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Abstract - Advances in biometric recogniƟon and the increasing use of biometric data prompt significant
privacy challenges associated with the possible misuse, loss, or theŌ of biometric data. Biometric com-
parisons are oŌen performed by two mutually distrusƞul parƟes, one of which holds a biometric sample
while the other owns a possibly large collecƟon of biometric data. Due to privacy and liability consider-
aƟons, neither party is willing to share its data. This gives rise to the need to uƟlize secure computaƟon
techniques over biometric data where no informaƟon is revealed to the parƟes except the outcome of the
comparison or search for idenƟficaƟon purposes. In this chapter, we present the design, security analysis,
and performance of privacy-preserving idenƟficaƟon protocols for iris codes and fingerprints. Combined
with certain opƟmizaƟons, such techniques are suitable for pracƟcal use on large data sets.

Index Terms - Privacy-Preserving Protocols, Biometric IdenƟficaƟon, Secure MulƟparty ComputaƟon, Iris,
Fingerprints

1 Introduction
Recent advances in biometric recogniƟon have made the use of biometric informaƟon more prevalent for
verificaƟon and idenƟficaƟon purposes. Large-scale collecƟons of biometric data in use today include, for
example, fingerprint, face, and iris images collected by the US Department of Homeland Security (DHS)
from visitors [48]; fingerprint and iris images collected by the government of India from (more than billion)
ciƟzens [56]; iris, fingerprint, and face images collected by the United Arab Emirates (UAE) Ministry of Inte-
rior from visitors [57]; and adopƟon of biometric passports in several countries. While biometric systems
serve as an excellent tool for authenƟcaƟon and idenƟficaƟon of individuals, biometric data is undeniably
extremely sensiƟve and must be well protected. Furthermore, once leaked biometric data cannot be re-
voked or replaced. For these reasons, biometric data cannot be easily shared between organizaƟons or
agencies. However, there could be legiƟmate reasons to carry out computaƟons on biometric data belong-
ing to different enƟƟes. For example, a non-government agency may need to know whether a biometric
sample it possesses belongs to an individual on the government watch-list. In this case the agency would
like to maintain the privacy of the individual if no matches are found, and the government also does not
want to release its database to third parƟes.

The above requires carrying out computaƟon over biometric data in a way that keeps the data private
and reveals only the outcome of the computaƟon. In parƟcular, we treat the problem of biometric idenƟ-
ficaƟon, where a client 𝐶 is in a possession of a biometric sample 𝑋 and a server 𝑆 possesses a biometric
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database𝐷. The client would like to knowwhether there is any 𝑋ᇱ in𝐷matching 𝑋 by comparing 𝑋 to each
biometric record in 𝐷. The computaƟon amounts to comparing 𝑋 to each 𝑌 ∈ 𝐷 in a privacy-preserving
manner. This formulaƟon is general enough to apply to a number of other scenarios, ranging from a single
comparison of 𝑋 and 𝑌 to the case where two parƟes need to compute the set of biometric data records
common to their respecƟve databases. We assume that the result of comparing 𝑋 and 𝑌 is a bit, and no
addiƟonal informaƟon about 𝑋 or 𝑌 should be learned by the parƟes as a result of secure computaƟon.
Throughout this chapter, we also assume that 𝑋 and 𝑌 correspond to biometric templates, i.e., they have
representaƟons suitable for biometric comparison aŌer raw biometric samples have been processed by
a feature extracƟon algorithm. Feature extracƟon can be performed for each biometric sample indepen-
dently, and we do not discuss this further.

This chapter introduces and discusses secure techniques that perform the aforemenƟoned computa-
Ɵon with provable protecƟon of data privacy. We present protocols for two types of biometric character-
isƟcs: iris and fingerprints. While iris codes are normally represented as binary strings and use very similar
matching algorithms, there is a variety of representaƟons and comparison algorithms for fingerprints. For
that reason, we study two types of matching algorithms for fingerprints: (i) FingerCodes that use fixed-size
representaƟons and a simple comparison algorithm and (ii) a tradiƟonal and most widely used method for
pairing minuƟa points in one fingerprint with minuƟae in another fingerprint. With such techniques, the
outcome of the computaƟon can be made available to either party or both of them; for concreteness, in
our descripƟon we have the client learn the outcome of each comparison.

2 Description of Computation
Without loss of generality, in what follows we assume that client 𝐶 holds a single biometric template 𝑋 and
server 𝑆 holds a database of biometric data 𝐷. The goal is to learn whether 𝐶's biometric template has a
match in 𝑆's database without learning any addiƟonal informaƟon. This is accomplished by comparing 𝑋 to
each biometric template 𝑌 ∈ 𝐷, and as a result of each comparison 𝐶 learns a bit that indicates whether
the comparison resulted in a match.

2.1 Iris
Let an iris code 𝑋 be represented as an 𝑚-bit binary string. We use 𝑋 to denote the 𝑖-th bit of 𝑋. In
iris-based recogniƟon, aŌer feature extracƟon, biometric comparison is normally performed by compuƟng
the normalized Hamming distance between two biometric representaƟons. (To simplify presentaƟon, we
refer to normalized Hamming distance simply as Hamming distance henceforth.) Furthermore, the feature
extracƟon process is such that some bits of the extracted string 𝑋 are unreliable and are ignored in the
comparison process. InformaƟon about such bits is stored in an addiƟonal𝑚-bit string, calledmask, where
its 𝑖-th bit is set to 1 if the 𝑖-th bit of 𝑋 should be used in the comparison process and is set to 0 otherwise.
For iris code𝑋, we use𝑀(𝑋) to denote themask associated with𝑋. OŌen, a predetermined number of bits
(e.g., 25% in [31] and 35% in [6]) are considered unreliable in each biometric template. Thus, to compare
two biometric templates 𝑋 and 𝑌, their Hamming distance takes into account the respecƟve masks. That
is, if the Hamming distance between two iris codes without masks is computed as:

𝐻𝐷(𝑋, 𝑌) = ||𝑋⊕ 𝑌||
𝑚 =

∑
ୀଵ(𝑋 ⊕𝑌)

𝑚
the computaƟon of the Hamming distance that uses masks becomes [23]:

𝐻𝐷(𝑋,𝑀(𝑋), 𝑌,𝑀(𝑌)) = ||(𝑋⊕ 𝑌) ∩ 𝑀(𝑋) ∩ 𝑀(𝑌)||
||𝑀(𝑋) ∩ 𝑀(𝑌)|| (1)
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In other words, we have

𝐻𝐷(𝑋,𝑀(𝑋), 𝑌,𝑀(𝑌)) =
∑
ୀଵ((𝑋 ⊕𝑌) ∧ 𝑀(𝑋) ∧ 𝑀(𝑌))

∑
ୀଵ(𝑀(𝑋) ∧ 𝑀(𝑌))

.

