Incorporating Temporal Capabilities in Existing Key
Management Schemes

Mikhail J. Atallah', Marina Blanton, and Keith B. Frikkef

! Department of Computer Science, Purdue University
nj a@s. purdue. edu
2 Department of Computer Science and Engineering, Uniyes$iNotre Dame
nbl ant on@se. nd. edu
3 Department of Computer Science and Systems Analysis, Milmiviersity
fri kkekb@ruohi o. edu

Abstract. The problem of key management in access hierarchies studigs
to assign keys to users and classes such that each usergaétiming her secret
key(s), is able tandependentlzompute access keys for (and thus obtain access
to) the appropriate resources defined by the hierarchinadtste. If user privi-
leges additionally are time-based, the key(s) a user resairould permit access
to the resources only at the appropriate times. This pagesepts a new, prov-
ably secure, and efficient solution that can be used to adethiased capabilities
to existing hierarchical schemes. It achieves the follgnwperformance bounds:
(i) to be able to obtain access to an arbitrary contiguousfstte intervals, a
user is required to store at most 3 keys; (ii) the keys for acee be computed by
the system in constant time; (iii) key derivation by the us#hin the authorized
time intervals involves a small constant number of inexpensryptographic op-
erations; and (iv) if the total number of time intervals ie tystem is:, then the
server needs to maintain public storage larger théy only a small asymptotic
factor, e.g.O(log™ n log log n) with a small constant.

1 Introduction

This work addresses the problem of key management in acoaes®ksystems, with
the emphasis on time-based access control policies. Gareisystem where all users
are divided into a set of disjoint classes, and a user is gdaartcess to a specific access
class for a period of time specified by its beginning and emdutch systems, it is com-
mon for the access classes to be organized in a hierarchy asér obtains access to
the resources at her own class and the resources assocititedl Wescendant classes
in the hierarchy. When a user joins the system and is gramtseba to a certain class
for a specific duration of time, she is given a key (or a set gkkevhich allows her
to independentlgerive access keys for all resources she is entitled to hanasa dur-
ing her time interval. For hierarchically organized userssks this means that the key
allows the user to access objects at her access class aresedimdiant classes in the
hierarchy during the time interval specified. Note that fheetinterval is user-specific
and might be different for each user in the system.

There is a wide range of applications that follow this model &hich would ben-
efit from automatic enforcement of access policies throufitient key management.



Such applications include (among others) role-based aamm#rol (RBAC) models,

subscription-based services, content distribution, aggtographic directories or file

systems. In all of these examples we use the current timeftoantime-based poli-

cies. Additionally, instead of being based on the currangtiaccess control policies
can be based on the time in the past and permit access tadastiata. For example, a
user might buy access to data such as historical transactioices, legal records, etc.
for a specified time interval in the past, e.g., the year of0lThese different notions
of time can be combined, e.g., a user buys access to 1920rdthis entitled to access
it for two weeks starting from today.

If we let the lifetime of a system be partitioned intoshort time intervals, the
existence of time-based access control policies requireadcess keys to be changed
during each time interval. In this work, we concentrate goligations where the system
is setup to support a large number of such time intervals ekample, access key to
a video stream might change at least once a day (thus, pegnitsers to subscribe
on any given day). If the system is setup for a few years, thsilts inn being in
thousands. Likewise, if the application of interest is asc historical data, say, for
the last century, the number of time intervals will tend tcelven higher. Thus, a small
number of keys per user and efficient access with lafgés the goal of this work.

The notion of security for time-based hierarchical key grssient (KA) schemes
was formalized only recently by Ateniese et al. [5]. Thusthia current paper we use
their security definitions and provide a new efficient santio the problem of key man-
agement in systems with time-based access control politiesapproach we propose
is provably secure and relies only on the security of psaatiotom functions (PRFs).
In addition, our solution does not impose any requirement®ostraints on the mech-
anisms used to enforce policies in systems where accesebisntot time-based (e.g.,
for a hierarchy of user classes). This means that our solgto be built on top of an
existing scheme to make it capable of handling time. In tise okthis paper, we refer
to a scheme without the support for temporal access corg@ime-invariantscheme,
and we refer to a scheme that supports temporal access lqoolintes agime-based

Existing efficient time-invariant key management schenoesi$er hierarchies are
based on the notion of key derivation: a user receives aeskayl, and all other access
keys a user might need to possess according to her privitagebe derived from that
key. In the most general formulation of the problem, intzerite of privileges is modeled
through the use of a directed graph, where a node corresporadslass and a parent
node can derive the keys of its descendants. In this papeolesvfthe same model,
but, unlike previous work, apply key derivation technigtetme.

In a setup withn time intervals, the server is likely to maintain informatiiinear
in n. By building a novel data structure, we only slightly incseahe storage space at
the server beyond the necessélyn) and at the same time are able to achieve other
attractive characteristics. In more detail, our solutiojogs the following properties:

— To be able to obtain access to an arbitrary contiguous sanefittervals, a user is
required to store at most 3 keys.

— The above-mentioned keys to be given to a user can be comjputedstant time
from that user’s authorized set of contiguous time intexval



— Key derivation within the authorized time intervals invedva small constant num-
ber of cryptographic operations and thus is independenh®fnumber of time
intervals in the systems or the number of time intervals éuber’s access rights.

— If the total number of time intervals in the systemristhen the increase of the
public storage space at the server due to our solution islynéysmall asymptotic
factor, e.g.O(log" nloglogn) with a small constant.

— All operations are very efficient, and no expensive pubég-&ryptography is used.

