
PULSE: Parallel Private Set Union for Large-Scale Entities
Jiahui Gao

Arizona State University

Tempe, AZ, USA

jgao76@asu.edu

Son Nguyen

Arizona State University

Tempe, AZ, USA

snguye63@asu.edu

Marina Blanton

University at Buffalo

Buffalo, NY, USA

mblanton@buffalo.edu

Ni Trieu

Arizona State University

Tempe, AZ, USA

nitrieu@asu.edu

Abstract
Multi-party private set union (mPSU) allows multiple parties to

compute the union of their private input sets without revealing any

additional information. Existing efficient mPSU protocols can be

categorized into symmetric key encryption (SKE)-based and public

key encryption (PKE)-based approaches. However, neither type of

mPSU protocol scales efficiently to a large number of parties, as

they fail to fully utilize available computational resources, leaving

participants idle during various stages of the protocol execution.

This work examines the limitation of existing protocols and

proposes a unified framework for designing efficient mPSU proto-

cols. We then introduce an efficient Parallel mPSU for Large-Scale

Entities (PULSE) that enables parallel computation, allowing all

parties/entities to perform computations without idle time, leading

to significant efficiency improvements, particularly as the number

of parties increases. Our protocol is based on PKE and secure even

when up to 𝑛 − 1 semi-honest parties are corrupted. We imple-

mented PULSE and compared it to state-of-the-artmPSU protocols

under different settings, showing a speedup of 1.91 to 3.57× for

𝑛 = 8 parties for various set sizes.

CCS Concepts
• Security and privacy→ Cryptography.

Keywords
Multi-party Private Set Union, Oblivious Transfer, Public-key En-

cryption, Parallel Computation

ACM Reference Format:
Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu. 2025. PULSE: Parallel

Private Set Union for Large-Scale Entities. In Proceedings of the 2025 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’25),
October 13–17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3719027.3765108

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765108

1 Introduction
Private set union (PSU) enables parties to compute the union of

their input sets without revealing any information beyond the de-

sired output. In recent years, PSU in the 2-party setting has seen

rapid advancements, particularly since Kolesnikov et al. [KRTW19]

introduced an efficient PSU framework based on oblivious trans-

fer (OT). This framework has been continuously refined by subse-

quent works [GMR
+
21, ZCL

+
23, JSZ

+
22, BPSY23, JSZG24, CSSW24,

KLS24]. PSU has numerous practical applications, including im-

plementing private-ID functionality [BKM
+
20], cyber risk assess-

ment and management via joint IP blacklists and joint vulnerability

data [HLS
+
16], private database supporting full join [KRTW19],

association rule learning [KC04], joint graph computation [BS05],

and aggregation of multi-domain network events [BSMD10]. In this

paper, we focus on PSU in a multi-party setting, which facilitates

richer data sharing/computing compared to the 2-party scenario.

The functionality of multi-party private set union (mPSU) is shown
in Figure 1.

To better see the methodology and the differences between PSU

in the 2-party and multi-party settings, we first briefly review the

2-party OT-based PSU construction proposed in [KRTW19]
1
. The

solution has two phases: First, the receiver learns a bit 𝑏 represent-

ing the membership of each element in the sender’s set through

reverse membership test (r-PMT). Second, the parties invoke an
OT protocol, in which the sender inputs messages {⊥, 𝑥}, where ⊥
represents a predefined special character, while the receiver inputs

𝑏 as the choice bit. The receiver learns the sender’s element 𝑥 if it

is not in the receiver’s set, and ⊥ otherwise.

To understand how amulti-party protocol evolves from the above

PSU structure, two key security properties must be maintained: (i)

membership privacy – no party should learn any information about

the membership status of any element from other parties’ datasets

and (ii) element source privacy – for any element in the union, no

party is able to determine which party contributed that element.

To achieve the first property, instead of using the reverse mem-

bership test (r-PMT), a secret-shared private membership test (SS-
PMT) can be used, where the sender and the receiver each learn

secret shares of the bit 𝑏. To achieve the second property, the parties

can shuffle the union before revealing it, breaking the correspon-

dence between elements and participants (Section 2 provides a more

1
Note that several recent works [ZCL

+
23, JSZ

+
22] have identified security issues

in [KRTW19], but the proposed fixes still largely follow the framework of [KRTW19].

https://doi.org/10.1145/3719027.3765108
https://doi.org/10.1145/3719027.3765108

CCS ’25, October 13–17, 2025, Taipei, Taiwan Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

Parameters: 𝑛 parties 𝑃1, ..., 𝑃𝑛 and the set size𝑚.

Functionality:

• Wait to receive input 𝑋𝑖 of size𝑚 from 𝑃𝑖 .

• Give the union

⋃𝑛
𝑖=1 𝑋𝑖 to 𝑃1.

Figure 1: Multi-party Private Set Union Functionality.

detailed discussion of these steps). The state-of-the-artmPSU proto-

cols [LG23, GNT24, DZBC25, LL24, DCZ
+
25] follow this approach.

These works successfully show how an efficient mPSU protocol

can be built by leveraging rapid advancements with 2-party PSU

protocols. However, they do not fully utilize the resources of multi-

ple parties, resulting in significant idle time as the parties wait for

one another.

1.1 Motivation
Building on recent 2-party PSU protocols [KRTW19, GMR

+
21, ZCL

+
23,

JSZ
+
22, BPSY23, CSSW24, KLS24], construction of practical multi-

party PSU (mPSU) protocols began with publications like [LG23,

GNT24, DZBC25, LL24, DCZ
+
25] that rely on secret-shared private

membership tests (SS-PMT), oblivious transfer (OT), and multi-

party shuffle protocols. Compared to traditional mPSU protocols

that heavily depend on generic multi-party computation (MPC) or

homomorphic encryption (HE) techniques, these new approaches

are orders of magnitude faster, making real-world deployment of

mPSU both practical and efficient.

Existing mPSU works mainly focus on designing efficient pro-

tocols when the input set size of each party is large. However, in

certain applications, such as IP blacklisting [HLS
+
16] or submodel

federated learning [NWT
+
20, WU23], the number of parties in-

volved in the mPSU protocol can, on the other hand, be quite large,

making scalability a critical concern. For example, in federated

learning scenarios, it is common to have more than 100 partici-

pants. The number of parties impacts performance mainly because

of the round complexity – the state-of-the-art for mPSU has at

least linear in the number of parties rounds of communication. This

leaves the following open problem:

Is it possible to construct an mPSU protocol with 𝑂 (1) round
complexity for themost time-consuming computation?

1.2 Our Contributions
This paper answers the above question affirmatively by proposing

a new mPSU protocol that is secure against up to 𝑛 − 1 corrupted
parties in the semi-honest setting. Our contributions can be sum-

marized as follows:

• We revisit the existing mPSU protocols of [LG23, GNT24,

DZBC25, LL24, DCZ
+
25] in depth. We unify symmetric key

encryption (SKE)-based and public key encryption (PKE)-

based protocols into a single framework that consists of

SS-PMT, message modification, and multi-party shuffle mod-

ules.

• We propose an efficient Parallel mPSU for Large-Scale Enti-

ties (PULSE) built upon PKE. It supports parallel computation

and eliminates idle time for participating parties, making it

especially efficient when the number of parties is large and

each party’s input set is small.

Our approach introduces simple yet effective modifications

to the underlying building blocks. Specifically, we first iden-

tify inefficiencies in existing multi-party shuffle protocols

caused by sequential execution, which results in𝑂 (𝑛) round
complexity. Although 𝑂 (𝑛) complexity may seem unavoid-

able without incurring significant computational overhead,

our new design for oblivious shuffling allows the most time-

consuming computations to be performed in parallel, achiev-

ing𝑂 (1) rounds. Furthermore, we optimize what we call the

message modification module of the state-of-the-art mPSU
protocols by reducing the round complexity from 𝑂 (𝑛) to
𝑂 (1). We also introduce a batched membership oblivious

transfer, which serves as a core building block of this module.

• We implement PULSE and compare its performance to state-

of-the-art protocols [GNT24, DZBC25]. Our protocol achieves

the fastest runtime for most settings, demonstrating up to

1.91–3.57× speedup over these protocols with 3 to 8 par-

ties. When the number of participants is 50, we estimate

a 2.39–4.24× performance improvement. As shown in Fig-

ure 2, performance improvement increases as the number of

parties grows.

The rest of the paper is organized as follows: We first give an

overview of existing mPSU protocols as well as our techniques in

Section 2. In Section 3, we introduce preliminaries for our main

result. In Section 4, we present optimizations to the building blocks

of themPSU protocol. OurmPSU protocol is described and analyzed

in Section 5, and Section 6 presents performance evaluation.

2 Overview of mPSU Protocols
To better illustrate our improvements, we first review recent state-

of-the-artmPSU protocols [LG23, GNT24, DZBC25, LL24, DCZ
+
25].

For completeness, a discussion of othermPSU protocols is included

in the full version of this work [GNBT25].

The most recent [DCZ
+
25] focuses on generic set operations,

including private set intersection (PSI). As shown in [DCZ
+
25, Table

4], however, their protocol is less efficient than [DZBC25] in 95% of

the evaluated cases. The protocol proposed in [LL24] adopts similar

building blocks and design choices as [GNT24, DZBC25]. While it

5 10 15 20 25 30 35 40 45 50
Number of parties

0

50

100

150

200

250

Ru
nn

in
g
tim

e
(s
)

LG23
DZBC25 SK
GNT24
DZBC25
Ours

(a) LAN runtime.

5 10 15 20 25 30 35 40 45 50
Number of parties

0

250

500

750

1000

1250

1500

1750

2000

Ru
nn
in
g
tim

e
(s
)

LG23
DZBC25 SK
GNT24
DZBC25 PK
Ours

(b) WAN runtime.

Figure 2: Performance of mPSU protocols with 2
8-element

input sets. Solid lines indicate the timesweremeasured,while
dashed lines are estimations using the Levenberg-Marquardt
algorithm and the complexity of each protocol. The data for
SKE-based protocol originates in [DZBC25].

PULSE: Parallel Private Set Union for Large-Scale Entities CCS ’25, October 13–17, 2025, Taipei, Taiwan

reduces the communication cost of [GNT24] by approximately 4–

5×, it still does not outperform the solution of [DZBC25]. Therefore,

we mainly focus on [LG23, GNT24, DZBC25], which represent

the current state-of-the-art and/or introduce distinct PSU protocol

designs.

2.1 Revisiting Existing Protocols
The designs of the state-of-the-art mPSU protocols have a similar

structure. We combine different constructions and protocol varia-

tions in a single diagram, shown in Figure 3. This structure consists

of three modules, detailed below.

Functionality

mPSU

Module

Pairwise SS-PMT

Message Modification

Multi-party Shuffle

Realization

Multi-query SS-PMT [LG23]

Batched SS-PMT [DZBC25]

Secret Share [LG23]

Ciphertext Update [GNT24]

Secret-shared Shuffle [EB22]

Decrypt & Shuffle [GNT24]

Figure 3: A unified mPSU framework. The arrows show data
flow. The first module takes the input and the final module
produces the output, representing the overall functionality.

The core idea for computing the union of 𝑛 sets 𝑋 𝑗∈[𝑛] , each
respectively held by party 𝑃 𝑗∈[𝑛] , is given by:

𝑋1 ∪ (𝑋2 \ 𝑋1) ∪ . . . ∪ (𝑋𝑛 \ (𝑋1 ∪ . . . ∪ 𝑋𝑛−1)) (1)

Here, 𝑃1, acting as the leader, collects 𝑋2 \ 𝑋1 from 𝑃2 to obtain

𝑋1 ∪𝑋2, collects 𝑋3 \ (𝑋1 ∪𝑋2) from 𝑃3 to obtain 𝑋1 ∪𝑋2 ∪𝑋3, and

this process continues until 𝑃1 collects 𝑋𝑛 \ (𝑋1 ∪ . . . ∪𝑋𝑛−1) from
𝑃𝑛 to obtain 𝑋1 ∪ . . . ∪ 𝑋𝑛 .

