
Traditional and Emerging Data Protection

Methods

Marina Blanton

Abstract This chapter treats data protection mechanisms not covered in other parts

of the book and examines whether they can be used to protect biometric templates

in verification and identification applications. The considered mechanisms include

cryptographic, non-cryptographic, and hardware-based solutions, which are divided

into traditional and emerging mechanism categories. The chapter demonstrates that

many of these protection mechanisms are not suitable as solutions for biometric

template protection. For example, cryptographic constructions such as encryption

schemes and hash functions possess strong security properties; however, the strong

obfuscation they achieve by erasing all patterns from the input is the reason they

are not suitable for working with noisy biometric data. We also discuss potential

solutions that rely on distributed databases, smart cards, and trusted execution envi-

ronments (TEE) and only consider TEE as conceptually suitable for achieving the

necessary security guarantees for protecting biometric templates in verification and

identification applications.

1 Introduction

The second part of this book describes techniques and solutions that can be used

to protect biometric templates in various applications. The goal of this chapter is

to outline several data protection mechanisms not covered in other chapters. In par-

ticular, many conventional tools used for data protection, e.g., hash functions or

encryption schemes, can be thought of as potential solutions for protecting biomet-

ric templates. However, while these tools can be used for achieving strong security

properties in other contexts, e.g., for protecting data at rest, they fall short of achiev-

Marina Blanton

University at Buffalo, Buffalo, USA

e-mail: mblanton@buffalo.edu

1



2 Marina Blanton

ing the necessary security guarantees when used for biometric-based verification or

identification.

In this chapter, we discuss traditional data protection mechanisms, including the

use of hashing, conventional encryption, distributed databases, and smart cards. Sec-

tion 2 describes these techniques, as well as why they are, on their own, unable to

achieve the desired security properties. We also discuss the use of an emerging tech-

nology, Trusted Execution Environment (TEE), as a potential solution to protecting

biometric templates. This material is covered in Section 3. We afterwards conclude

and provide questions for further study.

2 Traditional Data Protection Mechanisms

This section discusses traditional data protection mechanisms. We begin with defini-

tions of the relevant methods and then proceed to show why they fall short of achiev-

ing the desired security properties for biometric-based verification or identification.

We start with cryptographic solutions that use hash-based techniques and conven-

tional encryption, and this is followed by a discussion on distributed databases and

smart cards.

2.1 Hashing

A cryptographic hash function is an algorithm that, given a string of arbitrary size,

produces a digest that must satisfy certain security properties. More formally, let

h : {0,1}∗ → {0,1}k be a hash function that takes an input of arbitrary size and

produces a k-bit output. A cryptographic hash function must meet the following

security properties:

1. Preimage resistance: Let y be the output of h on some input. Given h and y, it is

infeasible to find any x such that h(x) = y.

2. Second preimage resistance: Given h and x, it is infeasible to find x′ such that

x′ 6= x and h(x′) = h(x).
3. Collision resistance: Given h, it is infeasible to find x and x′ such that x′ 6= x and

h(x′) = h(x).

When we say that it is infeasible to find x or x′ to violate one of the security prop-

erties above, we refer to this term’s formulation in a rigorous cryptographic sense.

That is, given a security parameter λ , we consider an adversary who can perform

arbitrary computation and employ any strategy of their choice in breaking the secu-

rity. The important assumption is that the adversary is computationally limited and

is constrained to run in polynomial time in the security parameter λ .

Definition 1 A function is said to be negligible in security parameter λ , denoted by

negl(λ ), if it diminishes faster than the inverse of any polynomial function in λ .



Traditional and Emerging Data Protection Methods 3

More precisely, a function f (·) is negligible if for every polynomial p(·) there exists

a constant c such that for all λ > c it holds that f (λ )< 1
p(λ ) .

A simple example of a negligible function is 1

2λ
, while more generally any function

of the form 1
g(λ ) for a super-polynomial g(·) is negligible. This means that, having

control over the security parameter λ , it is always possible to reduce negl(λ ) to any

sufficiently small value. Going back to the formulation of the security properties of

a hash function, “infeasible” means that, given a security parameter λ , any prob-

abilistic polynomial-time adversary has at most negligible probability in violating

the property.

In practice, the choice of security parameter λ is driven by our computational

abilities and the best known algorithms for breaking the security property in ques-

tion. For example, performing work on the order of 2128 in a reasonable amount of

time is considered today to be out of reach. In the context of hash functions, generic

attacks on preimage resistance and second preimage resistance require work on the

order of 2k hash function evaluations when the hash function output is k bits long.