We provide several solutions with slightly different cheteistics, where the difference
is due to the building blocks used in our construction. Tresdetions are summarized
in Table 3. An extension of our techniques also allows to sufgccess rights that can
be stated as periodic expressions.

While the results given above correspond to a time-based&signment scheme
with a single resource or user class, we can use them to aohstrtime-based key
assignment scheme for a user hierarchy. We show that outraotisn favorably com-
pares to existing schemes and provides an efficient soltdgithre problem (the compar-
ison is given at the end of the paper in Section 7). Additignalir scheme is balanced
in the sense that all resource consumption such as the'slivate storage, compu-
tation to derive keys, and the server public storage aremimeid with tradeoffs being
possible. This allows the scheme to work even with very wdiakts and not to burden
the server with excessive storage. Furthermore, our scliepm@vably secure under
standard complexity assumptions.

In the rest of the paper, we first review related literatur&action 2. In Section 3
we define the model and give some preliminaries. Section dsgavpreliminary data
structure, which we use in Section 5 to build our improvecesed. Thus, the core of
our solution lies in Section 5 along with its analysis. In 88t 6 we show how to use
the scheme to build a time-based key assignment scheme &ardierarchy. Finally,
Section 7 compares our solution with other existing scheamgsconcludes. Several
extensions of our scheme and security proofs can be fourd].in [

2 Related Work

The literature on time-invariant key assignment (KA) sckerm a user hierarchy is
extensive, and its survey is beyond the scope of this paperaf overview of such
publications, see, e.g., [2] and [11].

While the list of publications on time-invariant KA schenigvery large, the num-
ber of publications that consider time-based policies aodide schemes for them is
rather modest. The time-based setting and the first schesimtsaduced by Tzeng [17].
The scheme, however, was later shown to be insecure agaithssion of multiple
users [22]. Subsequent work of Huang and Chang [12], Chiéh fihd Yeh [20] was
also shown to be insecure against collusion (in [16], [2],,44d [5], respectively).

Among very recent publications, Wang and Laih [19] presetitha-based hierar-
chical KA scheme. While their scheme is shown to be collusesilient, the notion of
security, however, is not formalized and no clear advesibarodel is given in that work.
Tzeng [18] also describes a time-based hierarchical kegrasent scheme, which is
used as a part of an anonymous subscription system. The sdsgmnoven to resist



collusion attacks; however, no formal model of adversdréiavior is provided. The
work of Ateniese at el. [5] is the first result that provide®enial framework for time-
based hierarchical KA schemes and gives provably securé@ud, both secure against
key recovery and with pseudo-random keys. Concurrently aritd independently from
this work, time-based solutions have been developed by D8sSz# al. [15]. Section 7
compares all solutions.

There is extensive literature on broadcast encryption amiticast security, which
might be considered applicable here. There are, howevetjatrdifferences in the
models, which prevent us from using solutions from those a@iom First, broadcast
encryption and multicast security schemes permit acceassingle resource instead
of a hierarchy and cannot be composed in an obvious way te solvproblem. More
importantly, they assume that each client obtains key wsdftr each time interval,
which is impaossible in our model: no private channels betwthe server and a client
after the initial issuance of the user keys is assumed, ibatds allowed to remain
off-line, and can access the resources at her own discrétfmonly exception from
the above online requirement that we are aware of is the wioBtiscoe on multicast
key management [9]. That solution builds a binary tree fromtime intervals, thus
achievingO(log n) secret keys an@(log n) key derivation time.

Finally, the access control literature has a large body akvem temporal access
control models (see, e.g., [7, 8]). These models, howewvagentrate on policy specifi-
cation and not on key assignment and derivation mechanisms.

3 Problem Description and Preliminaries

3.1 The model

While the motivation for this work comes from the need to suppccess control poli-
cies with temporal constraints in user hierarchies, thélpra does not need to be
limited to this particular setting. That is, an efficientwidn to the key management
problemin temporal access control can find use in other dusn@herefore, we provide
a very general formulation of the problem, without any agstioms on the environment
in which it is used. Of course, access control in user hiéiaescremains the most im-
mediate and important application of our techniques. ThuSgection 6 we will show
how our solution can be used to realize temporal accessatdatuser hierarchies.
Now let us assume that we are given a resource, and the owrbisafesource
would like to control user access to that resource using-based policies. For that
purpose, the lifetime of the system is partitioned into skiore intervals (normally, of
a length of a day or shorter), and the access key for that res@hanges every time
interval. Letn denote the number of time intervals in the systdm= {¢,...,t,}
denote the intervals, and = {k.,, ..., ki, } denote the corresponding access keys.
Now assume that a usktris authorized to access that resource during a contiguous
set of time intervaldy, C T, whereTy, = {tstart, - - -, tend }- FOllOWing the notation
of [5], we use thanterval-setoverT, denoted byP, which is the set of all non-empty
contiguous subsequences®fi.e., T;; € P for any T;,. With such access rights{
should receive or should be able to compute the Kéys C K, where for eaclt €



Ty the keyk, € Kg,. We denote the private information thit receives bySy,,.
Obviously, storingTy,| keys at the user end is not always practical, and signifizantl
more efficient solutions are possible. Thetinae-based key assignment schexsgigns
keys to the time intervals and users, so that time-basedsaammntrol is enforced in
a correct and efficient manner. Such key generation is asttnige performed by a
central authority CA, but once a user is issued the keysetlgeno interaction with
other entities. More formally, we define a time-based KA scaeas follows:

Definition 1. LetT be a set of distinct time intervals aftlbe the interval-set over.
A time-based key assignment scheme consists of algorittansAssign, Derive) s.t.:

Gen is a probabilistic algorithm, which, on input a security ganeter1l” and the set
of time intervalsT’, outputs (i) a key; for anyt € T (ii) secret informationSec
associated with the system; and (iii) public informatiBaob. Let (K, Sec, Pub)
denote the output of this algorithm, whékeis the set of all keys.