From 𝑃 𝑗 ’s perspective, for each element 𝑥 𝑗,𝑘 ∈ 𝑋 𝑗 , 𝑃 𝑗 must

check the element’s membership in the set 𝑋1 ∪ . . . ∪ 𝑋 𝑗−1. If
𝑥 𝑗,𝑘 ∈ 𝑋1 ∪ . . . ∪ 𝑋 𝑗−1, 𝑃 𝑗 modifies this element to ensure it does

not appear in the final result. This membership check is performed

in a pairwise fashion between 𝑃 𝑗 and each 𝑃𝑖< 𝑗 . All protocols from

[LG23, GNT24, DZBC25] employ a secret-sharing-based member-

ship test for this purpose, which we abstract as the first module

of the mPSU framework and refer to as Pairwise SS-PMT. There
are two approaches to implementing SS-PMT: [LG23] introduced a

multi-query SS-PMT protocol, while [DZBC25] proposed a more

efficient version using batched techniques. We discuss both of these

variations in Section 3.3.

We refer to the second module asMessage Modification which

produces a correct/fake message for each element, given the shares

learned from the Pairwise SS-PMT module. The implementation of

this module can vary depending on the underlying encryption tech-

nique. That is, protocols may rely on SKE or PKE, with each variant

employing different approaches. [LG23] introduced an SKE-based

protocol that assumed that the leader does not collude with other

parties. It was improved in [DZBC25] in terms of security and effi-

ciency. On the other hand, [GNT24] designed a PKE-based protocol

relying on multi-key ElGamal, while [DZBC25] built on it to have

a protocol with enhanced optimization and faster implementation.

The solutions proceed as follows:

• In an SKE-based protocol, for an element 𝑥 𝑗,𝑘 ∈ 𝑋 𝑗 , 𝑃 𝑗 pre-

pares a message 𝑥 𝑗,𝑘 ∥𝐻 (𝑥 𝑗,𝑘), where | | is concatenation and

𝐻 is a hash function. After executing Pairwise SS-PMT with

𝑃𝑖< 𝑗 and receiving share bits 𝑒1
𝑗𝑖,𝑘

and 𝑒0
𝑗𝑖,𝑘

as the output, 𝑃 𝑗

and 𝑃𝑖 proceed with executing random OT [Rab05]. Here,

the party 𝑃 𝑗 acts as the sender with no input, while 𝑃𝑖 acts as

the receiver with input bit 𝑒1
𝑗𝑖,𝑘

. As a result, 𝑃 𝑗 obtains two

random values (𝑟 0
𝑗𝑖,𝑘

, 𝑟 1
𝑗𝑖,𝑘
) and 𝑃𝑖 receives 𝑟

𝑒1
𝑗𝑖,𝑘

𝑗𝑖,𝑘
.

𝑃 𝑗 now computes its share as 𝑥 𝑗,𝑘 ∥𝐻 (𝑥 𝑗,𝑘) ⊕
⊕𝑗−1

𝑖=1 𝑟
𝑒0
𝑗𝑖,𝑘

𝑗𝑖,𝑘
,

while 𝑃𝑖 sets its share as 𝑟
𝑒1
𝑗𝑖,𝑘

𝑗𝑖,𝑘
. We observe that these are the

shares of the original message 𝑥 𝑗,𝑘 ∥𝐻 (𝑥 𝑗,𝑘) if 𝑥 𝑗,𝑘 ∉
⋃𝑗−1

𝑖=1
𝑋𝑖 ,

and are shares of some random value otherwise. We refer to

this approach as “Secret Share” in the “Realization” column

of Figure 3.

• In PKE-based approaches, the message for each element

𝑥 𝑗,𝑘 ∈ 𝑋 𝑗 is a ciphertext Enc(pk, 𝑥 𝑗,𝑘) encrypted using a

threshold multi-key encryption, defined as requiring col-

laboration of more than a threshold number of parties to

decrypt. After receiving bit shares from Pairwise SS-PMT,
𝑃 𝑗 and 𝑃𝑖< 𝑗 perform an OT where 𝑃 𝑗 acts as the sender with

input messages (Enc(pk,⊥), Enc(pk, 𝑥 𝑗,𝑘)) and ⊥ being a

predefined special element.

The parties invoke membership OT (mOT) [GNT24] such
that if 𝑥 𝑗,𝑘 ∈ 𝑋𝑖 , 𝑃𝑖 receives the fake message Enc(pk,⊥);
otherwise, 𝑃𝑖 receives Enc(pk, 𝑥 𝑗,𝑘). 𝑃𝑖 then rerandomizes

the ciphertext and sends it back to 𝑃 𝑗 , who subsequently

rerandomizes it again. The re-randomized ciphertext is later

used in place of the true message when interacting with

subsequent participants.

As the computation progresses, the message corresponding

to 𝑥 𝑗,𝑘 will remain Enc(pk, 𝑥 𝑗,𝑘) if 𝑥 𝑗,𝑘 ∉
⋃𝑗−1

𝑖=1
𝑋𝑖 , and be-

come Enc(pk,⊥) otherwise. We refer to this component as

“Ciphertext Update” in the “Realization” column of Figure 3.

The final module in the mPSU framework is the Multi-party
Shuffle, which is designed to protect the element source privacy

as mentioned earlier.

SKE-based designs rely on a multi-party secret-sharing shuffle
protocol [EB22] for this module, where each party holds a share of

the vectors along with its own permutation. After this computation,

the parties obtain a refreshed share corresponding to the vector per-

muted 𝑛 times. The protocol has efficient online computation with

round complexity of 𝑂 (𝑛) and computation complexity of 𝑂 (𝑛2𝑚).
However, the protocol has poor offline computation complexity

of 𝑂 (𝑛3𝑚) indicating its unscalability for the scenario of a large

number of parties.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

In PKE-based designs, an oblivious shuffle and decryption protocol
[GNT24] is employed, where each party performs partial decryp-

tion, permutes the collection of ciphertexts, and then passes it to

the next party. This results in a protocol with a round complexity

of 𝑂 (𝑛). Compared to SKE-based approaches, this straightforward

method offers a fair total runtime of 𝑂 (𝑛2𝑚).

2.2 OurmPSU Protocol
The evaluation in [DZBC25] showed that the SKE-basedmPSU does

not scale well with a large number of participants due to the cubic

complexity of the shuffle protocol. We estimate the performance of

the SKE-based protocols using the original data from [DZBC25] and

plot them along with the curves of PKE-based protocols in Figure 2.

Although the SKE-based protocol may be faster in some cases in

the LAN setting, it is significantly slower in the WAN setting due

to the underlying shuffle protocol, which has higher complexity.

Thus, we focus on further improving existing PKE-based protocols,

following the three-module framework presented in Figure 3.

For the Pairwise SS-PMT module, we adopt the batched SS-PMT
technique from [DZBC25] to further improve performance. Our

main contributions lie in the second and third modules, which

account for the majority of the computational cost in the over-

all mPSU protocol. In existing state-of-the-art PKE-based mPSU
protocols, these modules involve a sequence of𝑂 (𝑛)-round compu-

tations, resulting in significant idle time for the parties. In contrast,

our protocol enables parallel execution of the most expensive opera-

tions, substantially reducing idle time and improving efficiency. Our

new message modification module has round complexity of 𝑂 (1).
For the multi-party shuffle module, we consider the shuffle and

decryption separately. We enable the parallel computation for the

decryption within 𝑂 (1) round in a straightforward manner. Even

though we find inevitable to have a 𝑂 (𝑛) round complexity for the

shuffle, we propose new technique to improve the computation. We

next give an overview of these two modules.

A Message Modification Module with 𝑂 (1) Rounds. As de-
scribed in the previous subsection, in PKE-based protocols, 𝑃 𝑗 en-

gages in computation sequentially with each 𝑃𝑖< 𝑗 , leading to a

round complexity of 𝑂 (𝑛). In this work, we propose an efficient

PKE-based protocol for message modification with 𝑂 (1) round
complexity. The high-level idea is that for each element 𝑥 ∈ 𝑋 𝑗 ,

each 𝑃 𝑗 interacts with every other party 𝑃𝑖< 𝑗 via mOT in parallel.

To accomplish that, for each 𝑥 , 𝑃 𝑗 prepares a pair of OT inputs

(Enc(pk, 0), Enc(pk, 𝑟𝑖)) for 𝑃𝑖 , where 𝑟𝑖 is a random number un-

known to 𝑃 𝑗 .
2
As a result of the mOT computation, 𝑃𝑖 obtains a

ciphertext 𝑒𝑖 = Enc(pk, 0) if 𝑥 ∉ 𝑋𝑖 , and 𝑒𝑖 = Enc(pk, 𝑟𝑖) other-
wise. Unlike prior work, where the sender’s inputs into the OT

protocol depend on the previous computation rounds (leading to

inefficiencies due to idle time and requiring computation in the

online phase), our protocol allows these OT inputs to be prepared

during the offline phase.

Leveraging the additive homomorphism of the EC-ElGamal cryp-
tosystem, 𝑃𝑖 re-randomizes the ciphertext 𝑒𝑖 and sends it back to 𝑃 𝑗 .

Upon receiving all 𝑒𝑖 values, 𝑃 𝑗 computes the sum of them and adds

2
Instead of sampling 𝑟 and then encrypting it, we directly sample from the ciphertext

space, which is more efficient and ensures that 𝑃 𝑗 does not know the plaintext 𝑟𝑖 . The

encryption scheme is the multi-key EC-ElGamal cryptosystem.

the sum to the encrypted message Enc(pk, 𝑥 ∥0𝜆)). Here, we append
extra zero bits for verification after decryption — the length 𝜆 is

chosen to ensure that the probability of a verification error occurs

with negligible probability (i.e., 2
−𝜆
). Mathematically, the obtained

value is computed as 𝑒 = Enc(pk, 𝑥 ∥0𝜆) +∑𝑗−1
𝑖=0

𝑒𝑖 . We can see that

if 𝑥 is not in the union of the previous sets

⋃𝑗−1
𝑖=1

𝑋𝑖 , all 𝑒𝑖 values are

the encryptions of 0, implying that 𝑒 has the form Enc(pk, 𝑥 ∥0𝜆);
otherwise, it is an encryption of a random value. After decryption

at a later point, we can determine whether the first half is a valid el-

ement by checking the last 𝜆 bits of the decrypted value and include

it in the union accordingly. The details are provided in Section 5.1.

Note that mOT executions can be implemented in parallel, which

significantly improves the runtime of our protocol.

Additionally, we present batched mOT, which leverages the

batched SS-PMT technique from [DZBC25] alongside a simple yet

effective optimization of the mOT protocol from [GNT24]. We

present the details in Section 4.1.

An Improved Oblivious Shuffle and Decrypt Protocol. In
existing protocols, each party sequentially performs partial de-

cryption, re-randomization, and permutation over the collection of

ciphertexts. While the permutation step appears to be inherently

sequential, we see that the partial decryption and re-randomization

processes can be optimized for better efficiency.

We observe that partial decryption, which is more computa-

tionally expensive than re-randomization, can naturally support

parallel computation by sharing the ciphertext. A more detailed

explanation is provided in Sections 3.5 and 4.2. Re-randomizing

a ciphertext under the EC-ElGamal cryptosystem is equivalent to

adding the original ciphertext to an encryption of 0. Since this ad-

dition is inexpensive, efficient computation of Enc(pk, 0) directly
enables efficient re-randomization. We present our optimization for

fast computation of a large number of Enc(pk, 0) in Section 5.2.

With these two simple yet effective optimizations, we achieve an

efficient oblivious shuffle and decrypt protocol for PKE-basedmPSU
functionality. Although the overall round complexity remains𝑂 (𝑛),
all intensive computations can be performed in parallel or offline

efficiently.

We compare the round complexity of ourmPSU protocol (PULSE)
to other PKE-based protocols [GNT24, DZBC25] in Table 1. Our

protocol achieves constant round complexity for all modules ex-

cept the shuffle, which is computationally cheap. This significantly

improves the scalability of mPSU, especially when the number of

participants is large.

