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Abstract The recent rapid growth in the availability and popularity of cloud services
allows for convenient on demand remote storage and computation. Security and pri-
vacy concerns, however, are among the top impediments standing in the way of
wider adoption of cloud technologies. That is, in addition to the new security threats
that emerge with the adoption of new cloud technology, a lack of direct control over
one’s data or computation demands new techniques for service provider’s trans-
parency and accountability. The goal of this chapter is to provide a broad overview
of recent literature covering various aspects of cloud security. We describe recently
discovered attacks on cloud providers and their countermeasures, as well as pro-
tection mechanisms that aim at improving privacy and integrity of client’s data and
computations. The topics covered in this survey include authentication, virtualiza-
tion, availability, accountability, and privacy and integrity of remote storage and
computation.

1 Introduction

Cloud computing enables on-demand access to computing and data storage re-
sources that can be configured to meet unique constraints of the clients with minimal
management overhead. The recent rise in the availability of cloud services makes
them attractive and economically sensible for clients with limited computing or stor-
age resources who are unwilling or unable to procure and maintain their own com-
puting infrastructure. The ever increasing need for computing power and storage
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accounts for the steady growth in popularity of companies offering cloud services.
Clients can easily outsource large amounts of data and computation to remote loca-
tions, as well as run applications directly from the cloud.

As an example, Chow et al. [21] point out that some of the world’s largest soft-
ware companies today operate entirely from the cloud or at least have a major por-
tion of their services outsourced to a cloud environment. With all the convenience
being offered for a relatively low price, one would expect that most, if not all, com-
panies would migrate to the cloud. There are, however, impediments to this transi-
tion, with security commonly cited as the number one concern by both the private
sector and the government [33, 72]. Public clouds have not yet reached a level of
security that enables private users and corporations to entrust them with sensitive
data. As a concept that was created from a combination of several building blocks,
cloud computing naturally inherited the security flaws present in each component.
In addition, new issues that did not previously exist arose with this new technology
trend. The evidence for this problematic side of cloud computing can be seen in
the considerable literature [1, 20, 21, 42, 49, 58, 60, 62, 75] that surveys several of
the general and specific security issues that affect clouds. Cloud security is also the
focus of this work.

Unlike prior surveys of cloud security issues, our ultimate goal is to provide a
much more complete and thorough coverage of the research literature related to this
topic. We give a broad overview of publications in the fields of cloud computing
security and security of remote storage and computation. In particular, the topics
covered in this work include:

• Client authentication and authorization: We cover the current body of work on
methods for disrupting and exploiting the interface between a cloud provider and
its clients, usually carried out via a web browser.

• Security shortcomings of hardware virtualization: We describe the problems that
have surfaced along with the massive use of hardware virtualization by cloud
providers. We indicate how virtualization can be exploited to obtain unauthorized
information from vulnerable users, and also indicate mitigation techniques that
can be employed. In addition, we also address vulnerabilities related to the usage
and sharing of virtual machine (VM) images.

• Flooding attacks and denial of service (DoS): Because cloud computing systems
are designed to scale according to the demand for resources, an attacker may use
that characteristic to maliciously centralize large portions of the cloud’s com-
puting power, lowering the quality of service that the cloud provides to other
concurrent users. We discuss different types of attacks on cloud availability and
their potential consequences.

• Cloud accountability, or its ability to capture and expose wrongful activity: We
discuss capabilities that an accountable system should have and solutions for
achieving these capabilities.

• Challenges and solutions for remote storage protection: We describe several
techniques that can be employed by cloud clients to verify integrity of their out-
sourced data.
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• Protection of outsourced computation: Finally, we give an overview of current
approaches for assuring privacy and integrity of outsourced computations.
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Fig. 1 Overview of the topics covered in this article

Fig. 1 provides a summary of the topics covered in this work.
Before proceeding with the coverage of the above mentioned topics, we define

some of the common terminology used in the context of clouds. Although the mem-
bers of the cloud community in its early days did not all agree on which features
should actually be part of the broad concept of cloud computing, the definition
that was later provided by the U.S. National Institute of Standards and Technol-
ogy (NIST) [58] precisely subdivided cloud computing into three distinct models,
which offer differing capabilities to the consumer.

• Software as a Service (SaaS): Following this model, the cloud service provider
makes both the software and the cloud infrastructure to run it available to the
client, while it retains complete control over the underlying physical settings of
the cloud (i.e., the operating system, network, storage, etc.) and the individual
application capabilities. Thin client interfaces such as web browsers are often
used to allow access to these applications.

• Platform as a Service (PaaS): Similar to the previous model, PaaS aims at giving
the client the ability to run software on the cloud infrastructure. However, in this
case the consumer can deploy his own applications or create personalized ones
by using tools supported by the cloud provider. Control over the physical settings
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remains restricted to the cloud provider but the clients of this model are able to
fully manage the deployed applications.

• Infrastructure as a Service (IaaS): The consumers of this model can provision
computing resources including storage, processing, and networks, which can
usually be used to host any arbitrary operating system and applications. Most
of the well established cloud services (such as Amazon EC2) adopt this model
and charge their users according to the amount of utilized resources.

2 Authentication and Authorization

2.1 Browser security

One of the goals of providers of Software as a Service (SaaS), as pointed out in [47],
is to have a generic means of offering access to their clients, independent of their
local platform. Internet browsers are the ideal choice and can be used on the client
side to simply perform I/O, while the actual computation takes place in the cloud
back-end. As a downside, however, known browser security issues may affect this
interface for cloud authentication. We review two issues that can be exploited in this
context:

• XML-based authentication in a browser: User authentication to the cloud via a
web browser requires the issuing of cryptographically valid Extensible Markup
Language (XML) tokens. As the first step of the process, the user provides his
login credentials, which upon verification and validation, allow the cloud to issue
the security tokens which the client will later provide to the cloud server as means
of authentication. This process, however, requires the assistance of a trusted third
party as browsers are not capable of issuing XML-based security tokens on their
own. There are multiple services that can be used as an intermediary between
users and the cloud, including Microsoft’s Passport, which Jensen et al. [47] use
to illustrate the security shortcomings of this interface. In that scenario, when the
user wishes to authenticate to the cloud, an Hypertext Transfer Protocol (HTTP)
redirect is sent to the Passport login server. After the user enters information, the
server will translate those credentials into a Kerberos token which is then, via
another HTTP redirect, sent to the cloud server, finally allowing the user to be
authenticated. The downside of this approach lies in the mechanism via which
the tokens are made secure. The Kerberos tokens sent by Microsoft Passport to
the cloud server are only protected by the Same Origin Policy (SOP), which has
been shown to be vulnerable [91]. Hence, if an adversary gains control of these
tokens, he will be granted full access to all of his victim’s services. To counteract
this problem, the paper [47] discusses a few methods via which XML tokens can
be made safe with the use of Transport Layer Security (TLS). This paper also
suggests that a more optimal solution to these limitations would be to further
enhance the capability of web browsers, adding XML Encryption and XML
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Signature to the browser security API. In [57], a widely known attack on
XML signatures was described in which the attacker intercepts a given Simple
Object Access Protocol (SOAP) message being sent to the server by some client,
replacing its content with some arbitrary request on behalf of the attacked client;
Amazon EC2 is vulnerable to a variation of this signature wrapping attack [38].

