PULSE: Parallel Private Set Union for Large-Scale Entities

Jiahui Gao
Arizona State University
Tempe, AZ, USA
jgao76@asu.edu

Marina Blanton

University at Buffalo
Buffalo, NY, USA
mblanton@buffalo.edu

Abstract

Multi-party private set union (mPSU) allows multiple parties to
compute the union of their private input sets without revealing any
additional information. Existing efficient mPSU protocols can be
categorized into symmetric key encryption (SKE)-based and public
key encryption (PKE)-based approaches. However, neither type of
mPSU protocol scales efficiently to a large number of parties, as
they fail to fully utilize available computational resources, leaving
participants idle during various stages of the protocol execution.

This work examines the limitation of existing protocols and
proposes a unified framework for designing efficient mPSU proto-
cols. We then introduce an efficient Parallel mPSU for Large-Scale
Entities (PULSE) that enables parallel computation, allowing all
parties/entities to perform computations without idle time, leading
to significant efficiency improvements, particularly as the number
of parties increases. Our protocol is based on PKE and secure even
when up to n — 1 semi-honest parties are corrupted. We imple-
mented PULSE and compared it to state-of-the-art mPSU protocols
under different settings, showing a speedup of 1.91 to 3.57x for
n = 8 parties for various set sizes.

CCS Concepts
« Security and privacy — Cryptography.

Keywords

Multi-party Private Set Union, Oblivious Transfer, Public-key En-
cryption, Parallel Computation

ACM Reference Format:

Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu. 2025. PULSE: Parallel
Private Set Union for Large-Scale Entities. In Proceedings of the 2025 ACM
SIGSAC Conference on Computer and Communications Security (CCS °25),
October 13-17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3719027.3765108

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765108

Son Nguyen
Arizona State University
Tempe, AZ, USA
snguye63@asu.edu

Ni Trieu
Arizona State University
Tempe, AZ, USA
nitrieu@asu.edu

1 Introduction

Private set union (PSU) enables parties to compute the union of
their input sets without revealing any information beyond the de-
sired output. In recent years, PSU in the 2-party setting has seen
rapid advancements, particularly since Kolesnikov et al. [KRTW19]
introduced an efficient PSU framework based on oblivious trans-
fer (OT). This framework has been continuously refined by subse-
quent works [GMR* 21, ZCL*23, JSZ* 22, BPSY23, JSZG24, CSSW 24,
KLS24]. PSU has numerous practical applications, including im-
plementing private-ID functionality [BKM™*20], cyber risk assess-
ment and management via joint IP blacklists and joint vulnerability
data [HLS*16], private database supporting full join [KRTW19],
association rule learning [KC04], joint graph computation [BS05],
and aggregation of multi-domain network events [BSMD10]. In this
paper, we focus on PSU in a multi-party setting, which facilitates
richer data sharing/computing compared to the 2-party scenario.
The functionality of multi-party private set union (mPSU) is shown
in Figure 1.

To better see the methodology and the differences between PSU
in the 2-party and multi-party settings, we first briefly review the
2-party OT-based PSU construction proposed in [KRTW19]. The
solution has two phases: First, the receiver learns a bit b represent-
ing the membership of each element in the sender’s set through
reverse membership test (r-PMT). Second, the parties invoke an
OT protocol, in which the sender inputs messages {1, x}, where L
represents a predefined special character, while the receiver inputs
b as the choice bit. The receiver learns the sender’s element x if it
is not in the receiver’s set, and L otherwise.

To understand how a multi-party protocol evolves from the above
PSU structure, two key security properties must be maintained: (i)
membership privacy — no party should learn any information about
the membership status of any element from other parties’ datasets
and (ii) element source privacy — for any element in the union, no
party is able to determine which party contributed that element.

To achieve the first property, instead of using the reverse mem-
bership test (r-PMT), a secret-shared private membership test (SS-
PMT) can be used, where the sender and the receiver each learn
secret shares of the bit b. To achieve the second property, the parties
can shuffle the union before revealing it, breaking the correspon-
dence between elements and participants (Section 2 provides a more

!Note that several recent works [ZCL*23, JSZ*22] have identified security issues
in [KRTW19], but the proposed fixes still largely follow the framework of [KRTW19].

https://doi.org/10.1145/3719027.3765108
https://doi.org/10.1145/3719027.3765108

CCS 25, October 13-17, 2025, Taipei, Taiwan

PARAMETERS: n parties Py, ..., P, and the set size m.

FUNCTIONALITY:

o Wait to receive input X; of size m from P;.
o Give the union JI_; X; to P;.

Figure 1: Multi-party Private Set Union Functionality.

detailed discussion of these steps). The state-of-the-art mPSU proto-
cols [LG23, GNT24, DZBC25, LL24, DCZ*25] follow this approach.
These works successfully show how an efficient mPSU protocol
can be built by leveraging rapid advancements with 2-party PSU
protocols. However, they do not fully utilize the resources of multi-
ple parties, resulting in significant idle time as the parties wait for
one another.

1.1 Motivation

Building on recent 2-party PSU protocols [KRTW19, GMR*21, ZCL*23,

JSZ*22, BPSY23, CSSW24, KLS24], construction of practical multi-
party PSU (mPSU) protocols began with publications like [LG23,
GNT24, DZBC25, LL24, DCZ*25] that rely on secret-shared private
membership tests (SS-PMT), oblivious transfer (OT), and multi-
party shuffle protocols. Compared to traditional mPSU protocols
that heavily depend on generic multi-party computation (MPC) or
homomorphic encryption (HE) techniques, these new approaches
are orders of magnitude faster, making real-world deployment of
mPSU both practical and efficient.

Existing mPSU works mainly focus on designing efficient pro-
tocols when the input set size of each party is large. However, in
certain applications, such as IP blacklisting [HLS*16] or submodel
federated learning [NWT*20, WU23], the number of parties in-
volved in the mPSU protocol can, on the other hand, be quite large,
making scalability a critical concern. For example, in federated
learning scenarios, it is common to have more than 100 partici-
pants. The number of parties impacts performance mainly because
of the round complexity — the state-of-the-art for mPSU has at
least linear in the number of parties rounds of communication. This
leaves the following open problem:

Is it possible to construct an mPSU protocol with O(1) round
complexity for the most time-consuming computation?

1.2 Our Contributions

This paper answers the above question affirmatively by proposing
a new mPSU protocol that is secure against up to n — 1 corrupted
parties in the semi-honest setting. Our contributions can be sum-
marized as follows:

e We revisit the existing mPSU protocols of [LG23, GNT24,
DZBC25, LL24, DCZ*25] in depth. We unify symmetric key
encryption (SKE)-based and public key encryption (PKE)-
based protocols into a single framework that consists of
SS-PMT, message modification, and multi-party shuffle mod-
ules.

e We propose an efficient Parallel mPSU for Large-Scale Enti-
ties (PULSE) built upon PKE. It supports parallel computation
and eliminates idle time for participating parties, making it

Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

especially efficient when the number of parties is large and
each party’s input set is small.
Our approach introduces simple yet effective modifications
to the underlying building blocks. Specifically, we first iden-
tify inefficiencies in existing multi-party shuffle protocols
caused by sequential execution, which results in O(n) round
complexity. Although O(n) complexity may seem unavoid-
able without incurring significant computational overhead,
our new design for oblivious shuffling allows the most time-
consuming computations to be performed in parallel, achiev-
ing O(1) rounds. Furthermore, we optimize what we call the
message modification module of the state-of-the-art mPSU
protocols by reducing the round complexity from O(n) to
O(1). We also introduce a batched membership oblivious
transfer, which serves as a core building block of this module.
e We implement PULSE and compare its performance to state-
of-the-art protocols [GNT24, DZBC25]. Our protocol achieves
the fastest runtime for most settings, demonstrating up to
1.91-3.57x speedup over these protocols with 3 to 8 par-
ties. When the number of participants is 50, we estimate
a 2.39-4.24X performance improvement. As shown in Fig-
ure 2, performance improvement increases as the number of
parties grows.

The rest of the paper is organized as follows: We first give an
overview of existing mPSU protocols as well as our techniques in
Section 2. In Section 3, we introduce preliminaries for our main
result. In Section 4, we present optimizations to the building blocks
of the mPSU protocol. Our mPSU protocol is described and analyzed
in Section 5, and Section 6 presents performance evaluation.

2 Overview of mPSU Protocols

To better illustrate our improvements, we first review recent state-
of-the-art mPSU protocols [LG23, GNT24, DZBC25, LL24, DCZ* 25].
For completeness, a discussion of other mPSU protocols is included
in the full version of this work [GNBT25].

The most recent [DCZ*25] focuses on generic set operations,
including private set intersection (PSI). As shown in [DCZ*25, Table
4], however, their protocol is less efficient than [DZBC25] in 95% of
the evaluated cases. The protocol proposed in [LL24] adopts similar
building blocks and design choices as [GNT24, DZBC25]. While it

LG23 LG23
1750
200 DZBC25 SK DZBC25 SK
% GNT24 5 1500 GNT24
glso —— DZBC25 g]ZSO —— DZBC25 PK
= =+ Ours R4 s —— Ours
o . 1000
£ 100 ,/ g
E - g 750
-4 - &
- - 500
50 -7 ="
AL Pt L 250 g
CEEE bt Zizz=zz====z=z3ZZEZ3

= ———
5 10 15 20 25 30 35 40 45 50 5 10 15
Number of parties

20 25 30 35 40 45 50
Number of parties

(a) LAN runtime. (b) WAN runtime.
Figure 2: Performance of mPSU protocols with 28-element
input sets. Solid lines indicate the times were measured, while
dashed lines are estimations using the Levenberg-Marquardt
algorithm and the complexity of each protocol. The data for
SKE-based protocol originates in [DZBC25].