Protocols

Pairwise Message Multi-party Shuffle

SS-PMT Modification Decryption Shuffle

[GNT24] 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛)
[DZBC25] 𝑂 (1) 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛)
PULSE 𝑂 (1) 𝑂 (1) 𝑂 (1) 𝑂 (𝑛)

Table 1: Round Complexity of PKE-basedmPSU Protocols.

3 Preliminaries
In this work, we use 𝑛 to refer to the number of parties and 𝑚

to the size of each party’s input set. We denote the total number

PULSE: Parallel Private Set Union for Large-Scale Entities CCS ’25, October 13–17, 2025, Taipei, Taiwan

of elements as 𝑀 = 𝑚𝑛. Computational and statistical security

parameters are denoted by 𝜅 and 𝜆, respectively. We use [𝑥] to
denote the set {1, . . . , 𝑥}, [𝑖, 𝑗] to denote the set {𝑖, . . . , 𝑗}, and 𝑥 | |𝑦
to denote concatenation of two bit-strings 𝑥 and 𝑦.

We use (sk, pk) to refer to the secret and public keys of a multi-

key (threshold) encryption scheme. For simplicity, we occasionally

abuse notation by applying a function to a set as if it were applied

to each element individually. For example, Enc(pk, 𝑋) denotes the
set of encryptions of each element of the set 𝑋 .

3.1 Security Model
We use a standard security definition for static semi-honest ad-

versaries as formulated in [Gol09, Lin16]. For an mPSU protocol

specifically, we follow the definition presented in [LG23], which is

a multi-party variant in the presence of an adversary who is able

to corrupt any subset of the participants.

Definition 1. Let 𝑓 : ({0, 1}∗)𝑛 → ({0, 1}∗)𝑛 be an 𝑛-ary de-

terministic functionality where 𝑓𝑖 (𝑥1, . . . , 𝑥𝑛) denotes the 𝑖-th el-

ement of 𝑓 (𝑥1, . . . , 𝑥𝑛). For a subset 𝐼 ⊂ [𝑛], let 𝑓𝐼 = {𝑓𝑖 }𝑖∈𝐼 , and
𝑋𝐼 = {𝑋𝑖 }𝑖∈𝐼 . Let view𝜋

𝑖 denote the view of party 𝑃𝑖 during the

execution of protocol 𝜋 , and view𝜋
𝐼
denote the union of views

{view𝜋
𝑖 }𝑖∈𝐼 . We say that 𝜋 securely computes 𝑓 in the presence

of semi-honest adversaries if for every 𝐼 ⊂ [𝑛] there exists a proba-
bilistic polynomial-time (PPT) algorithm 𝑆𝑖 such that

{(S𝐼 (𝑋𝐼 , 𝑓𝐼 (𝑋1, . . . , 𝑋𝑛)))}≡{(view𝜋
𝐼 (𝑋1, . . . , 𝑋𝑛))} (2)

where ≡ denotes computational or statistical indistinguishability.

Unlike the solution from [LG23], our protocol is secure for any

corruption threshold in the presence of semi-honest participants

(i.e., without requiring an honest majority).

3.2 Hashing Scheme
Our solution relies on widely used simple and Cuckoo hashing

schemes introduced in [PSSZ15, PSZ18]. We provide a brief review

of these schemes below.

Simple hashing. For a hashing table with 𝜇 bins denoted as

𝐵 [1 . . . 𝜇], define a random hash function 𝐻 : {0, 1}★ → [𝜇]. To
insert an element 𝑥 into this table, simply place 𝑥 in the bin of

the index determined by the evaluation of 𝐻 (𝑥). When multiple

hash functions 𝐻1, . . . , 𝐻ℎ are used, 𝑥 is placed in multiple bins

determined by the evaluations of the hash functions.

Cuckoo hashing. This time, there are also 𝜇 bins denoted as

𝐵 [1 . . . 𝜇] and ℎ random hash functions 𝐻1, . . . , 𝐻ℎ : {0, 1}★→ [𝜇].
The difference is that for Cuckoo hashing at most one element

is allowed to be in a bin. To insert element 𝑥 , first evaluate the

hash functions 𝐻1 (𝑥), . . . , 𝐻ℎ (𝑥) to determine the candidate bins.

If any bin 𝐵𝐻𝑖 (𝑥) is empty for some 𝑖 ∈ [ℎ], place 𝑥 in that bin.

If not, evict an element from one of the candidate bins, place 𝑥

there, and insert the evicted element again. Based on the analysis

in [PSSZ15, DRRT18], given the set size |𝑋 |, it is possible to set the

parameters 𝜇 and ℎ in such a way that with an overwhelming prob-

ability of 1 − 2−𝜆 there is an allocation with every bin containing

at most one item.

Parameters: Two parties 𝑃0 and 𝑃1, message length ℓ , and batch

size 𝜇.

Functionality:

• Wait to receive input sets {𝑋1, . . . , 𝑋𝜇} ∈ (({0, 1}ℓ)★)𝜇
from 𝑃0.

• Wait to receive input queries {𝑦1, . . . , 𝑦𝜇} ∈ ({0, 1}ℓ)𝜇
from 𝑃1.

• Give {𝑏𝑖, 𝑗 } to 𝑃𝑖∈{0,1} , where 𝑏0, 𝑗 ⊕𝑏1, 𝑗 = 1 if 𝑦 𝑗 ∈ 𝑋 𝑗 and

0 otherwise for 𝑗 ∈ [𝜇].

Figure 4: Batched Secret-Shared Private Membership Test
(batch SS-PMT) Functionality.

3.3 Secret-Shared Private Membership Test
Secret-shared private membership test (SS-PMT) is widely used in

applications beyond mPSU [PSTY19, LPR
+
21, CDG

+
21, PSWW18].

It is a two-party protocol where 𝑃0, holding a set 𝑋 = {𝑥1, . . . , 𝑥𝑚},
interacts with 𝑃1, who has a single input item 𝑦. An SS-PMT pro-

tocol provides both parties with a secret share of the membership

bit. Specifically, the parties receive XOR shares of 1 if 𝑦 ∈ 𝑋 , and 0

otherwise.

To complete our review of mPSU techniques, here we briefly

describe recent efficient SS-PMT solutions. [LG23] proposed amulti-

query SS-PMT based on a multi-query reverse membership test

(r-PMT) construction from [ZCL
+
23]. In r-PMT, instead of both

parties learning secret shares of the indicator bit, 𝑃0 learns whether

𝑃1’s query is in 𝑃0’s set. The first step is to use an oblivious key-

value store (OKVS) [GPR+21] so that 𝑃1 with query 𝑦 will learn an

encryption of a value 𝑠′. If 𝑦 ∈ 𝑋 , 𝑠′ is equal to the secret value 𝑠

chosen by 𝑃0. Generic secure multiparty computation (namely, the

Goldreich-Micali-Wigderson (GMW) protocol [GMW87]) is used

to check this equality and 𝑃0 learns the indicator bit by having 𝑃1
disclose its share to 𝑃0. [LG23] notice that SS-PMT can be easily

realized if the sharing step at the end is omitted.

[DZBC25] proposed a batched version of SS-PMT using hashing.

Given a set of hash functions {𝐻1 . . . , 𝐻ℎ}, 𝑃0 hashes the input set
𝑋 into a simple hashing table, while 𝑃1 hashes the query set 𝑌 into

a Cuckoo hashing table. For the 𝑖th bin of the simple hashing table

(denoted as 𝐵𝑖), 𝑃0 chooses a random secret value 𝑠𝑖 and computes

a set 𝑆𝑖 such that |𝑆𝑖 | = |𝐵𝑖 |. 𝑃0 encodes an OKVS using keys of

𝐵1, . . . , 𝐵𝜇 with values 𝑆1, . . . , 𝑆𝜇 and sends it to 𝑃1. 𝑃1 decodes it

with the element in the Cuckoo hashing table and learns value 𝑡𝑖
for the 𝑖th bin. For each bin of the hashing table, 𝑃0 and 𝑃1 invoke

a generic 2-PC protocol to test equality of 𝑠𝑖 and 𝑡𝑖 and learn secret

shares of 1 if 𝑠𝑖 = 𝑡𝑖 and 0 otherwise. The functionality is given

in Figure 4. The authors provide a comparison of their batch SS-
PMT with a multi-query SS-PMT from [LG23]. Despite the large

size of the OKVS table in the batch solution, the use of GMW for

decryption and comparison in the multi-query SS-PMT introduces

a larger computational and communication cost. Thus, we use the

batch SS-PMT in our mPSU protocol.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

Parameters: Sender S and receiver R, message length ℓ , and

batch size 𝜇.

Functionality:

• Wait to receive messages

{(𝑚1,0,𝑚1,1), . . . , (𝑚𝜇,0,𝑚𝜇,1)} ⊂ (({0, 1}ℓ)2)𝜇 and

queries {𝑦1, . . . , 𝑦𝜇} ⊂ ({0, 1}ℓ)𝜇 from S.
• Wait to receive input {𝑋1, ..., 𝑋𝜇} ⊂ (({0, 1}ℓ)★)𝜇 from

R.
• Give R messages {𝑚1, . . . ,𝑚𝜇} where𝑚𝑖 equals to𝑚𝑚,0

if 𝑦𝑖 ∈ 𝑋𝑖 , and𝑚1 otherwise.

Figure 5: Batched Membership Oblivious Transfer (mOT)
Ideal Functionality.

3.4 Membership Oblivious Transfer (mOT)
Gao et al. [GNT24] introduced a new two-party protocol called

Membership Oblivious Transfer (mOT) as part of their mPSU pro-

tocol. The idea is to enable the receiver to obtain the sender’s OT
messages based on the result of a membership test. Concretely, the

sender holds a keyword 𝑦 ∈ {0, 1}ℓ and two associated messages

𝑚0,𝑚1. The receiver holds a set 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} ⊂ ({0, 1}ℓ)∗.
The mOT functionality provides the receiver with a message𝑚𝑏 ,

where 𝑏 = 0 if 𝑦 ∈ 𝑋 and 𝑏 = 1 otherwise, while the sender learns

nothing. Neither party gains any information about the member-

ship of 𝑦 in 𝑋 . The sender learns nothing about which message was

sent to the receiver, and the receiver learns nothing about the mes-

sage that was not received. A batched variant of the functionality

is given in Figure 5.

3.5 Multi-Key EC-ElGamal Cryptosystem
We review the multi-key cryptosystem from [GNT24] along with

its EC-ElGamal construction, which is fundamental to our mPSU
protocol. Any realization of such a multi-key cryptosystem can be

leveraged to construct our PKE-based mPSU protocol. We adopt

elliptic curves due to their simplicity in both theoretical analysis

and implementation.

The message space is assumed to be restricted to the point on the

elliptic curve for now, which is the common setting as previous PKE-

based mPSU protocols [GNT24, DZBC25]. We follow this setting

for a fair comparison. When it comes to the practical usage of

the mPSU protocols, it’s not necessary to have this restriction. A

detailed discussion about how supporting messages from arbitrary

domains impacts the protocol is provided in the full version of this

work [GNBT25].

A multi-key cryptosystem [GNT24] is defined as a tuple of

PPT algorithms (KeyGen, Enc, ParDec, FulDec,ReRand) specified
as follows:

• Key Generation: (pk, sk1, . . . , sk𝑛) ← KeyGen(1𝜅 , 𝑛). The
key generation algorithm takes as input a security parameter

𝜅 and the number of parties 𝑛 and outputs to each party 𝑃𝑖 a

secret key sk𝑖 and a joint public key pk = Combine(sk1, sk2, . . .,
sk𝑛), where Combine is an algorithm to generate the corre-

sponding public key from a set of secret keys.

For EC-ElGamal, KeyGen consists of the following steps:

– Choose an elliptic curve: Given a security parameter

1
𝜅
, select an elliptic curve 𝐸 over a large (as a function of

𝜅) prime field F𝑞 and a base point 𝐺 of a large order.

– Secret keys: Generate a secret key sk ← F𝑞 and split

it into 𝑛 additive shares sk1, sk2, . . . , sk𝑛 such that sk =∑𝑛
𝑖=1 sk𝑖 .