• Federated Identity Management based on insecure SOP: The legacy Same Origin
Policy (SOP) is mainly used for defining access rights to web scripts. Read/write
operations are only permitted to requests originated from the same source, which
in a Web context is usually defined jointly by the domain name, the protocol, and
the port. As previously stated, the tokens used during client authentication to the
cloud are often protected by this policy. Jensen et al. [47], however, point out that
Domain Name Systems (DNS) can be infected in such a way that would cause
domain names to become unreliable, compromising the functioning of the secu-
rity policy. For instance, it has been shown that an attacker can host a malicious
website, which upon being visited, will attempt to change the DNS settings of
the user’s broadband network router [71]. Therefore, using SOP exclusively for
the purpose of protecting these authentication tokens does not strictly guarantee
security. To mitigate this problem, [47] elaborates on better ways of integrating
SOP and TLS to improve security of these protocols.

In order to ensure the safety of their clients’ information, cloud providers have
claimed to address the above forms of attack. However, a recent work by So-
morovsky et al. [70] reports two successful variants of the signature wrapping attack
on both the Amazon cloud services and Eucalyptus [30]. The first attack variant
used a single eavesdropped SOAP request for the MonitorInstances opera-
tion with a duplicated body to perform arbitrary operations. The SOAP interface
used by Amazon EC2 validated the XML signature for the original (unmodified)
SOAP body, but performed the operation described in the maliciously injected body.
To circumvent the timestamp verification performed before the execution of the
SOAP messages, the authors similarly duplicated the timestamp element in the se-
curity header and were able to execute arbitrary operations even when the original
timestamp had already expired. Upon being notified of the issue, the Amazon Web
Services (AWS) security team quickly provisioned a patch that prevented the ex-
ecution of messages containing duplicated timestamp elements. The second attack
variant, however, showed that it was possible to issue SOAP messages with several
<soap:Body> elements and technically achieve the same result. The modified
message used in that case had three <soap:Body> bodies, with the second body
containing the originally signed timestamp. That timestamp and the whole third
body were verified by the signature verification component, while a different times-
tamp located in the security header was tested for expiration and the first body was
interpreted to determine the operation to be performed.

The SOAP interface used by Eucalyptus is slightly different and validates the
format of incoming SOAP messages against an XML schema. In such a scenario,
messages containing duplicated body or timestamp elements were automatically
rejected and the previously mentioned attacks were shown to be infeasible. Nev-
ertheless, by modifying the classical signature wrapping attack [57] and by using a
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duplicated security header element that did not violate the XML schema, the authors
were able to place the signed body and timestamp elements into a new location and
replace the original ones with their own.

Besides describing these successful attack implementations, [70] also shows how
advanced Cross Site Scripting (XSS) techniques can be used to steal data creden-
tials from Amazon and Eucalyptus cloud users. In the Amazon case, Somorovsky et
al. demonstrate that it is possible for an attacker to utilize the public Amazon shop
discussion forums as a means for exposing user information needed to perform the
previously mentioned signature wrapping attacks. The attacker simply needs to cre-
ate a new discussion topic containing Java Script code to obtain cookie data via
document.cookie. Despite the fact that Amazon utilizes padding techniques to
prevent malicious code from being executed, a careful formatting of the code block
was able to deceive that mechanism. Once in possession of this data, the attacker
can immediately obtain access to that user’s cloud services since the same log-in
credentials are shared across the Amazon shop and Amazon cloud control interface.

2.2 Binding issues

In order to accurately maintain and instantiate VMs (in the case of IaaS) or specific
modules (in the case of PaaS), the cloud provider needs to store metadata descrip-
tions associated with each operation. A user may refer to these metadata descriptions
in order to determine the detailed functionality of a certain service upon having a
particular need. Jensen et al. [46] suggest a spoofing attack that aims at reengineer-
ing this metadata.

A metadata spoofing attack [46] allows an adversary to modify metadata de-
scriptions, potentially causing severe damage to the user’s services. An example
of this attack given in [47] suggests that an attacker may attempt to modify the
server’s Web Service Definition Language (WSDL) descriptions. This can, for in-
stance, cause a call to deleteUser to generate a SOAP message that mimics and
may be interpreted as a call to setAdminRights on the server side. Therefore,
in that scenario, a user who intended to delete a certain account may inadvertently
grant extra privileges to the adversary.

Clouds are especially susceptible to these types of attacks because they use
WSDL repositories that are dynamically utilized by all users, increasing the prob-
ability of an attacker successfully spreading his malicious WSDL file. As a coun-
termeasure, cloud providers need to cautiously check all metadata documents for
authenticity, which may be somewhat troublesome as there are no standard mecha-
nisms for doing so. Another possible approach would be to ensure the establishment
of trust relationships with users prior to accepting their requests, although this may
not be applicable to some scenarios [46].
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3 Hardware Virtualization-Related Issues

In order to satisfy the demand for computation from multiple concurrent users, cloud
service providers often need to multiplex the use of their limited available hardware.
Amazon EC2 and Microsoft Azure, for instance, allow users to dynamically instan-
tiate VMs which can be tuned to their specific needs and easily managed while
running on the top of a shared physical infrastructure. Although the general use of
virtualization normally implies an isolation between the workloads involved, Ris-
tenpart et al. [63] show that new vulnerabilities can arise when an adversary is capa-
ble of determining the location of a particular target VM in the cloud infrastructure
and subsequently instantiating a malicious co-resident VM. Though not particularly
trivial to exploit, these vulnerabilities can vary from the extraction of cryptographic
keys to DoS, depending on the adversary’s intent.

Another virtualization-related security issue, raised by Christodorescu et al. [22],
is that vulnerabilities arise from the fact that in highly multiplexed cloud environ-
ments, providers often have no control over what types of VMs are being deployed
by their clients. Conversely, users also have a very limited knowledge of the under-
lying physical infra-structure. We discuss how attackers can instantiate VMs with
modified OS images, how that may constitute a threat to other users, and what solu-
tions were put forth by [22]. Along similar lines, Wei et al. [83] explored the possible
risks concerning how VM images are stored and managed in the cloud. Specifically,
they showed that an attacker can build and share images that are contaminated with
malware and other types of threats. A more recent work [16] gives practical exam-
ples of how these risks can be exploited on Amazon EC2 and how they should be
mitigated.

We next describe the above three virtualization-related security issues in more
detail.

3.1 Exploiting VM Co-residence

Ristenpart et al. [63] investigate the possible means by which a cross-VM attack –
the one that originates from a given VM and targets another – may be performed.
There are four distinct steps to be carried out by the adversary in the suggested
attack: (1) determining where the target VM is physically located in the cloud,
(2) launching VMs that will be co-resident to the targeted one, (3) verifying that
the VMs involved are indeed co-resident, and (4) exploiting cross-VM information
leakage. In the following we describe each of these steps.

• Determining the target VM’s location: Using simple network probing tools, Ris-
tenpart et al. showed that it is possible to infer considerably accurate information
about the location of VMs based on their assigned IP addresses. To do so, they
first sampled a large pool of IP addresses, isolated those that were responsive
and associated with EC2, and used Domain Name Systems (DNS) lookups from
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within the Amazon EC2 network to obtain their internal IP. In parallel to that, the
researchers also launched a large number of VM instances and observed that dis-
tinct IP address ranges appeared to be assigned to each different zone. Thus, they
maintain that by simply having the internal IP address of a given VM, one can
make fairly accurate deductions regarding its physical location. To prevent such
a form of physical mapping, cloud providers need only to eliminate the static as-
signment of IP addresses based on availability zone, instance type, or any other
feature of the VMs.