Assign is a deterministic algorithm, which, on input a time sequefly € P and
secret informatiorbec, outputs private informatio;, for 7y,.

Derive is a deterministic algorithm, which, on input a time sequeTg, time interval
t € Ty, private informationSy;,, and public informatiorPub, outputs the key;
for time intervalt. The correctness requirement is such that, for each timeesse
Ty € P, each time interval € T, each private informatiorby;,, each key; €
K, and each public informatioub that Gen(1*,T") and Assign(T,, Sec) can
output,Pr[Derive(Ty, t, S, Pub) = k] = 1.

Note that in many cases thasign algorithm can be a part of thgen algorithm, i.e.,
private valuesSt,, for everyI;, € P are generated at the system initialization time. We,
however, separate these algorithms to account for case® wdtdevingSy,, from Sec

is not straightforward (which is the case in our scheme)ukthscases, merging these
two algorithms together will needlessly complicé&ten.

Also note that since a user accesses the server's publagstdor key derivation
purposes, there is no need for additional time synchraoizahechanisms between
the user and the server: the current time interval can bedtas a part of the public
information the server maintains.

We distinguish between two different notions of securityddime-based KA scheme:
security againskey recovenand security with respect ey indistinguishabilityi.e.,
schemes with pseudo-random keys). A time-based KA schemasabe secure against
static or adaptive adversaries. In [5], however, it was shthat the security of a time-
based hierarchical KA scheme against a static adversaphia@mial-time equivalent
to the security of that scheme against an adaptive advefiaangth security goals (key
recovery and key indistinguishability). While in the curteliscussion we are not con-
cerned with hierarchical schemes, our setting can be ceresicto be a special case
of a hierarchy with a single class. Thus, in this work we onigvide definitions of a
time-based KA scheme secure against a static adversang prabf of security under
such definitions will imply security against an adaptive edary.

In our definition of a scheme secure against static advelsandversaryd,, attack
the security of the scheme at time= T'. A, is allowed to corrupt all users with no
access td@; and, when finished, is asked to gugéssWe consider a scheme to be secure
only if A,; has at most negligible probability in outputting the cotrezy.



In addition to the security requirements, an efficient KAestle is evaluated by
the following criteria: (i) The size of the private data a usrist store; (ii) The time it
takes the system to assign a user its keys; (iii) The amouobwiputation necessary
for a user to generate an access key for the target time aitamnd (iv) The amount of
information the service provider must maintain for pubkicess.

3.2 Key derivation

Our approach relies heavily on the notion of key derivatlarour solution, we use the
same key derivation techniques that were used in [1]. Thei@rdifference, however,
is that in [1] key derivation was used between user classgx@vide a time-invariant
scheme for a user hierarchy), while in this work we use keydgon for the data
structures that we build. This is possible because the tqaba of [1] work for an
arbitrary directed acyclic graph (DAG), and we review thezmtn

Assume that we are given a DAG denoted®y= (V, E), whereV is the set of
nodes andF is the set of edges. Lednc(v, G) denote the set of ancestors of node
v in G includingv itself, and letDesc(v, G) denote the set of descendantsdh G
includingw itself. Let F* : {0,1}* x {0,1}* — {0, 1}*, for a security parameter, be
a family of pseudo-random functions (PRFs) that, on input efbit key and a string,
outputs ax-bit string that is indistinguishable from a random strimgpte that a PRF
can be implemented very efficiently as HMAC [6] or CBC MAC).rFevity, instead
of F*(k, z), we may writeFy, (z). Also, when the grapt¥ is clear from the context, we
may omit it in the ancestry functions and udec(v) and Desc(v).

To be able to derive keys, we need two algorithms:

— Set is an algorithm for assigning keys to the graph which takasp@st a security
parametei” and a DAGG = (V, E) and outputs (i) an access kéy for each
v € V, (ii) secret informatiors,, for eachv € V, and (iii) public informatiorPub.

— Derive is an algorithm for deriving keys which takes as input nodes € V,
secret informatiort,, for v, and public informatiorPub. It outputs the access key
ky forw, if w € Desc(v, G).

The derivation method we use is from [1], and is sufficientdbieve security against
key recovery:

— Set(1%,G): For each node € V, select a random secret kéy € {0,1}* and
setS, = k,. For each node € V, select a unique public labé} € {0,1}" and
store it in Pub. For each edgév, w) € E, compute public information,, ., =
kv ® Fy, (¢y), whered denotes bitwise XOR, and store itRub.

— Derive(v,w, Sy, Pub): Let (v,w) € E. GivenS, = k, andPub, derivation of
k., can be performed as, = Fy, ({w) @ Yu«. Wherel,, andy, ., are publicly
available inPub. More generally, if there is a directed path between nadaesdu
in G, u's key can be derived from's key by considering each edge on the path.

3.3 Shortcut techniques

Our constructions use the so-called shortcut edgebioatcut edgas an edge that is
not in the original grapli= but is in the transitive closure @¢f. Such edges are added to



Scheme Private Key Public
storage derivation storage
2HS [2] 1 2 op. O(nlogn)
3HS [1] 1 3 op. O(nloglogn)
4HS [2] 1 4 op. O(nlog* n)
log"HS [2]] 1 |O(log™n) op, O(n)

Table 1. Performance of shortcut schemes for one-dimensional graph

G for performance reasons. Note that addition of shortcuésdipes not affect partial
order relationship between the nodes, i.e., we may add dcstt@dge(v, w) to the
graph only if there is already a directed path from node w in the original graph.