Throughout this chapter, we assume that the laƩer formula is used and simplify the notaƟon to 𝐻𝐷(𝑋, 𝑌).
Then the computed Hamming distance is compared with a specific threshold 𝑇, and the biometric samples
𝑋 and 𝑌 are considered to be a match if the distance is below the threshold, and a mismatch otherwise.
The threshold 𝑇 is chosen based on the distribuƟons of authenƟc and impostor data. (In the likely case of
overlap of the two distribuƟons, the threshold is set to achieve the desired levels of false accept and false
reject rates based on the security goals.)

Two iris representaƟons can be slightly misaligned. This problem is usually caused by head Ɵlt during
image acquisiƟon. To account for this, the matching process aƩempts to compensate for the error and
rotates a biometric representaƟon by a fixed amount to determine the lowest distance. More precisely,
each iris code is represented as a two-dimensional bit array and rotaƟon corresponds to a circular shiŌwhich
is applied to each row. Each biometric is then rotated to the leŌ and to the right a small fixed number of
Ɵmes, which we denote by 𝑐. The minimum Hamming distance across all rotaƟons is then compared to the
threshold. That is, if we let 𝐿𝑆(⋅) (resp., 𝑅𝑆(⋅)) denote a circular leŌ (resp., right) shiŌ of the argument by
a fixed number of bits (normally 2 bits due to the properƟes of the feature extracƟon process), thematching
process becomes:

min(𝐻𝐷(𝑋, 𝐿𝑆(𝑌)), …, 𝐻𝐷(𝑋, 𝐿𝑆ଵ(𝑌)), 𝐻𝐷(𝑋, 𝑌), 𝐻𝐷(𝑋, 𝑅𝑆ଵ(𝑌)), …, 𝐻𝐷(𝑋, 𝑅𝑆(𝑌)))
?
< 𝑇 (2)

Throughout this chapter, we assume that the algorithms for comparing two biometric samples are public,
as well as any constant thresholds 𝑇. The protocols we present, however, maintain their security and com-
putaƟonal performance guarantees even if the (fixed) thresholds are known only to the server who owns
the database.

2.2 Fingerprints
Work on fingerprint idenƟficaƟon dates back to the late 1800s, with a number of different approaches
currently available (see, e.g., [46] for an overview). The most popular and widely used techniques extract
informaƟon about minuƟae from a fingerprint and store that informaƟon as a set of points in the two-
dimensional plane. Fingerprint comparison in this case consists of finding a matching between two sets
of points so that the number of paired minuƟae is maximized. In more detail, a biometric template 𝑋 is
represented as a set of𝑚 points 𝑋 = ⟨(𝑥ଵ, 𝑦ଵ, 𝛼ଵ), …, (𝑥 , 𝑦 , 𝛼)⟩, where 𝑥 and 𝑦 are coordinates
of minuƟa 𝑖 in a two-dimensional space and 𝛼 is its orientaƟon (represented as an angle in degrees). A
minuƟa 𝑋 = (𝑥 , 𝑦 , 𝛼) in 𝑋 and minuƟa 𝑌 = (𝑥ᇱ , 𝑦ᇱ , 𝛼ᇱ) in 𝑌 are considered matching if the spaƟal
(i.e., Euclidean) distance between them is smaller than a given threshold 𝑑 and the direcƟonal difference
between them is smaller than a given threshold 𝛼. That is, we compute this as:

ට(𝑥ᇱ − 𝑥)ଶ + (𝑦ᇱ − 𝑦)ଶ < 𝑑 and min(|𝛼ᇱ − 𝛼|, 360∘ − |𝛼ᇱ − 𝛼|) < 𝛼. (3)

It is necessary to tolerate small differences in the posiƟon and orientaƟon of minuƟa points to account
for errors introduced by feature extracƟon algorithms (e.g., quanƟzaƟon) and small skin distorƟons. Two
points within a single fingerprint are also assumed to lie within at least distance 𝑑 of each other.

Before two fingerprints can be compared, they need to be pre-aligned, which maximizes the number
of matching minuƟae. We can disƟnguish two types of alignment: absolute and relaƟve. With absolute
alignment, each fingerprint is pre-aligned independently using the core point or other informaƟon. With
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relaƟve alignment, informaƟon contained in two biometric samples is used to guide their alignment rela-
Ɵve to each other. While relaƟve pre-alignment can be more accurate that absolute pre-alignment, such
techniques are not pracƟcal within a privacy-preserving protocol due to the addiƟonal overhead, and we
assume that absolute pre-alignment is used. To increase the accuracy of the matching process, a single fin-
gerprint can be stored using a small number of representaƟons with slightly different alignments, and the
result of the comparison is a match if at least one of them matches the biometric template being queried.

A simpleway used for determining a pairing betweenminuƟae of fingerprints𝑋 and𝑌 consists of pairing
a minuƟa 𝑋 with the closest minuƟa 𝑌 in 𝑌. Let𝑚𝑚(𝑋 , 𝑌) denote the minuƟae matching predicate in
EquaƟon 3. Then the pairing funcƟon 𝑃(⋅) that determines the mapping of minuƟae in 𝑋 and 𝑌 can be
defined as follows: for 𝑖 = 1,…,𝑚, 𝑃(𝑖) = 𝑗 if 𝑌 is the closest to 𝑋 among all 𝑌 ∈ 𝑌 such that
𝑚𝑚(𝑋 , 𝑌) = 1, and 𝑃(𝑖) =� if no such 𝑌 exists. Because each minuƟa 𝑌 can be paired with at most
one minuƟa from 𝑋, the above algorithm needs to mark all minuƟae in 𝑌 that have already been paired
with a point in 𝑋 to enforce this constraint.