PULSE: Parallel Private Set Union for Large-Scale Entities

reduces the communication cost of [GNT24] by approximately 4-
5%, it still does not outperform the solution of [DZBC25]. Therefore,
we mainly focus on [LG23, GNT24, DZBC25], which represent
the current state-of-the-art and/or introduce distinct PSU protocol
designs.

2.1 Revisiting Existing Protocols

The designs of the state-of-the-art mPSU protocols have a similar
structure. We combine different constructions and protocol varia-
tions in a single diagram, shown in Figure 3. This structure consists
of three modules, detailed below.

Functionality Module Realization
‘ Batched SS-PMT [DZBC25] ‘
Pairwise SS-PMT
‘ Multi-query SS-PMT [LG23] ‘
‘ Ciphertext Update [GNT24] ‘

‘ Secret Share [LG23] ‘

!

‘ Decrypt & Shuffle [GNT24] ‘

Multi-party Shuffle

I
I
I
I
I
I
I
|
mPSU | !
I
I
I
I
|
I
I
I

I
I
I
I
I
I
I
|
Message Modification | !
I
I
I
I
I
I
I
I
I

Secret-shared Shuffle [EB22] ‘

Figure 3: A unified mPSU framework. The arrows show data
flow. The first module takes the input and the final module
produces the output, representing the overall functionality.

The core idea for computing the union of n sets Xjc[,], each
respectively held by party Pjc[,), is given by:

X UG\ X) U U (X \ (XU .. UXn1)) 1)

Here, Pj, acting as the leader, collects X, \ X; from P, to obtain
X1 UX;, collects X3 \ (X7 UX>) from P; to obtain X; U X, U X3, and
this process continues until P; collects X, \ (X; U...UX,_;) from
P, to obtain X; U ... UX,,.

From P;’s perspective, for each element x;; € X;, P; must
check the element’s membership in the set X; U ... U X;_;. If
Xjx € X1 U...UX;_1, P; modifies this element to ensure it does
not appear in the final result. This membership check is performed
in a pairwise fashion between P; and each P; ;. All protocols from
[LG23, GNT24, DZBC25] employ a secret-sharing-based member-
ship test for this purpose, which we abstract as the first module
of the mPSU framework and refer to as Pairwise SS-PMT. There
are two approaches to implementing SS-PMT: [LG23] introduced a
multi-query SS-PMT protocol, while [DZBC25] proposed a more
efficient version using batched techniques. We discuss both of these
variations in Section 3.3.

We refer to the second module as Message Modification which
produces a correct/fake message for each element, given the shares
learned from the Pairwise SS-PMT module. The implementation of

CCS 25, October 13-17, 2025, Taipei, Taiwan

this module can vary depending on the underlying encryption tech-
nique. That is, protocols may rely on SKE or PKE, with each variant
employing different approaches. [LG23] introduced an SKE-based
protocol that assumed that the leader does not collude with other
parties. It was improved in [DZBC25] in terms of security and effi-
ciency. On the other hand, [GNT24] designed a PKE-based protocol
relying on multi-key ElGamal, while [DZBC25] built on it to have
a protocol with enhanced optimization and faster implementation.
The solutions proceed as follows:

e In an SKE-based protocol, for an element x;; € X;, P; pre-
pares a message x;j i ||H(x;), where || is concatenation and
H is a hash function. After executing Pairwise SS-PMT with
P;.j and receiving share bits e}i,k and e;?l.,k as the output, P;
and P; proceed with executing random OT [Rab05]. Here,
the party P; acts as the sender with no input, while P; acts as
the receiver with input bit ejl.i’ - As aresult, P; obtains two

1
e..
. .k
) and P; receives r /'

random values (r° I
J Jik

1
ik Vjik
-1 eq'k
P; now computes its share as x;||H(x;x) ® I, rjl{’]; ,
1
e..
while P; sets its share as rjl? ']’Ck. We observe that these are the

shares of the original message x; ||H(x;) if x;x ¢ U{;ll X;,
and are shares of some random value otherwise. We refer to
this approach as “Secret Share” in the “Realization” column
of Figure 3.

o In PKE-based approaches, the message for each element
Xjr € Xj is a ciphertext Enc(pk,x;x) encrypted using a
threshold multi-key encryption, defined as requiring col-
laboration of more than a threshold number of parties to
decrypt. After receiving bit shares from Pairwise SS-PMT,
Pj and P;.; perform an OT where P; acts as the sender with
input messages (Enc(pk, L), Enc(pk,x;z)) and L being a
predefined special element.

The parties invoke membership OT (mOT) [GNT24] such
that if x;x € X;, P; receives the fake message Enc(pk, L);
otherwise, P; receives Enc(pk, x;x). P; then rerandomizes
the ciphertext and sends it back to P;, who subsequently
rerandomizes it again. The re-randomized ciphertext is later
used in place of the true message when interacting with
subsequent participants.

As the computation progresses, the message corresponding
to x;x will remain Enc(pk,x;x) if x; ¢ U{;ll X;, and be-
come Enc(pk, L) otherwise. We refer to this component as
“Ciphertext Update” in the “Realization” column of Figure 3.

The final module in the mPSU framework is the Multi-party
Shuffle, which is designed to protect the element source privacy
as mentioned earlier.

SKE-based designs rely on a multi-party secret-sharing shuffle
protocol [EB22] for this module, where each party holds a share of
the vectors along with its own permutation. After this computation,
the parties obtain a refreshed share corresponding to the vector per-
muted n times. The protocol has efficient online computation with
round complexity of O(n) and computation complexity of O(n?m).
However, the protocol has poor offline computation complexity
of O(n*m) indicating its unscalability for the scenario of a large
number of parties.

CCS 25, October 13-17, 2025, Taipei, Taiwan

In PKE-based designs, an oblivious shuffle and decryption protocol
[GNT24] is employed, where each party performs partial decryp-
tion, permutes the collection of ciphertexts, and then passes it to
the next party. This results in a protocol with a round complexity
of O(n). Compared to SKE-based approaches, this straightforward
method offers a fair total runtime of O(n’m).

2.2 Our mPSU Protocol

The evaluation in [DZBC25] showed that the SKE-based mPSU does
not scale well with a large number of participants due to the cubic
complexity of the shuffle protocol. We estimate the performance of
the SKE-based protocols using the original data from [DZBC25] and
plot them along with the curves of PKE-based protocols in Figure 2.
Although the SKE-based protocol may be faster in some cases in
the LAN setting, it is significantly slower in the WAN setting due
to the underlying shuffle protocol, which has higher complexity.
Thus, we focus on further improving existing PKE-based protocols,
following the three-module framework presented in Figure 3.

For the Pairwise SS-PMT module, we adopt the batched SS-PMT
technique from [DZBC25] to further improve performance. Our
main contributions lie in the second and third modules, which
account for the majority of the computational cost in the over-
all mPSU protocol. In existing state-of-the-art PKE-based mPSU
protocols, these modules involve a sequence of O(n)-round compu-
tations, resulting in significant idle time for the parties. In contrast,
our protocol enables parallel execution of the most expensive opera-
tions, substantially reducing idle time and improving efficiency. Our
new message modification module has round complexity of O(1).
For the multi-party shuffle module, we consider the shuffle and
decryption separately. We enable the parallel computation for the
decryption within O(1) round in a straightforward manner. Even
though we find inevitable to have a O(n) round complexity for the
shuffle, we propose new technique to improve the computation. We
next give an overview of these two modules.

A Message Modification Module with O(1) Rounds. As de-
scribed in the previous subsection, in PKE-based protocols, P; en-
gages in computation sequentially with each P;.;, leading to a
round complexity of O(n). In this work, we propose an efficient
PKE-based protocol for message modification with O(1) round
complexity. The high-level idea is that for each element x € X;,
each P; interacts with every other party P;.; via mOT in parallel.
To accomplish that, for each x, P; prepares a pair of OT inputs
(Enc(pk, 0), Enc(pk, r;)) for P;, where r; is a random number un-
known to P;.% As a result of the mOT computation, P; obtains a
ciphertext e; = Enc(pk,0) if x ¢ Xj, and e; = Enc(pk,r;) other-
wise. Unlike prior work, where the sender’s inputs into the OT
protocol depend on the previous computation rounds (leading to
inefficiencies due to idle time and requiring computation in the
online phase), our protocol allows these OT inputs to be prepared
during the offline phase.

Leveraging the additive homomorphism of the EC-EIGamal cryp-
tosystem, P; re-randomizes the ciphertext e; and sends it back to P;.
Upon receiving all e; values, P; computes the sum of them and adds

Instead of sampling r and then encrypting it, we directly sample from the ciphertext
space, which is more efficient and ensures that P; does not know the plaintext r;. The
encryption scheme is the multi-key EC-EIGamal cryptosystem.

Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

the sum to the encrypted message Enc(pk, x||0%)). Here, we append
extra zero bits for verification after decryption — the length 1 is
chosen to ensure that the probability of a verification error occurs
with negligible probability (i.e., 27*). Mathematically, the obtained
value is computed as e = Enc(pk, x||0%) + Z{:Ol e;. We can see that
if x is not in the union of the previous sets U{: X, all e; values are
the encryptions of 0, implying that e has the form Enc(pk, x||0%);
otherwise, it is an encryption of a random value. After decryption
at a later point, we can determine whether the first half is a valid el-
ement by checking the last A bits of the decrypted value and include
it in the union accordingly. The details are provided in Section 5.1.
Note that mOT executions can be implemented in parallel, which
significantly improves the runtime of our protocol.

Additionally, we present batched mOT, which leverages the
batched SS-PMT technique from [DZBC25] alongside a simple yet
effective optimization of the mOT protocol from [GNT24]. We
present the details in Section 4.1.

An Improved Oblivious Shuffle and Decrypt Protocol. In
existing protocols, each party sequentially performs partial de-
cryption, re-randomization, and permutation over the collection of
ciphertexts. While the permutation step appears to be inherently
sequential, we see that the partial decryption and re-randomization
processes can be optimized for better efficiency.