– Public key: The public key pk is a point on the curve

which is computed as pk = Combine(sk1, . . . , skn), where
Combine(sk1, sk2, . . . , sk𝑡) is defined as computing and

outputting

∑𝑡
𝑖=1 sk𝑖𝐺 , and thus pk = sk𝐺 .

• Encryption: ct← Enc(pk,m). Given a joint public key pk
and a messagem from the message spaceM, the encryption

algorithm computes a ciphertext ct.
For EC-ElGamal, Enc is given by: Randomly select an inte-

ger 𝑟 ← F𝑞 and compute the ciphertext as a pair of points

Enc(pk,m) = (ct1, ct2), where ct1 = 𝑟𝐺 and ct2 =m + 𝑟pk.
• Decryption: There are two types of decryption algorithms:

– Partial decryption: ct′ ← ParDec(sk𝑖 , ct, 𝐴). The par-

tial decryption algorithm takes a secret key sk𝑖 , a cipher-
text ct from the ciphertext space C, and a set of indices

𝐴 ⊆ [𝑛] such that 𝑖 ∈ 𝐴. The ciphertext is interpreted

as being encrypted under the partial public key pk𝐴 =

Combine({sk𝑗 | 𝑗 ∈ 𝐴}) and the algorithm outputs an-

other ciphertext ct′ ← C encrypting the same message

under the partial public key pk𝐴\{𝑖 } = Combine({sk𝑗 |
𝑗 ∈ 𝐴, 𝑗 ≠ 𝑖}).
For EC-ElGamal, to partially decrypt a ciphertext (ct1, ct2)
encrypted under the partial public key pk𝐴 = Combine({sk𝑗 |
𝑗 ∈ 𝐴}) = Σ 𝑗∈𝐴sk𝑗𝐺 , ParDec(ct1, ct2) is given as (ct′

1
, ct′

2
)

where ct′
1
= ct1 and ct′

2
= ct2 − sk𝑖ct1. Note that the ci-

phertext (ct′
1
, ct′

2
) can be then re-randomized so that the

first part of the ciphertext is different after each partial

decryption.

– Full decryption: m ← FulDec(sk1, sk2, ..., sk𝑛 ; ct). The
full decryption algorithm takes a ciphertext ct ← C en-

crypted under pk and all of the secret keys and outputs a

message m←M.

For EC-ElGamal, to fully decrypt a ciphertext ct = (ct1, ct2)
encrypted under pk = Σ𝑖∈[𝑛]sk𝑖𝐺 , one computes:

m = ct2 − Σ𝑖∈[𝑛]sk𝑖ct1 (3)

• Re-randomization: ct′ ← ReRand(ct, pk). The re-randomization

algorithm takes a ciphertext ct = Enc(pk,m) and pk as input
and outputs a ciphertext ct′ ← C such that both ct and ct′

are encryptions of the same message m←M under pk.
With EC-ElGamal, to rerandomize a ciphertext (ct1, ct2) en-
crypted under the public key pk, one chooses a random value

𝑟 ′ ← F𝑞 and computes ct′ = (ct′
1
, ct′

2
), where ct′

1
= ct1 + 𝑟 ′𝐺

and ct′
2
= ct2 + 𝑟 ′pk.

Note: In our protocol, re-randomization is usually invoked

after a partial decryption, in which case the public key corre-

sponds to a partial key. For simplicity, wewrite “re-randomization

with the corresponding public key” to refer to this situation.

A multi-key cryptosystem should satisfy correctness and security

as defined in [Gen09, AJL
+
12, Bra12]; we refer the reader to these

publications for additional information.

PULSE: Parallel Private Set Union for Large-Scale Entities CCS ’25, October 13–17, 2025, Taipei, Taiwan

Parameters: 𝑛 parties 𝑃1, . . . , 𝑃𝑛 , parameter𝑀 , and a multi-key

encryption scheme defined in Section 3.5

Functionality:

• Wait for input secret key sk𝑖 and a permutation func-

tion 𝜋𝑖 : [𝑀] → [𝑀] from each party 𝑃𝑖∈[𝑛] . Here,
(pk, {sk𝑖 }𝑖∈[𝑛]) ← KeyGen(1𝜅 , 𝑛).
• Wait for a set of ciphertexts {ct1, . . . , ct𝑀 }, where ct𝑖 =
Enc(pk, 𝑥𝑖) from all parties {𝑃1, . . . , 𝑃𝑛}.
• Give {𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑀) } to 𝑃1 where 𝜋 = 𝜋𝑛◦𝜋𝑛−1◦. . .◦𝜋1.

Figure 6: Oblivious Shuffle and Decryption
(Shuffle&Decrypt) Ideal Functionality [GNT24].

Homomorphic Computation. The EC-ElGamal cryptosystem
introduced above also supports additive homomorphism, meaning

that the addition of two ciphertexts gives a ciphertext encrypting

the addition of the two plaintexts.

• Addition:Given two ciphertexts ct1 = Enc(pk,m1) = (ct1,1, ct1,2)
and ct2 = Enc(pk,m2) = (ct2,1, ct2,2) that encrypt plaintexts
m1 andm2, addition Enc(pk,m1)+Enc(pk,m2) = Enc(pk,m1+
m2) is realized by adding the corresponding parts of the ci-

phertexts:

ct𝑠𝑢𝑚 = (ct1,1 + ct2,1, ct1,2 + ct2,2) (4)

• Scalarmultiplication:Given a ciphertext ct = Enc(pk,m) =
(ct1, ct2) and a scalar 𝛼 , scalar multiplication 𝛼Enc(m) =
Enc(𝛼m) is realized by multiplying each component of the

ciphertext by 𝛼 :

𝛼ct = (𝛼ct1, 𝛼ct2) = (𝛼𝑟𝐺, 𝛼m + 𝛼𝑟pk) (5)

3.6 Oblivious Shuffle and Decryption
Gao et al. [GNT24] formalized a multi-party protocol known as

oblivious shuffle and decryption (Shuffle&Decrypt), which operates
under the multi-key cryptosystem introduced in Section 3.5. In this

protocol, each party holds a share of the secret key sk𝑖 and prepares
a permutation function 𝜋𝑖 : [𝑀] → [𝑀]. Given a set of ciphertexts

{ct1, . . . , ct𝑀 } encrypted by the corresponding public key pk, the
parties aim to compute a shuffled version of the decrypted values.

The details of the Shuffle&Decrypt functionality are shown in

Figure 6.

4 Building Blocks
This section presents our optimizations for the two most expensive

and critical building blocks of our mPSU protocol.

4.1 Batched Membership Oblivious Transfer
In this section, we present a new batched membership OT proto-

col (mOT), which builds upon an optimized variant of the single-

instance mOT from [GNT24], combined with the use of batched

SS-PMT from [DZBC25].

ThemOT Protocol of [GNT24]. Before presenting our opti-
mization, we briefly describe the protocol from [GNT24], which is

built using SS-PMT and standard OT. Initially, both parties invoke

the SS-PMT protocol to obtain shares of a bit, denoted as 𝑏S for

Parameters:

• Sender S and Receiver R, message length ℓ , and batch

size 𝜇.

• The OT and SS-PMT functionalities described in Appen-

dix ?? and Section 3.3, respectively.

Input:

• Receiver R: {𝑋1, . . . , 𝑋𝜇} ⊂ (({0, 1}ℓ)∗)𝜇
• Sender S: 𝑌 = {𝑦1, . . . , 𝑦𝜇} ⊂ ({0, 1}ℓ)𝜇 and a set of mes-

sage pairs {(𝑚0,0,𝑚0,1), . . . , (𝑚𝜇,0,𝑚𝜇,1)} ⊂ (({0, 1}ℓ)2)𝜇

Protocol:

(1) S and R invoke batched SS-PMT, where:
• R has input sets {𝑋1, . . . , 𝑋𝜇} and S has input queries

{𝑦1, . . . , 𝑦𝜇}.
• S obtains bits {𝑏S,0, . . . , 𝑏S,𝜇} and R obtains bits

{𝑏R,0, . . . , 𝑏R,𝜇}, such that 𝑏S, 𝑗 ⊕ 𝑏R, 𝑗 = 1 if 𝑦𝑖 ∈ 𝑋𝑖

and 0 otherwise for 𝑖 ∈ [𝜇].
(2) For each 𝑖 ∈ [𝜇], S and R invoke an OT instance, where:

• S acts as an OT sender with input messages (𝑚𝑖,0,𝑚𝑖,1)
if 𝑏S,𝑖 = 0 and (𝑚𝑖,1,𝑚𝑖,0) if 𝑏S, 𝑗 = 1.

• R acts as an OT receiver with choice bit 𝑏R,𝑖 and ob-

tains𝑚𝑖 .

(3) R outputs {𝑚1, . . . ,𝑚𝜇}.

Figure 7: Our BatchedMembership Oblivious Transfer (mOT)
Construction.

the sender and 𝑏R for the receiver. Following this,mOT is executed

using these shares to transmit one of the messages (𝑚0,𝑚1).
In the mOT construction of [GNT24], the sender randomly se-

lects a value 𝑟 ← {0, 1}ℓ and masks the messages as (𝑟 ⊕𝑚0, 𝑟 ⊕𝑚1),
which are then used as the input to OT. The receiver uses 𝑏R as

the input to OT, thereby obliviously obtaining𝑤 = 𝑟 ⊕𝑚𝑏R . Subse-

quently, the sender sends 𝑢 = 𝑟 ⊕ (𝑏S · (𝑚0 ⊕𝑚1)) to the receiver,

who then computes the final output of mOT as 𝑢 ⊕𝑤 .

Our Improvement. The construction described above is straight-
forward, but we observed that it can be further optimized in terms

of OT usage. Instead of using 𝑏R as the choice bit in the OT and

preparing theOTmessages as (𝑟 ⊕𝑚0, 𝑟 ⊕𝑚1), the sender can adjust
the order of the OT messages based on the value of 𝑏S . That is,
the sender prepares the OTmessages (𝑚′

0
,𝑚′

1
) as either (𝑚0,𝑚1) or

(𝑚1,𝑚0) depending on 𝑏S . Specifically, if 𝑏S = 0, the pair (𝑚′
0
,𝑚′

1
)

is equal to (𝑚0,𝑚1); otherwise, it is equal to (𝑚1,𝑚0). Therefore,
when using 𝑏R as the OT choice bit, the receiver obtains𝑚𝑏R⊕𝑏S as

desired, and correctness of this approach is straightforward to ver-

ify. This optimization removes the need to send 𝑢 as in the original

mOT protocol, thereby reducing the communication cost.

Our Batched Membership Oblivious Transfer (mOT). To
improve performance when the sender has a large number of input

queries, we define a batch variant of the mOT functionality in

Figure 5 and present its construction in Figure 7. A batch version

of mOT can be realized by combining batch SS-PMT with any OT

extension. For a batch size of 𝜇, the sender has 𝜇 queries {𝑦1, . . . , 𝑦𝜇}
and 𝜇 pairs of values {(𝑚1,0,𝑚1,0), . . . , (𝑚𝜇,0,𝑚𝜇,0)}. The receiver

CCS ’25, October 13–17, 2025, Taipei, Taiwan Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

has 𝜇 sets. The receiver learns 𝜇 values {𝑚1, . . . ,𝑚𝜇}, where𝑚𝑖 =

𝑚𝑖,0 if 𝑦𝑖 ∈ 𝑋𝑖 and𝑚𝑖 =𝑚𝑖,1 otherwise.

Correctness and Security. Correctness of the protocol is straight-
forward to verify. Its security relies on the underlying SS-PMT and

OT protocols. Since the output of SS-PMT is secret-shared using

randomly generated shares, it reveals no information about the set

membership. The OT protocol ensures that the receiver learns only

the correct message without learning any additional information.

Therefore, we omit a formal security proof of Theorem 2 below.

Theorem 2. The batched mOT protocol described in Figure 7 se-
curely implements its functionality defined in Figure 5 in the semi-
honest setting.