• Instantiating co-resident VMs: Two methods for instantiating co-resident mali-
cious VMs are proposed by [63]. The first method consists of launching a large
number of VMs in a brute-force manner until co-residency is achieved. The sec-
ond method is more refined and takes advantage of the Amazon EC2 placing al-
gorithm’s tendency to assign machines belonging to a common small set to VMs
being instantiated within a short period of time from each other. Deliberately tar-
geting VMs that had been recently launched yields a successful co-residency rate
of nearly one half for certain types of instances. One way to mitigate such issues,
as suggested by Ristenpart et al., is to allow users to make the decision on the
placement of their VMs.

• Verifying co-residence: Ristenpart et al. verify or discard co-residence with a high
level of correctness. To assert that any two VMs are co-resident, Ristenpart et al.
check that the VMs have matching Dom0 IP addresses by tracing messages sent
to the target VM to see whether the addresses of the first and last hops are the
same. Co-residency is also confirmed by an analysis of the round-trip times and
internal IP ranges. Preventing these techniques requires configuring the Dom0
machine to ignore traceroute requests, randomly assigning internal IPs, or
using virtual LANs to isolate accounts.

• Exploiting cross-VM information leakage: Assuming the attacker was able to
place his VM on the same physical machine as the target instance, [63] shows
that a malicious adversary may learn information about a co-resident VM via
cache-based side channels (which could possibly be used to steal cryptographic
keys), as well as other physical resources that are multiplexed among the co-
resident instances. This work has been recently expanded by Xu et al. [87] who
were able to create similar covert channels with noticeably higher bit rates than
previously reported. Despite that, the later work shows that even at higher bit
rates, the harm that can be caused by such techniques is limited to the extraction
of very small blocks of data (e.g., private keys).

3.2 Exploiting the Cloud’s Limited Knowledge of User VMs

The use of virtualization in a cloud computing environment enforces an isolation
between different workloads, protecting them from other users who may attempt
to compromise their information. Another security layer deals with protecting indi-
vidual workloads within themselves, which is especially important when these are
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exposed to the Internet. Providing such protection requires a deeper knowledge of
the workload, which consists of the guest OS in the case of hardware virtualization.
Information such as what operating system is running in the VM, however, is often
unavailable to the cloud provider as in many cases the users are allowed to upload
and run their own VMs.

The most widely available techniques for virtualization-based security are de-
signed to work when the operating system running in the VM of interest is known
in advance, allowing the virtual machine monitor (VMM) to correctly track its ac-
tivity. In addition, in order to assure the integrity of the supervising tool being used,
these techniques require that the monitoring be initialized via a safe boot, while the
guest OS is first being put to use, which obviously becomes impractical when users
are allowed to start their VMs from a guest OS snapshot, as is the case in most cloud
settings. To remedy this situation where a provider cannot offer appropriate secu-
rity measures due to the unknown configuration and integrity of its clients’ VMs,
Christodorescu et al. [22] propose a new architecture based on VM introspection .
The concept of VM introspection was first introduced by Garfinkel et al. [31] and
more recently formalized in [61]. Through the use of such techniques, it is possible
to inspect a VM from a safer location outside the monitored machine and evaluate
what is happening to it internally. This mechanism works with the aid of the hy-
pervisor, which is modified to collect data describing its interactions with the VMs
being monitored and send it to safe (specially designed) VMs that will carry out the
actual analysis and monitoring process.

The solution put forth by Christodorescu et al. does not rely on any assumptions
about the state of the running VMs and works even when the cloud user does not
give the provider any information about the software running in their VMs. Their
approach requires that the guest VMs sit on the top of a correct, trusted and un-
breachable hypervisor controlled by the cloud provider, who also maintains special
VMs referred to as secure VMs, which are assumed to be unbreachable and host
both a guest OS identification and a rootkit detection application whose function-
ality is based on VMI. The OS identification application uses a whitelist of known
executable kernel code obtained from several different operating systems (running
on clean VMs) to match and validate those originated from the monitored VM,
and while doing so it can accurately determine which guest OS is running in that
specific VM. Using the same principle, the rootkit detector checks for the pres-
ence of unauthorized code in kernel space, which upon detection is compared to a
database (blacklist) of known malicious code for identification. Experimental tests
[22] showed that these applications, running in a secure VM and using the proposed
hardware-based VM introspection, were able to both identify the OS running in a
monitored VM with high confidence, and detect unauthorized code running in the
guest kernel space. Another important feature of this approach is that, because it
uses secure introspection and runs outside the guest OS, it will still keep the system
safe from rootkits (and other malware) even in the event of an attack that disables
the traditional security software running in the guest.

Another work in the realm of virtualization security [74] proposed a system
called NoHype, in which the need for hypervisors is eliminated in its entirety, con-
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sequently excluding the hypervisor attack surface. In order to allow VMs to run
natively on the underlying hardware while still maintaining the support for mul-
tiple concurrent VMs, NoHype places guest VMs in more direct contact with the
hardware to avoid indirection. It implements slight modifications to the guest OS,
allowing it to perform all system discovery during bootup. In addition, CPU and
physical memory need to be pre-allocated and only virtualized I/O devices are used.

3.3 Exploiting VM Images

Despite the numerous services that can be provided by clouds and the apparent
complexity of their environments, the resources offered by cloud providers can be
narrowed down to primarily three: (1) a pool of VMs from which users can choose
the most suitable for their specific needs; (2) a set of servers that are configured to ef-
ficiently run these VMs; and in some cases (3) a means for non-volatile storage that
can be used to share data across multiple VMs or simply for backup. This section
has already covered the security threats related to VMs that are currently in execu-
tion and their mitigation. Persistent data storage in the cloud and the corresponding
security issues are the topic of Section 6. An area that has been paid considerably
less attention is that of threats that can result in compromising VM images in the
cloud; this area is discussed next.

Wei et al. [83] were the first to expose the risks involved with the publishing and
large scale usage of images. The authors emphasize that the sharing of VM images
is of great importance since it largely simplifies administrative tasks and costs re-
lated to installing and configuring software (i.e., instead of doing all the work, a
user can simply choose a VM that is preloaded with all the software that is needed).
There are, however, risks to all parties involved in this process. For example, the
image publisher may inadvertently release sensitive information while personaliz-
ing the images he wishes to share. Retrievers of these pre-configured images are
highly vulnerable to infections that could have been loaded into the VMs by ma-
licious publishers and which can be used, for instance, as vectors for propagating
Trojan horses. Lastly, cloud administrators, who are entrusted with maintaining the
integrity of these images, may be liable to legal action if it is shown that malicious
or illegal content was associated with the images used in their system. In light of the
aforementioned threats, Wei et al. proposed an image management system called
Mirage that provides a series of security features. First, it offers image publishers
a framework by which they can define a set of trusted users to whom they wish to
allow access rights. To further protect publishers from accidentally leaking private
information, Mirage also contains an elaborate image filter that removes from each
image all private (e.g., passwords) and malicious (e.g., malware and pirate soft-
ware) information. Next, it also contains a provenance tracking system that keeps
a detailed history of each image, including all operations performed on it after its
release. In addition to these features, the system is also capable of providing a set
of maintenance services, such as anti-viruses, that can be periodically run over the
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entire pool of images. To mitigate some of the heavy overhead induced by these
new features, the authors suggest running filters and services at the repository level,
where scaling can more efficiently take place by taking advantage of the similarities
between different images.