However, achieving at least 50% probability of success for violating the collision

resistance property requires time on the order of 2k/2 hash function evaluations.

This dictates the choice of the hash output length k, which plays the role of the

security parameter. That is, achieving 128-bit security while satisfying all three se-

curity properties dictates the use of k = 256 or longer for constructions without

algorithm-specific weaknesses. Hash functions without algorithm-specific weak-

nesses are those for which there are no faster ways to violate one or more of the

security properties than generic attacks, while having an algorithm-specific weak-

ness removes a candidate hash function from consideration as having a design flaw.

Common hash function algorithms used today are SHA-256 and SHA-3 [5, 6].

SHA stands for Secure Hash Algorithms, which are a family of cryptographic hash

functions published by the US National Institute of Standards and Technology

(NIST). SHA-0 and its revised version SHA-1 were designed by the US govern-

ment, produce 160-bit output, and are no longer in use due to both short output size

and discovered weaknesses. SHA-2 is based on a similar design and supports dif-

ferent block sizes as specified in the names of the hash functions; e.g., SHA-256

produces 256-bit hashes, while SHA-512 has a 512-bit output. SHA-3 was adopted

most recently after an open public competition process. It has a significantly dif-

ferent design structure from those of the rest of the SHA hash functions and also

supports different hash sizes.

Cryptographic hash functions find their uses in a large number of applications.

One representative and relevant application is for protecting the storage of pass-

words. In particular, to prevent recovery of passwords of all users stored in a system

in the event of a computer compromise or privilege abuse, passwords are not stored

in the clear and are instead hashed. In its simplest form, a user record could look

like this:

userid, h(pwd)



4 Marina Blanton

This prevents immediate password disclosure and instead requires one to search

through the password space to determine a matching password. That is, because a

hash function’s preimage resistance property guarantees that the hash function is

one-way, recovering pwd can only be achieved by applying the hash function, h,

to different password guesses. For example, to enumerate all 8-character passwords

consisting only of English alphabet lower-case letters, one needs to try 268 hash

function evaluations. A more intelligent attack that tries dictionary words with com-

mon substitutions would need to go through all passwords in the dictionary file to

determine if pwd is one of them. Verification of a legitimate password, on the other

hand, is simple and proceeds by hashing a user-supplied password and comparing it

to the stored hash.

Now suppose that we would like to use a similar mechanism for protecting bio-

metric templates. A fundamental challenge arises when we consider that biometric

samples (and therefore templates) are noisy and thus do not result in an exact match.

This is problematic because cryptographic tools, including hash functions, are de-

signed to amplify input differences in order to produce outputs which are difficult

to distinguish from random strings. This means that related biometric templates

will produce hashed values with no similarities. For example, consider this 5-byte

sequence (listed in binary notation) and another, related, sequence with two bits

flipped (marked in bold):

1000110100101001010101111010101110010011

1000100100101001010101011010101110010011

The corresponding SHA-256 hashes (in hexadecimal) are:

978959aca040da961eba72299cd04d39bf7dadf1eeea6e9aeacfa4b8371cf974

8aa4b2c0a9a6ded735627c5da8bc54d4b5768bccccd3a360497e2d4a3c76b8fd

Therefore, since even small differences between a reference and probe biometric

template would result in completely different hashes, cryptographic hashing does

not work as a protection mechanism for biometric data.

Now consider that we would like to apply a hash function in a different way.

Because a biometric template (after feature extraction) is represented by a number

of elements, we could apply the hash function to each element of the template sep-

arately instead of to the template as a whole. That is, given a biometric template

B = (b1,b2, . . . ,bn), we would have the server store

h(b1),h(b2), . . . ,h(bn)

Then two biometric representations would be considered a match if the number of

the elements equal to each other is above a predefined threshold.

With this solution, if the individual elements are sufficiently fine-grained, we are

looking for exact equality, and the use of a hash function would not interfere with

matching. However, this approach does not lead to adequate protection of the stored

templates. That is, because each element comes from a small space, it is possible

for someone with access to the database to hash all possible values for individual



Traditional and Emerging Data Protection Methods 5

elements bi of the biometric template and consequently recover the templates stored

at the server.