The above approach will not find the opƟmum assignment (i.e., the one that maximizes the number of
mates) because to find such a pairing a minuƟa 𝑋 might need to be paired with another minuƟa 𝑌 which
is not the closest to 𝑋. The opƟmum pairing can be achieved by formulaƟng the problem as an instance
of minimum-cost maximum flow, where fingerprints 𝑋 and 𝑌 are used to create a flow network. Then
this problem can be solved using one of the known algorithms such as Ford-Fulkerson [26] and others.
In parƟcular, [37, 58] use a flow network representaƟon of minuƟa pairing problem to find an opƟmal
pairing, where there is an edge from a node corresponding to minuƟa 𝑋 ∈ 𝑋 to 𝑌 ∈ 𝑌 iff𝑚𝑚(𝑋 , 𝑌) =
1. We refer the reader to [37, 58] for addiƟonal detail. For fingerprints consisƟng of 𝑚 minuƟae, the
opƟmal pairing can be found in 𝑂(𝑚ଶ) Ɵme using Ford-Fulkerson algorithm because each minuƟa from 𝑋
is connected to at most a constant number of minuƟae from 𝑌. In a privacy-preserving seƫng, however,
when informaƟon about connecƟons between minuƟae in 𝑋 and 𝑌 (and thus the structure of the graph)
must remain private, the complexity of this approachwould increase. For example, a soluƟon based on [11]
would result in complexity 𝑂(𝑚ଷ log𝑚), which is substanƟally slower even for modest values of 𝑚. We
therefore implement the pairing approach based on the minimum distance outlined above. The algorithm
is not guaranteed to find the opƟmal pairing, but performs well in the privacy-preserving seƫng.

For the purposes of this chapter, we assume that during fingerprint idenƟficaƟon the number of minu-
Ɵae in a pairing is compared to a fixed threshold 𝑇. If in specific fingerprint comparison algorithms this
threshold is not constant, but rather is a funcƟon of biometric templates 𝑋 and 𝑌 being compared (e.g., a
funcƟon of the number of points in each template), our techniques can be easily extended to accommodate
those variaƟons as well.

Fingerprint matching can also be performed using a different type of informaƟon extracted from a fin-
gerprint image. One example is FingerCode [36] which uses texture informaƟon from a fingerprint scan to
form fingerprint representaƟon 𝑋. While FingerCodes are not as disƟncƟve as minuƟa-based representa-
Ɵons and are best suited for use in combinaƟon with minuƟae to improve the overall accuracy of finger-
print comparisons [46], FingerCode-based idenƟficaƟon can be implemented very efficiently in a privacy-
preserving protocol. In parƟcular, each FingerCode consists of a fixed number 𝑚 elements of ℓ bits each.
Then FingerCodes 𝑋 = (𝑥ଵ, …, 𝑥) and 𝑌 = (𝑦ଵ, …, 𝑦) are considered a match if the Euclidean distance
between their elements is below the threshold 𝑇:

ඨ


ୀଵ
(𝑥 − 𝑦)ଶ

?
< 𝑇 (4)

The technique we present in this chapter is substanƟally faster, in terms of both computaƟon and commu-
nicaƟon, than earlier techniques (e.g., from [5]). We then also proceed with providing a secure protocol for
more accurate (but less efficient) minuƟa-based matching algorithm.
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3 Cryptographic Preliminaries
Security model. IntuiƟvely, the level of security that a privacy-preserving construcƟon should achieve is
the same as having the parƟcipants privately send their inputs to a trusted third party who performs the
computaƟon and privately sends the result back. Then a secure technique should provide the same level
of data privacy, but without assuming the existence of such a trusted third party.

Our security model is the standardmodel for secure two-party computaƟon in presence of semi-honest
parƟcipants [27] (also known as honest-but-curious or passive). In parƟcular, it means that the parƟes
follow the prescribed behavior, but might try to compute addiƟonal informaƟon from the informaƟon ob-
tained during protocol execuƟon. Security in this seƫng is defined using simulaƟon argument: the protocol
is secure if the view of protocol execuƟon for each party is computaƟonally indisƟnguishable from the view
simulated using that party's input and output only. This means that the protocol execuƟon does not reveal
any addiƟonal informaƟon to the parƟcipants. The definiƟon below formalizes the noƟon of security for
two semi-honest parƟcipants:

DefiniƟon 1 Let parƟes𝑃ଵ and𝑃ଶ engage in a protocol𝜋 that computes funcƟon𝑓(𝑖𝑛ଵ, 𝑖𝑛ଶ) = (𝑜𝑢𝑡ଵ, 𝑜𝑢𝑡ଶ),
where 𝑖𝑛 and 𝑜𝑢𝑡 denote input and output of party 𝑃, respecƟvely. Let VIEWగ(𝑃) denote the view of
parƟcipant 𝑃 during the execuƟon of protocol 𝜋. More precisely, 𝑃 's view is formed by its input, internal
random coin tosses 𝑟, and messages𝑚ଵ, …,𝑚௧ passed between the parƟes during protocol execuƟon:

VIEWగ(𝑃) = (𝑖𝑛 , 𝑟 , 𝑚ଵ, …,𝑚௧).

We say that protocol 𝜋 is secure against semi-honest adversaries if for each party 𝑃 there exists a proba-
bilisƟc polynomial Ɵme simulator 𝑆 such that

{𝑆(𝑖𝑛 , 𝑓(𝑖𝑛ଵ, 𝑖𝑛ଶ)), 𝑓(𝑖𝑛ଵ, 𝑖𝑛ଶ)} ≡ {VIEWగ(𝑃), (𝑜𝑢𝑡ଵ, 𝑜𝑢𝑡ଶ)},

where 𝑓(𝑖𝑛ଵ, 𝑖𝑛ଶ) denotes the 𝑖th element that 𝑓(𝑖𝑛ଵ, 𝑖𝑛ଶ) outputs and ''≡'' denotes computaƟonal indis-
Ɵnguishability.