We observe that partial decryption, which is more computa-
tionally expensive than re-randomization, can naturally support
parallel computation by sharing the ciphertext. A more detailed
explanation is provided in Sections 3.5 and 4.2. Re-randomizing
a ciphertext under the EC-EIGamal cryptosystem is equivalent to
adding the original ciphertext to an encryption of 0. Since this ad-
dition is inexpensive, efficient computation of Enc(pk, 0) directly
enables efficient re-randomization. We present our optimization for
fast computation of a large number of Enc(pk, 0) in Section 5.2.

With these two simple yet effective optimizations, we achieve an
efficient oblivious shuffle and decrypt protocol for PKE-based mPSU
functionality. Although the overall round complexity remains O(n),
all intensive computations can be performed in parallel or offline
efficiently.

We compare the round complexity of our mPSU protocol (P ULSE)
to other PKE-based protocols [GNT24, DZBC25] in Table 1. Our
protocol achieves constant round complexity for all modules ex-
cept the shuffle, which is computationally cheap. This significantly
improves the scalability of mPSU, especially when the number of
participants is large.

Protocols Pairwise Message Multi-party Shuffle
SS-PMT | Modification | Decryption | Shuffle

[GNT24] O(n) 0(n) 0(n) om

[DZBC25] 0(1) 0(n) 0(n) o(n)

PULSE 0O(1) 0(1) o(1) o(n)

Table 1: Round Complexity of PKE-based mPSU Protocols.

3 Preliminaries

In this work, we use n to refer to the number of parties and m
to the size of each party’s input set. We denote the total number

PULSE: Parallel Private Set Union for Large-Scale Entities

of elements as M = mn. Computational and statistical security
parameters are denoted by x and A, respectively. We use [x] to
denote the set {1,...,x}, [i, j] to denote the set {i,.. ., j}, and x||y
to denote concatenation of two bit-strings x and y.

We use (sk, pk) to refer to the secret and public keys of a multi-
key (threshold) encryption scheme. For simplicity, we occasionally
abuse notation by applying a function to a set as if it were applied
to each element individually. For example, Enc(pk, X) denotes the
set of encryptions of each element of the set X.

3.1 Security Model

We use a standard security definition for static semi-honest ad-
versaries as formulated in [Gol09, Lin16]. For an mPSU protocol
specifically, we follow the definition presented in [LG23], which is
a multi-party variant in the presence of an adversary who is able
to corrupt any subset of the participants.

Definition 1. Let f : ({0,1}*)" — ({0,1}*)" be an n-ary de-
terministic functionality where f;(xy, ..., x,) denotes the i-th el-
ement of f(xi,...,x,). For a subset I C [n], let fi = {f;}ier, and
X; = {Xi}ier. Let view] denote the view of party P; during the
execution of protocol 7, and view;r denote the union of views
{view7 };c;. We say that 7 securely computes f in the presence
of semi-honest adversaries if for every I C [n] there exists a proba-
bilistic polynomial-time (PPT) algorithm S; such that

{(S1(Xn fi(Xa, .., X)) Y ={(view] (Xq, ..., X¢))} (2)

where = denotes computational or statistical indistinguishability.
Unlike the solution from [LG23], our protocol is secure for any
corruption threshold in the presence of semi-honest participants
(i.e., without requiring an honest majority).

3.2 Hashing Scheme

Our solution relies on widely used simple and Cuckoo hashing
schemes introduced in [PSSZ15, PSZ18]. We provide a brief review
of these schemes below.

Simple hashing. For a hashing table with p bins denoted as
B[1...pu], define a random hash function H : {0,1}* — [u]. To
insert an element x into this table, simply place x in the bin of
the index determined by the evaluation of H(x). When multiple
hash functions Hy, ..., Hy are used, x is placed in multiple bins
determined by the evaluations of the hash functions.

Cuckoo hashing. This time, there are also p bins denoted as
B[1...pu] and h random hash functions Hy, ..., Hy : {0, 1}* — [p].
The difference is that for Cuckoo hashing at most one element
is allowed to be in a bin. To insert element x, first evaluate the
hash functions H;(x), ..., Hy(x) to determine the candidate bins.
If any bin By, () is empty for some i € [h], place x in that bin.
If not, evict an element from one of the candidate bins, place x
there, and insert the evicted element again. Based on the analysis
in [PSSZ15, DRRT18], given the set size |X], it is possible to set the
parameters p and h in such a way that with an overwhelming prob-
ability of 1 — 274 there is an allocation with every bin containing
at most one item.

CCS 25, October 13-17, 2025, Taipei, Taiwan

PARAMETERS: Two parties Py and P, message length £, and batch
size j1.

FuncTiONALITY:
 Wait to receive input sets {Xi,...,X,} € (({0,1})*)*
from Py.
e Wait to receive input queries {y1,...,y,} € ({0,1})*
from P;.

e Give {b; ;} to Pic{o1}, Where by j @ by ; = 1ify; € X; and
0 otherwise for j € [p].

Figure 4: Batched Secret-Shared Private Membership Test
(batch SS-PMT) Functionality.

3.3 Secret-Shared Private Membership Test

Secret-shared private membership test (SS-PMT) is widely used in
applications beyond mPSU [PSTY19, LPR*21, CDG*21, PSWW18].
It is a two-party protocol where Py, holding a set X = {x,...,xm},
interacts with Py, who has a single input item y. An SS-PMT pro-
tocol provides both parties with a secret share of the membership
bit. Specifically, the parties receive XOR shares of 1 if y € X, and 0
otherwise.

To complete our review of mPSU techniques, here we briefly
describe recent efficient SS-PMT solutions. [LG23] proposed a multi-
query SS-PMT based on a multi-query reverse membership test
(r-PMT) construction from [ZCL*23]. In r-PMT, instead of both
parties learning secret shares of the indicator bit, P, learns whether
Py’s query is in Py’s set. The first step is to use an oblivious key-
value store (OKVS) [GPR*21] so that P; with query y will learn an
encryption of a value s’. If y € X, s’ is equal to the secret value s
chosen by P;. Generic secure multiparty computation (namely, the
Goldreich-Micali-Wigderson (GMW) protocol [GMW87]) is used
to check this equality and P, learns the indicator bit by having P;
disclose its share to Py. [LG23] notice that SS-PMT can be easily
realized if the sharing step at the end is omitted.

[DZBC25] proposed a batched version of SS-PMT using hashing.
Given a set of hash functions {H; ..., Hp}, Py hashes the input set
X into a simple hashing table, while P; hashes the query set Y into
a Cuckoo hashing table. For the ith bin of the simple hashing table
(denoted as B;), Py chooses a random secret value s; and computes
a set S; such that |S;| = |B;|. Py encodes an OKVS using keys of
By, ..., By with values Sy, ..., S, and sends it to P;. P; decodes it
with the element in the Cuckoo hashing table and learns value ¢;
for the ith bin. For each bin of the hashing table, Py and P; invoke
a generic 2-PC protocol to test equality of s; and t; and learn secret
shares of 1 if s; = t; and 0 otherwise. The functionality is given
in Figure 4. The authors provide a comparison of their batch SS-
PMT with a multi-query SS-PMT from [LG23]. Despite the large
size of the OKVS table in the batch solution, the use of GMW for
decryption and comparison in the multi-query SS-PMT introduces
a larger computational and communication cost. Thus, we use the
batch SS-PMT in our mPSU protocol.

CCS 25, October 13-17, 2025, Taipei, Taiwan

PARAMETERS: Sender S and receiver R, message length ¢, and
batch size p.

FUNCTIONALITY:
o Wait to receive messages
{(myo,my1),..., (myo,mu1)y < (({0,1})?)# and

queries {y1,...,y,} € ({0,1}%)* from S.

o Wait to receive input {Xi,...X,} < (({0,1}))*)* from
R.

e Give R messages {my, ..., m,} where m; equals to m,,
if y; € X;, and m; otherwise.

Figure 5: Batched Membership Oblivious Transfer (mOT)
Ideal Functionality.

3.4 Membership Oblivious Transfer (mOT)

Gao et al. [GNT24] introduced a new two-party protocol called
Membership Oblivious Transfer (mOT) as part of their mPSU pro-
tocol. The idea is to enable the receiver to obtain the sender’s OT
messages based on the result of a membership test. Concretely, the
sender holds a keyword y € {0, 1} and two associated messages
mg, m;. The receiver holds a set X = {x1,%3,...,x,} € ({0,1}%)*.
The mOT functionality provides the receiver with a message m;,
where b =0 if y € X and b = 1 otherwise, while the sender learns
nothing. Neither party gains any information about the member-
ship of y in X. The sender learns nothing about which message was
sent to the receiver, and the receiver learns nothing about the mes-
sage that was not received. A batched variant of the functionality
is given in Figure 5.

3.5 Multi-Key EC-ElGamal Cryptosystem

We review the multi-key cryptosystem from [GNT24] along with
its EC-ElGamal construction, which is fundamental to our mPSU
protocol. Any realization of such a multi-key cryptosystem can be
leveraged to construct our PKE-based mPSU protocol. We adopt
elliptic curves due to their simplicity in both theoretical analysis
and implementation.

The message space is assumed to be restricted to the point on the
elliptic curve for now, which is the common setting as previous PKE-
based mPSU protocols [GNT24, DZBC25]. We follow this setting
for a fair comparison. When it comes to the practical usage of
the mPSU protocols, it’s not necessary to have this restriction. A
detailed discussion about how supporting messages from arbitrary
domains impacts the protocol is provided in the full version of this
work [GNBT25].

A multi-key cryptosystem [GNT24] is defined as a tuple of
PPT algorithms (KeyGen, Enc, ParDec, FulDec, ReRand) specified
as follows:

e Key Generation: (pk,sky,...,sk,) « KeyGen(1¥,n). The
key generation algorithm takes as input a security parameter
k and the number of parties n and outputs to each party P; a

secret key sk; and a joint public key pk = Combine(sky, ska, . . .

skn), where Combine is an algorithm to generate the corre-
sponding public key from a set of secret keys.
For EC-ElGamal, KeyGen consists of the following steps:

Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

- Choose an elliptic curve: Given a security parameter
1%, select an elliptic curve E over a large (as a function of
k) prime field Fy and a base point G of a large order.