The filtering systems proposed in [83] are already embedded into some of today’s
cloud services, but their advantages have not yet outweighed the disadvantages of
implementing them. This is especially true for providers not liable for issues that
may occur to shared user data as in the case with Amazon EC2. A recent work
[16] presented practical examples of how these vulnerabilities can be exploited and
argued that the increasing competition between cloud providers may become the
driving force that will finally push for a security enhancement with regards to cloud
VM images. In this work, Bugiel et al. [16] successfully developed an automated
tool that was able to search for and extract highly sensitive information from public
Amazon Machine Images. The cost of running the attacks was very low, and the
data the authors were able to obtain contained source code repositories, adminis-
trator passwords, and other types of credentials. [16] also highlighted the discovery
of several widespread vulnerabilities caused by incorrect use of SSH. An alarm-
ing number of Amazon Machine Images were found to have SSH backdoors that
allowed their publisher to remotely login to instances of VMs belonging to other
users. Tools providing countermeasures to these threats are suggested in [83] and
cloud providers can consider the trade-off between the benefits and costs of imple-
menting these tools.

With regard to the security of VMs, we point out the work of Schiffman et al.
[65], which provides an architecture that allowed for the performance of runtime
integrity proofs in general purpose distributed systems. Their prototype, based on
the Xen VM, uses the Clark-Wilson integrity model [24] and a main component was
defined as VM verifier, whose job was to enforce upon running VMs the integrity
requirements as defined in [24]. Though the topic of integrity protection is discussed
in more depth in section 7, we briefly provide an intuition to Schiffman’s solution.
As a first step, the architecture monitors each VM through a secure boot process at
the end of which the system’s integrity is verified by a base system controlled by the
provider. The provider has full knowledge of the system’s integrity properties and
can leverage that information to enforce VM compliance. In order to give end users
complete assurance that their VMs’ integrity is preserved under that architecture,
providers simply need to prove that the secure initialization process was successfully
completed and that the previously mentioned integrity property enforcement was
carried out through runtime.

4 Availability

Among the most attractive features of cloud computing is the fact that computa-
tional power can be easily supplied on demand. If a certain service running from the
cloud suffers a sudden increase in the workload, additional hardware support can be
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provisioned on the fly. In spite of its appeal, this “elastic” characteristic of clouds
can be exploited by attackers.

Jensen et al. [47] describe how flooding attacks are a real threat to clouds. This
issue rises in such environments when, for instance, all requests to a certain service
need to be individually checked for validity, thereby causing service overloading.
Consequences of service overloading pointed out by Jensen et al. are denial of ser-
vice (DoS) (which may be direct or indirect) and discrepancies related to accounting
and accountability; these consequences are discussed below.

• Direct DoS: When a service is being flooded, the cloud operating system will
likely start to supply extra computational power to it. By attacking a single cloud-
based address, an adversary may eventually cause a full loss of availability to the
entire service if, for instance, a large enough portion of the globally available
hardware becomes dedicated to the flooded application.

• Indirect DoS: A possible side effect of the above attack, caused by the fact that
hardware is multiplexed in the cloud, is that services that are co-resident to the
one being flooded may also experience similar overloading problems. Hence, al-
though a service may not be the direct target of a flooding attack, when its avail-
able hardware is exhausted by continuous requests sent to the attacked service, it
will no longer be able to perform its tasks.

• Accounting and accountability: Arguably the most severe consequence to the
cloud user who owns the flooded service can be caused by what is thought to be
another major advantage of cloud computing. Most cloud providers charge their
users according to the actual usage of their infrastructure during a pre-determined
time slice. In the case of a service that is being flooded, this usage will be ob-
viously high, which, in its turn, will most likely translate to bills that are much
higher than expected.

Though it may not be an easy task to remedy flooding attacks without compro-
mising the overall performance of the cloud to some extent, Zunnurhain et al. [95]
provide a feasible alternative. The authors suggest an organization that groups dif-
ferent servers into fleets, each of which is designated for a distinct type of job. By
structuring the available hardware in this way, the provider imposes an isolation that
would prevent an overload of bogus requests from affecting the performance of the
computational fleet. However, a downside to this alternative is that while a certain
fleet of servers may become overloaded with a large number of valid jobs, it would
not be able to offload some of its tasks to other fleets that may have several idle
nodes available.

A different form of a DoS attack in cloud systems is proposed and discussed by
Liu [56]. The author points out that it is possible to take advantage of the fact that
cloud data centers are typically under-provisioned (i.e., the hosts only use a fraction
of their resources or interface speed). In the attack proposed in [56], the adversary
gains control of a few hosts in a certain subnet (i.e., set of nodes connected via a
common router) and then simply transmits enough traffic to hosts located elsewhere.
Despite its simplicity, this attack is likely to quickly saturate the targeted network
since the uplink capacity of any given router is much smaller than the aggregate
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uplink of the hosts in its subnet. Since uplinks are often under-provisioned in both
directions, this attack will, by symmetry, also saturate the network of the subnet that
is receiving the bogus traffic. Furthermore, there are usually a sizeable number of
traffic bottlenecks on cloud networks, such as routers, that are connected to a large
number of hosts or other routers. In addition to this, this attack can potentially be
refined to aim at specific targets. In the case of a targeted attack, the adversary needs
to gain control of hosts located within the same subnet of the service that he wishes
to bring down.

Due to the large size of cloud data centers, which can cause them to be sig-
nificantly under-provisioned, Liu [56] asserts that this attack can be particularly
harmful when targeted at this type of environment. Other components that allow
for the effectiveness of the proposed attack are the fact that cloud data centers are
concurrently used by many different organizations and that these users do not have
control over the underlying network, making them incapable of providing counter-
measures when needed. Liu also proposes a couple of prevention strategies to an
attack that targets specific hosts. One involves a fast dynamic migration architec-
ture that would leverage the already available dynamic provision capabilities of the
cloud. Alternatively, a detection mechanism based on bandwidth estimation tools is
proposed. Traditional tools for detecting DoS attacks usually rely on the monitoring
of signals such as CPU usage and available memory, neither of which is affected by
this specific attack. Therefore, [56] introduces a novel mechanism that allows a host
to accurately estimate how much bandwidth it has available. With that information
in hand, it becomes possible to detect an imminent attack and trigger the appropriate
avoidance countermeasures.

5 Accountability

Accountability has long been considered to be a property of trustworthy computer
systems. An accountable system is capable of detecting misuse and exposing the
responsible entity. It should be able to generate undeniable evidence of the entity’s
wrongful activity. Moreover, an innocent party in an accountable system should be
capable of defending itself against any false accusations. Such properties are par-
ticularly valuable in environments where clients are running their tasks or services
within the infrastructure owned or maintained by third parties which is the case for
public clouds and distributed systems. Several types of systems in different domains
can be used to exemplify the significance of accountability:

• In a shared file system outsourced to the cloud, users would like to be assured
that the cloud service provider honestly propagates their updates on the data and
that other users also do not tamper with the shared data in unauthorized ways.

• In collaborative and competitive systems (e.g., on-line games [40]) delegated to
the cloud, each user would like to be able to know that other users indeed follow
the agreed upon protocol.
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• Users relying on (storage or computing) services offered by the cloud may want
to be assured that the cloud service provider faithfully carries out the tasks as
directed, utilizing the promised amount of resources.

To build an accountable system, several features should be taken into considera-
tion:

• Identity binding: In order to undeniably link each action to the party that per-
formed it, a binding mechanism [89] can be used. A widely utilized approach for
achieving this consists of signing each action with the private key of the action
originator. This will allow other entities who retain such records to present them
to an auditing authority in order to prove their innocence or accuse the action
originator of wrong doing.