In this work we rely on efficient shortcut techniques fronmoptiterature for a graph
of dimension 1 (i.e., a total order), reviewed in [4]. Here avdy summarize the per-
formance of existing schemes, any of which can be used asldingublock in our
constructions. Consider a directed graph of dimension kisting ofn vertices. The
performance of known solutions for such graphs is given ildd. In the table, we
denote bysHS a solution where the distance between any two nodestfieediameter
of the graph) is at most, i.e., a so-called-Hop Scheme.

Throughout this work we may us®l (n) to denote any shortcut scheme for graphs
of dimension 1 applied to a total order of size We also usespace(S1(n)) and
time(S1(n)) to denote its public storage and key derivation complexéigpectively.

4 Building Basic Data Structure

As was mentioned above, all of our constructions are baséseomotion of key deriva-
tion in a graph. Throughout the rest of the paper, when welsatythere is a directed
edge fromw tow in G, itimplies thatv is capable of deriving’s key using its own key.
This means that, for the data structures that we build (allo€h are DAGS), there will
be a public and secret information associated with each,rauakthere will be public
information corresponding to each edge.

Our preliminary data structure is rather simple and cossistwo main steps: build-
ing a grid of sizen x n (wheren is the number of time intervals in the system) and
applying one-dimensional shortcut techniques to parte®@fyrid. A more detailed de-
scription follows.

1. Build half of a grid of dimensiom x n with the time intervalg,, .. ., t, being on
its diagonal (see Figure 1). In the grid, we denotevby the root node; node; ;
is located at the row and columny (i.e., vz is “below” v1 ; andw; 2 is “on the
left” of vy 1). There is a directed edge from eaghy to v;;1,;, and from eachy; ;
to v; j+1. The time intervat; corresponds to the node,,_;.

From this data structure it should be clear that, given a &ey;f;, all keys for time
intervalst,, . . ., t,,—;+1 can be derived from it (in the worst-casgn) time).

2. Next, we apply a one-dimensional shortcut schééo each row and column of
the grid (see Figure 2). More precisely, we add shortcutséalfta structure to be
able to derivey; ,'s key fromuv; ,'s key for anyz > y (and similarlyv, ;'s key
fromuv, ;'s key for anyz > y) in a small number of steps instead of previ6s:)



U1,1

tm tm

Fig. 1. Building a grid for the ba-  Fig. 2. Adding shortcuts to the grid.

sic scheme.
Underlying Private Key Public
scheme |storagé derivation storage
2HS 1 <4 op. O(n*logn)
3HS 1 <60p. |O(n*loglogn)
4HS 1 < 8op. O(n?log™ n)

log"HS 1 |O(log*n) op. O(n?)
Table 2. Performance of the basic (and preliminary) scheme.

time. This is done at the expense@fspace(S1(n))) additional shortcuts per row

or column and therefor@(n - space(S1(n))) total shortcuts.

Having this, now a user entitled to have access during tingsvals

Ty = {ts,...,ty} € P can receive a single key corresponding to noge_,,.1.

Key derivation of the key corresponding to the current timeiivalt; € T;; now

consists of at most- time(S1(n)) steps: at mostime(S1(n)) steps are needed to

derivev; ,—,+1's key from that ofv, ,,—,+1, and then at mosime(S1(n)) steps

are needed to derivg ,,_;+1's key (which corresponds ) from that ofv; ,,—y 1.
Table 2 summarizes the performance of the basic scheme,ugeehwith various one-
dimensional schemes.

5 An Improved Scheme

This section describes a solution that achieves significaetter performance than the
previous scheme. We first present a new data structure andithether parts in to
provide a full-fledged time-based KA scheme.

At a high level, to build a new data structure, we partitiortiate intervals in the
system into coarse “chunksy/n chunks of,/n time intervals each) and apply the basic
scheme to the chunks. If access is to be granted to a largétiereal that spans across
boundaries of these chunks, we can use this level of gratyularassign keys. If, on
the other hand, the interval to which the user should obtaiess is contained within
a chunk, we recursively apply this procedure to the timeruals within each chunk
to support time-based access control of finer granulafitytime interval spans across
different chunks, but contains partial chunks at the bagmpand at the end of the user’s
sequence of time intervals, then we utilize the coarse chulelys along with two new
types of keys that are introduced later.



5.1 Reducing storage space

This section describes the tree data structure we build; ihdésvused is covered in
the next sections. For the purposes of presentation of thik,wve letn = 22° for
some integey. This allows us to avoid using rounding notatipn| and[z] through-
out the algorithms and results in a cleaner presentatiote (that this assumption is
purely to make the presentation cleaner, and the solutiinmerk without this as-
sumption). Our procedure for building the data structukesaas inputs a nodeand
the setT’ = {t1,...,t,}, and then recursively builds a tree for the set rooted. at
Due to the recursive nature of this function, we st denote the working set of the
current function invocation and’| to denote the size df. Then the data structure is
constructed as described below:
Algorithm DataStructBuild (v, T):

1. 1If |T| = 2 (i.e.,q = 0), then return. Otherwise, continue with the steps below.

2. PartitionT" into \/|7'| sets ofy/|T’| contiguous time intervals each, call these

T, ... ,T\/ﬁ.ThatiS, |f]i = {tl, .. .,t‘,f‘},thenﬂ = {ti\/m-ﬁ—l’ . ,ti\/m_‘_\/m}.
Create a node; for eachT;, and makey; a child ofv.