- Secret keys: Generate a secret key sk « F, and split
it into n additive shares skj, sk, ..., sk, such that sk =
2;1:1 Ski.

— Public key: The public key pk is a point on the curve
which is computed as pk = Combine(sky, . .., sky), where
Combine(sky, sky, . .., sk;) is defined as computing and
outputting Y!_, sk;G, and thus pk = skG.

e Encryption: ct < Enc(pk, m). Given a joint public key pk
and a message m from the message space M, the encryption
algorithm computes a ciphertext ct.

For EC-ElGamal, Enc is given by: Randomly select an inte-

ger r « F, and compute the ciphertext as a pair of points

Enc(pk, m) = (cty, ctp), where ct; = rG and ct; = m + rpk.

e Decryption: There are two types of decryption algorithms:
- Partial decryption: ct’ « ParDec(sk;, ct, A). The par-

tial decryption algorithm takes a secret key sk;, a cipher-
text ct from the ciphertext space C, and a set of indices
A C [n] such that i € A. The ciphertext is interpreted
as being encrypted under the partial public key pk, =
Combine({sk; | j € A}) and the algorithm outputs an-
other ciphertext ct’ « C encrypting the same message
under the partial public key pkyy(;; = Combine({sk; |
JEAj#i}).

For EC-ElGamal, to partially decrypt a ciphertext (ct;, ctz)
encrypted under the partial public key pk, = Combine({sk; |
J € A}) =Xjeask;G, ParDec(cty, cty) is given as (ct], ct7)
where ct] = ct; and ct}, = ct; — sk;ct;. Note that the ci-
phertext (ct], ct}) can be then re-randomized so that the
first part of the ciphertext is different after each partial
decryption.

— Full decryption: m « FulDec(sky, sk, ..., sky; ct). The
full decryption algorithm takes a ciphertext ct < C en-
crypted under pk and all of the secret keys and outputs a
message m «— M.

For EC-ElGamal, to fully decrypt a ciphertext ct = (cty, ctz)
encrypted under pk = X;c[,sk;G, one computes:

m = cty — Zjen)skict; (3)

e Re-randomization: ct’ < ReRand(ct, pk). The re-randomization
algorithm takes a ciphertext ct = Enc(pk, m) and pk as input
and outputs a ciphertext ct” « C such that both ct and ct’
are encryptions of the same message m < M under pk.

With EC-ElGamal, to rerandomize a ciphertext (cty, cty) en-
crypted under the public key pk, one chooses a random value

r" « Fg and computes ct’ = (ct], ct;), where ct] = ct; +r'G
and ct) = ct; + r'pk.

Note: In our protocol, re-randomization is usually invoked
after a partial decryption, in which case the public key corre-
sponds to a partial key. For simplicity, we write “re-randomization
with the corresponding public key” to refer to this situation.

A multi-key cryptosystem should satisfy correctness and security
as defined in [Gen09, AJL* 12, Bra12]; we refer the reader to these
publications for additional information.

PULSE: Parallel Private Set Union for Large-Scale Entities

CCS 25, October 13-17, 2025, Taipei, Taiwan

PARAMETERS: n parties Py, . .., P,, parameter M, and a multi-key
encryption scheme defined in Section 3.5

FUNCTIONALITY:
e Wait for input secret key sk; and a permutation func-
tion m; : [M] — [M] from each party Piec[,). Here,
(pk, {ski}ie[n]) < KeyGen(1¥,n).
e Wait for a set of ciphertexts {cty, ..., cty}, where ct; =
Enc(pk, x;) from all parties {Py, ..., P,}.
e Give {x;(1), ..., Xz(m)} to Py where 7 = m,0m,_q0...0m;.

Figure 6: Oblivious Shuffle and
(Shuffle&Decrypt) Ideal Functionality [GNT24].

Decryption

Homomorphic Computation. The EC-EIGamal cryptosystem
introduced above also supports additive homomorphism, meaning
that the addition of two ciphertexts gives a ciphertext encrypting
the addition of the two plaintexts.

o Addition: Given two ciphertexts ct; = Enc(pk, my) = (cty 1, cty2)

and ct; = Enc(pk, my) = (ctz1, ctz2) that encrypt plaintexts
m; and my, addition Enc(pk, m;)+Enc(pk, my) = Enc(pk, m;+
m;) is realized by adding the corresponding parts of the ci-
phertexts:

Ctsum = (Ctyq + ctag, ctya + ctog) 4

e Scalar multiplication: Given a ciphertext ct = Enc(pk, m) =
(cty, ctz) and a scalar «, scalar multiplication a¢Enc(m) =
Enc(am) is realized by multiplying each component of the
ciphertext by a:

act = (acty, acty) = (arG, am + arpk) (5)

3.6 Oblivious Shuffle and Decryption

Gao et al. [GNT24] formalized a multi-party protocol known as
oblivious shuffle and decryption (Shuffle&Decrypt), which operates
under the multi-key cryptosystem introduced in Section 3.5. In this
protocol, each party holds a share of the secret key sk; and prepares
a permutation function ; : [M] — [M]. Given a set of ciphertexts
{cty, ..., cty} encrypted by the corresponding public key pk, the
parties aim to compute a shuffled version of the decrypted values.
The details of the Shuffle&Decrypt functionality are shown in
Figure 6.

4 Building Blocks

This section presents our optimizations for the two most expensive
and critical building blocks of our mPSU protocol.

4.1 Batched Membership Oblivious Transfer

In this section, we present a new batched membership OT proto-
col (mOT), which builds upon an optimized variant of the single-
instance mOT from [GNT24], combined with the use of batched
SS-PMT from [DZBC25].

The mOT Protocol of [GNT24]. Before presenting our opti-
mization, we briefly describe the protocol from [GNT24], which is
built using SS-PMT and standard OT. Initially, both parties invoke
the SS-PMT protocol to obtain shares of a bit, denoted as bs for

PARAMETERS:

e Sender S and Receiver R, message length ¢, and batch
size f1.
e The OT and SS-PMT functionalities described in Appen-
dix ?? and Section 3.3, respectively.
INPUT:
e Receiver R: {Xi,...,X,} c (({0, 1}5)")#
e Sender S: Y = {yy,...,y,} € ({0,1}")* and a set of mes-
sage pairs {(moo, mo1), - . ., (Mo, myu1)} € (({0, 1}5)%)#
ProToOCOL:
(1) S and R invoke batched SS-PMT, where:
e R has input sets {X1,...,X,} and S has input queries
{y1, ..., yut.
e S obtains bits {bsy,...,bs,} and R obtains bits
{bgo,....bry}, such that bs; ® bgr; = 1if y; € X;
and 0 otherwise for i € [p].
(2) For eachi € [p], S and R invoke an OT instance, where:
o S acts as an OT sender with input messages (m; o, m; 1)
ifbs; =0and (m;;, mp) if bs; = 1.
e R acts as an OT receiver with choice bit bg ; and ob-
tains m;.
(3) R outputs {my,...,m,}.

Figure 7: Our Batched Membership Oblivious Transfer (mOT)
Construction.

the sender and bg for the receiver. Following this, mOT is executed
using these shares to transmit one of the messages (mo, my).

In the mOT construction of [GNT24], the sender randomly se-
lects a value r < {0, 1}¢ and masks the messages as (r @ my, r &m;),
which are then used as the input to OT. The receiver uses bg as
the input to OT, thereby obliviously obtaining w = r & m,,. Subse-
quently, the sender sends u =r @ (bs - (mo ® my)) to the receiver,
who then computes the final output of mOT as u & w.

Our Improvement. The construction described above is straight-
forward, but we observed that it can be further optimized in terms
of OT usage. Instead of using bg as the choice bit in the OT and
preparing the OT messages as (r & my, r ®m,), the sender can adjust
the order of the OT messages based on the value of bg. That is,
the sender prepares the OT messages (mg, m}) as either (mg, m;) or
(m1, my) depending on bs. Specifically, if bs = 0, the pair (mg, m])
is equal to (my, my); otherwise, it is equal to (my, mg). Therefore,
when using bg as the OT choice bit, the receiver obtains mp,gpg as
desired, and correctness of this approach is straightforward to ver-
ify. This optimization removes the need to send u as in the original
mOT protocol, thereby reducing the communication cost.

Our Batched Membership Oblivious Transfer (mOT). To
improve performance when the sender has a large number of input
queries, we define a batch variant of the mOT functionality in
Figure 5 and present its construction in Figure 7. A batch version
of mOT can be realized by combining batch SS-PMT with any OT
extension. For a batch size of y, the sender has y queries {y;, ..., y,}
and p1 pairs of values {(my,0, m1y),..., (M0, mu0)}. The receiver

CCS 25, October 13-17, 2025, Taipei, Taiwan

has p sets. The receiver learns p values {m;, .
m;g if y; € X; and m; = m;; otherwise.

..,my}, where m; =

Correctness and Security. Correctness of the protocol is straight-
forward to verify. Its security relies on the underlying SS-PMT and
OT protocols. Since the output of SS-PMT is secret-shared using
randomly generated shares, it reveals no information about the set
membership. The OT protocol ensures that the receiver learns only
the correct message without learning any additional information.
Therefore, we omit a formal security proof of Theorem 2 below.

THEOREM 2. The batched mOT protocol described in Figure 7 se-
curely implements its functionality defined in Figure 5 in the semi-
honest setting.

4.2 An Efficient Oblivious Shuffle and
Decryption (Shuffle&Decrypt)

The experimental results from [DZBC25] highlight the impact of
efficient underlying elliptic curve (EC) implementations on the
performance of PKE-based mPSU protocols. In scenarios closer
to real-world applications such as WANs, PKE-based protocols
demonstrate significantly better end-to-end performance compared
to SKE-based protocols. A central component of the mPSU protocol
is an oblivious shuffle and decryption protocol, which heavily relies
on PKE operations.