Homomorphic encrypƟon. Our construcƟons use a semanƟcally secure addiƟvely homomorphic encryp-
Ɵon scheme. Informally, semanƟc security means that a computaƟonally bounded adversary cannot learn
any informaƟon about the encrypted message from the ciphertext with more than negligible probability in
the security parameter (see, e.g., [27] for a formal definiƟon). In an addiƟvely homomorphic encrypƟon
scheme defined by three algorithms (𝑆𝑒𝑡𝑢𝑝, 𝐸𝑛𝑐, 𝐷𝑒𝑐), 𝐸𝑛𝑐(𝑚ଵ) ⋅ 𝐸𝑛𝑐(𝑚ଶ) = 𝐸𝑛𝑐(𝑚ଵ + 𝑚ଶ) for any
two plaintexts 𝑚ଵ and 𝑚ଶ, which also implies that 𝐸𝑛𝑐(𝑚ଵ)మ = 𝐸𝑛𝑐(𝑚ଶ ⋅ 𝑚ଵ), where plaintext 𝑚ଶ is
known. While any encrypƟon schemewith the above properƟes (such as the well known Paillier encrypƟon
scheme [50]) suffices for the purposes of this chapter, the construcƟon due to Damgård et al. [21, 20] (DGK)
is of parƟcular interest here.

To be able to understand opƟmizaƟons used in our techniques, we briefly describe the relevant encryp-
Ɵon schemes. In Paillier encrypƟon scheme, a public key consists of a 𝑘-bit RSA modulus 𝑁 = 𝑝𝑞, where 𝑝
and 𝑞 are prime numbers of bitlength 𝑘/2 and 𝑘 is the security parameter, and an element 𝑔 whose order
is a mulƟple of𝑁 in ℤ∗ேమ . Given a message𝑚 ∈ ℤே, encrypƟon is performed as 𝐸𝑛𝑐(𝑚) = 𝑔𝑟 mod 𝑁ଶ,

where 𝑟 ோ← ℤே and notaƟon 𝑎 ோ← 𝐴 means that 𝑎 is chosen uniformly at random from the set 𝐴. In DGK
encrypƟon scheme [21, 20], whichwas designed toworkwith small plaintext spaces and has shorter cipher-
text size than other randomized encrypƟon schemes, a public key consists of (i) a (small, possibly prime)
integer 𝑢 that defines the plaintext space, (ii) 𝑘-bit RSA modulus 𝑁 = 𝑝𝑞 such that 𝑝 and 𝑞 are 𝑘/2-bit
primes, 𝑣 and 𝑣 are 𝑡-bit primes for another security parameter 𝑡 (smaller than 𝑘), and 𝑢𝑣|(𝑝 − 1) and
𝑢𝑣|(𝑞 − 1), and (iii) elements 𝑔, ℎ ∈ ℤ∗ே such that 𝑔 has order 𝑢𝑣𝑣 and ℎ has order 𝑣𝑣. Given a
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message 𝑚 ∈ ℤ௨, encrypƟon is performed as 𝐸𝑛𝑐(𝑚) = 𝑔ℎ mod 𝑁, where 𝑟 ோ← {0, 1}ଶ.ହ௧. We refer
the reader to the original publicaƟons [50] and [21, 20], respecƟvely, for any addiƟonal informaƟon.

Garbled circuit evaluaƟon. Originated in Yao's work [59], garbled circuit evaluaƟon allows two parƟes
to securely evaluate any funcƟon represented as a boolean circuit. The basic idea is that, given a Boolean
circuit composed of gates, one party 𝑃ଵ creates a garbled circuit by assigning to each wire two randomly
chosen labels (one corresponding to 0 and the other corresponding to 1). 𝑃ଵ also encodes gate informaƟon
in a way that given labels corresponding to the input wires (encoding specific inputs), the label correspond-
ing to the output of the gate on those inputs can be recovered. The second party, 𝑃ଶ, evaluates the circuit
using labels corresponding to inputs of both 𝑃ଵ and 𝑃ଶ (without learning anything in the process since 𝑃ଶ
does not know the meaning of the (random) labels that it sees during evaluaƟon). At the end, the result of
the computaƟon can be recovered by linking the computed output labels to the bits which they encode.

Recent literature provides opƟmizaƟons that reduce computaƟon and communicaƟon overhead asso-
ciated with circuit construcƟon and evaluaƟon. Kolesnikov and Schneider [40] describe an opƟmizaƟon
that permits XOR gates to be evaluated for free, i.e., there is no communicaƟon overhead associated with
such gates and their evaluaƟon does no involve cryptographic funcƟons. Pinkas et al. [51] addiƟonally give
a mechanism for reducing communicaƟon complexity of binary gates by 25%: now each gate can be speci-
fied by encoding only three outcomes of the gate instead of all four. Finally, Kolesnikov et al. [39] improve
the complexity of certain commonly used operaƟons such as addiƟon, mulƟplicaƟon, comparison, etc. by
reducing the number of non-XOR gates: adding two 𝑛-bit integers requires 5𝑛 gates, 𝑛 of which are non-
XOR gates; comparing two 𝑛-bit integers requires 4𝑛 gates, 𝑛 of which are non-XOR gates; and compuƟng
the minimum of 𝑡 𝑛-bit integers (without the locaƟon of the minimum value) requires 7𝑛(𝑡 − 1) gates,
2𝑛(𝑡 − 1) of which are non-XOR gates. Garbling and evaluaƟon of large circuits can also be pipelined [32],
so that the enƟre circuit does not have to reside in memory.