2.2 Conventional Encryption

General-purpose encryption provides strong data confidentiality protection against

anyone without access to the decryption key. An encryption scheme is defined by

three algorithms: key generation KeyGen that takes a security parameter and pro-

duces a fresh key, encryption Enc that takes a message and a key and produces a

ciphertext, and decryption Dec that takes a ciphertext and a key and produces a

decrypted message or outputs failure.

Encryption can be symmetric, which may also be called secret-key, or asym-

metric, which is widely known as public-key. Symmetric encryption uses the same

key for encryption and decryption, and thus the key must remain private. That is,

given a key k generated according to the corresponding key generation algorithm,

we encrypt a message m to obtain a ciphertext c as c = Enc(k,m), and we decrypt a

ciphertext c to obtain the corresponding plaintext m as m = Dec(k,c).
With public-key encryption, on the other hand, key generation produces a key

pair (pk,sk), where pk is a public key, which is widely disseminated, and sk is the

corresponding private (secret) key. Anyone with access to the public key can encrypt

a plaintext message m as c = Enc(pk,m), while only the key owner with access to

the private key sk will be able to decrypt the ciphertext c as m = Dec(sk,c).
Symmetric and public-key encryption have fundamentally different designs,

which reflects on their speed. Symmetric encryption is normally realized using

a block cipher, while public-key encryption uses number-theoretic constructions.

Symmetric encryption algorithms are significantly faster than public-key encryp-

tion, while public-key cryptography is more powerful and allows for additional

functionalities which cannot be realized by means of symmetric key primitives

alone.

Secure encryption of any kind must meet stringent security requirements. There

are different formulations of security based on the capabilities an adversary is as-

sumed to have. However, for a general-purpose encryption algorithm to be of practi-

cal relevance, it must be secure at least against what is known as ciphertext indistin-

guishability under an adaptive chosen plaintext attack (CPA). The intuition is that a

realistic adversary, who is allowed to receive multiple encrypted messages and influ-

ence what is being encrypted, should be unable to obtain any information about the

content that a ciphertext encrypts besides the obvious observable information such

as the ciphertext size. More formally, an adversary is allowed to request encryptions

of messages of their choice and at some point produces two messages of the same

size. One of those messages, the challenge, is encrypted and the ciphertext is given

to the adversary. The adversary’s goal is to determine which message from those

two was encrypted.



6 Marina Blanton

Similar to other cryptographic functionalities, security guarantees are tied to a se-

curity parameter specified at key generation time. As before, the adversary is bound

to run in polynomial time in the security parameter, and now the adversary’s success

beyond a random guess in determining which message was chosen as the challenge

is bound by a probability negligible in the security parameter. Once again, the secu-

rity parameter is guided by the best known algorithms for breaking the security of a

construction. Public-key encryption algorithms require larger key and message sizes

than symmetric key encryption, and this is what contributes to the performance gap.

The formulation of secure encryption above requires that no information about

encrypted messages can be deduced by analyzing ciphertexts. An important implica-

tion of the above is that an adversary is unable to tell whether two different cipher-

texts encrypt the same message. This means that secure encryption is necessarily

randomized: a single message encrypts to a large number of possible ciphertexts

using randomness drawn at the time of encryption, and a ciphertext is longer than

the original plaintext.

Now, let’s return to the task of securely comparing two biometric templates. For

concreteness, let us assume symmetric encryption with ciphertexts of the form c =
Enc(k,m). This can be realized by using a strong block cipher such as AES [4] in

a secure encryption mode. Then encrypting a biometric template and storing the

ciphertext on a server will not allow the server to discover any information about

the biometric if it does not possess the key.

Now, a challenge arises when we would like to compare two biometric templates

in a protected form. Because encrypting the same message multiple times produces

different ciphertexts, two ciphertexts cannot be meaningfully compared to determine

if they encrypt the same message. Otherwise, the encryption discloses information

about whether two ciphertexts have the same plaintext content, trivially violating

the necessary security guarantees.

Suppose that we degrade security to use a deterministic encryption algorithm

(which on the same key-message pair always produces the same output) such as a

plain invocation of a block cipher, which does not qualify as secure encryption. Even

in that case, comparing two biometric templates in an encrypted form is not feasible.

This, once again, stems from the fact that biometric templates are approximate and

differ with each capture of the biometric sample. Cryptographic tools, on the other

hand, and encryption in particular, are designed to amplify any differences in the

input. Specifically in the context of block ciphers, a 1-bit difference in a plaintext

block impacts all of the bits of the corresponding ciphertext block, obfuscating all

information about input similarities. This is an intentional design choice of block

cipher algorithms to erase any patterns from a ciphertext.