In this section, we first review Shuffle&Decrypt protocols used in
the state-of-the-art PKE-based mPSU protocols [GNT24, DZBC25].
We then present an optimization to enable parallel execution of the
most time-consuming computations.

Existing Shuffle&Decrypt Protocols. Existing PKE-based
mPSU protocols use the Shuffle&Decrypt construction from [GNT24].
The process is straightforward: each party P; partially decrypts us-
ing its secret key sk; a set of ciphertexts it receives, re-randomizes
and shuffles the resulting ciphertexts, and then sends them to the
next party.

The protocol clearly takes n rounds. The most time-consuming
operation is scalar multiplication on the elliptic curve. As described
in Section 3.5, each partial decryption requires one scalar multi-
plication, and each re-randomization requires two. Therefore, in
the mPSU setting, with n parties and inputs sets of size m, each
party performs 3mn scalar multiplications sequentially, resulting in
the total time complexity of O(mn?). This approach is inefficient,
especially for mPSU protocols with a large number of participants.
The details of the Shuffle&Decrypt protocol of [GNT24] can be
found in the full version of this work [GNBT25].

Our Shuffle&Decrypt Protocol. To address the inefficiency of

existing Shuffle&Decrypt protocols, we propose a new Shuffle&Decrypt

solution that separates the shuffling and decryption phases. This
separation enables parallel execution of the decryption phase, in
contrast to prior approaches that perform partial decryption se-
quentially.

Our protocol consists of three phases. The first is an offline phase
that prepares a set of encryptions of 0, which are used in the second,
re-randomization, phase. In the second phase, re-randomization is
efficiently performed by adding a ciphertext ct to an encryption of

Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

0,1i.e., ReRand(ct) = ct+Enc(0, pk). We present an efficient method
for computing encryptions of 0 given a public key in Section 5.2.

The final phase is decryption. In the EC-ElGamal cryptosystem
used in our protocol, each ciphertext ct = (cty, cty) encrypting a
plaintext m has the following form:

cty =rG ct; =m + rpk

In existing protocols [GNT24, DZBC25], during shuffling and par-
tial decryption, each party P; performs the computation specified
below and forwards the result to the next party:

cti=cti + r'G ct) = cty — skicty + 1 (pk — sk;)
where r’ is a new random value used for re-randomization.

However, in our “Decrypt” phase, we only need to perform de-
cryption operations, thus, do not require the additional (highlighted)
terms associated with the value r’. Concretely, during partial de-
cryption—where each party P; removes the contribution of their
secret key share sk;—the computation relies only on ct,, and is
performed as ct) = cty — sk;ct;. Clearly, the full decryption can be
executed in parallel where P; is the final recipient of the plaintext
from a ciphertext ct = (ct;, ctz). Concretely,

e P; broadcasts ct; to all other parties Pic[2).

e Fach P; computes sk;ct; in parallel and sends the result back
to P;.

e Finally, P; computes the message m using the formula:

m =cty — Z sk;cty

i€[n]

We provide description of our Shuffle&Decrypt protocol in Fig-
ure 8. Security of our Shuffle&Decrypt protocol is stated as follows:

THEOREM 3. Given the multi-key cryptosystem defined in Sec-
tion 3.5, the Shuffle&Decrypt protocol described in Figure 8 securely
implements the Shuffle&Decrypt functionality defined in Figure 6 in
the presence of any semi-honest adversary that corrupts up ton — 1
parties.

Since rerandomization is already performed in Phase 1, the de-
cryption phase remains secure. That is, any subset of corrupt parties
cannot link a decrypted message to the original plaintext. The com-
plete proof can be found in the full version of this work [GNBT25].

Complexity. When invoking mPSU with n parties, the num-
ber of ciphertexts in this protocol is M = mn. To shuffle and re-
randomize ciphertexts in the first phase, each party will receive
and send them all to other parties, leading to communication com-
plexity of O(mn) for each party. Given mn ciphertexts, the cost
for re-randomization is O(mn) (i.e., two point additions for each
ciphertext). The overall time is therefore O(mn?) with O(n) rounds.

During the second phase, P; needs to send ct; to and receives
skict; from each Pje[z,) for each ciphertext, leading to O(mn?)
communication cost for P; and O(mn) for all other parties Pic[s,p.
The computation complexity is O(mn?) for P; who performs n
point addition for each ciphertext. The computation complexity,
on the other hand, is O(mn) for Pic[2,) who performs 1 point
multiplication for each ciphertext. The round complexity is O(1).

PULSE: Parallel Private Set Union for Large-Scale Entities

PARAMETERS: n parties Py, ..., Py, the set size M, the element
length ¢, EC-ElGamal cryptosystem introduced in Section 3.5.
INPUT:

e Each party Pie[,): The secret key sk; and a permutation
function m; : [M] — [M]. Here, (pk, {ski}ic[n])
KeyGen(1¥, n).

o All parties: Cy = {ct?, .. .,ct?w} where ct? = Enc(pk, x;).

ProTOCOL:

Phase 0: Pre-processing
(1) Party P; generates M ciphertexts of zero as 9;.6[M =
Enc(pk,0) = (r;G, rjpk) for some random r;.
Phase 1: Shuffle and Re-randomize
Fori=1ton:
(1) P; re-randomizes and shuffles the ciphertexts C;_;, and
seﬁd Ci ={ct}, ..., cth } to P(ir1)%n, Where ct; = ct;(lj) +
9}.
Phase 2: Decrypt

1) Party P; sends the first part of ciphertexts as C,,; =
y p p. ,
{ct;?,l | ct}’ = (ct? ct?,z),Vj € [M]} to all parties

1
Pic(2,n)- 4
(2) Each Pie[n) in parallel computes Char =
{ct‘;ar’l,...,ct;ahM} where ct;mw. skict?’l. Party

Pie[2,n) sends it back to party P;.
(3) Party P; upon receives Climr from all Pic[3,,], computes
the final decryption V = {0y, ..., om} where v; = ct}, —

n i
21 ar

Figure 8: Our Shuffle&Decrypt Protocol.

The most expensive operation when working with ciphertexts is
point multiplication. By enabling parallel computation of multiplica-
tions, our protocol achieves significant performance improvements
when the number of parties is sufficiently large.

5 Our mPSU Protocol

This section presents our PULSE protocol, which closely follows
the overview in Section 2. Our protocol is based on EC-ElGamal
cryptosystem and is detailed in Figure 9.

5.1 The Protocol Description

There are n parties Py, .. ., P,, and each party P; has an input set Xj.
The union |, X; can be expressed as:

XU\ X) U U X\ (XU U X))

and protocol design closely follows this formula. To compute the
union of X3, ..., X}, we start with the set X;. Then the elements in
X \ X are added to the union. This process continues until all new
elements from every input set are included. Thus, the main task
for each P; is to compute X; \ (X7 U...U X;_;), which traditionally
seems to require sequential execution, as shown in previous works.
However, in our protocol, we leverage the homomorphic properties

CCS 25, October 13-17, 2025, Taipei, Taiwan

of the EC-ElGamal cryptosystem to enable this computation in
parallel.

Existing PKE-based mPSU Protocols. In [GNT24, DZBC25],
this process involves each party P; sequentially interacting with
Py, ..., Py using SS-PMT and OT. This allows the parties to obtain
encryptions of the union items (which is the message modifica-
tion module introduced in Section 2). Specifically, for each element
Xjj € X;,aciphertext is maintained: if x; j appears in X; U...UX;_4,
the ciphertext is modified to Enc(pk, L) during the sequential in-
teraction; otherwise, the ciphertext stays as Enc(pk, x; ;). Finally
in the multi-party shuffle module, all n parties invoke the Shuf-
fle&Decrypt protocol to decrypt these ciphertexts. The union set is
then determined by collecting all values that are not equal to L.

To understand the sequential nature of their protocol, let us
break down the pairwise computation between P; and P;. For each
element x € X, P; acts as the mOT sender with query x and mes-
sages (mg = Enc(pk, x), m; = Enc(pk, L)), while P; serves as the
mOT receiver with input set X;. If x € Xj, P; will obtain a cipher-
text e that equals Enc(pk, L); otherwise, e = Enc(pk, x). P; then
re-randomizes the ciphertext and sends it back to P;. P; retains the
value of ReRand(e) and uses it as the message my when interacting
with P, later. It is clear that the mOT messages depend on the output
from the interaction with the previous party. Consequently, for the
last party P,, the protocol requires O(n) rounds of communication.
All parties Pic[,-1] have to wait for P, before they can enter the
next shuffle stage.

Our PULSE Protocol. In this work, we propose a new mPSU
protocol that achieves a constant number of rounds for the message
modification phase. The key idea is to replace the mOT messages®
(Enc(pk, x), Enc(pk, 1)) of the party P; with (Enc(pk,0), f) for
each mOT execution between P; and P; with i < j and then let P;
modify its own encryption (Enc(pk,x) at the end of all parallel
mOT executions. Here, f represents a ciphertext (cty, cty) where
both ct; and ct; are two random points on the elliptic curve. This f
is a valid encryption of a random value, and party P; that samples
f does not know the underlying plaintext. We prefer to express
f as Enc(pk, r), where r is a random value chosen anew for each
mOT execution and is unknown to P;. This approach ensures that
the two ciphertexts are independent of private inputs, allowing
them to be computed during a pre-processing phase. Moreover,
computing Enc(pk, 0) can be efficiently performed in an amortized
or batched manner as described in Section 5.2, while Enc(pk,r) is
highly efficient and only requires sampling a random point on the
elliptic curve.