4.2 An Efficient Oblivious Shuffle and
Decryption (Shuffle&Decrypt)

The experimental results from [DZBC25] highlight the impact of

efficient underlying elliptic curve (EC) implementations on the

performance of PKE-based mPSU protocols. In scenarios closer

to real-world applications such as WANs, PKE-based protocols

demonstrate significantly better end-to-end performance compared

to SKE-based protocols. A central component of themPSU protocol

is an oblivious shuffle and decryption protocol, which heavily relies

on PKE operations.

In this section, we first review Shuffle&Decrypt protocols used in
the state-of-the-art PKE-based mPSU protocols [GNT24, DZBC25].

We then present an optimization to enable parallel execution of the

most time-consuming computations.

Existing Shuffle&Decrypt Protocols. Existing PKE-based

mPSU protocols use the Shuffle&Decrypt construction from [GNT24].

The process is straightforward: each party 𝑃𝑖 partially decrypts us-

ing its secret key sk𝑖 a set of ciphertexts it receives, re-randomizes

and shuffles the resulting ciphertexts, and then sends them to the

next party.

The protocol clearly takes 𝑛 rounds. The most time-consuming

operation is scalar multiplication on the elliptic curve. As described

in Section 3.5, each partial decryption requires one scalar multi-

plication, and each re-randomization requires two. Therefore, in

the mPSU setting, with 𝑛 parties and inputs sets of size𝑚, each

party performs 3𝑚𝑛 scalar multiplications sequentially, resulting in

the total time complexity of 𝑂 (𝑚𝑛2). This approach is inefficient,

especially for mPSU protocols with a large number of participants.

The details of the Shuffle&Decrypt protocol of [GNT24] can be

found in the full version of this work [GNBT25].

Our Shuffle&Decrypt Protocol. To address the inefficiency of

existing Shuffle&Decrypt protocols, we propose a new Shuffle&Decrypt
solution that separates the shuffling and decryption phases. This

separation enables parallel execution of the decryption phase, in

contrast to prior approaches that perform partial decryption se-

quentially.

Our protocol consists of three phases. The first is an offline phase

that prepares a set of encryptions of 0, which are used in the second,

re-randomization, phase. In the second phase, re-randomization is

efficiently performed by adding a ciphertext ct to an encryption of

0, i.e., ReRand(ct) = ct+Enc(0, pk). We present an efficient method

for computing encryptions of 0 given a public key in Section 5.2.

The final phase is decryption. In the EC-ElGamal cryptosystem
used in our protocol, each ciphertext ct = (ct1, ct2) encrypting a

plaintext m has the following form:

ct1 = 𝑟𝐺 ct2 =m + 𝑟pk

In existing protocols [GNT24, DZBC25], during shuffling and par-

tial decryption, each party 𝑃𝑖 performs the computation specified

below and forwards the result to the next party:

ct′
1
= ct1 + 𝑟 ′𝐺 ct′

2
= ct2 − sk𝑖ct1 + 𝑟 ′ (pk − sk𝑖)

where 𝑟 ′ is a new random value used for re-randomization.

However, in our “Decrypt” phase, we only need to perform de-

cryption operations, thus, do not require the additional (highlighted)

terms associated with the value 𝑟 ′. Concretely, during partial de-

cryption—where each party 𝑃𝑖 removes the contribution of their

secret key share sk𝑖—the computation relies only on ct2, and is

performed as ct′
2
= ct2 − sk𝑖ct1. Clearly, the full decryption can be

executed in parallel where 𝑃1 is the final recipient of the plaintext

from a ciphertext ct = (ct1, ct2). Concretely,
• 𝑃1 broadcasts ct1 to all other parties 𝑃𝑖∈[2,𝑛] .
• Each 𝑃𝑖 computes sk𝑖ct1 in parallel and sends the result back

to 𝑃1.

• Finally, 𝑃1 computes the message m using the formula:

m = ct2 −
∑︁
𝑖∈[𝑛]

sk𝑖ct1

We provide description of our Shuffle&Decrypt protocol in Fig-

ure 8. Security of our Shuffle&Decrypt protocol is stated as follows:

Theorem 3. Given the multi-key cryptosystem defined in Sec-
tion 3.5, the Shuffle&Decrypt protocol described in Figure 8 securely
implements the Shuffle&Decrypt functionality defined in Figure 6 in
the presence of any semi-honest adversary that corrupts up to 𝑛 − 1
parties.

Since rerandomization is already performed in Phase 1, the de-

cryption phase remains secure. That is, any subset of corrupt parties

cannot link a decrypted message to the original plaintext. The com-

plete proof can be found in the full version of this work [GNBT25].

Complexity. When invoking mPSU with 𝑛 parties, the num-

ber of ciphertexts in this protocol is 𝑀 = 𝑚𝑛. To shuffle and re-

randomize ciphertexts in the first phase, each party will receive

and send them all to other parties, leading to communication com-

plexity of 𝑂 (𝑚𝑛) for each party. Given 𝑚𝑛 ciphertexts, the cost

for re-randomization is 𝑂 (𝑚𝑛) (i.e., two point additions for each

ciphertext). The overall time is therefore𝑂 (𝑚𝑛2) with𝑂 (𝑛) rounds.
During the second phase, 𝑃1 needs to send ct1 to and receives

sk𝑖ct1 from each 𝑃𝑖∈[2,𝑛] for each ciphertext, leading to 𝑂 (𝑚𝑛2)
communication cost for 𝑃1 and 𝑂 (𝑚𝑛) for all other parties 𝑃𝑖∈[2,𝑛] .
The computation complexity is 𝑂 (𝑚𝑛2) for 𝑃1 who performs 𝑛

point addition for each ciphertext. The computation complexity,

on the other hand, is 𝑂 (𝑚𝑛) for 𝑃𝑖∈[2,𝑛] who performs 1 point

multiplication for each ciphertext. The round complexity is 𝑂 (1).

PULSE: Parallel Private Set Union for Large-Scale Entities CCS ’25, October 13–17, 2025, Taipei, Taiwan

Parameters: 𝑛 parties 𝑃1, . . . , 𝑃𝑛 , the set size 𝑀 , the element

length ℓ , EC-ElGamal cryptosystem introduced in Section 3.5.

Input:

• Each party 𝑃𝑖∈[𝑛] : The secret key 𝑠𝑘𝑖 and a permutation

function 𝜋𝑖 : [𝑀] → [𝑀]. Here, (pk, {sk𝑖 }𝑖∈[𝑛]) ←
KeyGen(1𝜅 , 𝑛).
• All parties: 𝐶0 = {ct0

1
, . . . , ct0

𝑀
} where ct0𝑖 = Enc(pk, 𝑥𝑖).

Protocol:

Phase 0: Pre-processing
(1) Party 𝑃𝑖 generates 𝑀 ciphertexts of zero as 𝜃 𝑖

𝑗∈[𝑀] =

Enc(pk, 0) = (𝑟 𝑗𝐺, 𝑟 𝑗pk) for some random 𝑟 𝑗 .

Phase 1: Shuffle and Re-randomize
For 𝑖 = 1 to 𝑛:

(1) 𝑃𝑖 re-randomizes and shuffles the ciphertexts 𝐶𝑖−1, and
send𝐶𝑖 = {ct𝑖1, . . . , ct𝑖𝑀 } to 𝑃 (𝑖+1)%𝑛 , where ct

𝑖
𝑗 = 𝑐𝑡𝑖−1

𝜋𝑖 (𝑗) +
𝜃 𝑖𝑗 .

Phase 2: Decrypt
(1) Party 𝑃1 sends the first part of ciphertexts as 𝐶𝑛,1 =

{ct𝑛𝑗,1 | ct𝑛𝑗 = (ct𝑛𝑗,1, ct𝑛𝑗,2),∀𝑗 ∈ [𝑀]} to all parties

𝑃𝑖∈[2,𝑛] .
(2) Each 𝑃𝑖∈[𝑛] in parallel computes 𝐶𝑖

𝑝𝑎𝑟 =

{ct𝑖𝑝𝑎𝑟,1, . . . , ct𝑖𝑝𝑎𝑟,𝑀 } where ct𝑖𝑝𝑎𝑟,𝑗 = sk𝑖ct𝑛𝑗,1. Party

𝑃𝑖∈[2,𝑛] sends it back to party 𝑃1.

(3) Party 𝑃1 upon receives 𝐶𝑖
𝑝𝑎𝑟 from all 𝑃𝑖∈[2,𝑛] , computes

the final decryption 𝑉 = {𝑣1, . . . , 𝑣𝑀 } where 𝑣 𝑗 = ct𝑛𝑗,2 −
Σ𝑛𝑖=1ct

𝑖
𝑝𝑎𝑟,𝑗 .

Figure 8: Our Shuffle&Decrypt Protocol.

The most expensive operation when working with ciphertexts is

point multiplication. By enabling parallel computation of multiplica-

tions, our protocol achieves significant performance improvements

when the number of parties is sufficiently large.

5 OurmPSU Protocol
This section presents our PULSE protocol, which closely follows

the overview in Section 2. Our protocol is based on EC-ElGamal
cryptosystem and is detailed in Figure 9.

5.1 The Protocol Description
There are 𝑛 parties 𝑃1, . . . , 𝑃𝑛 , and each party 𝑃𝑖 has an input set 𝑋𝑖 .

The union

⋃𝑛
𝑖=1 𝑋𝑖 can be expressed as:

𝑋1 ∪ (𝑋2 \ 𝑋1) ∪ . . . ∪ (𝑋𝑛 \ (𝑋1 ∪ . . . ∪ 𝑋𝑛−1))

and protocol design closely follows this formula. To compute the

union of 𝑋1, . . . , 𝑋𝑛 , we start with the set 𝑋1. Then the elements in

𝑋2 \𝑋1 are added to the union. This process continues until all new

elements from every input set are included. Thus, the main task

for each 𝑃𝑖 is to compute 𝑋𝑖 \ (𝑋1 ∪ . . . ∪𝑋𝑖−1), which traditionally

seems to require sequential execution, as shown in previous works.

However, in our protocol, we leverage the homomorphic properties

of the EC-ElGamal cryptosystem to enable this computation in

parallel.

Existing PKE-based mPSU Protocols. In [GNT24, DZBC25],

this process involves each party 𝑃𝑖 sequentially interacting with

𝑃1, . . . , 𝑃𝑖−1 using SS-PMT andOT. This allows the parties to obtain
encryptions of the union items (which is the message modifica-

tion module introduced in Section 2). Specifically, for each element

𝑥𝑖, 𝑗 ∈ 𝑋𝑖 , a ciphertext is maintained: if 𝑥𝑖, 𝑗 appears in𝑋1∪ . . .∪𝑋𝑖−1,
the ciphertext is modified to Enc(pk,⊥) during the sequential in-
teraction; otherwise, the ciphertext stays as Enc(pk, 𝑥𝑖, 𝑗). Finally
in the multi-party shuffle module, all 𝑛 parties invoke the Shuf-
fle&Decrypt protocol to decrypt these ciphertexts. The union set is

then determined by collecting all values that are not equal to ⊥.
To understand the sequential nature of their protocol, let us

break down the pairwise computation between 𝑃1 and 𝑃 𝑗 . For each

element 𝑥 ∈ 𝑋 𝑗 , 𝑃 𝑗 acts as the mOT sender with query 𝑥 and mes-

sages (𝑚0 = Enc(pk, 𝑥),𝑚1 = Enc(pk,⊥)), while 𝑃1 serves as the
mOT receiver with input set 𝑋1. If 𝑥 ∈ 𝑋1, 𝑃1 will obtain a cipher-

text 𝑒 that equals Enc(pk,⊥); otherwise, 𝑒 = Enc(pk, 𝑥). 𝑃1 then
re-randomizes the ciphertext and sends it back to 𝑃 𝑗 . 𝑃 𝑗 retains the

value of ReRand(𝑒) and uses it as the message𝑚0 when interacting

with 𝑃2 later. It is clear that themOTmessages depend on the output

from the interaction with the previous party. Consequently, for the

last party 𝑃𝑛 , the protocol requires 𝑂 (𝑛) rounds of communication.

All parties 𝑃𝑖∈[𝑛−1] have to wait for 𝑃𝑛 before they can enter the

next shuffle stage.