• Tamper-evident logs: To investigate occurrence of malicious behavior of a cer-
tain entity, the auditing authority is normally presented with the history of that
entity’s past actions in the form of a log. One prominent property of this log
is tamper-evidence. After making a commitment to the current state of the log,
any subsequent attempt in tampering with the previous log entries invalidates the
commitment. In [40], this feature is realized by building a hash chain from the
log entries, where the current commitment is computed as a hash of the the pre-
vious commitment and the current log entry in the ordered log entry list. In other
words, the ith commitment is computed as Ci = H(ei||Ci−1), where here and in
the rest of this work, H(·) denotes a collision-resistant hash function, ei is the ith
log entry, || denotes concatenation, and C0 can be set in any desired way.

• Execution verification: When a cloud service provider executes a task on behalf
of a client and produces an outcome as the task’s result, the client might be inter-
ested in verifying correctness of the result. For that purpose, Haeberlen et al. [40]
suggest that the client could delegate the verification task to an auditing authority,
and provide it with the log contents and records of non-deterministic events. In
this context, non-deterministic events [15] are unpredictable events (e.g., hard-
ware interrupts) that occur throughout the execution process which, together with
deterministic events (e.g., messages sent or received), contribute to the final out-
come of the task. With all such inputs, the auditing authority will re-execute
the entire task using its trusted local resources to identify whether the outcome
claimed in the log is producible. To save time for executing the complete log
contents, the log can be split into several segments based on the snapshots taken
during the task’s execution process, so that the auditing authority can later per-
form spot checking of a few segments that begin and end at different snapshots.
In addition to this spot-checking approach, in section 7.2 we discuss other avail-
able mechanisms for verifying integrity of the result of an outsourced task, which
can be more efficient than this solution.

There are several publications that treat accountability in both the cloud [39, 40, 54,
80] and distributed systems [41, 89, 90] environments. They target either a server
which does not fulfill the tasks delegated to it in a faithful manner, or peer entities
who do not follow the agreed upon protocol, as being accountable. We next briefly
review selected results in this domain.
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Yumerefendi and Chase [90] proposed a network storage service that allows
clients to access shared objects maintained by the server while achieving strong
accountability. With this solution, any malicious behavior of either the server (e.g.,
incorrect execution of the clients’ write requests) or a client (e.g., denying execution
of unauthorized operations on shared data) can be captured. To assure clients’ ac-
countability, every request contains a digital signature that can be used to uniquely
identify its sender and assures the integrity of the message. The collection of such
signatures from all clients corresponding to their write requests constitutes the so-
called action history. It is later used during an audit request on a particular object,
during which the server presents a sequence of cached, signed write requests that
prove to the auditor what the correct state of the object in question should be based
on the actions of its clients. In that sense, after issuing write requests on a data
object, a client cannot later deny his actions.

Regarding the server’s accountability, the server is required to generate a new
version of a data object for every write request on that object issued by a client
and to organize all data objects in the form of a Merkle hash tree. In the standard
Merkle hash tree structure, a leaf node corresponds to a hash value of an individual
data object, and each internal node is assigned a value that corresponds to the hash
of the concatenation of its children’s values. For instance, a node containing two
children with their respective values v1 and v2 will be assigned value H(v1||v2).
After building the Merkle hash tree in this manner, the server periodically publishes
the root value of the Merkle hash tree to a trusted medium from which a client
can independently retrieve it to verify the correctness of a requested data object as
follows. When a client triggers a read request on a specific data object, the server
sends the client the object itself, together with the sibling nodes that lie on the path
from the leaf node (corresponding to the retrieved data object) to the root. The client
then recomputes the root value based on the received information and compares it
with the one retrieved from the trusted medium. If the two values match, the client
is assured that the retrieved data object was indeed included in the server’s data
structure. To further ensure that the current content of the data object is the result
of correct execution of the clients’ prior write operations on the object, the client
performs an audit on the object between two consecutive commitments by the server
at, say, times t1 and t2. By verifying the history of the write operations performed on
the object, the client is assured of the valid transition of the object’s content during
the time interval [t1, t2]. Lastly, to prevent the server from hiding the clients’ write
requests on the objects it stores, the clients themselves can communicate with each
other and learn whether any client’s operation is missing from the action history.

Jana and Shmatikov [45] introduced an approach for verifying whether interac-
tive web applications hosted by the cloud were executed correctly. Their design is
based on two key ideas: First, it provides a mapping mechanism for transforming
every HTTP request received from users through its front-end to a read or write oper-
ation on the objects stored at the back-end storage. Second, to ensure accountability
when dealing with multi-user web applications, a subset of users are selected to be
the “witnesses” who keep the logs of their interactions with the cloud-hosted web
applications. Later, these logs are sent to a trusted verifier for examination. Since the
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witnesses cannot be distinguished by the cloud service provider from other users,
if the cloud provider’s faults are random and independent, then it will be highly
probable that the cloud provider will tamper with requests of the witnesses and will
correspondingly be detected.

Xiao and Xiao [86] proposed P-Accountability – a metric for quantifying the
degree of accountability in a networked system. It was developed to provide a trade-
off between the level of accountability that can be achieved and the cost of building
an accountable system. In particular, achieving perfect accountability typically in-
volves a large amount of overhead. Furthermore, the noisy nature of network com-
munication due to message loss and delay makes it difficult to link every event that
occurred to the responsible entity. Accounting for these factors, the authors define
the P-accountability metric as P = (∑e∈E I(e))/|E|, where E is the event set, e ∈ E ,
and I(e) returns 1 if e could be correctly traced back to the responsible entity, and 0
otherwise. Based on application demands, such as the amount of available resources
and tolerable overhead, the system can specify different P values to achieve the de-
sired level of accountability.

Recently, Sekar and Maniatis [67] proposed a systematic approach to account for
the resources consumed by the cloud when executing clients’ tasks. The problem the
authors address in verifiable resource accounting is two-fold: (i) verifying whether
the resources consumed for an outsourced task indeed matched the expenditures the
client was charged for (i.e., “Did I use what I was charged for?”), and (ii) verifying
whether the resource consumption can be justified based on the agreed upon pol-
icy (i.e., “Should I have used what I was charged for?”). Here, a policy determines
a “reasonable” allocation of resources for a delegated workload. For instance, the
client may describe an upper bound on the resources the server can dedicate to a task
(which can be specified as a function of that task). The framework that the authors
offer for answering these two questions relies on the use of trusted hardware. In
more detail, for a given task, the server specifies the granularity of resource tracking
and upon completion of the task the server generates a consumption report. The re-
port describes the utilized resources with the specified granularity, and attestation of
the hardware on which the task is run guarantees the integrity of the report. To verify
the correctness of the billing, the client provides a third-party verifier with specifi-
cation of the task and the server’s report receives a Yes/No answer that indicates
whether the server’s resource usage was appropriate for the task.

6 Remote Storage Protection

Cloud storage refers to the increasingly prevalent on-line storage services hosted
at the cloud. Thanks to the enormous storage capacity, high availability, and stable
performance offered by the cloud, the applications resorting to cloud storage range
from general file storage such as archiving and backup to web operating systems and
databases. Using Amazon Simple Storage Service (S3) as an example, cloud storage
providers tend to offer plain file-system like interfaces to the end users without
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exposing them to the complicated management of physical servers and facilities in
which they reside. Moreover, because all storage servers of a cloud storage provider
are centrally controlled through dynamic provisioning, the users are also relieved
from the direct oversight of component reliability and outsider security threats.