3. Generate a problemoarse(T), derived fromI” by treating eacH’; as a black box
(i.e., “merging” the constituents @f; into a single item). Note that the size of set

Coarse(f) is \/ﬁ

4. Store at node an instance of the basic scheme @varse(T'), denotedD(v).
D(v) supports performance of: 1 kay(time(S1(|T|))) key derivation, and
O(space(S1(|T]))) space; buD(v) can only process an interval if it is the union of
a contiguous subset dfoaTse(T) (i.e., it cannot handle intervals whose endpoints
are inside thd}'s, as it cannot “see” insideE).

5. Also store at node two solutions of one-dimensional problems®nOne is for
intervals all of which start at the right boundary Bfand end insid&” (we call
this theright-anchoredproblem and denote the one-dimensional structure for it by
R(v)); another is for intervals all of which start at the left bdany of 7" and end
inside?” (we call this theleft-anchoredproblem and denote the one-dimensional
structure for it byL(v)). Note that having?(v) and L(v) enables the handling of
an interval that lies withirf” and also has its left or right endpoint at a boundary
of T', with performance of: 1 key)(time(S1(|T'|))) steps per key derivation, and
O(space(S1(|T]))) space.

6. Recursively apply the scheme to each child@pthat is, callDataStructBuild(v;, T})

inturnforeach =1,2,..., \/E
Figure 3 gives an illustration of how the data structure iftblhe total space of the data
structure satisfies the recurrenge:) < /nS(y/n) + ¢1 - space(S1(n)) if n > 2 and
S(2) = c2, wherec; andc, are constants. Thu§(n) = O(space(S1(n)) loglogn).

5.2 Key assignment

We now turn our attention to which keys are given to a user aattess to an arbitrary
Ty € P. In what follows,v is a node of the above tree data structdres the set of



U1 v vm
T T/
O ‘ [ ‘ L ‘ [ ‘ L ‘ L | | | |
tl tm ‘ fl ‘ ‘ ‘ tv‘n TI T\/m
(@) Initial state. (b) State after Step 2.(c) State after Step 3(d) State after Step 5.

Fig. 3. Construction of the data structure for the improved schdirst [gvel of recursion).

time intervals associated with and! is a sequence of time intervals for which the keys
must be given. The recursive procedure below, when invokeainy7;, and our data
structure, returns a set of (at most 3) keys associatedhyith

Algorithm AssignKeys(I, v, T):
1. If v is a leaf, then return a key for each of the (at most two) tinterirals in/.
Otherwise, continue with the next step.

2. Letwq,... W be the children of, and letT1, . . ., T\/ﬁ be the respective sets

of times associated with these children. We distinguishdages:

(a) I overlaps with only one séf;. Then we return the keys from the recursive call
AssignKeys (I, v;, Ti).

(b) I overlaps with all ofl}, Tys1, . . ., Thye, Wherel > 1. Thesel + 1 intervals
are handled in 3 different ways: Those completely containeflare collec-
tively processed using th@(v) structure, resulting in one key. T, overlaps
with I, but is not contained id, then it is right-anchored and is processed us-
ing R(vg), resulting in one key. IT;CH overlaps with/, but is not contained in
I, then itis left-anchored and is processed udifig; (), resulting in one key.
Those (at most) 3 keys are returned.

One can also lower the time complexity of the above algoritbr) (time(S1(n)))
(e.g., it can be constant). We show how to achieve this in [4].

All keys given to users must be labeled with the level at withey were retrieved in
the data structure, i.e., the distance from the root nodis.i$mecessary for achieving
constant-time computation of access keys, which will bdarpd in the next section.
To make key derivation simpler, we also label user keys widirttype; namelyD, R,
or L. In addition, if a user receives more than a single key fortimee sequencéy,,
each key is labeled with a range of time intervals to whicteitpits access.

To summarize, we assume that a key given to a user will beddlveith four values
(lev, type, tq, ty), where0 < lev < loglogn, type € {R, L, D}, andt,,t, € T such
thatt, < t,. For example, if a user with access rightsfi9 = {tstart,- - -, tend} IS
given private information consisting of three keys, = {k1, k2, k3 }, thenk; could be
labeled with(l, R, tstart, ta), k2 With (I —1, D, ta41,tp), andks with (I, L, tp11, tend)-

5.3 Content distribution

Attime ¢ € T, the service provider wants to make certain content (pbsséry volu-
minous) available to the users with access rights at tinegvatt. To do so, the content



is encrypted with the access kiéyusing a symmetric encryption scheme and is made
available to all users in the encrypted form (by placing itipublic location, broad-
casting it to the users, or by other means). In our schemeetiversalso needs to ensure
that the keys that users derive faallow them to derive:,. There are)(loglogn) such
keys fort in the data structure access to which should allow access 8ince the data
structure hagloglogn + 1) levels, such keys are:

— Keys fromR(v), for somev in the data structure, one from each level.
— Keys fromL(v), similarly, for a singlev per level.
— Keys corresponding t®(v), one from each level 0 <! < loglogn — 1.

We refer to these keys &habling keysThe server places in the public domain infor-
mation that permits derivation @ from any of the enabling keys above. Additionally,
the server labels the public derivation information asstec with each of the enabling

keys with the level and the type (i.&k, L, or D) of the corresponding enabling key.

This is needed to permit fast constant-time derivation efabcess key.