Our PULSE Protocol. In this work, we propose a new mPSU
protocol that achieves a constant number of rounds for the message

modification phase. The key idea is to replace the mOT messages
3

(Enc(pk, 𝑥), Enc(pk,⊥)) of the party 𝑃 𝑗 with (Enc(pk, 0), 𝑓) for
each mOT execution between 𝑃 𝑗 and 𝑃𝑖 with 𝑖 < 𝑗 and then let 𝑃 𝑗

modify its own encryption (Enc(pk, 𝑥) at the end of all parallel

mOT executions. Here, 𝑓 represents a ciphertext (ct1, ct2) where
both ct1 and ct2 are two random points on the elliptic curve. This 𝑓

is a valid encryption of a random value, and party 𝑃 𝑗 that samples

𝑓 does not know the underlying plaintext. We prefer to express

𝑓 as Enc(pk, 𝑟), where 𝑟 is a random value chosen anew for each

mOT execution and is unknown to 𝑃 𝑗 . This approach ensures that

the two ciphertexts are independent of private inputs, allowing

them to be computed during a pre-processing phase. Moreover,

computing Enc(pk, 0) can be efficiently performed in an amortized

or batched manner as described in Section 5.2, while Enc(pk, 𝑟) is
highly efficient and only requires sampling a random point on the

elliptic curve.

Now, 𝑃 𝑗 and 𝑃𝑖 first invoke a, mOT protocol, where for each

𝑥 ∈ 𝑋 𝑗 , 𝑃 𝑗 acts as the sender with query 𝑥 and messages (𝑚0 =

Enc(pk, 0),𝑚1 = Enc(pk, 𝑟)) and 𝑃𝑖 acts as the receiver with set 𝑋𝑖 .

If 𝑥 ∈ 𝑋𝑖 , 𝑃𝑖 obtains a ciphertext 𝑒𝑖 that equals Enc(pk, 𝑟); otherwise,
𝑒𝑖 = Enc(pk, 0). Next, 𝑃𝑖 re-randomizes the ciphertext and sends

it back to 𝑃 𝑗 . The re-randomization is designed to prevent 𝑃 𝑗 from

determining which value the OT receiver 𝑃𝑖 obtained. Note that

the encryption uses a multi-key system, so even if 𝑃 𝑗 colludes with

all parties except 𝑃𝑖 , they learn nothing. Finally, the ciphertext 𝑒

3
We usemOT throughout this discussion, while the formal presentation of our protocol

in Figure 9 and its implementation utilize batched mOT.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

Parameters:

• 𝑛 parties 𝑃𝑖∈[𝑛] for 𝑛 > 1.

• The batched mOT and Shuffle&Decrypt ideal functionalities, described in Figure 5 and Figure 6, respectively.

• The multi-key cryptosystem (KeyGen, Enc, ParDec, FulDec,ReRand) described in Section 3.5.

• Hashing parameters: a number of bins 𝜇, the ℎ hash functions 𝐻 𝑗∈[ℎ] : {0, 1}★→ [𝜇].

Input:

• Party 𝑃𝑖∈[𝑛] has 𝑋𝑖 = {𝑥𝑖,1, . . . , 𝑥𝑖,𝑚} ⊂ {{0, 1}ℓ }𝑚 .

Protocol:

Phase 0: Setup
(1) All 𝑛 parties call the key generation algorithm KeyGen(1𝜆, 1𝜅). Each 𝑃𝑖 receives a private key sk𝑖 and a joint public key pk.
(2) Pre-processing:

(a) 𝑃1 hashes set 𝑋1 into a simple hashing table with 𝜇 bins 𝑆1,1, . . . , 𝑆1,𝜇 .

(b) 𝑃 𝑗∈[2,𝑛] hashes set𝑋 𝑗 into a cuckoo hashing table with 𝜇 bins𝐶 𝑗,1, . . . ,𝐶 𝑗,𝜇 and a simple hashing table with 𝜇 bins 𝑆 𝑗,1, . . . , 𝑆 𝑗,𝜇 .

(c) 𝑃 𝑗∈[2,𝑛] computes the encryption 𝑒 𝑗,𝑘 = Enc(pk,𝐶 𝑗,𝑘 | |0𝜆), for non-empty bin 𝐶 𝑗,𝑘 , 𝑘 ∈ [𝜇]. If 𝐶 𝑗,𝑘 is empty, 𝑃 𝑗∈[2,𝑛] samples

𝑒
𝑗

𝑘
as random ciphertext and pads it with a random value.

(d) 𝑃 𝑗∈[2,𝑛] computes a set of (𝑗 − 1)𝜇 encryptions of zero as 𝑍 = {𝑧𝑖,𝑘 | 𝑧𝑖,𝑘 = Enc(pk, 0)}𝑖∈[𝑗−1],𝑘∈[𝜇]
(e) 𝑃 𝑗∈[2,𝑛] samples a set 𝑅 of (𝑗 − 1)𝜇 random ciphertexts which denoted as 𝐹 = {𝑓𝑖,𝑘 | 𝑓𝑖,𝑘 is random}𝑖∈[𝑗−1],𝑘∈[𝜇]
(f) 𝑃 𝑗∈[2,𝑛] initials an empty set 𝐸 𝑗 .

Phase 1: Pairwise SS-PMT and Message Modification
(3) For each pair of 𝑃𝑖 and 𝑃 𝑗 where 1 ≤ 𝑖 < 𝑗 ≤ 𝑛:
(a) 𝑃𝑖 and 𝑃 𝑗 invoke a batch mOT protocol where:

• 𝑃𝑖 acts as the receiver with inputs {𝑆𝑖,1, . . . , 𝑆𝑖,𝜇}.
• 𝑃 𝑗 acts as the sender with input queries{𝐶 𝑗,1, . . . ,𝐶 𝑗,𝜇} and corresponding messages {(𝑧𝑖,1, 𝑓𝑖,1), . . . , (𝑧𝑖,𝜇 , 𝑓𝑖,𝜇)}.
• 𝑃𝑖 obtains messages {𝑒𝑖, 𝑗,1, . . . , 𝑒𝑖, 𝑗,𝜇}.

(b) For 𝑘 ∈ [𝜇], 𝑃𝑖 updates 𝑒𝑖, 𝑗,𝑘 := ReRand(pk, 𝑒𝑖, 𝑗,𝑘), and sends 𝑒𝑖, 𝑗,𝑘 back to 𝑃 𝑗 .

(4) 𝑃 𝑗∈[2,𝑛] appends 𝑒 𝑗,𝑘 := 𝑒 𝑗,𝑘 + Σ 𝑗−1
𝑖=1

𝑒𝑖, 𝑗,𝑘 to 𝐸 𝑗 for 𝑘 ∈ [𝜇].
(5) 𝑃 𝑗∈[2,𝑛] sends 𝐸 𝑗 to 𝑃1.

Phase 2: Multi-party Shuffle
(6) All the parties invoke the Shuffle&Decrypt functionality where:

• 𝑃1 inputs 𝐸 =
⋃𝑛

𝑖=2 𝐸𝑖 , the sk1 and a random permutation 𝜋1 : [𝑀] → [𝑀].
• 𝑃𝑖 inputs the private key sk𝑖 and a random permutation 𝜋𝑖 : [𝑀] → [𝑀].
• 𝑃1 obtains a set 𝑉 .

(7) 𝑃1 initials an empty set𝑈 . For each 𝑣 ∈ 𝑉 , if 𝑣 = 𝑠 | |0𝜆 holds for some 𝑠 , 𝑃1 computes𝑈 =𝑈 ∪ {𝑠}. 𝑃1 outputs𝑈 ∪ 𝑋1.

Figure 9: OurmPSU Protocol (PULSE).

corresponding to 𝑥 is computed as 𝑒 = Enc(pk, 𝑥 ∥0𝜆) +∑𝑗−1
𝑖=1

𝑒𝑖 . We

use 𝜆 extra 0 bits to introduce redundancy and verify whether the

decrypted element belongs to any 𝑋𝑖< 𝑗 . Specifically, if 𝑃 𝑗 ’s item 𝑥

appears in some set 𝑋𝑖< 𝑗 , the corresponding 𝑒𝑖 is an encryption of

a random element. As a result,

∑𝑗−1
𝑖=1

𝑒𝑖 becomes an encryption of a

random value, which makes the plaintext 𝑣 of the value 𝑒 random as

well. For each decrypted value 𝑣 whose last 𝜆 bits are 0, we truncate

these 0 bits and add the result to the final union. The parameter

𝜆 serves as a statistical security parameter, ensuring a negligible

error rate of 2
−𝜆
.

Note that the last 𝜆 bits of the value 𝑣 are secure to reveal, as the

original underlying random message from 𝑃𝑖 remains unknown to

any party due to the multi-key encryption scheme. Further details

on its implementation are provided in Section 6.

Clearly, party 𝑃 𝑗 can perform all of the above computations in

parallel with all other parties 𝑃𝑖< 𝑗 . The remainder of the protocol

is to decrypt 𝑒 in a privacy-preserving manner. That is, each party

𝑃𝑖∈[2:𝑛] sends its collection of ciphertexts 𝑒 to 𝑃1. Next, all parties

execute our Shuffle&Decrypt protocol proposed in Section 4.2. For

each decrypted value 𝑣 where 𝑣 = 𝑠 ∥0𝜆 , 𝑠 is added to the final union.

5.1.1 Correctness. We consider two cases depending on whether a

specific element 𝑥 ∈ 𝑋 𝑗 from party 𝑃 𝑗 is present in any set 𝑋𝑖 from

party 𝑃𝑖 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

• Case 1: There is at least one other set 𝑋𝑖 contributed by

party 𝑃𝑖 that contains the element 𝑥 . In this case, 𝑃𝑖 receives

an encryption of a random value Enc(pk, 𝑟) from the mOT
protocol with 𝑃 𝑗 in Step (3a). Consequently, the second

half of the ciphertext addition in Step (4) will not equal to

Enc(pk, 0) with high probability. Due to the homomorphism

of EC-ElGamal, the decrypted value from Shuffle&Decrypt
will not be 𝑥 ∥0𝜆 . Thus, 𝑥 will not be included in the final

result.

PULSE: Parallel Private Set Union for Large-Scale Entities CCS ’25, October 13–17, 2025, Taipei, Taiwan

• Case 2: There are no other sets 𝑋𝑖 that contain 𝑥 . In this

case, 𝑃𝑖 receives an encryption of 0 from the mOT protocol

with 𝑃 𝑗 in Step (3a). Consequently, the second term of the

addition in Step (4) (i.e., the sum) will equal to Enc(pk, 0).
Due to the homomorphism of EC-ElGamal, the decrypted
value from Shuffle&Decrypt will stay unchanged as 𝑥 ∥0𝜆 .
Thus, 𝑥 will be included in the final result.

Moreover, ∀𝑥 ∈ 𝑋1 will be included in the final result. Therefore,

the mPSU protocol described in Figure 9 correctly computes the

functionality described in Figure 1.

5.1.2 Security. Security of PULSE is stated in the following the-

orem, showing that it is secure in the presence of any number of

semi-honest participants:

Theorem 4. Given the multi-key cryptosystem described in Sec-
tion 3.5, the mPSU protocol described in Figure 9 securely implements
the mPSU functionality defined in Figure 1 in the presence of a semi-
honest adversary that corrupts up to𝑛−1 parties in the (FShuffle&Decrypt,
FmOT)-hybrid model.

Security of PULSE directly follows from the security of mOT
and Shuffle&Decrypt. All messages are encrypted using the multi-

key cryptosystem introduced in Section 3.5. Note that we use 𝑓 =

Enc(pk, 𝑟) to denote a random ciphertext rather than the encryption

of a random value. Therefore, the value 𝑟 remains unknown to

any adversary unless they corrupt all the parties and can decrypt

the ciphertext 𝑓 . The full proof is given in the full version of this

work [GNBT25].