With the above techniques, evaluaƟng a non-XORgates involves one invocaƟonof the hash funcƟon [40]
(which is assumed to be correlaƟon robust [42]) or one call to AES [7]. During garbled circuit evaluaƟon,
𝑃ଶ directly obtains keys corresponding to 𝑃ଵ's inputs from 𝑃ଵ and engages in the oblivious transfer (OT)
protocol to obtain keys corresponding to 𝑃ଶ's inputs.
Oblivious Transfer. In 1-out-of-2 Oblivious Transfer, 𝑂𝑇ଶଵ, one party, the sender, has as its input two strings
𝑚, 𝑚ଵ and another party, the receiver, has as its input a bit 𝑏. At the end of the protocol, the receiver learns
𝑚 and the sender learns nothing. Similarly, in 1-out-of-𝑁 OT the receiver obtains one of the𝑁 strings held
by the sender. There is a rich body of research literature on OT, and in this chapter we use its efficient
implementaƟon from [47] as well as OT extension from [35] that reduces a large number of OT protocol
execuƟons to 𝜅 of them, where 𝜅 is the security parameter. This, in parƟcular, means that obtaining the
keys corresponding to 𝑃ଶ's inputs in garbled circuit evaluaƟon by 𝑃ଶ incurs only small overhead. We note
that there are other very recent OT extensions such as [38] and [2] that further reduce the cost of OT and
their usage in our soluƟon will reduce the overhead that we report.

4 Secure Iris Identiϐication
In this secƟon, we present our soluƟon for biometric idenƟficaƟon based on iris codes. Our soluƟon com-
bines homomorphic encrypƟon with garbled circuit evaluaƟon. The raƟonale behind building hybrid pro-
tocols is that the use of homomorphic encrypƟon will allow an encrypted template 𝑋 to be used in compar-
isons to many 𝑌 ∈ 𝐷, while garbled circuits are very fast for certain operaƟons such as comparisons, where
techniques based on homomorphic encrypƟon are much more costly.
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4.1 Structural Optimization of the Computation
As indicated in EquaƟon 1, compuƟng the distance between two iris codes involves securely evaluaƟng the
division operaƟon. While techniques for carrying out this operaƟon using secure mulƟ-party computaƟon
are known (see, e.g., [3, 17, 9, 18]), their performance in pracƟce is oŌen substanƟally slower than per-
formance of other elementary operaƟons, which poses a problem for this applicaƟon. For an example,
according to [8], two-party evaluaƟon of garbled circuits for division produced by Fairplay [45] takes sev-
eral seconds for numbers of length 24--28 bits, but circuits for longer integers could not be constructed
due to the rapidly increasing memory requirements of Fairplay. More recent results achieve faster circuit
evaluaƟon, but performance of this operaƟon normally is not reported.1 Fortunately, in our case the com-
putaƟon can be rewriƩen to completely avoid this operaƟon and replace it with mulƟplicaƟon. That is,
using the notaƟon

𝐻𝐷(𝑋, 𝑌) = ||(𝑋⊕ 𝑌) ∩ 𝑀(𝑋) ∩ 𝑀(𝑌)|| / ||𝑀(𝑋) ∩ 𝑀(𝑌)|| = 𝐷(𝑋, 𝑌) /𝑀(𝑋, 𝑌),

instead of tesƟng whether𝐻𝐷(𝑋, 𝑌)
?
< 𝑇, we can test whether𝐷(𝑋, 𝑌)

?
< 𝑇 ⋅𝑀(𝑋, 𝑌). While the computa-

Ɵon of the minimum distance as used in EquaƟon 2 is no longer possible, we can replace it with equivalent
computaƟon that does not increase its cost. Now the computaƟon becomes:

𝐷(𝑋, 𝐿𝑆(𝑌))
?
< 𝑇 ⋅ 𝑀(𝑋, 𝐿𝑆(𝑌)) ∨ ⋯ ∨ 𝐷(𝑋, 𝑅𝑆(𝑌))

?
< 𝑇 ⋅ 𝑀(𝑋, 𝑅𝑆(𝑌)) (5)

When this computaƟon is carried out over real numbers, 𝑇 lies in the range [0, 1]. In our case, it is desirable
to carry out the computaƟon over the integers, whichmeans that we ''''scale up'' all values with the desired
level of precision. That is, by using ℓ bits to achieve desired precision, we mulƟply 𝐷(𝑋, 𝑌) by 2ℓ and let 𝑇
range between 0 and 2ℓ. Now 2ℓ𝐷(𝑋, 𝑌) and 𝑇 ⋅ 𝑀(𝑋, 𝑌) can be represented using ⌈log𝑚⌉ + ℓ bits.

4.2 Base Protocol
In what follows, we first describe the basic privacy-preserving protocol for iris codes. The consecuƟve sec-
Ɵon presents opƟmizaƟons and the resulƟng performance of the protocol. At the high level, the soluƟon
consists of using encrypted data to compute (parƟal) distances between biometric templates, aŌer which
we switch to garbled circuit evaluaƟon for finishing the computaƟon and producing the final result.

With this approach, the client 𝐶 generates a public-private key pair (𝑝𝑘, 𝑠𝑘) for an addiƟvely homomor-
phic encrypƟon scheme and distributes the public key 𝑝𝑘. This is a one-Ɵme setup cost for the client for all
possible invocaƟons of this protocol with any number of servers. During the protocol itself, the secure com-
putaƟon proceeds as specified in EquaƟon 5. In the beginning, 𝐶 sends its inputs encrypted with 𝑝𝑘 to the
server 𝑆. At the server side, the computaƟon first proceeds using homomorphic encrypƟon, but later the
client and the server convert the intermediate result into a secret-shared form and finish the computaƟon
using garbled circuit evaluaƟon. As menƟoned before, we employ this structure due to the fact that secure
two-party computaƟon of the comparison operaƟon is significantly faster using garbled circuit evaluaƟon,
but the rest of the computaƟon in our case is best performed on encrypted values.

To compute𝐷(𝑋, 𝑌) = ∑
ୀଵ(𝑋⊕𝑌)∧𝑀(𝑋)∧𝑀(𝑌) using algebraic computaƟon, we use𝑋⊕𝑌 =

𝑋(1 − 𝑌) + (1 − 𝑋)𝑌 and obtain:

𝐷(𝑋, 𝑌) =



ୀଵ

(𝑋(1 − 𝑌) + (1 − 𝑋)𝑌)𝑀(𝑋)𝑀(𝑌).