5.4 Key derivation

A userl{ with access to the sequence of time inten&Bls= {tstart, - - - tendt € P
receives private informatiofi;;, consisting of 1, 2, or 3 keys that permit her to derive
enabling keys for each € T;,. In the most general (and common) case, such private
information consists of 3 keys — denoted/y k-, andks — labeled a$l, R, tstart, ta),

(I — 1,D,tq41,tp), and (I, L, tp11,tena), respectively, for someé, a, andb. Let us
assume, without loss of generality, that if the number ofskisyless than 3, then the
missing keys are set to empty strings withremaining of typeR, key ks of type D,

and keyks of type L. Then to obtain the enabling key for a time intervake T;,, U
executes a derivation algorithm which we sketch here:

Algorithm DeriveKey(Ty, ti, St,, Pub):

1. ParseS’TM ask; (l, R, tsiart, ta), kQ(l -1, D, tat1s tb), /{3(1, L, to+1, tend)-

2. Ift; € {tsiart, - - -, ta }, find the node at levell such thatR(v) permits access tq
(note that such node can be computed in constant time using index the time
intervalt;). Usek; and the public information about the edge®iurb to derive the
key corresponding te; and return that enabling key.

3. Similarly, ift; € {ty41,...,tena}, locate the node at levell s.t. L(v) permits
access t@;. Useks andPub to derive an enabling key fag and return that key.

4. Finally, ift; € {ta+1,ts}, locatev at levell — 1 such thatD(v) permits access to
t;; useks andPub to derive an enabling key faf and return it.

Key derivation complexity in all of the above case®igime(S1(n))).

5.5 Putting everything together

In this section we summarize our construction and show itfopeance. All proofs
corresponding to our security theorems can be found in [igluré 4 gives a complete
description of our time-based KA scheme. In addition to tlg@@thms given in pre-
vious sections, we specify how they are used. Table 3 surmasapierformance of our



Algorithm Gen (1%, T):
1. Create aroot nodeot for the data structure and ridataStuctBuild(root, T'). LetG =
(V, E) denote the tree structure returned.
2. For eachv € V, randomly choose a secret kky, € {0,1}" and a unique public label
4 € {0,1}" associated with each nodein D(v), R(v), andL(v).
3. Foreach € V, construct public information for each edgeliv), R(v), andL(v) using
the key derivation method, e.g., for an edge u), its public value igj.,,. € {0,1}".
4. For eacht € T, randomly choose a secret kky € {0,1}" and a unique public labe|
Ly € {0,1}".
5. Foreacht € T, letV; C V denote the set of nodes @i access to which implies access|to
t. Then for eachi, for eachv € V;:
(a) find inD(v) the node corresponding to the time interatall it w.
(b) create an edge froma to ¢ by computing public information using enabling key;,
t's secret keyk:, public labell;, and the key derivation method. Mark such an egige
with the level ofv and typeD.
(c) repeat (a) and (b) faR(v) and L(v), using typesk and L, respectively.
6. Let K consist of the secret keys for eacht € T andSec consist of the remaining secrge
keysk.,. Also let Pub consist ofG, all public labels (of the fornt,, and¢.), and public
information about all edges generated above.

—

Algorithm Assign (T4, Sec):
1. ExecuteAssignKeys(Ty, root, T'), whereroot is the root node of7.
2. SetSt, to the keys computed and retust, .

Algorithm Derive(Ty, t, ST,,, Pub):
1. If t & Ty, return a special rejection symhal
2. ExecuteDeriveKey(Ty, t, St;,, Pub) to compute an enabling key forcall it &;.
3. Usek; along with its (level-type) label anBlub to derive keyk;.

Fig. 4. Proposed time-based key assignment scheme.

solution. The security of our solution comes from the way #eyivation is performed
in a DAG and is not due to the details of the data structurds bui

Theorem 1. Assuming the security of the family of PRFS, the time-based key as-
signment scheme given in Figure 4 is both complete and soithdr@gpect to key
recovery in the presence of a static adversary.

To achieve a stronger notion of key indistinguishabilityr golution will require a
slightly different key derivation method. Intuitively, wdecouple the keys used in the
public information from the actual access keys, so that riasvriot feasible to test ac-
cess keys using the public information. The separationrf®paed using an additional
invocation of a PRF, where the keys to be useBib are computed a&'(0||k) and the
access keys are computed a6l ||k). This key derivation method is described in [1]
(full version only).

Then in our scheme of Figure 4, we use this enhanced key tierivaethod in
Step 3 of theGen algorithm (i.e., in data structurd®(v), R(v), andL(v)). This means
that now someone with access to a certain key in, for instaR@e and who guesses
an unauthorized key correctly, cannot use the public in&tiom for that data structure
to test the key. This change implies the corresponding ahantheDerive algorithm.



Underlying Private Key Public
scheme |storage derivation storage
2HS <3 <50p. |O(nlognloglogn)
3HS <3 < 7op. O(n(loglogn)?)
4HS <3 <90p. |O(nlog*nloglogn)
log*™HS | <3 |O(log*n)op| O(nloglogn)
Table 3. Performance of the improved scheme.

So far we devised a solution to support access rights that apass a contigu-
ous sequence of intervals. It is also possible to suppoitghieraccess rights that span
across a contiguous set of time periods but the time inteth@mselves might be dis-
continuous within a period. If we treat time as a single disien and the solution
presented in this work as a solution to one-dimensionallprohit is possible to extend
our approach to higher dimensions. An extension to dimeriavhich is useful in the
geo-spatial context, is presented in [3]. This two-dimenal solution can be used to
conveniently address the problem of periodic access ngititsa small number of keys
per user: we use one dimension to specify periods in usesacgghts and the other
dimension to specify individual time slots within a peridde omit further details here.