Now consider the possibility that the server is granted access to the key at the time

of biometric matching: it decrypts a stored encrypted template, performs the com-

parison, and securely erases the decrypted value. Unfortunately, this variant does

not meet the expected security guarantees. Namely, the server gains cleartext (i.e.,

unprotected) access to sensitive biometric data, which is no longer protected. Then

any abuse of the system in the form of insider access or system compromise can

lead to large-scale disclosure of sensitive biometric information.



Traditional and Emerging Data Protection Methods 7

2.3 Distributed Databases

A distributed database corresponds to multiple interconnected databases distributed

across different physical locations or computers. The design goals are to improve

performance (e.g., throughput and latency of content delivery to users), availability,

security (e.g., fault tolerance), and scalability. In the context of this chapter, we are

interested in investigating whether the use of distributed databases could also aid in

protecting the privacy of biometric templates.

A possible solution could be to distribute biometric data in such a way that the

entire database of biometric templates is not available on a single computer or at

a single location. For example, we could partition a biometric template so that a

portion of it is stored at one location, another portion at a different location, etc. Un-

fortunately, this approach does not lead to adequate protection: sensitive biometric

data is still accessible to the servers and they compare templates in the clear (which

leads to opportunities for abuse).

2.4 Smart Cards

Another possible mechanism for protecting sensitive biometric templates is to store

them on smart cards that will control how the biometric template is accessed. Be-

cause the goal is to protect biometric data from the server, a smart card will need

to be able to determine the outcome (e.g., recognition decision) without sending a

user’s biometric data to the server. This means that each user’s template would need

to be stored on a separate smart card, which makes this approach unsuitable for

identification. Thus, we can only attempt to realize verification in this distributed

setting.

A smart card is a physical card with an embedded integrated circuit that has

limited storage and limited computational capabilities. It is powered by a smart card

reader and interacts with it. Smart cards are designed to be tamper-resistant and

use encryption to protect their memory content. They find uses in various domains,

often providing authentication and other functionalities.

If we would like to employ a solution that relies on a smart card for biometric

verification, the card issuer would first take a biometric reading and load the cor-

responding biometric template on a card. Then at the time of verification, the user

would take a fresh biometric reading, which would be processed and communicated

to the smart card to perform approximate matching with the template it stores. Con-

ceptually, this accomplishes the goal of biometric-based verification, but falls short

of providing critical properties.

The most profound drawback is that biometric templates are not protected from

the entity issuing smart cards. That is, for a user to register for the service and obtain

a smart card, the service provider needs to receive the user’s biometric template

and load it onto the user’s smart card. This means that the service provider still



8 Marina Blanton

sees all biometric templates and is able to store them. Once again, this opens up

opportunities for abuse of sensitive biometric data.

Besides privacy concerns, this solution also has significant usability drawbacks.

First, a user’s biometric template needs to be available at the physical location where

smart cards are issued if we want to minimize the template’s exposure. Second,

using smart cards with biometric templates requires both a biometric reader and

a smart card reader at the time of verification. This limits the applicability of this

approach and does not make it suitable for mobile or desktop users.

3 Emerging Data Protection Mechanisms

Besides exploring conventional data protection mechanisms, we can also turn our

attention to emerging technologies such as Trusted Execution Environments (TEE).

A TEE is an isolated area of a CPU that allows us to securely execute applications

on private data. This includes confidentiality and integrity protection of data used in

the computation, and using only trusted software to work with the data.

Hardware isolation prevents other processes (including the operating system and

other users) from observing the data placed inside the TEE. The TEE also comes

with private keys embedded directly into the chip at manufacturing time. This pri-

vate key material is likewise not accessible outside the TEE. Any software executed

by the TEE must be certified using a key to which the TEE can build a chain of trust

from a key loaded into it.

The notion of chain of trust is a common security concept that refers to a se-

quence of certificates from a public key that one trusts to a public key that needs

to be verified. A certificate is a credential that permits one to verify the validity of

the (public) key of an unfamiliar entity and use the key in security applications. In

the simplest form, a certificate is a binding between the name of the entity and its

public key, but often it contains additional data including the expiration date. The

binding is achieved by means of a digital signature, which for an entity with name

A and public key pkA looks as follows:

data= (A,pkA, . . .),σCA(data).