1Secure evaluaƟon of the division operaƟon in the mulƟ-party seƫng was reported in [30, 12, 1], but such techniques cannot
be directly used in the two-party seƫng that we employ.
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Input:  has biometric template , ெ() and key pair (, ௦); ௌ has a database  composed of biometric templates in the
form ,ெ().
Output:  learns what records in  resulted in match with  if any, i.e., it learns a bit as a result of comparison of  with each
 ∈ .
Protocol steps:

1. For each  ୀ ଵ,…,,  computes encrypƟons ⟨భ, మ⟩ ୀ ⟨ா(ெ()), ா((ଵ ି )ெ())⟩ and sends them to
ௌ.

2. For each  ୀ ଵ,…,, ௌ computes encrypƟon of ெ() by seƫng య ୀ భ ⋅ మ ୀ ா(ெ()) ⋅ ா((ଵ ି
)ெ()) ୀ ா(ெ()).

3. For each record  in the database, ௌ and  perform the following steps in parallel:

(a) For each amount of shiŌ  ୀ ି,…, , …, , ௌ rotates the bits of  by the appropriate number of posiƟons to
obtain ೕ and proceeds with all ೕ's in parallel.

i. To compute (⊕ೕ )ெ()ெ(ೕ ) ୀ ((ଵିೕ )ା(ଵି)ೕ )ெ()ெ(ೕ ) in encrypted form, ௌ computes

ೕ ୀ (భషೊ
ೕ
 )ಾ(ೋ )

భ ⋅ ೊ
ೕ
ಾ(ೋ )

మ ୀ ா(ெ()(ଵ ି ೕ )ெ(ೕ ) ା (ଵ ି )ெ()ೕெ(ೕ )).
ii. ௌ adds the values contained in ೕ 's to obtain ೕ ୀ ∏

సభ 
ೕ
 ୀ ா(∑

సభ( ⊕ ೕ )ெ()ெ(ೕ )) ୀ
ா(||( ⊕ ೕ) ∩ ெ() ∩ ெ(ೕ)||). ௌ then ''liŌs up'' the result, blinds, and randomizes it as ೕ ୀ
(ೕ)మℓ ⋅ ா(ೕೄ), where ೕೄ

ೃ← {, ଵ}⌈ౢౝ⌉శℓశഉ, and sends the resulƟng ೕ to .

iii. To obtain ்(||ெ() ∩ெ(ೕ)||), ௌ computes ௗೕ
 ୀ ಾ(ೋ )

య ୀ ா(ெ() ⋅ ெ(ೕ )) and ௗೕ ୀ (∏
సభ ௗ

ೕ
 ) ୀ

ா(்(∑
సభெ()ெ(ೕ ))). ௌ blinds and randomizes the result as ೕ ୀ ௗೕ ⋅ ா(௧ೕೄ), where ௧ೕೄ

ೃ←
{, ଵ}⌈ౢౝ⌉శℓశഉ, and sends ೕ to .

iv.  decrypts the received values and sets ೕ ୀ (ೕ) and ௧ೕ ୀ (ೕ).
(b)  and ௌ perform ଶାଵ comparisons and OR of the results of the comparisons using garbled circuit.  enters ೕ's

and ௧ೕ's, ௌ enters ିೕೄ's and ି௧ೕೄ's, and  learns bit  computed as ⋁
ೕసష((ೕ ି ೕೄ)

?
ழ (௧ೕ ି ௧ೕೄ)). To achieve

this, ௌ creates the garbled circuit and sends it to .  obtains keys corresponding to its inputs using OT, evaluates
the circuit, and ௌ sends to  the key-value mapping for the output gate.

Figure 1: Secure two-party protocol for iris idenƟficaƟon.

𝑀(𝑋, 𝑌) is computed as∑
ୀଵ𝑀(𝑋)𝑀(𝑌). Then if the server obtains encrypƟons of𝑋𝑀(𝑋), (1−𝑋)𝑀(𝑋),

and𝑀(𝑋) for each 𝑖 from the client, it will be able to compute𝐷(𝑋, 𝑌) and𝑀(𝑋, 𝑌) using its knowledge of
the 𝑌 's and the homomorphic properƟes of the encrypƟon. Figure 1 describes the protocol, in which aŌer
receiving 𝐶's encrypted values 𝑆 produces 𝐸𝑛𝑐(𝑀(𝑋))'s and proceeds to compute𝐷(𝑋, 𝑌) and𝑀(𝑋, 𝑌)
in parallel for each 𝑌 in its database. Here 𝑌 denotes biometric template 𝑌 shiŌed by 𝑗 posiƟons and 𝑗
ranges from −𝑐 to 𝑐. At the end of steps 3(a).i and 3(a).ii the server obtains 𝐸𝑛𝑐(2ℓ𝐷(𝑋, 𝑌) + 𝑟ௌ) for a
randomly chosen 𝑟ௌ of its choice, and at the end of step 3(a).iii 𝑆 obtains 𝐸𝑛𝑐(𝑇 ⋅ 𝑀(𝑋, 𝑌) + 𝑡ௌ) for a
random 𝑡ௌ of its choice. The server sends these values to the client who decrypts them. Therefore, at the
end of step 3(a) 𝐶 holds 𝑟 = 2ℓ𝐷(𝑋, 𝑌) + 𝑟ௌ and 𝑡 = 𝑇 ⋅ 𝑀(𝑋, 𝑌) + 𝑡ௌ and 𝑆 holds −𝑟ௌ and −𝑡 , i.e.,
they addiƟvely share 2ℓ𝐷(𝑋, 𝑌) and 𝑇 ⋅ 𝑀(𝑋, 𝑌).

What remains to compute is 2𝑐 + 1 comparisons (one per each 𝑌) followed by 2𝑐 OR operaƟons as
specified by EquaƟon 5. This is accomplished using garbled circuit evaluaƟon, where 𝐶 enters 𝑟 's and 𝑡 's
and 𝑆 enters 𝑟ௌ's and 𝑡ௌ's and they learn a bit, which indicates whether 𝑌 was a match.