While cloud computing offers appealing advantages, it also brings new security
challenges. In particular, integrity of clients’ outsourced data becomes a concern,
which is caused by a lack of transparency and direct control in the cloud envi-
ronment. While data confidentiality can be assured through traditional mechanisms
such as encryption or secret sharing, and integrity of data transmission can be as-
sured through data authentication, integrity of data stored in the cloud is significantly
more difficult to verify. For that reason, the rest of this section deals with techniques
for ensuring integrity of outsourced data.

After a client moves its data to the cloud, the client relinquishes its ultimate
control over the data, which is now entirely managed by the cloud service provider.
Thus, it is essential for the client to be able to verify that her data is still available at
the cloud in its original form and is ready for retrieval when necessary. For instance,
the client might want to make sure that her data has not been corrupted (deleted or
modified) or moved to an off-line unavailable storage medium, that could be caused
by either an attempt of a dishonest provider to save storage costs or by outages and
security breaches within the cloud services themselves.

One possibility for assuring high availability of outsourced data is through sim-
ple replication, where a client stores its data with multiple server providers. This,
however, results in unnecessarily high storage overhead and cost to the client. As
an alternative, the client can store her data at a single provider, but either pe-
riodically retrieve and examine the entire data, or ask the server to periodically
compute and send a one-way function of the stored data which the client then
compares to a previously computed value that it expects. It is clear that these
two approaches are also unsatisfactory as in the first one both the server and
the user suffer from a substantial communication overhead and the second ap-
proach is prone to replay attacks by the server which can conceal the fact that
the server tampered with the data. To mitigate these problems, a widely utilized
approach [5, 6, 7, 13, 14, 18, 25, 27, 29, 48, 66, 69, 81, 84, 92] is to employ a
challenge-response mechanism consisting of the following phases:

• Challenge: The client creates and sends to the cloud service provider (CSP) one
or more unpredictable challenges, which are used to ensure that the CSP indeed
retains the client’s data at the time of auditing.

• Response: Upon receiving the challenge, the CSP derives its response from the
challenge and the stored data, and sends the computed result back to the client.

• Response verification: After receiving a response from the CSP, the client com-
pares it to the expected value that it previously pre-computed from the original
data and its metadata. If the two values coincide, the client is assured that the
data is stored at the CSP in its intact form.
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A design objective of this framework is that a cloud service provider who is
highly likely to store incomplete or incorrect data will be unable to respond to the
challenges correctly, and thus the client will detect data integrity violations.

While security (i.e., guaranteeing that the server’s misbehavior is detected) and
efficiency (i.e., minimizing the client’s and server’s computation and communica-
tion) should be viewed as the main design criteria, in order to build a reliable and
versatile protocol, it is desirable that several other properties are taken into consid-
eration:

• Unbounded number of audit queries: A robust scheme should be able to support
an unbounded number of audit protocol interactions to ensure that the server’s
misbehavior, which might occur at any time, will be detected. If a protocol only
allows for a limited number of audit queries, upon reaching the limit, the client
will have to retrieve the entire data from the server and re-initiate the scheme dur-
ing which the data is stored at the server again. Clearly, this imposes additional
overhead on clients which can be avoided.

• Support for dynamic data operations: In many circumstances, the data delegated
to the cloud might need to be modified through the user’s update requests (unlike
backup archive files that are rarely modified). In this case, a protocol that works
only for static operations (i.e., upload or read) is unlikely to be applicable to
dynamic operations. The update operations can be insertions or deletions of new
or existing blocks at arbitrary positions in the file, or modifications of existing
blocks. With cloud storage, support for dynamic data operations can be of vital
importance to both remote storage and database services.

• Public verifiability: Oftentimes, when performing integrity verification of out-
sourced data, the clients themselves are unreliable and are unable to consistently
perform integrity checks. They may also lack necessary expertise for this task.
For these reasons, it is desirable to develop mechanisms for public verification
of data integrity by a trusted auditing server. The auditing server is a reliable
and independent entity that challenges the cloud service provider on behalf of
the clients and assures correctness of data storage, while not learning any infor-
mation contained in the stored data. For improved efficiency, the auditing server
could also perform batch auditing during which it simultaneously processes au-
diting requests from multiple users [79].

To ensure integrity of outsourced storage and address the above mentioned prop-
erties, many existing publications [5, 6, 7, 14, 18, 19, 27, 29, 43, 48, 66, 69, 78, 79,
81, 92, 94] proposed a number of techniques. In the following, we categorize prior
work based on the design objectives and highlight cryptographic details and data
structures used in these publications.

• Basic scheme. Juels and Kaliski [48] proposed one of the first solutions to
this problem by implementing the basic functionality of proofs of retrievability
(POR). In their sentinel-based scheme, the client first applies an error-correcting
code to the original file, encrypts each file block, and then inserts a predefined
number of randomly chosen sentinels into different positions in the file. Follow-
ing a challenge-response protocol, the user challenges the cloud service provider
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by specifying a number of positions of sentinels, so that a distinct set of sen-
tinels is selected for each challenge and their positions are unpredictable to the
server. The user then requires the cloud service provider to return information
about the blocks at the chosen positions and verifies their correctness by compar-
ing the returned values with their locally stored copy. The scheme is considered
secure if a server without the possession of the file can only succeed in produc-
ing correct responses with low probability. As can be expected, the security of
the sentinel-based approach depends on the number of sentinels (defined by the
security parameter) in each challenge, and the number may vary upon the user’s
demand on integrity assurance (e.g., 90% of user’s data should be kept intact).
Given a sufficient number of sentinels in a challenge, if the server tampers with
a large portion of the file, it will inevitably corrupt some of the sentinels that are
being checked and the scheme will correspondingly detect the integrity violation
with high probability. Since the number of embedded sentinels is independent of
the length of the file stored at the server, the communication and storage costs for
verifying the file’s integrity remain a small constant. Another notable feature of
the scheme is that a small corruption of the file that may not be detected using the
spot-checking mechanism can still be recovered using the error-correction code
embedded into the file. In spite of this basic functionality, the scheme has several
disadvantages: it does not permit an unbounded number of audit queries, lacks
support for dynamic operations, and does not allow for public verifiability.

• Schemes with support for public verifiability. The solutions in [5, 29, 69, 14, 81,
79, 92] support both public verifiability and an unlimited number of auditing
interactions. A common approach for achieving these two properties is to uti-
lize the so-called homomorphic authenticators [5, 69, 81, 79]. A homomorphic
authenticator is an unforgeable metadata derived from a file block, with the prop-
erty that several homomorphic authenticators can be securely aggregated. When
a client would like to verify the integrity of a number of file blocks, it is suffi-
cient for the client to verify only the aggregated homomorphic authenticator that
corresponds to a linear combination of the individual blocks. Since the only in-
formation necessary for carrying out verification of correct data storage using a
challenge-response protocol is the client’s public key and the challenge data, the
auditing process can be delegated to a third party who is equipped with sufficient
computing and storage resources.

• Schemes with support for dynamic operations. Publications [6, 29, 43, 78, 81,
94] provide schemes that support dynamic updates on the outsourced data. The
work [6, 78] implemented this functionality by using carefully designed sentinels
(unlike [48], where the sentinels are assigned random values) and outsourcing
them together with the client’s data. Another line of research [29, 81, 43, 94] that
supports dynamic operations utilizes specialized data structures such as Merkle
hash trees or skip lists to organize information about the data blocks outsourced
to a cloud service provider. When a Merkle hash tree structure is used for this
purpose, each leaf node corresponds to the hash of an individual data block in the
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file being outsourced, and each internal node is assigned a value that corresponds
to the hash of the concatenation of its children’s values. The client only needs
to store the root value of the tree. When the client retrieves a data block from
the cloud server, the server sends the values of the sibling nodes lying on the
path from the data block to the root. Having this information, the client verifies
the correctness of the retrieved data block by recomputing the root value and
compares it to the one that it locally stores.