Here, let CA be a certification authority that we trust and let (pkCA,skCA) be the au-

thority’s public-private key pair. The trust is typically achieved by pre-loading CA’s

public key pkCA into one’s computer. σCA(data) is a cryptographic signature on in-

put data produced using the private portion skCA of CA’s key. A signature scheme is

a cryptographic tool that uses public-key cryptography for ensuring data integrity. It

guarantees a strong security property called existential unforgeability. Informally, a

signature scheme is existentially unforgeable when it is infeasible for someone with-

out access to the private key to produce a signature on any new message that has not

been previously signed using that key. A signature is verified using the correspond-



Traditional and Emerging Data Protection Methods 9

ing public key. As before, “infeasible” means having at most negligible probability

in the appropriate security parameter of succeeding in this task.

As a result, a certificate produced by an authority we trust provides validation of

the data included in the certificate and extends the trust to another party. That is, if

we believe that CA will not sign bogus data, we now have assurance that pkA is the

key associated with A and we can trust it. For example, if A is an online retailer, we

can use pkA to securely communicate payment information to A over the insecure

internet.

In the context of the current discussion, the key that the TEE trusts is the signing

key of a certification authority which was loaded into the TEE at manufacturing

time. The key that needs to be verified is the key with which the software to be

run by the TEE was signed. The path from the trusted key to the key we want to

use can be longer than of length 1. In that case, we follow and verify a sequence

of certificates. For example, if we trust key pkCA and would like to verify key pkA

which CA did not sign, we need to find a sequence of certificates from CA to A,

e.g., CA signed the key of B and B signed the key of A. This is why we refer to the

concept as a chain of trust.

This process prevents TEEs from executing unauthorized software. In addition,

any software that has been certified but subsequently altered will also fail verifica-

tion and thus will fail to run. On the other hand, software that passes verification can

be executed by the TEE and obtains access to the privileged information stored in-

side the TEE. Thus, this mechanism permits only trustworthy applications to access

and handle data within the TEE.

When the application is not running, it can store private data outside the TEE in a

protected form. The protection mechanism must guarantee both data confidentiality

and integrity, which can be achieved by means of authenticated encryption designed

to meet both security objectives at once.

We can imagine building an application that handles protected biometric tem-

plates for verification or identification purposes as follows:

1. When a biometric sample is captured (e.g., a fingerprint or face image), it will be

processed and securely communicated to the TEE by trusted software run by the

TEE.

2. The trusted software can use the key material embedded in the TEE to apply con-

fidentiality and integrity protection to the biometric template and store it outside

of the trusted environment.

3. Additional encrypted templates can be added to the protected storage over time

when new individuals enroll.

4. When a new biometric sample is to be compared to one or more templates in

the secure storage, the trusted software will load a protected reference template

(from the secure storage) into the trusted environment, verify its integrity, decrypt

it, and then compare the template from the new (probe) biometric sample to the

stored (decrypted) template.

This conceptual realization of biometric verification or identification achieves proper

protection of biometric templates. That is, both confidentiality and integrity of bio-



10 Marina Blanton

metric templates is achieved when they are stored outside of the TEE. Furthermore,

when biometric templates are processed, all operations on cleartext biometric data

are performed securely in the isolated environment using key material inaccessible

to the operating system and users of the system.

While conceptually attractive, realizations of TEE-based solutions in practice re-

quire additional considerations and have certain drawbacks. Potential areas of con-

cern include:

1. The solution requires hardware support and cannot be realized on systems where

the processor, the motherboard, or the operating system does not support TEE,

or on which the support is not enabled in the BIOS. Many computers are now

capable of supporting a TEE.

2. The solution requires software attestation and certification. This is the most com-

plex component of the process, because it requires proper management of various

keys and ensuring that software being certified meets certain expectations (e.g.,

does not have vulnerabilities).

3. Most importantly, TEE is a relatively new technology and may not exhibit the

level of maturity necessary for security applications. We can demonstrate that on

the example of Intel SGX [1], which is a popular realization of the TEE architec-

ture. A number of attacks and vulnerabilities on Intel SGX have been discovered

that can lead to significant security violations (see, e.g., [2, 3]). One illustrative

example is an attack on the chain of trust that allows for the recovery of a private

key, which in turn enables execution of illegitimate software inside the SGX [7].

In the context of protecting biometric templates using TEE as described earlier,

a successful attack of this kind would permit malicious software to obtain access

to both stored biometric templates and incoming biometric samples, and perform

arbitrary actions with them.

Thus, additional work needs to be conducted before TEE-based constructions can

become a reliable solution for biometric template protection.