Note that since 𝑟 's, 𝑟ௌ's, 𝑡 's and 𝑡ௌ's are used as inputs to the garbled circuit andwill need to be added
inside the circuit, we want them to be as small as possible. Therefore, instead of providing uncondiƟonal
hiding by choosing 𝑡ௌ and 𝑟 from ℤ∗ே (where 𝑁 is from 𝑝𝑘), the protocol achieves staƟsƟcal hiding by
choosing these random values to be 𝜅 bits longer than the values that they protect, where 𝜅 is a security
parameter (so that the value 𝑡 revealed to 𝐶 staƟsƟcally hides the computed distance).
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4.3 Optimizations
Pre-computaƟonandoffline communicaƟon. Similar to other literature on secure biometric idenƟficaƟon,
we disƟnguish between offline and online stages, where any computaƟon and communicaƟon that does
not depend on the inputs of the parƟcipaƟng parƟes can bemoved to the offline stage. In our protocol, first
noƟce that most modular exponenƟaƟons (themost expensive operaƟon in the encrypƟon scheme) can be
precomputed. That is, the client needs to produce 2𝑚 encrypƟons of bits. Because both𝑚 and the average
number of 0's and 1's in a biometric template and a mask are known, the client can produce a sufficient
number of bit encrypƟons in advance. In parƟcular, 𝑋 normally will have 50% of 0's and 50% of 1's, while
75% (or a similar number) of 𝑀(𝑋)'s bits are set to 1 and 25% to 0 during processing. Let 𝑝 and 𝑝ଵ (𝑞
and 𝑞ଵ) denote the fracƟon of 0's and 1's in an iris code (resp., its mask), where 𝑝 + 𝑝ଵ = 𝑞 + 𝑞ଵ = 1.
Therefore, to have a sufficient supply of ciphertexts to form tuples ⟨𝑎ଵ, 𝑎ଶ⟩, the client needs to precompute
(2𝑞+𝑞ଵ(𝑝ଵ+𝜀)+𝑞ଵ(𝑝+𝜀))𝑚 = (1+𝑞+2𝑞ଵ𝜀)𝑚 encrypƟons of 0 and (𝑞ଵ(𝑝ଵ+𝜀)+𝑞ଵ(𝑝+𝜀))𝑚 =
𝑞ଵ(1 + 2𝜀)𝑚 encrypƟons of 1, where 𝜀 is used as a cushion since the number of 0's and 1's in 𝑋 might not
be exactly 𝑝 and 𝑝ଵ, respecƟvely. Then at the Ɵme of the protocol the client simply uses the appropriate
ciphertexts to form its transmission.

Similarly, the server can precompute a sufficient supply of encrypƟons of 𝑟ௌ's and 𝑡ௌ's for all records.
That is, the server needs for produce2(2𝑐+1)|𝐷| encrypƟons of different randomvalues of length ⌈log𝑚⌉+
ℓ+𝜅, where |𝐷| denotes the size of the database𝐷. The server also generates one garbled circuit per record
𝑌 in its database (for step 3(b) of the protocol) and communicates the circuits to the client. In addiƟon, the
most expensive part of the oblivious transfer can also be performed during the offline stage, as detailed
below.
OpƟmized mulƟplicaƟon. Server's computaƟon in steps 3(a).i and 3(a).iii of the protocol can be signifi-

cantly lowered as follows. To compute ciphertexts 𝑏 , 𝑆 needs to calculate 𝑎(ଵି
ೕ
 )ெ(

ೕ
 )

ଵ ⋅ 𝑎
ೕ
ெ(

ೕ
 )

ଶ . Since
the bits 𝑌 and𝑀(𝑌


 ) are known to 𝑆, this computaƟon can be rewriƩen using one of the following cases:

• 𝑌 = 0 and𝑀(𝑌 ) = 0: in this case both (1 − 𝑌 )𝑀(𝑌

 ) and 𝑌


𝑀(𝑌


 ) are zero, which means that

𝑏 should correspond to an encrypƟon of 0 regardless of 𝑎ଵ and 𝑎ଶ. Instead of having 𝑆 create an
encrypƟon 0, we set 𝑏 to the empty value, i.e., it is not used in the computaƟon of 𝑏 in step 3(a).ii.

• 𝑌 = 1 and𝑀(𝑌 ) = 0: the same as above.

• 𝑌 = 0 and𝑀(𝑌 ) = 1: in this case (1−𝑌 )𝑀(𝑌

 ) = 1 and 𝑌𝑀(𝑌


 ) = 0, which means that 𝑆 sets

𝑏 = 𝑎ଵ.

• 𝑌 = 1 and 𝑀(𝑌 ) = 1: in this case (1 − 𝑌 )𝑀(𝑌

 ) = 0 and 𝑌𝑀(𝑌


 ) = 1, and 𝑆 therefore sets

𝑏 = 𝑎ଶ.

The above implies that only 𝑞ଵ𝑚 ciphertexts 𝑏 need to be added in step 3(a).ii to form 𝑏 (i.e., 𝑞ଵ𝑚 − 1
modular mulƟplicaƟons to compute the hamming distance between𝑚-element strings).

Similar opƟmizaƟon applies to the computaƟon of 𝑑 and 𝑑 in step 3(a).iii of the protocol. That is,
when𝑀(𝑌 ) = 0, 𝑑 is set to the empty value and is not used in the computaƟon of 𝑑; when𝑀(𝑌 ) = 1,
𝑆 sets 𝑑 = 𝑎ଷ. Consequently, 𝑞ଵ𝑚 ciphertexts are used in compuƟng 𝑑.