Now, P; and P; first invoke a, mOT protocol, where for each
x € Xj, P; acts as the sender with query x and messages (mo =
Enc(pk, 0), m; = Enc(pk,r)) and P; acts as the receiver with set X;.
If x € X;, P; obtains a ciphertext e; that equals Enc(pk, r); otherwise,
e; = Enc(pk, 0). Next, P; re-randomizes the ciphertext and sends
it back to P;. The re-randomization is designed to prevent P; from
determining which value the OT receiver P; obtained. Note that
the encryption uses a multi-key system, so even if P; colludes with
all parties except P;, they learn nothing. Finally, the ciphertext e

3We use mOT throughout this discussion, while the formal presentation of our protocol
in Figure 9 and its implementation utilize batched mOT.

CCS 25, October 13-17, 2025, Taipei, Taiwan

Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

PARAMETERS:
e n parties Pic[,) for n > 1.
o The batched mOT and Shuffle&Decrypt ideal functionalities, described in Figure 5 and Figure 6, respectively.
e The multi-key cryptosystem (KeyGen, Enc, ParDec, FulDec, ReRand) described in Section 3.5.
e Hashing parameters: a number of bins y, the h hash functions Hjepp) : {0, 1}* — [p].

InpPUT:
e Party Pic[,) has X; = {xi1,...,xim} C {{0, 1}
ProToOCOL:
Phase 0: Setup

(2) Pre-processing:

J

€k

f) Pje[2n] initials an empty set E;.

Phase 1: Pairwise SS-PMT and Message Modification
(3) For each pair of P; and Pj where 1 <i < j < n:
(a) P; and P; invoke a batch mOT protocol where:
e P; acts as the receiver with inputs {S;1,...,S;,}.
e P; acts as the sender with input queries{Cj, ..
e P; obtains messages {e;1,...,€ju}

(5) Pje[2n] sends E; to Py.

Phase 2: Multi-party Shuffle

e P, obtains a set V.

(1) All n parties call the key generation algorithm KeyGen (1%, 1¥). Each P; receives a private key sk; and a joint public key pk.

(@) Py hashes set X; into a simple hashing table with y bins Sy 1, ..., S1.
(b) Pje[2,n] hashes set X into a cuckoo hashing table with y bins C; 1, . .
¢) Pje[a,n] computes the encryption e;; = Enc(pk, Cj,k||0’1), for non-empty bin Cj, k € [p]. If Cj . is empty, Pjc[2,] samples
as random ciphertext and pads it with a random value.

(d) Pjerz,n) computes a set of (j — 1)y encryptions of zero as Z = {z;x. | zix = Enc(pk, 0)}iej-1]kefu]

(e) Pje[2,n) samples a set R of (j — 1)p random ciphertexts which denoted as F = {fjx | fix is random};c[;_1]ke[y]

.,Cju} and corresponding messages {(zi1, fi1), - - -» (Zip fip) }-

(b) For k € [p], P; updates e; j x := ReRand(pk, e; j), and sends e; ;. back to P;.
(4) Pjeja,n) appends ej i :=eji + 2{;1161',]‘& to Ej for k € [p].

(6) All the parties invoke the Shuffle&Decrypt functionality where:
e Py inputs E = |JI., E;, the sk; and a random permutation 7 :
e P; inputs the private key sk; and a random permutation 7; : [M] — [M].

(7) Py initials an empty set U. For eachv € V,if v = s/|0* holds for some s, P; computes U = U U {s}. P; outputs U U X;.

., Cj, and a simple hashing table with y bins S 1,..., S; .

[M] — [M].

Figure 9: Our mPSU Protocol (PULSE).

corresponding to x is computed as e = Enc(pk, x||0%) + Z{:_ll e;. We
use A extra 0 bits to introduce redundancy and verify whether the
decrypted element belongs to any X;.;. Specifically, if P;’s item x
appears in some set Xj., the corresponding e; is an encryption of
a random element. As a result, Z{: e; becomes an encryption of a
random value, which makes the plaintext v of the value e random as
well. For each decrypted value v whose last A bits are 0, we truncate
these 0 bits and add the result to the final union. The parameter
A serves as a statistical security parameter, ensuring a negligible
error rate of 274,

Note that the last A bits of the value v are secure to reveal, as the
original underlying random message from P; remains unknown to
any party due to the multi-key encryption scheme. Further details
on its implementation are provided in Section 6.

Clearly, party P; can perform all of the above computations in
parallel with all other parties P;. ;. The remainder of the protocol
is to decrypt e in a privacy-preserving manner. That is, each party

Pic[2:n] sends its collection of ciphertexts e to P;. Next, all parties
execute our Shuffle&Decrypt protocol proposed in Section 4.2. For
each decrypted value o where v = s]|0%, s is added to the final union.

5.1.1 Correctness. We consider two cases depending on whether a
specific element x € X; from party P; is present in any set X; from
party P;for1<i< j<n.

e Case 1: There is at least one other set X; contributed by
party P; that contains the element x. In this case, P; receives
an encryption of a random value Enc(pk, r) from the mOT
protocol with P; in Step (3a). Consequently, the second
half of the ciphertext addition in Step (4) will not equal to
Enc(pk, 0) with high probability. Due to the homomorphism
of EC-ElGamal, the decrypted value from Shuffle&Decrypt
will not be x||0*. Thus, x will not be included in the final
result.

PULSE: Parallel Private Set Union for Large-Scale Entities

e Case 2: There are no other sets X; that contain x. In this
case, P; receives an encryption of 0 from the mOT protocol
with P; in Step (3a). Consequently, the second term of the
addition in Step (4) (i.e., the sum) will equal to Enc(pk, 0).
Due to the homomorphism of EC-ElGamal, the decrypted
value from Shuffle&Decrypt will stay unchanged as x||0*.
Thus, x will be included in the final result.

Moreover, Vx € X; will be included in the final result. Therefore,
the mPSU protocol described in Figure 9 correctly computes the
functionality described in Figure 1.

5.1.2 Security. Security of PULSE is stated in the following the-
orem, showing that it is secure in the presence of any number of
semi-honest participants:

THEOREM 4. Given the multi-key cryptosystem described in Sec-
tion 3.5, the mPSU protocol described in Figure 9 securely implements
the mPSU functionality defined in Figure 1 in the presence of a semi-
honest adversary that corrupts up ton—1 parties in the (FspufieqDecrypt-
Fmor)-hybrid model.

Security of PULSE directly follows from the security of mOT
and Shuffle&Decrypt. All messages are encrypted using the multi-
key cryptosystem introduced in Section 3.5. Note that we use f =
Enc(pk, r) to denote a random ciphertext rather than the encryption
of a random value. Therefore, the value r remains unknown to
any adversary unless they corrupt all the parties and can decrypt
the ciphertext f. The full proof is given in the full version of this
work [GNBT25].

5.1.3 Complexity. The computation and communication costs for
our mPSU protocol primarily include the following:

Hashing. We select parameters for constructing a simple hash
and cuckoo hash in Step (2) using [PSZ18]. Specifically, we use
three hash functions and set the number of bins to 1.27m for m
elements to ensure that cuckoo hashing succeeds—i.e., to find an
allocation where every bin contains at most one item—with high
probability (1 — 2740).

Batched mOT. The two core building blocks of mOT are SS-PMT
and OT, which we discuss separately:

e SS-PMT: We use batched SS-PMT proposed by [DZBC25]
that relies on hashing tables which were set up as described
above. The SS-PMT sender encodes an OKVS with elements
from the simple-hashing table. Using three hash functions
leads to 3m key-value pairs, and encoding takes O(m) for
each instance. The communication cost for sending the OKVS
table is also O(m). The SS-PMT receiver decodes the ele-
ments in each bin of the cuckoo hashing table, which has
complexity O(m). The two parties consequently invoke a
generic 2-PC protocol such as GC to perform equality checks
for each bin, which requires O(1) AND gates and O(1)
rounds.

o OT: We use the IKNP OT extension [IKNP03], which provides
computation and communication complexity of O(m) in
O(1) rounds.

Shuffle&Decrypt. The complexity analysis of Shuffle&Decrypt
was provided in Section 4.2.

CCS 25, October 13-17, 2025, Taipei, Taiwan

5.2 Efficient Computation for Zero Encryptions

In the EC-ElGamal scheme, an encryption of 0 is expressed as
Enc(pk,0) = (rG, rpk), where r is a random scalar. To compute
Enc(pk, 0), we first select r and then perform two scalar multiplica-
tions: one that uses the base G and another that uses the public key
pk. In our mPSU protocol, each party needs to compute a significant
number of encryptions of 0, specifically (i — 1)p + ny of them. The
first (i — 1)y are used as mOT inputs, while the remaining ny are
consumed by re-randomization in Shuffle&Decrypt. Therefore, we
show how to optimize this computation in the batched setting using
the Hidden Subset Sum (HSS) technique from [BPV98, NS99]. This
technique is designed for generating a large number of (r;, r;G)
pairs efficiently.

At a high level, the approach involves pre-computing and storing
asetof pairs S = {(s;, 5iG) }ie[n,], Where n; is relatively small. These
values can then be used to generate a large number of pairs, n > nq,
efficiently.

To generate an additional random pair (r, rG), follow these steps:

e Choose a random subset R C [ng] of size s.

e For each j € R, compute r = 3} jcg sj and rG = 3 ;g (s;G).
The above computation indicates that r is essentially a random sub-
set sum of the s; values. To generate n tuples of the form (r;, r;G)
such that r is 2 *-close to uniformly distributed, we need to deter-
mine the parameters ns and s. Based on the adversary analysis of
the random distribution of r in [NS99], we calculate these parame-
ters for realistic values of A = 40, various values of n, and a 255-bit
cyclic group. The results are presented in Table 2.

l n “ 212 ‘ 214 ‘ 216 ‘ 218 ‘ 220 ‘ 222 ‘ 224 ‘
ne || 27 | 25 | 20 |20 [283 | 218 | 2D
s 25 120 | 17 | 15 | 11 | 11 | 10
Table 2: Parameters for generating n pseudorandom tuples
of the form (r;, r;G) given n; precomputed pairs.