5.1.3 Complexity. The computation and communication costs for

our mPSU protocol primarily include the following:

Hashing. We select parameters for constructing a simple hash

and cuckoo hash in Step (2) using [PSZ18]. Specifically, we use

three hash functions and set the number of bins to 1.27𝑚 for 𝑚

elements to ensure that cuckoo hashing succeeds—i.e., to find an

allocation where every bin contains at most one item—with high

probability (1 − 2−40).

Batched mOT. The two core building blocks of mOT are SS-PMT
and OT, which we discuss separately:

• SS-PMT: We use batched SS-PMT proposed by [DZBC25]

that relies on hashing tables which were set up as described

above. The SS-PMT sender encodes an OKVS with elements

from the simple-hashing table. Using three hash functions

leads to 3𝑚 key-value pairs, and encoding takes 𝑂 (𝑚) for
each instance. The communication cost for sending theOKVS
table is also 𝑂 (𝑚). The SS-PMT receiver decodes the ele-

ments in each bin of the cuckoo hashing table, which has

complexity 𝑂 (𝑚). The two parties consequently invoke a

generic 2-PC protocol such as GC to perform equality checks

for each bin, which requires 𝑂 (𝜆) AND gates and 𝑂 (1)
rounds.

• OT:We use the IKNPOT extension [IKNP03], which provides

computation and communication complexity of 𝑂 (𝑚) in
𝑂 (1) rounds.

Shuffle&Decrypt. The complexity analysis of Shuffle&Decrypt
was provided in Section 4.2.

5.2 Efficient Computation for Zero Encryptions
In the EC-ElGamal scheme, an encryption of 0 is expressed as

Enc(pk, 0) = (𝑟𝐺, 𝑟pk), where 𝑟 is a random scalar. To compute

Enc(pk, 0), we first select 𝑟 and then perform two scalar multiplica-

tions: one that uses the base𝐺 and another that uses the public key

pk. In ourmPSU protocol, each party needs to compute a significant

number of encryptions of 0, specifically (𝑖 − 1)𝜇 + 𝑛𝜇 of them. The

first (𝑖 − 1)𝜇 are used as mOT inputs, while the remaining 𝑛𝜇 are

consumed by re-randomization in Shuffle&Decrypt. Therefore, we
show how to optimize this computation in the batched setting using

the Hidden Subset Sum (HSS) technique from [BPV98, NS99]. This

technique is designed for generating a large number of (𝑟𝑖 , 𝑟𝑖𝐺)
pairs efficiently.

At a high level, the approach involves pre-computing and storing

a set of pairs 𝑆 = {(𝑠𝑖 , 𝑠𝑖𝐺)}𝑖∈[𝑛𝑠] , where𝑛𝑠 is relatively small. These

values can then be used to generate a large number of pairs, 𝑛 ≫ 𝑛𝑠 ,

efficiently.

To generate an additional random pair (𝑟, 𝑟𝐺), follow these steps:

• Choose a random subset 𝑅 ⊆ [𝑛𝑠] of size 𝑠 .
• For each 𝑗 ∈ 𝑅, compute 𝑟 =

∑
𝑗∈𝑅 𝑠 𝑗 and 𝑟𝐺 =

∑
𝑗∈𝑅 (𝑠 𝑗𝐺).

The above computation indicates that 𝑟 is essentially a random sub-

set sum of the 𝑠𝑖 values. To generate 𝑛 tuples of the form (𝑟𝑖 , 𝑟𝑖𝐺)
such that 𝑟 is 2−𝜆-close to uniformly distributed, we need to deter-

mine the parameters 𝑛𝑠 and 𝑠 . Based on the adversary analysis of

the random distribution of 𝑟 in [NS99], we calculate these parame-

ters for realistic values of 𝜆 = 40, various values of 𝑛, and a 255-bit

cyclic group. The results are presented in Table 2.

𝑛 2
12

2
14

2
16

2
18

2
20

2
22

2
24

𝑛𝑠 2
7

2
8

2
9

2
10

2
13

2
14

2
15

𝑠 25 20 17 15 11 11 10

Table 2: Parameters for generating 𝑛 pseudorandom tuples
of the form (𝑟𝑖 , 𝑟𝑖𝐺) given 𝑛𝑠 precomputed pairs.

6 Implementation and Performance
We implemented PULSE and evaluated its performance across a

varying number of parties and set sizes. All evaluations use a sta-

tistical security parameter 𝜆 = 40 and a computational security

parameter 𝜅 = 128. Experiments were conducted on a single server

with AMD EPYC 74F3 processors and 256 GB of RAM. All parties

were run within the same network, but network conditions were

simulated using the Linux tc command: a LAN setting with 0.1 ms

round-trip latency and 10 Gbps bandwidth; a WAN setting with

80 ms latency and 400 Mbps bandwidth. This is a commonly used

setting for evaluate performance of mPSU protocols.

6.1 Performance for Oblivious Shuffle and
Decryption Protocols

We implemented our Shuffle&Decrypt protocol from Section 4.2 as

well as the protocol used in other PKE-basedmPSU works [GNT24,

DZBC25] and compare their performance. The results are shown in

Table 3 for both network settings and different set sizes. Our proto-

col is up to 2.20 times faster than the protocol in [GNT24, DZBC25]

CCS ’25, October 13–17, 2025, Taipei, Taiwan Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

, while requiring approximately 1.88 times more communication

cost. The improvement increases as the number of parties increases.

𝑚 Prot. 𝑛 = 3 𝑛 = 4 𝑛 = 6 𝑛 = 8

[GNT24] 0.21 0.41 0.99 1.82

2
8

OURS 0.15 0.26 0.53 0.90

[GNT24] 0.43 0.78 3.93 7.23

2
10

OURS 0.35 0.49 2.02 3.44

[GNT24] 3.31 6.46 15.77 29.00

2
12

OURS 2.17 3.74 7.88 13.49

[GNT24] 13.29 26.06 63.69 117.01

2
14

OURS 8.28 14.553 31.45 53.458

[GNT24] 53.54 103.99 253.61 467.05

LAN (s)

2
16

OURS 32.28 57.31 121.80 211.95

[GNT24] 0.89 1.37 4.20 7.43

2
8

OURS 1.03 1.50 3.90 6.66

[GNT24] 2.83 4.34 9.10 14.24

2
10

OURS 2.74 4.51 8.27 11.51

[GNT24] 5.65 10.01 22.02 37.64

2
12

OURS 5.28 8.73 15.47 24.45

[GNT24] 16.75 30.86 71.38 127.75

2
14

OURS 12.88 21.20 41.36 67.67

[GNT24] 58.02 110.55 266.81 490.82

WAN (s)

2
16

OURS 38.62 66.29 139.22 239.35

[GNT24] 0.10 0.19 0.48 0.90

2
8

OURS 0.16 0.34 0.89 1.69

[GNT24] 0.39 0.77 1.93 3.61

2
10

OURS 0.64 1.35 3.54 6.77

[GNT24] 1.55 3.09 7.73 14.44

2
12

OURS 2.58 5.41 14.18 27.07

[GNT24] 6.19 12.38 30.94 57.75

2
14

OURS 10.31 21.66 56.72 108.28

[GNT24] 24.75 49.50 123.75 231.00

Comm. (MB)

2
16

OURS 41.25 86.63 226.88 433.13

Table 3: Performance for Shuffle&Decrypt protocols. The
running time is in seconds and communication cost is in
MB. Communication cost is the total cost for all parties. Best
performance is highlighted in blue.

6.2 Performance for PULSE
We also implemented the entire PULSE protocol. To implement

batch SS-PMT, we used OKVS and GMW from [RR22]. We also use

the IKNT OT-extension [IKNP03] from libOTe [RR] to implement

mOT. The EC-ElGamal cryptosystem is implemented using the

NIST P-256 curve from OpenSSL. These choices are consistent

for all the state-of-the-art mPSU works [GNT24, DZBC25]
4
. Our

implementation is available on GitHub
5
.

As described in Section 5, the parameters are set to limit the

probability of error to at most 2
−𝜆
. To implement Enc(pk, 𝑥 | |0𝜆)

using EC-ElGamal, we use concatenation of two EC-ElGamal ci-
phertexts Enc(pk, 𝑥) | |Enc(pk, 0). The zero element is the additive

identity point on the curve (point at infinity), to which we refer as 0.

4
[LL24, DCZ

+
25] shows that their results do not outperform the numbers reported in

[DZBC25].

5
https://github.com/asu-crypto/Pulse

𝑚 Prot. 𝑛 = 3 𝑛 = 4 𝑛 = 6 𝑛 = 8

[GNT24] 1.10 1.88 3.94 6.72

[DZBC25] 0.67 1.17 2.50 4.272
8

Ours 0.65 0.87 1.44 2.23

[GNT24] 16.49 27.96 59.65 103.86

[DZBC25] 6.53 11.79 26.69 47.402
12

Ours 5.75 9.00 17.82 30.38

[GNT24] 284.47 490.53 1061.45 1838.59

[DZBC25] 102.88 187.20 422.56 754.08

LAN (s)

2
16

Ours 95.36 154.29 307.10 514.59

[GNT24] 9.49 15.07 26.69 38.72

[DZBC25] 4.13 5.43 10.40 15.702
8

Ours 4.39 5.48 8.76 11.27

[GNT24] 31.61 50.30 97.07 154.20

[DZBC25] 13.10 20.27 39.20 63.032
12

Ours 12.20 17.36 29.06 44.20

[GNT24] 336.84 568.27 1189.99 2017.89

[DZBC25] 124.05 215.86 468.76 815.37

WAN (s)

2
16

Ours 113.83 175.03 339.97 572.20

[GNT24] 1.46 2.20 3.68 5.16

[DZBC25] 2.34 3.51 5.85* 8.19*2
8

Ours 1.10 1.74 3.23 4.97

[GNT24] 20.25 30.48 50.96 71.47

[DZBC25] 8.15 12.82 23.95* 38.07*2
12

Ours 11.82 19.28 37.28 59.41

[GNT24] 321.40 483.69 808.79 1134.21

[DZBC25] 65.41 98.12 163.50* 228.90*

Comm. (MB)

2
16

Ours 184.41 301.37 584.79 934.20

Table 4: Performance for mPSU Protocols. The running time
is in seconds and communication cost is in MB. Communica-
tion cost is the cost for 𝑃1. Best performances are highlighted
in blue. ∗ indicates estimation based on the number reported
in[DZBC25].

The NIST P-256 curve provides a much lower than 2
−𝜆

probability

of error for verification purposes. Compressed representation of

points on this curve results in a ciphertext being represented using

66 bytes. To verify the final output, 𝑃𝑖 first decrypts the second

ciphertext. If the value is 0, decryption can be performed on the

first half to learn 𝑥 ; otherwise, no further computation is needed.

During our evaluation, we decrypt both parts to benchmark the

performance. Even though this almost doubles the computational

cost for all heavy PKE-related operations as well as communica-

tion due to the extra bits, our protocol still provides much better

performance compared to the previous results.

Comparison with Previous Work. A comprehensive evalua-

tion was provided in [DZBC25] for their PKE-based and SKE-based

mPSU protocols. In general, SKE-basedmPSU is much more expen-

sive for a large number of parties due to the high communication

cost stemming from the shuffle protocol. For that reason we only

compare PULSE to PKE-based protocols. Unfortunately, the imple-

mentation of [DZBC25] is not publicly available. To have a fair com-

parison with their results, we estimated their performance based on

our implementation since many building blocks are shared. Each

party uses one thread for its own computation and uses𝑛−1 threads
to communicate with other parties in parallel. We test PULSE with

different set sizes𝑚 = {28, 212, 216} and a variable number of parties

PULSE: Parallel Private Set Union for Large-Scale Entities CCS ’25, October 13–17, 2025, Taipei, Taiwan

up to 8. The end-to-end running time and the communication cost

are shown in Table 4.

Our protocol has the fastest running time compared to the state-

of-the-art PKE-based protocols for most of the settings in both

LAN and WAN. For example, for 8 parties each with a set size of

2
8
elements, our protocol is 1.91× faster than [DZBC25] and 3.01×

faster than [GNT24] in LAN setting, and is 1.39× and 3.44× faster

in WAN correspondingly.