7 Privacy and Integrity of Outsourced Computation

This section treats security issues that arise in the context of outsourced computa-
tion, and in particular, we address the broad topics of privacy and integrity protection
of outsourced computation.

7.1 Privacy Protection of Outsourced Computation

As companies, individuals, and even governments increasingly outsource compu-
tation to the cloud, they knowingly relinquish the ultimate control over their data
and the computation. If the computation involves proprietary, private, or otherwise
sensitive data, cloud users might wish to protect the privacy of the data being used
in the process, particularly when the infrastructure provider cannot be fully trusted.
Although the concept of cloud computing is relatively new, privacy protection of
outsourced computation has been studied for many years and most of the develop-
ments in this research area can be directly applied to the cloud architecture. There
are currently a number of solutions that allow different types of operations (i.e., ma-
trix multiplication, modular exponentiation, etc.) or more general functionality to
be performed by the cloud provider on data that has been preprocessed by the user
to ensure the safety of sensitive information. In what follows, we provide a more
detailed description of some of these approaches.

All existing solutions in the literature can be grouped into the following cate-
gories: (1) schemes where the client outsources its computation to a single server,
(2) solutions where the client uses multiple (normally two) servers for its computa-
tional task, but there is no interaction between the servers, and (3) protocols where a
task is outsourced to multiple (two or more) servers that jointly carry out the compu-
tation. The solutions from the second category normally utilize two servers to ensure
correctness of the result in the presence of faulty servers rather than in a more fun-
damental way. We start our description with the literature where the computation is
outsourced to a single server followed by multi-server solutions.

Homomorphic encryption schemes have special properties that allow computa-
tion on ciphertexts to translate to meaningful operations on the plaintexts that they
encrypt, and can be used in the context of secure outsourcing to a single server.
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While an overview of homomorphic schemes is beyond the scope of this chapter,
we mention that the existing techniques have limitations either in the class of func-
tions that are able to evaluate on the encrypted data or in their performance.

In recent years, there has been an increasing interest in privately outsourcing
complex (scientific) operations. Atallah et al. [4] proposed techniques for securely
outsourcing several computations, with applications ranging from linear algebra to
string pattern matching. As no single proposed mechanism was broad enough to be
applied to a large variety of scientific problems, that work resorts to a number of
different disguise techniques that are tuned to specific situations to enable secure
outsourcing of most scientific computations at low cost. In [2], the protocols for
outsourcing linear algebra operations are further improved to work with a single
(or multiple) external servers that, unlike in previous protocols, no longer require
expensive cryptographic operations. Another attractive property of this protocol is
that it allows for a continuous (and safe) chain of outsourcing. For instance, by
using this technique, a client can outsource a large matrix multiplication to the cloud
which in its turn, can also delegate part of that computation to another remote server.
In each step the client outsourcing the computation does only linear in the size of
the matrix work, and can detect any attempt by the server to corrupt the answer.

As we next proceed with techniques for secure outsourcing to multiple servers,
where the servers jointly carry out the computation, we note that many techniques
from secure multi-party computation (SMC) can be used in this setting. Their
overview, however, is beyond the scope of this chapter. We only mention that the
client often can split its input between the computational servers, who can then pro-
ceed with the secure computation and return the result to the client.

We also mention works that deal with important applications. Atallah et al. [3]
describe a secure outsourcing technique via which a client that does not have the
necessary computational power can outsource large sequence comparisons (e.g.,
DNA matching) to two remote computing nodes, such that the result of the com-
parison and the two sequences being compared are known only by the client. This
problem was revisited in [11], where a solution of improved performance was put
forth. Also, the work [10] describes the means by which oblivious evaluation of a fi-
nite automaton on a private input can be securely outsourced to two or more servers.
Though there are many operations that can be approached by the given technique
such as searching for a regular expression in a database, the paper focuses on DNA
searching and gives optimizations for that specific setting.

Finally, a couple of recent publications propose privacy-preserving architectures
for MapReduce-based [26] computation. The work by Roy et al. [64] recognized
the need for an automated system that could be used by clients with no knowledge
of security to enforce personalized access control policies to their data. With that
premise, the authors designed and implemented Airavat, which incorporated the
mandatory access control features of SELinux to MapReduce, and also provided
measures to avoid the leakage of information through the output of computations.
Zhang et al. [93] considered a slightly different scenario, in which a given entity
wishes to outsource a large computation where only a portion of the data is sensitive
and needs to be processed by a private cloud, whereas the remaining information can
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be safely outsourced to a public cloud. Also building upon MapReduce, the authors
proposed Sedic, a generic secure computing framework for hybrid clouds. Sedic
allows the end user to continue to use the legacy data-processing code with the added
functionality of having the data being automatically partitioned between private and
public and adequately outsourced according to that labeling. Several techniques are
also suggested in order to maximize the amount of computation done in the public
cloud side, which increases the overall performance.

7.2 Outsourced Verifiable Computation

As mentioned earlier, a prominent advantage of the cloud paradigm is providing
computing resources to resource-constrained users who are now able to outsource
their computation-intensive tasks to the cloud with abundant processing, storage,
and bandwidth resources. With this architecture, however, the clients no longer have
direct control over the outsourced data and computation, and there is a lack of trans-
parency in the current cloud services. The cloud provider can be incentivized to
delete rarely accessed data or skip some of the computations to conserve resources
(for financial or other reasons), which is especially true for volunteer-based com-
putational clouds. Furthermore, unintentional data or computation corruption might
also take place for a variety of reasons including malware, security break-ins, etc.
From that perspective, it is important for the clients to be able to verify the correct-
ness of the result of the outsourced task. Furthermore, the verification mechanism
should be such that it does not require the client to perform a computation com-
parable in size to the outsourced task itself. Techniques that enable verification of
correctness of the result for outsourced computation are treated in this section.

To formulate the problem, a client delegates the task of computing f (x) for a
set of inputs X = {x1,x2, . . . ,xn} to a cloud service provider. A dishonest cloud
provider evaluates the function on a subset of the inputs X ′ ⊂ X , and for the rest
of the inputs it returns the result of evaluation of f ′(·), where f ′(·) is cheaper to
compute than f (·). This type of behavior is termed “lazy.” Alternatively, a part of
the result might be corrupt, but normally it is assumed that the cloud server will
not maliciously modify the result (by performing work equivalent to or exceeding
that of computing the result correctly). After receiving the results, the client would
like to verify the output in an efficient manner and detect any deviation from the
prescribed computation by the cloud provider.

Prior literature contains a number of techniques [2, 9, 76, 28, 35, 37, 50, 53,
55, 73, 82, 85] for efficiently verifying the result of an outsourced computing task.
We categorize them into two groups based on the type of computation to which the
techniques are applied.
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7.2.1 Function-Independent Computation

The techniques in this category can be applied to general types of computation. The
common approach of these techniques consists of assigning the extra workload to
the server that is identical to computation being outsourced, and later analyzing the
computation results of both the original task and additional workload to determine
any deviation from the prescribed computation by the service provider. This extra
workload can take the form of either insertion of so-called ringers [35, 28, 50] or
duplicate task execution [36, 73, 37, 53, 82, 85]. We provide additional descriptions
of some of the typical mechanisms.