6 Implementation and Performance

We implemented PULSE and evaluated its performance across a
varying number of parties and set sizes. All evaluations use a sta-
tistical security parameter A = 40 and a computational security
parameter k = 128. Experiments were conducted on a single server
with AMD EPYC 74F3 processors and 256 GB of RAM. All parties
were run within the same network, but network conditions were
simulated using the Linux tc command: a LAN setting with 0.1 ms
round-trip latency and 10 Gbps bandwidth; a WAN setting with
80 ms latency and 400 Mbps bandwidth. This is a commonly used
setting for evaluate performance of mPSU protocols.

6.1 Performance for Oblivious Shuffle and
Decryption Protocols

We implemented our Shuffle&Decrypt protocol from Section 4.2 as

well as the protocol used in other PKE-based mPSU works [GNT24,

DZBC25] and compare their performance. The results are shown in

Table 3 for both network settings and different set sizes. Our proto-

col is up to 2.20 times faster than the protocol in [GNT24, DZBC25]

CCS 25, October 13-17, 2025, Taipei, Taiwan

, while requiring approximately 1.88 times more communication
cost. The improvement increases as the number of parties increases.

m Prot. n=3| n=4 n==6 n=38
[GNT24] 0.21 0.41 0.99 1.82

8
2 OURS 0.15 0.26 0.53 0.90
910 [GNT24] 0.43 0.78 3.93 7.23
OURS 0.35 0.49 2.02 3.44
LAN (s) 912 [GNT24] 3.31 6.46 15.77 29.00

OURS 2.17 3.74 7.88 13.49
o14 [GNT24] | 13.29 26.06 63.69 | 117.01

OURS 8.28 | 14.553 31.45 | 53.458
[GNT24] | 53.54 | 103.99 | 253.61 | 467.05

16
2 OURS | 32.28 | 5731 | 121.80 | 211.95
,s | [ONT24] | 089 | 137 | 420 | 743
OURS | 1.03| 150 | 390 | 666
jo | [ONT24] | 283 | 434 | 910 1424
OURS | 274 | 451 827 | 1151
| [GNT24] | 565 | 1001 | 22.02 | 37.64
WAN(s) | 2 OURS | 528 | 873 | 1547 | 2445
y | [ONT24] | 1675 | 3086 | 7138 | 127.75
OURS | 12.88 | 2120 | 4136 | 67.67
1o | [ONT24] | 5802 | 1105 | 26681 | 490.82
OURS | 3862 | 66.29 | 139.22 | 239.35
,s | [ONT24] | 010 | 019 048 | 090
OURS | 0.16| 034| 089 1.69
jo | [ONT24T | 039 | 077| 193| 361

OURS 0.64 1.35 3.54 6.77
[GNT24] 1.55 3.09 7.73 14.44
OURS 2.58 5.41 14.18 27.07
[GNT24] 6.19 12.38 30.94 57.75
OURS 10.31 21.66 56.72 | 108.28
[GNT24] | 24.75 | 49.50 | 123.75 | 231.00
OURS 41.25 86.63 | 226.88 | 433.13
Table 3: Performance for Shuffle&Decrypt protocols. The
running time is in seconds and communication cost is in
MB. Communication cost is the total cost for all parties. Best

performance is highlighted in blue.

Comm. (MB) | 2'2

6.2 Performance for PULSE

We also implemented the entire PULSE protocol. To implement
batch SS-PMT, we used OKVS and GMW from [RR22]. We also use
the IKNT OT-extension [IKNP03] from 1ibOTe [RR] to implement
mOT. The EC-ElGamal cryptosystem is implemented using the
NIST P-256 curve from OpenSSL. These choices are consistent
for all the state-of-the-art mPSU works [GNT24, DZBC25] . Our
implementation is available on GitHub’.

As described in Section 5, the parameters are set to limit the
probability of error to at most 2%, To implement Enc(pk, x||0%)
using EC-ElGamal, we use concatenation of two EC-ElGamal ci-
phertexts Enc(pk, x)||Enc(pk, 0). The zero element is the additive
identity point on the curve (point at infinity), to which we refer as 0.

4 [LL24, DCZ™*25] shows that their results do not outperform the numbers reported in
[DZBC25].
Shttps://github.com/asu-crypto/Pulse

Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

m Prot. n=3 n=4 n==6 n=38
[GNT24] 1.10 1.88 3.94 6.72
28 | [DZBC25] 0.67 1.17 2.50 4.27
Ours 0.65 0.87 1.44 2.23
[GNT24] 16.49 | 27.96 59.65 | 103.86
LAN (s) 2'2 [[DZBC25] 6.53 | 11.79 26.69 47.40
Ours 5.75 9.00 17.82 30.38
[GNT24] | 284.47 | 490.53 | 1061.45 | 1838.59
26 [[DZBC25] | 102.88 | 187.20 | 422.56 | 754.08
Ours 95.36 | 154.29 | 307.10 | 514.59
[GNT24] 9.49 | 15.07 26.69 38.72
28 | [DZBC25] 4.13 5.43 10.40 15.70
Ours 4.39 5.48 8.76 11.27
[GNT24] | 3161 | 50.30 97.07 | 154.20
WAN (s) 212 [[DZBC25] | 13.10 | 20.27 39.20 63.03
Ours 12.20 | 17.36 29.06 44.20
[GNT24] | 336.84 | 568.27 | 1189.99 | 2017.89
216 [[DZBC25] | 124.05 | 215.86 | 468.76 | 815.37
Ours 113.83 | 175.03 | 339.97 | 572.20

[GNT24] 1.46 2.20 3.68 5.16
28 | [DZBC25] 2.34 3.51 5.85* 8.19*
Ours 1.10 1.74 3.23 4.97

[GNT24] 20.25 30.48 50.96 71.47
Comm. (MB) | 2! | [DZBC25] 8.15 | 12.82 | 23.95* | 38.07*

Ours 11.82 19.28 37.28 59.41
[GNT24] | 321.40 | 483.69 808.79 | 1134.21
216 [[DZBC25] | 65.41 | 98.12 | 163.50* | 228.90*
Ours 184.41 | 301.37 584.79 934.20
Table 4: Performance for mPSU Protocols. The running time
is in seconds and communication cost is in MB. Communica-
tion cost is the cost for P;. Best performances are highlighted
in blue. = indicates estimation based on the number reported
in[DZBC25].

The NIST P-256 curve provides a much lower than 274 probability
of error for verification purposes. Compressed representation of
points on this curve results in a ciphertext being represented using
66 bytes. To verify the final output, P; first decrypts the second
ciphertext. If the value is 0, decryption can be performed on the
first half to learn x; otherwise, no further computation is needed.
During our evaluation, we decrypt both parts to benchmark the
performance. Even though this almost doubles the computational
cost for all heavy PKE-related operations as well as communica-
tion due to the extra bits, our protocol still provides much better
performance compared to the previous results.

Comparison with Previous Work. A comprehensive evalua-
tion was provided in [DZBC25] for their PKE-based and SKE-based
mPSU protocols. In general, SKE-based mPSU is much more expen-
sive for a large number of parties due to the high communication
cost stemming from the shuffle protocol. For that reason we only
compare PULSE to PKE-based protocols. Unfortunately, the imple-
mentation of [DZBC25] is not publicly available. To have a fair com-
parison with their results, we estimated their performance based on
our implementation since many building blocks are shared. Each
party uses one thread for its own computation and uses n—1 threads
to communicate with other parties in parallel. We test PULSE with
different set sizes m = {28, 212,21} and a variable number of parties

PULSE: Parallel Private Set Union for Large-Scale Entities

up to 8. The end-to-end running time and the communication cost
are shown in Table 4.

Our protocol has the fastest running time compared to the state-
of-the-art PKE-based protocols for most of the settings in both
LAN and WAN. For example, for 8 parties each with a set size of
28 elements, our protocol is 1.91x faster than [DZBC25] and 3.01x
faster than [GNT24] in LAN setting, and is 1.39%X and 3.44x faster
in WAN correspondingly.

We believe that PULSE has a much better running time for a large
number of participants. However, it is difficult to obtain accurate
times on a single server. To further demonstrate scalability of our
protocol, we use the numbers in Table 4 to estimate the running
time with a larger number of parties based on the complexity of
each protocol®. We do a curve-fitting process using SciPy library
for Python. Given the complexity of each protocol, Levenberg-
Marquardt algorithm [Lev44] determines the best curve based on
the data. The performance estimates for both network settings
with a set size of 28 were shown earlier in Figure 2. Additionally,
Figure 10 presents performance of mPSU protocols for n € {212, 216}
as the number of parties increases.

Table 4 displays the amount of communication as well. Compared
to PKE-based protocols, PULSE has 1.04—2.13x less communication
for a small set size of 2%, while it has up to 4.08x higher communica-
tion cost in some other cases. This is mainly because we pad zeros
for the final verification. The result indicates that our protocol is
more competitive for small sets.

3500 GNT24 3500 GNT24
—— DZBC25 —— DZBC25
G 3000 —— Ours G 3000] —— Ours
@ 2500 @ 2500,
£ £
2000 2000
£ L £
€
£ 1500 -7 £ 1500
S Prs S
& 1000 - = & 1000
R il
500 P AU T 500 =
2Z==F77 ===~
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Number of parties Number of parties

(a) LAN runtime for m = 2'2, (b) WAN runtime for m = 2'%.

GNT24 GNT24
50000{ —— DZBC25 50000 —— DZBC25

—— Ours —— Ours

40000 40000

0000 30000 -

Running time (s)
AY

Running time (s)
\

20000 - - 20000 O A
-

10000 T e 10000 -Z

S 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Number of parties Number of parties

(c) LAN runtime for m = 21°, (d) WAN runtime for m = 21°.
Figure 10: Performance of mPSU Protocols with {22, 216}-
element Input Sets. Solid lines indicate the times were
measured, while dashed lines are estimations using the
Levenberg-Marquardt algorithm and the complexity of each
protocol.