4 Conclusions

In this chapter, we discussed a couple of traditional cryptographic tools that are of-

ten used as data protection mechanisms. They include hash functions and standard

encryption. We showed that it is challenging to use these tools by themselves to

achieve adequate biometric template protection for the purposes of verification or

identification. The main challenge stems from the misalignment of the properties

of cryptographic tools and biometric matching mechanisms: cryptographic tools

are designed to destroy any patterns in the data to which they are applied, while

biometric data is inherently noisy and thus requires approximate matching. Other

mechanisms that provide certain security properties, such as distributed databases

and smart cards, are also not suitable for this purpose because they do not provide

data confidentiality guarantees.



Traditional and Emerging Data Protection Methods 11

Trusted Execution Environments, an emerging technology, can be utilized to

build a solution that supports secure storage of biometric templates and performs

biometric matching by relying on hardware isolation. The main challenge here is

that this is a relatively recent technology, which may not yet be widely adopted,

may not have a desired level of maturity, and thus may be prone to attacks.

5 Summary

Traditional data protection mechanisms in the context of biometric template protec-

tion:

• Hash functions compute a fixed-length digest given an arbitrary-length input

– hash functions have the one-way and collision resistance properties

– hashes of two related biometric samples do not have any similarities

– hashing individual elements of a biometric template does not achieve confi-

dentiality

• Encryption provides strong confidentiality guarantees as long as the decryption

key is private

– ciphertexts cannot be meaningfully compared for biometric matching pur-

poses

– downgrading security to deterministic obfuscation still does not permit com-

parison of noisy biometric samples or templates

– access to the decryption key during biometric matching nullifies protection

offered by encryption

• Distributed databases and smart cards do not provide data confidentiality guar-

antees

Emerging data protection mechanisms:

• Trusted Execution Environments (TEE) rely on hardware isolation to achieve

strong security properties

– unprotected biometric templates reside only inside the TEE and are stored

protected outside the TEE

– decryption keys are used during biometric matching and are not accessible

outside the TEE

– TEE realizations have been a subject of powerful attacks



12 Marina Blanton

6 Study Questions

1. What purpose does a security parameter play in cryptographic constructions such

as encryption schemes and hash functions?

2. Recall the simple mechanism for protecting stored user passwords described in

Section 2.1. Now suppose that it is used for protecting the PIN number associated

with a user’s bank card. How many hash invocations would an attacker with

access to the storage need to try to recover a user’s 4-digit PIN stored in this

form?

3. Suppose that someone uses deterministic encryption and sends a sequence of

ciphertexts, where each ciphertext encrypts a single letter of the message. What

can an adversary observing the sequence of transmitted ciphertexts deduce about

the (plaintext) message?

4. Section 2.2 mentioned that block ciphers are designed in such a way that a single-

bit difference in the input block (plaintext) impacts all bits of the produced output

block (ciphertext). This is achieved by relying on the fact that block ciphers op-

erate in rounds, where the difference gets amplified from one round to another.

That is, a 1-bit difference in the input to round 1 results in a 2-bit difference in

the output from that round; a 2-bit difference in the input to round 2 results in a

4-bit difference in the output from round 2; etc. What is the minimum number

of rounds that a block cipher with n-bit blocks needs to have to guarantee that a

1-bit difference in the input plaintext impacts all n bits of the output ciphertext?

5. By going through your web browser’s settings, can you determine how many

certification authorities your browser recognizes?

6. What is the reason that a malicious user with access to the computer, the TEE

of which performs privacy-preserving biometric matching, is unable to recover

stored biometric templates?

References

1. Intel Sofware Guard Extensions (SGX). https://www.intel.com/content/www/us/en/products/docs/accelerator-

engines/software-guard-extensions.html

2. Vulnerability CVE-2022-33196 (2023). https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2022-33196

3. Vulnerability CVE-2022-38090 (2023). https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2022-38090

4. National Institute of Standards and Technology: Advanced Encryption Standard (AES). FIPS

197 (2001). https://doi.org/10.6028/NIST.FIPS.197-upd1

5. National Institute of Standards and Technology: Secure Hash Standards (2015).

https://doi.org/10.6028/NIST.FIPS.180-4

6. National Institute of Standards and Technology: SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions. FIPS 202 (2015). https://doi.org/10.6028/NIST.FIPS.202

7. van Schaik, S., Kwong, A., Genkin, D., Yarom, Y.: SGAxe: How SGX fails in practice.

https://sgaxeattack.com/ (2020)