Full version [4] gives extensions to this solution. In peutar, we show how to
extend the lifetime of the system beyond the origimaime intervals and how to gen-
eralize the scheme to further decrease the public spacg aiey-space tradeoff.

6 Temporal Access Control for a User Hierarchy

In systems with hierarchically organized access classes$ a hierarchy is normally
modeled as a directed acyclic access graph which we denatg/byn such a graph,
each node corresponds to an access class and the edges fantialaopder relationship
between the classes. An edge from ned® nodew means that the parent node
inherits privileges of the node (while the converse is not true). This implies that a
user with access to a specific class obtains access to thecesat that class and the
resources at all of the descendant classes in the hierakithythis setup, it is possible
to assign each class a single secret key and let users oletgsnok their descendant
classes through a key derivation process. Similar to a gégeaph, in an access graph
Gy adirected path from nodeto w means thatv’s keys are derivable fror's key.

Now if we equip the model with time-based policies, in additto computing keys
of descendant classes, a user should be able to compute &sgd bn time. That is,
a userl{ entitled to access classe 1y during a sequence of time intervaly € P
obtains private information that permits her to computesiiey; for her access class
and eaclt € Ty, (time-based key derivation). In addition, the private infiation allows
U to compute, for each € T, keysk,; for each descendant access class the
user hierarchy (class-based key derivation). Thus, kelyat@n now consists of two
dimensions, which can potentially be performed using drakly different techniques.
We give details on how to extend out current scheme to thisatghically-temporal
based model in the full version [4].



Scheme . Publiq Private.in- Key Operation Complexjty
information formation| derivation type assumption
Encryption-based  O(|Vu|?|T|°) 1 1 decryp-| one-way
[5] tion functions
Pairing-based [5] o(|Vu?) o(|T)) 1 pairing |Bilinear Diffie-
evaluatio Hellman
Binary tree O(|Eu||T)) O(log |T])| O(log|T'|+ PRF one-way
diam(Gv)) functions
ISPIT+(3,1)-CSBTO(|Ev [T+ Vo IT|-]| <3 |O(diam(Gr))| decryp- | I ND- P1- CO
+EBC [15] log |T|(log log |T|)?) tion |encryption [13
Our 4HS-based |O(|Ev||T| + |[Vu||T|-| <3 |O(diam(Gv))| PRF one-way
log* nloglog |T) functions
ISPIT+(3,1)-CSBTO(|Eu ||T| + |Vul|T|-| <3 O(log™ |T'|+ | decryp-| | ND- P1- CO
+EBC [15] log |T'| log log |T'|) diam(Gv)) tion |encryption [13
Ourlog™HS-basedO(|Eu||T| + |Vul|T]-| <3 O(log™ |T|+ PRF one-way
loglog |T)) diam(Gv)) functions

Table 4. Comparison of time-based hierarchical KA schemes.

7 Comparison with Existing Solutions

Table 4 compares performance of our scheme with other egistlutions; only se-
curity against recovery was considered. In the tatdlem (Gy) denotes the diameter
of the graph (i.e., maximum distance between nodes) thatdmothe number of op-
erations necessary to derive a descendant class’s key ims#rehierarchy=y;. Also,
|Ey| denotes the number of edgesGify,. The table does not list private storage at the
server since it is equivalent for all solutions. Before meding with comparing existing
results, we briefly explain what these parameters mean.

In the great majority of cases, the depth of user hierardeiassmall constant, re-
sulting in small constantiam(Gy ). In cases where the depth of the original gréhh
is fairly large and it is unacceptable to have the user peridgiam (Gy ) operations,
the graph can be modified to significantly reduem (G ). This is done by insert-
ing shortcut edges at random {ffam(Gy) = O(Vyy)) or using the techniques of [1]
and [2] that reducdiam (G ) to a small constant at the expense of small increase in
the public storage associated with the hierafcfiyus, in this casdiam (G ) is also a
small constant, and parametél; | will need to be replaced with a slightly larger value.

We also would like to mention that the schemes [19, 18] ardisiet in the table
due to the difference in the expressive power. These sokitidlow a user to obtain
access to an arbitrary subsequence of time intervals, luireesignificantly slower
key derivation ofO(|Vy/| - |T'|) modular exponentiations.

Considering that small private user storage and fast kdyat&m, followed by rea-
sonable server storage are the main evaluation criterisgameanalyze the solutions
as follows. The Pairing-based scheme of [5] will have thevekt key derivation time
among all of the schemes listed, as it uses pairing evaluagither than fast encryp-
tion or PRF operations. Additionally, the number of secetska user has to maintain

4 The techniques of [1] and [2] may fail on hierarchies of higimehsions, but we believe that
such cases are very rare for the applications we considhisinvork.



is large. Compared to the Encryption-based scheme of [$]key derivation time is
higher by a constant factor, private storage is similar,(tfeee keys instead of one),
but the amount of public information the server must mamtaiour scheme is much
lower than in that scheme.

While the simple binary-tree approach has asymptoticatiipdr performance, for
small values of T'| it will be preferred due to its simplicity. However, for theglica-
tions we envision, other solutions exhibit better perfonoe Thus, our recommenda-
tion is to use the simplest approach suitable for a particgtup.

The work of De Santis et al. [15] lists solutions with diffat@erformance parame-
ters, and we include only selected two here. We chose tworsehithat require a user to
store 3 private keys (like in our solutions) and where tinasdal key derivation involves
O(1) andO(log™ n) decryptions, respectively. This allows us to directly camgpthe
schemes of [15] with our schemes. As can be seen from the taklsolutions exhibit
very similar performance with CSBT-based constructiongritaan additional factor
of log |T| in the public storage space. Moreover, they do not discuga&signment,
but it does not look like their key assignment can be done nstamt time, whereas our
scheme allows constant time key assignment.

