber generator, while techniques of [32] model the hash functions as a random oracle
and use the computational Diffie-Hellman (CDH) assumption). Therefore, assuming
the security of the DGK encryption, CDH, and using the randomoracle model for hash
functions is sufficient for our solution.

To show the security of the protocol, we sketch how to simulate the view of each
party using its inputs and outputs alone. If such simulationis indistinguishable from
the real execution of the protocol, for semi-honest partiesthis implies that the protocol
does not reveal any unintended information to the participants (i.e., they learn only the
output and what can be deduced from their respective inputs and outputs).

First, consider the clientC. The client’s input consists of its biometricX , M(X)
and the private key, and its outputs consists of a bitb for each record inS’s database
D. A simulator that is given these values simulatesC ’s view by sending encrypted
bits of C ’s input to the server as prescribed in step 1 of the protocol.It then simulates
the messages received by the client in step 3(a).iii using encryptions of two randomly
chosen stringsrj

C andtjC of lengthn. The simulator next creates a garbled circuit for
the computation given in step 3(b) that, on input client’srj

C ’s andtjC ’s computes bitb,
sends the circuit to the client, and simulates the OT. It is clear that given secure imple-
mentation of garbled circuit evaluation in the real protocol, the client cannot distinguish
simulation from real protocol execution. Furthermore, thevalues thatC recovers in step
3(a).iv of the protocol are distributed identically to the values used in the real protocol
execution that uses DGK encryption (and they are statistically indistinguishable when
other encryption schemes are used).

Now consider the server’s view. The server has its databaseD consisting ofY ,
M(Y) and the thresholdT as the input and no output. In this case, a simulator with
access toD first sends toS ciphertexts (as in step 1 of the protocol) that encrypt bits of
its choice. For eachY ∈ D, S performs its computation in step 3(a) of the protocol and
forms garbled circuits as specified in step 3(b). The server and the simulator engage in
the OT protocol, where the simulator uses arbitrary bits as its input to the OT protocol
and the server sends the key-value mapping for the output gate. It is clear that the server
cannot distinguish the above interaction from the real protocol execution. In particular,
due to semantic security of the encryption schemeS learns no information about the
encrypted values and due to security of OTS learns no information about the values
chosen by the simulator for the garbled circuit.