“We use the n = {3,4, 6,8} for [GNT24], and n = {3,4,6,8,10} for [DZBC25] and
our work.

CCS 25, October 13-17, 2025, Taipei, Taiwan

7 Conclusion

In this work, we present a detailed study of mPSU protocols. We
present a unified framework for mPSU that covers both SKE-based
and PKE-based methods. We propose an efficient Parallel mPSU for
Large-Scale Entities (PULSE) built upon PKE. It supports parallel
computation and eliminates idle time for participating parties — for
the first time — making it especially efficient when the number of
parties is large and each party’s input set is small. Compared to
state-of-the-art mPSU protocols, our approach achieves significant
improvements in end-to-end runtime, particularly as the number
of parties increases.

Future work includes extending our protocol to the malicious set-
ting, further optimizing communication overhead, and improving
performance for large set sizes.

Acknowledgments

This work was supported in part by ARPA-H SP4701-23-C-007,
NSF 2451972, and NSF 2213057 grants. Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the
funding sources.

References

[AJL*12] Gilad Asharov, Abhishek Jain, Adriana Lépez-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 483501, April 2012.

[BKM*20] Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sen-
gupta, Erik Taubeneck, and Vlad Vlaskin. Private matching for compute.
Cryptology ePrint Archive, Paper 2020/599, 2020. https://eprint.iacr.org/
2020/599.

[BPSY23] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-
Optimal oblivious Key-Value stores for efficient PSI, PSU and Volume-
Hiding Multi-Maps. In 32nd USENIX Security Symposium (USENIX Security
23), pages 301-318, Anaheim, CA, August 2023. USENIX Association.

[BPV98] Victor Boyko, Marcus Peinado, and Ramarathnam Venkatesan. Speeding
up discrete log and factoring based schemes via precomputations. In Kaisa
Nyberg, editor, EUROCRYPT 98, volume 1403 of LNCS, pages 221-235,
May / June 1998.
[Bral12] Zvika Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 868-886, August 2012.
[BS05] Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms
in the semi-honest model. In Bimal K. Roy, editor, ASTACRYPT 2005,
volume 3788 of LNCS, pages 236-252, December 2005.

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropou-
los. SEPIA: Privacy-Preserving aggregation of Multi-Domain network
events and statistics. In 19th USENIX Security Symposium (USENIX Security
10), Washington, DC, August 2010. USENIX Association.

[CDG™*21] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana
Obbattu, Sruthi Sekar, and Akash Shah. Efficient linear multiparty PSI
and extensions to circuit/quorum PSI. pages 1182-1204. ACM Press, 2021.

[CSSW24] Gowri R Chandran, Thomas Schneider, Maximilian Stillger, and Christian
Weinert. Concretely efficient private set union via circuit-based PSL
Cryptology ePrint Archive, Paper 2024/1494, 2024.

[DCZ*25] Minglang Dong, Yu Chen, Cong Zhang, Yujie Bai, and Yang Cao. Multi-
party private set operations from predicative zero-sharing. Cryptology
ePrint Archive, Paper 2025/640, 2025.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. Pir-psi: Scaling
private contact discovery. Cryptology ePrint Archive, Paper 2018/579,
2018. https://eprint.iacr.org/2018/579.

[DZBC25] Minglang Dong, Cong Zhang, Yujie Bai, and Yu Chen. Efficient multi-party
private set union without non-collusion assumptions. In 34th USENIX Se-
curity Symposium (USENIX Security 25), Seattle, WA, August 2025. USENIX
Association.

https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2018/579

CCS 25, October 13-17, 2025, Taipei, Taiwan

[EB22]

[Geno09]

[GMR*21]

[GMW$7]

[GNBT25]

[GNT24]

[Golo9]

[GPR*21]

[HLS*16]

[IKNP03]

[Jsz*+22]

[JSzG24]

[KCo04]

[KLS24]

[KRTW19]

Saba Eskandarian and Dan Boneh. Clarion: Anonymous communication
from multiparty shuffling protocols. In 29th Annual Network and Dis-
tributed System Security Symposium, NDSS 2022, San Diego, California,
USA, April 24-28, 2022. The Internet Society, 2022.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Proceedings of the Forty-First Annual ACM Symposium on Theory of Com-
puting, STOC *09, page 169-178, New York, NY, USA, 2009. Association
for Computing Machinery.

Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian,
and Jaspal Singh. Private set operations from oblivious switching. In
Juan A. Garay, editor, Public-Key Cryptography — PKC 2021, pages 591-617,
Cham, 2021. Springer International Publishing.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 218-229. ACM, 1987.

Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu. PULSE: Parallel
private set union for large-scale entities. Cryptology ePrint Archive,
Paper 2025/790, 2025.

Jiahui Gao, Son Nguyen, and Ni Trieu. Toward a practical multi-party
private set union. In The 24th Privacy Enhancing Technologies Symposium
(PoPETs), pages 622-635, 2024.

Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, USA, 1st edition, 2009.

Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Oblivious key-value stores and amplification for private set inter-
section. LNCS, pages 395-425, 2021.

Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen, David Stott, Sophia
Yakoubov, and Arkady Yerukhimovich. Secure multiparty computation for
cooperative cyber risk assessment. In 2016 IEEE Cybersecurity Development
(SecDev), pages 75-76, 2016.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivi-
ous transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729
of LNCS, pages 145-161, August 2003.

Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu.
Shuffle-based private set union: Faster and more secure. In 31st USENIX
Security Symposium (USENIX Security 22), pages 2947-2964, Boston, MA,
August 2022. USENIX Association.

Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, and Dawu Gu. Scalable
private set union, with stronger security. Cryptology ePrint Archive,
Paper 2024/922, 2024.

Murat Kantarcioglu and Chris Clifton. Privacy-preserving distributed
mining of association rules on horizontally partitioned data. IEEE Trans-
actions on Knowledge and Data Engineering, 16(9):1026-1037, 2004.
Jiseung Kim, Hyung Tae Lee, and Yongha Son. Revisiting shuffle-based pri-
vate set unions with reduced communication. Cryptology ePrint Archive,
Paper 2024/1560, 2024.

Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable
private set union from symmetric-key techniques. In Steven D. Galbraith
and Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS,
pages 636—-666, December 2019.

[Lev44]

[LG23]

[Lin16]

(LL24]

[LPR*21]

[NS99]

[NWT™*20]

[PSSZ15]

[PSTY19]

[PSWW18]

[PSZ18]

[Rab05]

[RR

[RR22

[WU23

[ZCL*23]

Jiahui Gao, Son Nguyen, Marina Blanton, and Ni Trieu

Kenneth Levenberg. A method for the solution of certain non - linear
problems in least squares. Quarterly of Applied Mathematics, 2:164-168,
1944.

Xiang Liu and Ying Gao. Scalable multi-party private set union from
multi-query secret-shared private membership test. LNCS, pages 237-271,
2023.

Yehuda Lindell. How to simulate it - a tutorial on the simulation proof
technique. Cryptology ePrint Archive, Paper 2016/046, 2016.

Qiang Liu and Joon-Woo Lee. Efficient multi-party private set union
resistant to maximum collusion attacks. Cryptology ePrint Archive, Paper
2024/2096, 2024.

Tancréde Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu.
Private join and compute from PIR with default. LNCS, pages 605-634,
2021.

Phong Q. Nguyen and Jacques Stern. The hardness of the hidden subset
sum problem and its cryptographic implications. In Michael J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 31-46, August 1999.
Chaoyue Niu, Fan Wu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei
Lv, Zhihua Wu, and Guihai Chen. Billion-scale federated learning on
mobile clients: a submodel design with tunable privacy. In Proceedings
of the 26th Annual International Conference on Mobile Computing and
Networking, MobiCom °20, New York, NY, USA, 2020. Association for
Computing Machinery.

Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:
Private set intersection using permutation-based hashing. In Jaeyeon

JunEg and Thorsten Holz, editors, USENIX Security 2015, pages 515-530.
USENIX Association, August 2015.

Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay
Yanai. Efficient circuit-based PSI with linear communication. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume
11478 of LNCS, pages 122-153, May 2019.

Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder.
Efficient circuit-based PSI via cuckoo hashing. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 125-157, April / May 2018.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private
set intersection based on ot extension. ACM Trans. Priv. Secur., 21(2), jan
2018.

Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryp-
tology ePrint Archive, Paper 2005/187, 2005.

Peter Rindal and Lance Roy. libOTe: an efficient, portable, and easy to use
Oblivious Transfer Library. https://github.com/osu-crypto/libOTe.
Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved
OKVS and subfield VOLE. pages 2505-2517. ACM Press, 2022.
Zhusheng Wang and Sennur Ulukus. Private federated submodel learning
via private set union, 2023.

Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Linear
private set union from Multi-Query reverse private membership test. In
32nd USENIX Security Symposium (USENIX Security 23), pages 337-354,
Anaheim, CA, August 2023. USENIX Association.

https://github.com/osu-crypto/libOTe

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 Overview of mPSU Protocols
	2.1 Revisiting Existing Protocols
	2.2 Our mPSU Protocol

	3 Preliminaries
	3.1 Security Model
	3.2 Hashing Scheme
	3.3 Secret-Shared Private Membership Test
	3.4 Membership Oblivious Transfer (mOT)
	3.5 Multi-Key EC-ElGamal Cryptosystem
	3.6 Oblivious Shuffle and Decryption

	4 Building Blocks
	4.1 Batched Membership Oblivious Transfer
	4.2 An Efficient Oblivious Shuffle and Decryption (Shuffle&Decrypt)

	5 Our mPSU Protocol
	5.1 The Protocol Description
	5.2 Efficient Computation for Zero Encryptions

	6 Implementation and Performance
	6.1 Performance for Oblivious Shuffle and Decryption Protocols
	6.2 Performance for PULSE

	7 Conclusion
	References