To summarize, our solution offers very attractive chanasties and superior per-
formance compared to other existing solutions: each usbeisystem receives a small
(< 3) number of keys, constant-time key assignment to a usé#liie) computation
of any access key involves a small number of very efficientatens, and the public
storage required by our solution is only slightly highenthilhe number of access keys
that the system must maintain.

Acknowledgments

The authors would like to thank Michael Rabinovich for hicebent suggestion of
using the geo-spatial key assignment scheme to addresstainkpy assignment for
periodic expressions. Mikhail Atallah is supported in gartGrants 11S-0325345 and
CNS-0627488 from the National Science Foundation, and bgsgrs of the Center for
Education and Research in Information Assurance and S$gchMarina Blanton was
supported by Intel Ph.D. fellowship, work was performedle/ait Purdue University.

References

1. M. Atallah, M. Blanton, N. Fazio, and K. Frikken. Dynamiachefficient key management
for access hierarchies. Preliminary version appearekOhl Conference on Computer and
Communications Security (CCS’0%ull version is available aBechnical Report TR 2006-
09, CERIAS, Purdue Universjt2006.

2. M. Atallah, M. Blanton, and K. Frikken. Key managementrion-tree access hierarchies. In
ACM Symposium on Access Control Models and Technologi€s(8A'06), pages 11-18,
2006. Full version is available dgchnical Report TR 2007-30, CERIAS, Purdue University

3. M. Atallah, M. Blanton, and K. Frikken. Efficient techniegifor realizing geo-spatial ac-
cess control. IPACM Symposium on Information, Computer and Communicaatsirity
(ASIACCS'07)pages 82-92, 2007.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Atallah, M. Blanton, and K. Frikken. Incorporating tporal capabilities in existing key
management schemes. Full version, availablérgptology ePrint Archive Report 2007/245
http://eprint.iacr.org/2007/245,2007.

G. Ateniese, A. De Santis, A. Ferrara, and B. Masucci. &biyvsecure time-bound hier-
archical key assignment schemes.A@M Conference on Computer and Communications
Security (CCS’06)2006.

M. Bellare, R. Canetti, and H. Krawczyk. Keying hash fimos for message authentication.
In Advances in Cryptology — CRYPTO;3®lume 1109, 1996.

E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. Anemsccontrol model supporting
periodicity constraints and temporal reasoninrgCM Transactions on Database Systems
(TODS) 23(3):231-285, 1998.

E. Bertino, P. Bonatti, and E. Ferrari. TRBAC: A tempomakrbased access control model.
In ACM Symposium on Access Control Models and Technologi€sM8A’'00), pages 21—
30, 2000.

B. Briscoe. MARKS: Zero side effect multicast key managatusing arbitrarily re-
vealed key sequences. st International Workshop on Networked Group Commutiica
(NGC’'99), volume 1736 oL.NCS pages 301-320, 1999.

H. Chien. Efficient time-bound hierarchical key assigntrschemelEEE Transactions of
Knowledge and Data Engineering (TKDH)(10):1301-1304, 2004.

J. Crampton, K. Martin, and P. Wild. On key assignmentferarchical access control. In
IEEE Computer Security Foundations Workshop (CSFW'B806.

H. Huang and C. Chang. A new cryptographic key assignse@me with time-constraint
access control in a hierarch@omputer Standards & Interface26:159-166, 2004.

J. Katz and M. Yung. Characterization of security ndifor probabilistic private-key en-
cryption. Journal of Cryptology19:67-95, 2006.

A. De Santis, A. Ferrara, and B. Masucci. Enforcing tleeisty of a time-bound hierarchical
key assignment scheminformation Scienced76(12):1684-1694, 2006.

A. De Santis, A. Ferrara, and B. Masucci. New construastfor provably-secure time-bound
hierarchical key assignment schemes.AllM Symposium on Access Control Models and
Technologies (SACMAT’0,72007.

Q. Tang and C. Mitchell. Comments on a cryptographic lesjgament scheme for access
control in a hierarchyComputer Standards & Interface®7:323-326, 2005.

W. Tzeng. A time-bound cryptographic key assignmenesthfor access control in a hi-
erarchy.|[EEE Transactions on Knowledge and Data Engineering (TK[1E]1):182-188,
2002.

W. Tzeng. A secure system for data access based on anosyanthentication and time-
dependent hierarchical keys. ACM Symposium on Information, Computer and Communi-
cations Security (ASIACCS’'Qf)ages 223-230, 2006.

Shyh-Yih Wang and Chi-Sung Laih. Merging: an efficieritigon for a time-bound hierar-
chical key assignment schemiEEEE Transactions on Dependable and Secure Computing
3(1):91-100, 2006.

J. Yeh. An RSA-based time-bound hierarchical key ass@m scheme for electronic article
subscription. IPACM International Conference on Information and Knowletiggnagement
(CIKM’05), pages 285-286, 2005.

X. Yi. Security of Chien’s efficient time-bound hieraichl key assignment schemteEE
Transactions of Knowledge and Data Engineering (TKDIE)Y9):1298-1299, 2005.
X.Yiand Y. Ye. Security of Tzeng’s time-bound key assigamt scheme for access control in
a hierarchy.|EEE Transactions on Knowledge and Data Engineering (TKOB}4):1054—
1055, 2003.