Insertion of ringers was among the first proposals for addressing this problem and
is now commonly used. Ringer r [35] in this context, is a value chosen by the client
in the domain of the function f that it outsources to a server, and the client is as-
sumed to be equipped with the knowledge of f (r).1 Furthermore, the computational
server should be unable to distinguish ringers from the inputs of the original task. As
a result, if the cloud provider corrupts a non-negligible portion of the computation,
then with high probability, it will tamper with the computation of the ringers, which
will be detected by comparing the returned results with the client’s pre-computed
f (r). Golle and Mironov [35] applied the ringer-based technique to search for rare
events for the computation that involved inverting a one-way function h (i.e., the
client outsources the computation of h−1).

Szajda et al. [73] used an alternative technique that consists of duplicate task ex-
ecution for a number of sequential workloads that can be subdivided into indepen-
dent sub-tasks. The approach assumes that multiple servers which do not collude
with each other, execute a task on behalf of a client. To guarantee redundancy, it is
also necessary that the number of servers is greater than the number of workloads.
Under these assumptions, the proposed mechanism guarantees that the result of the
outsourced computation is correct with high probability. By the law of large num-
bers, the correct result for each sub-task is highly likely to be the result returned by
the majority of the servers; the correct computational task can then be ascertained.

Canetti et al. [17] recently proposed a general strategy for verifiable task out-
sourcing where a client outsources the computation to multiple servers and is guar-
anteed to obtain the correct result as long as at least one server is honest. The ap-
proach proposed by the authors works as follows: Given the number of instructions
that compose the computation task, the client uses a binary search to determine
the exact location where the intermediate states of two (or more) executions begin
to disagree. Upon locating the inconsistency, the client is able to determine which
execution was correct by carrying out one step of the computation himself. One
requirement of this scheme is that execution of the delegated task must be fully de-
terministic as it will be non-trivial to distinguish an outcome that is incorrect as a
result of a stochastic event from an outcome that is incorrect as a result of a mali-
cious event. In addition, Gennaro et al. [32] and Chung et al. [23] recently proposed
solutions that explicitly combine privacy with integrity verification of outsourced

1 We note that our definition of a ringer is different from the original definition in [35] to ensure
that it can be applied to any functionality f that the client wishes to outsource.



24 Everaldo Aguiar, Yihua Zhang, and Marina Blanton

computation and are applicable to any computable function. Gennaro et al. [32] de-
scribe a non-interactive verifiable computation outsourcing scheme that combines
Yao’s garbled circuit evaluation [88] with a fully homomorphic encryption scheme
(e.g., Gentry’s proposal [34]). Because evaluating a garbled circuit on two differ-
ent inputs cannot provide adequate security, the authors propose that the circuit is
evaluated on encrypted inputs. That is, after creating a garbled Boolean circuit for
the desired functionality, the client stores it at the server. When the client desires to
evaluate the circuit on an input, it encrypts the labels associated with the circuit’s
input bits using the public key of a fully homomorphic encryption scheme and sends
the encrypted labels to the server. The cloud server evaluates the function on the en-
crypted data using the homomorphic properties of the encryption scheme. After the
server evaluates the entire function and returns encryptions of the output wire labels
to the client, the client decrypts the ciphertexts, recovers the labels, and interprets
the result.

Setty et al. [68] recently proposed another type of general strategy for verifiable
outsourced computation based on an argument system with probabilistically check-
able proofs (PCP). In an argument system, a computationally bounded prover tries
to convince the verifier that the delegated computation was computed correctly, and
with PCP, the verifier is able to guarantee correctness of the outsourced computa-
tion with high probability by probing only a constant number of positions within
the proof. The solution builds on the work of Kilian [51, 52] in which the prover
is asked to make a commitment to his computation that should be consistent with
the queries that will be issued afterwards by the verifier. Setty et al. constructed a
scheme that aims to work for a general computation with practical performance by
incorporating several efficiency improvements to the naive implementation of [44].
The improvements include using arithmetic circuits with compact gates instead of
Boolean circuits to represent the function, and amortizing the verifier’s query costs
through batching.

7.2.2 Function-Specific Computation

The techniques in this category exploit knowledge of the domain function of the
computation to efficiently validate the results of an outsourced task. Algebraic com-
putations [9, 2] and linear programming [76] are typical computation domains that
have been studied in some depth. Also, many of the available techniques combine
privacy protection of the data used throughout the outsourced computation with ver-
ification of the result of the computation.

Wang et al. [76] proposed a result verification mechanism for linear program-
ming (LP) in cloud computing. In this approach, outsourcing the computation of
linear programming means sending all parameters of the LP problem to the cloud
service provider in obfuscated form to preserve privacy. To verify the returned so-
lution, [76] utilizes the duality theorem to construct a secondary LP problem and
derive necessary and sufficient conditions for an outcome to be valid. By outsourc-
ing these two LP problems to the cloud service provider and later comparing the
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returned results, the client can verify the correctness of the original LP problem. In
a similar vein, Benjamin et al. [9] and Atallah et al. [2] proposed solutions that deal
with secure and private outsourcing of linear algebra computations (matrix multi-
plication).

Blanton et al. [12] recently studied the problem of verifiable outsourcing of large-
scale biometric computations. The authors treat the computation of all-pairs dis-
tances between two sets of biometric data that produces a distance matrix, as well
as the corresponding distribution computation that calculates the frequency of each
distinct distance appearing in the distance matrix. The work focuses on three dis-
tance metrics, namely the Hamming distance, the Euclidean distance, and the set
intersection cardinality. In this solution, to verify the integrity of both the all-pairs
and the distance distribution computation, the client inserts fake biometric items
into the computation, which are indistinguishable from the real biometric items in
the datasets. The fake biometrics are carefully designed so that the range of distances
between two real biometric items is separated from the range of distances between
real and fake biometrics. By comparing several values returned by the server with
their expected values that the client precomputes, the client achieves the desired
level of assurance that the remaining values were computed honestly.

In addition to the above literature, [8] provides verifiable computation schemes
for evaluation of high degree polynomials, which can also be applied to verifiable
keyword searches and proofs of retrievability. Another work [59] develops a mech-
anism for verifying the result of outsourced set operations using authenticated data
structures, with applications ranging from efficient verification of keyword search
to database queries. Finally, Wang et al. [77] proposed a solution for securely out-
sourcing large-scale systems of linear equations. The solution is based on an itera-
tive method and incurs only O(n) local computations on the customer’s side for a
linear system with n× n coefficient matrix.

8 Conclusions

Cloud security has emerged as an important topic both in the research community
and in practice due to the recent rapid growth in the availability and popularity of
cloud computing and storage providers. It is often cited as a top reason for hesitance
in adopting cloud computing services by companies and is a difficult problem that
re-surfaces old security issues and brings new ones. In the attempt to bring wider
attention to the topic, this work provides the first comprehensive treatment of the
area by providing a literature overview of cloud security as well as secure remote
storage and computation. The topics covered in this survey include:

• authentication and authorization attacks and countermeasures
• virtualization-related security issues
• denial of service attacks
• solutions that address accountability
• schemes for integrity verification of remote storage
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• techniques for privacy and integrity protection of outsourced computation.

As the field matures, we expect to see techniques for more complex and inter-
operable cloud interactions such as multi-user access to remote storage and tasks’
configuration automation for use with cloud providers, which will need to be treated
in the security literature as well.
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