We believe that PULSE has amuch better running time for a large

number of participants. However, it is difficult to obtain accurate

times on a single server. To further demonstrate scalability of our

protocol, we use the numbers in Table 4 to estimate the running

time with a larger number of parties based on the complexity of

each protocol
6
. We do a curve-fitting process using SciPy library

for Python. Given the complexity of each protocol, Levenberg-

Marquardt algorithm [Lev44] determines the best curve based on

the data. The performance estimates for both network settings

with a set size of 2
8
were shown earlier in Figure 2. Additionally,

Figure 10 presents performance of mPSU protocols for 𝑛 ∈ {212, 216}
as the number of parties increases.

Table 4 displays the amount of communication aswell. Compared

to PKE-based protocols, PULSE has 1.04−2.13× less communication

for a small set size of 2
8
, while it has up to 4.08× higher communica-

tion cost in some other cases. This is mainly because we pad zeros

for the final verification. The result indicates that our protocol is

more competitive for small sets.

5 10 15 20 25 30 35 40 45 50
Number of parties

0

500

1000

1500

2000

2500

3000

3500

4000

Ru
nn

in
g

tim
e

(s
)

GNT24
DZBC25
Ours

(a) LAN runtime for𝑚 = 2
12.

5 10 15 20 25 30 35 40 45 50
Number of parties

0

500

1000

1500

2000

2500

3000

3500

4000

Ru
nn

in
g

tim
e

(s
)

GNT24
DZBC25
Ours

(b) WAN runtime for𝑚 = 2
12.

5 10 15 20 25 30 35 40 45 50
Number of parties

0

10000

20000

30000

40000

50000

60000

Ru
nn
in
g
tim

e
(s
)

GNT24
DZBC25
Ours

(c) LAN runtime for𝑚 = 2
16.

5 10 15 20 25 30 35 40 45 50
Number of parties

0

10000

20000

30000

40000

50000

60000

Ru
nn
in
g
tim

e
(s
)

GNT24
DZBC25
Ours

(d) WAN runtime for𝑚 = 2
16.

Figure 10: Performance of mPSU Protocols with {212, 216}-
element Input Sets. Solid lines indicate the times were
measured, while dashed lines are estimations using the
Levenberg-Marquardt algorithm and the complexity of each
protocol.

6
We use the 𝑛 = {3, 4, 6, 8} for [GNT24], and 𝑛 = {3, 4, 6, 8, 10} for [DZBC25] and
our work.

7 Conclusion
In this work, we present a detailed study of mPSU protocols. We

present a unified framework for mPSU that covers both SKE-based

and PKE-based methods. We propose an efficient ParallelmPSU for

Large-Scale Entities (PULSE) built upon PKE. It supports parallel

computation and eliminates idle time for participating parties – for

the first time – making it especially efficient when the number of

parties is large and each party’s input set is small. Compared to

state-of-the-art mPSU protocols, our approach achieves significant

improvements in end-to-end runtime, particularly as the number

of parties increases.

Future work includes extending our protocol to the malicious set-

ting, further optimizing communication overhead, and improving

performance for large set sizes.

Acknowledgments
This work was supported in part by ARPA-H SP4701-23-C-007,

NSF 2451972, and NSF 2213057 grants. Any opinions, findings, and

conclusions or recommendations expressed in this publication are

those of the authors and do not necessarily reflect the views of the

funding sources.

References
[AJL

+
12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod

Vaikuntanathan, and Daniel Wichs. Multiparty computation with low

communication, computation and interaction via threshold FHE. In David

Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume

7237 of LNCS, pages 483–501, April 2012.
[BKM

+
20] Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sen-

gupta, Erik Taubeneck, and Vlad Vlaskin. Private matching for compute.

Cryptology ePrint Archive, Paper 2020/599, 2020. https://eprint.iacr.org/

2020/599.

[BPSY23] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-

Optimal oblivious Key-Value stores for efficient PSI, PSU and Volume-

HidingMulti-Maps. In 32nd USENIX Security Symposium (USENIX Security
23), pages 301–318, Anaheim, CA, August 2023. USENIX Association.

[BPV98] Victor Boyko, Marcus Peinado, and Ramarathnam Venkatesan. Speeding

up discrete log and factoring based schemes via precomputations. In Kaisa

Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 221–235,
May / June 1998.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switch-

ing from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti,

editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886, August 2012.
[BS05] Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms

in the semi-honest model. In Bimal K. Roy, editor, ASIACRYPT 2005,
volume 3788 of LNCS, pages 236–252, December 2005.

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropou-

los. SEPIA: Privacy-Preserving aggregation of Multi-Domain network

events and statistics. In 19th USENIX Security Symposium (USENIX Security
10), Washington, DC, August 2010. USENIX Association.

[CDG
+
21] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana

Obbattu, Sruthi Sekar, and Akash Shah. Efficient linear multiparty PSI

and extensions to circuit/quorum PSI. pages 1182–1204. ACM Press, 2021.

[CSSW24] Gowri R Chandran, Thomas Schneider, Maximilian Stillger, and Christian

Weinert. Concretely efficient private set union via circuit-based PSI.

Cryptology ePrint Archive, Paper 2024/1494, 2024.

[DCZ
+
25] Minglang Dong, Yu Chen, Cong Zhang, Yujie Bai, and Yang Cao. Multi-

party private set operations from predicative zero-sharing. Cryptology

ePrint Archive, Paper 2025/640, 2025.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. Pir-psi: Scaling

private contact discovery. Cryptology ePrint Archive, Paper 2018/579,

2018. https://eprint.iacr.org/2018/579.

[DZBC25] Minglang Dong, Cong Zhang, Yujie Bai, and Yu Chen. Efficient multi-party

private set union without non-collusion assumptions. In 34th USENIX Se-
curity Symposium (USENIX Security 25), Seattle, WA, August 2025. USENIX

Association.

https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2018/579

CCS ’25, October 13–17, 2025, Taipei, Taiwan Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

[EB22] Saba Eskandarian and Dan Boneh. Clarion: Anonymous communication

from multiparty shuffling protocols. In 29th Annual Network and Dis-
tributed System Security Symposium, NDSS 2022, San Diego, California,
USA, April 24-28, 2022. The Internet Society, 2022.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In

Proceedings of the Forty-First Annual ACM Symposium on Theory of Com-
puting, STOC ’09, page 169–178, New York, NY, USA, 2009. Association

for Computing Machinery.

[GMR
+
21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian,

and Jaspal Singh. Private set operations from oblivious switching. In

Juan A. Garay, editor, Public-Key Cryptography – PKC 2021, pages 591–617,
Cham, 2021. Springer International Publishing.

[GMW87] OdedGoldreich, SilvioMicali, andAviWigderson. How to play anymental

game or A completeness theorem for protocols with honest majority. In

Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 218–229. ACM, 1987.

[GNBT25] Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu. PULSE: Parallel

private set union for large-scale entities. Cryptology ePrint Archive,

Paper 2025/790, 2025.

[GNT24] Jiahui Gao, Son Nguyen, and Ni Trieu. Toward a practical multi-party

private set union. In The 24th Privacy Enhancing Technologies Symposium
(PoPETs), pages 622–635, 2024.

[Gol09] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, USA, 1st edition, 2009.

[GPR
+
21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay

Yanai. Oblivious key-value stores and amplification for private set inter-

section. LNCS, pages 395–425, 2021.

[HLS
+
16] Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen, David Stott, Sophia

Yakoubov, and Arkady Yerukhimovich. Secure multiparty computation for

cooperative cyber risk assessment. In 2016 IEEE Cybersecurity Development
(SecDev), pages 75–76, 2016.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivi-

ous transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729

of LNCS, pages 145–161, August 2003.
[JSZ

+
22] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu.

Shuffle-based private set union: Faster and more secure. In 31st USENIX
Security Symposium (USENIX Security 22), pages 2947–2964, Boston, MA,

August 2022. USENIX Association.

[JSZG24] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, and Dawu Gu. Scalable

private set union, with stronger security. Cryptology ePrint Archive,

Paper 2024/922, 2024.

[KC04] Murat Kantarcioglu and Chris Clifton. Privacy-preserving distributed

mining of association rules on horizontally partitioned data. IEEE Trans-
actions on Knowledge and Data Engineering, 16(9):1026–1037, 2004.

[KLS24] Jiseung Kim, Hyung Tae Lee, and Yongha Son. Revisiting shuffle-based pri-

vate set unions with reduced communication. Cryptology ePrint Archive,

Paper 2024/1560, 2024.

[KRTW19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable

private set union from symmetric-key techniques. In Steven D. Galbraith

and Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS,
pages 636–666, December 2019.

[Lev44] Kenneth Levenberg. A method for the solution of certain non – linear

problems in least squares. Quarterly of Applied Mathematics, 2:164–168,
1944.

[LG23] Xiang Liu and Ying Gao. Scalable multi-party private set union from

multi-query secret-shared private membership test. LNCS, pages 237–271,

2023.

[Lin16] Yehuda Lindell. How to simulate it - a tutorial on the simulation proof

technique. Cryptology ePrint Archive, Paper 2016/046, 2016.

[LL24] Qiang Liu and Joon-Woo Lee. Efficient multi-party private set union

resistant to maximum collusion attacks. Cryptology ePrint Archive, Paper

2024/2096, 2024.

[LPR
+
21] Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu.

Private join and compute from PIR with default. LNCS, pages 605–634,

2021.

[NS99] Phong Q. Nguyen and Jacques Stern. The hardness of the hidden subset

sum problem and its cryptographic implications. In Michael J. Wiener,

editor, CRYPTO’99, volume 1666 of LNCS, pages 31–46, August 1999.
[NWT

+
20] Chaoyue Niu, Fan Wu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei

Lv, Zhihua Wu, and Guihai Chen. Billion-scale federated learning on

mobile clients: a submodel design with tunable privacy. In Proceedings
of the 26th Annual International Conference on Mobile Computing and
Networking, MobiCom ’20, New York, NY, USA, 2020. Association for

Computing Machinery.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, andMichael Zohner. Phasing:

Private set intersection using permutation-based hashing. In Jaeyeon

Jung and Thorsten Holz, editors, USENIX Security 2015, pages 515–530.
USENIX Association, August 2015.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay

Yanai. Efficient circuit-based PSI with linear communication. In Yuval

Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume

11478 of LNCS, pages 122–153, May 2019.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder.

Efficient circuit-based PSI via cuckoo hashing. In Jesper Buus Nielsen

and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of

LNCS, pages 125–157, April / May 2018.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private

set intersection based on ot extension. ACM Trans. Priv. Secur., 21(2), jan
2018.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryp-

tology ePrint Archive, Paper 2005/187, 2005.

[RR] Peter Rindal and Lance Roy. libOTe: an efficient, portable, and easy to use

Oblivious Transfer Library. https://github.com/osu-crypto/libOTe.

[RR22] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved

OKVS and subfield VOLE. pages 2505–2517. ACM Press, 2022.

[WU23] ZhushengWang and Sennur Ulukus. Private federated submodel learning

via private set union, 2023.

[ZCL
+
23] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Linear

private set union from Multi-Query reverse private membership test. In

32nd USENIX Security Symposium (USENIX Security 23), pages 337–354,
Anaheim, CA, August 2023. USENIX Association.

https://github.com/osu-crypto/libOTe

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 Overview of mPSU Protocols
	2.1 Revisiting Existing Protocols
	2.2 Our mPSU Protocol

	3 Preliminaries
	3.1 Security Model
	3.2 Hashing Scheme
	3.3 Secret-Shared Private Membership Test
	3.4 Membership Oblivious Transfer (mOT)
	3.5 Multi-Key EC-ElGamal Cryptosystem
	3.6 Oblivious Shuffle and Decryption

	4 Building Blocks
	4.1 Batched Membership Oblivious Transfer
	4.2 An Efficient Oblivious Shuffle and Decryption (Shuffle&Decrypt)

	5 Our mPSU Protocol
	5.1 The Protocol Description
	5.2 Efficient Computation for Zero Encryptions

	6 Implementation and Performance
	6.1 Performance for Oblivious Shuffle and Decryption Protocols
	6.2 Performance for PULSE

	7 Conclusion
	References