To further reduce the number of modular mulƟplicaƟons, we can adopt the idea from [49], which con-
sists of precompuƟng all possible combinaƟons for ciphertexts at posiƟons 𝑖 and 𝑖 + 1 and reducing the
number of modular mulƟplicaƟons used during processing a database record in half. In our case, the value
of 𝑏 𝑏


ାଵ requires computaƟon only when 𝑀(𝑌 ) = 𝑀(𝑌ାଵ) = 1. In this case, compuƟng 𝑎ଵ𝑎(ାଵ)ଵ,

𝑎ଵ𝑎(ାଵ)ଶ, 𝑎ଶ𝑎(ାଵ)ଵ, and 𝑎ଶ𝑎(ାଵ)ଶ, for each odd 𝑖 between 1 and 𝑚 − 1 will cover all possibiliƟes.
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Note that these values need to be computed once for all possible shiŌ amounts of the biometric data
(since only server's 𝑌's are shiŌed). Depending on the distribuƟon of the set bits in each 𝑀(𝑌), the num-
ber of modular mulƟplicaƟon now will be between 𝑞ଵ𝑚/2 (when 𝑀(𝑌) = 𝑀(𝑌ାଵ) for each odd 𝑖) and
𝑚(𝑞+(1−2𝑞)/2) = 𝑚/2 (when𝑀(𝑌) ≠ 𝑀(𝑌ାଵ) for as many odd 𝑖's as possible). This approach can
be also applied to the computaƟon of 𝑑 (where only the value of 𝑎ଷ𝑎(ାଵ)ଷ needs to be precomputed for
each odd 𝑖) resulƟng in the same computaƟonal savings during computaƟon of the hamming distance. Fur-
thermore, by precompuƟng the combinaƟons of more than two values addiƟonal savings can be achieved
during processing of each 𝑌.
OpƟmized encrypƟon scheme. As it is clear from the protocol descripƟon, its performance crucially re-
lies on the performance of the underlying homomorphic encrypƟon scheme for encrypƟon, addiƟon of
two encrypted values, and decrypƟon. Instead of uƟlizing a general purpose encrypƟon scheme such as
Paillier, we turn our aƩenƟon to schemes of restricted funcƟonality which promise to offer improved ef-
ficiency. In parƟcular, the DGK addiƟvely homomorphic encrypƟon scheme [21, 20] was developed to be
used for secure comparison, where each ciphertext encrypts a bit. In that seƫng, it has faster encrypƟon
and decrypƟon Ɵme than Paillier and each ciphertext has size 𝑘 using a 𝑘-bit RSA modulus (while Paillier
ciphertext has size 2𝑘). To be suitable for our applicaƟon, the DGK scheme can be modified to work with
plaintexts longer than one bit used in its original design. In that case, at decrypƟon Ɵme, one needs to addi-
Ɵonally solve the discrete logarithm problem where the base is 2-smooth using Pohlig-Hellman algorithm.
This means that decrypƟon uses addiƟonal 𝑂(𝑛) modular mulƟplicaƟons for 𝑛-bit plaintexts. Now recall
that in the protocol we encrypt messages of length ⌈log𝑚⌉+ ℓ+𝜅 bits. The use of the security parameter
𝜅 significantly increases the length of the plaintexts. We, however, noƟce that the DGK encrypƟon can be
setup to permit arithmeƟc on encrypted values such that all computaƟons on the underlying plaintexts are
carried modulo 2 for any 𝑛. For our protocol it implies that (i) the blinding values 𝑟ௌ and 𝑡ௌ can now be
chosen from the range [0, 2 − 1], where 𝑛 = ⌈log𝑚⌉ + ℓ, and (ii) this provides informaƟon-theoreƟc
hiding (thus improving the security properƟes of the protocol). This observaƟon has a profound impact not
only on the client decrypƟon Ɵme in step 3(a).iv (which decreases by about an order of magnitude), but
also on the consecuƟve garbled circuit evaluaƟon, where likewise the circuit size is significantly reduced in
size.
Circuit construcƟon. We construct garbled circuits using the most efficient techniques from [51] and
references therein. By performing addiƟon modulo 2 and eliminaƟng gates which have a constant value
as one of their inputs, we reduce the complexity of the circuit for addiƟon to 𝑛 − 1 non-XOR gates and
5(𝑛 − 1) − 1 total gates. Similarly, aŌer eliminaƟng gates with one constant input, the complexity of the
circuit for comparison of 𝑛-bit values becomes 𝑛 non-XOR gates and 4𝑛 − 2 gates overall. Since in the
protocol there are two addiƟons and one comparison per each 𝑗 followed by 2𝑐 OR gates, the size of the
overall circuit is 14(𝑛−1)(2𝑐+1)+2𝑐 gates, (3𝑛−2)(2𝑐+1)+2𝑐 of which are non-XOR gates. Note that
this circuit does not use mulƟplexers, which are required (and add complexity) during direct computaƟon
of minimum.
Oblivious transfer. The above circuit requires each party to supply 2𝑛(2𝑐+1) input bits, and a new circuit
is used for each 𝑌 in 𝐷. Similar to some other techniques, the combinaƟon of fast OT and OT extension
(we use [35] and [47]) achieves the best performance in our case. Let the server create each circuit and the
client evaluate them. Using the results of [35], performing 𝑂𝑇ଶଵ the total of 2𝑛(2𝑐 + 1)|𝐷| Ɵmes, where
the client receives a 𝜅-bit string as a result of each OT for a a security parameter 𝜅, can be reduced to 𝜅
invocaƟons of𝑂𝑇ଶଵ (that communicates to the receiver 𝜅-bit strings) at the cost of 4𝜅⋅2𝑛(2𝑛+1)|𝐷| bits of
communicaƟon and4𝑛(2𝑐+1) applicaƟons of a hash funcƟon for the sender and2𝑛(2𝑐+1) applicaƟons for
the receiver. Then 𝜅 𝑂𝑇ଶଵ protocols can be implemented using the construcƟon of [47] with low amorƟzed
complexity, where the sender performs 2+ 𝜅 and the receiver performs 2𝜅 modular exponenƟaƟons with
the communicaƟon of 2𝜅ଶ bits and 𝜅 public keys. The OT protocols can be performed during the offline
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stage, while the addiƟonal communicaƟon takes place once the inputs are known.
Further reducing online communicaƟon. If transmiƫng 2𝑚 ciphertexts during the online stage of the
protocol (which amounts to a few hundred KB for our set of parameters) consƟtutes a burden, this commu-
nicaƟon can be performed at the offline stage before the protocol begins. This can be achieved using the
technique of [49], where the client transmits 2𝑚 encrypƟons of randomly chosen bits 𝑢ଵ, …, 𝑢ଶ during
the offline stage, and the online communicaƟon consists of 2𝑚 bits 𝑣ଵ, …, 𝑣ଶ. Each bit 𝑣 corresponds
to the XOR of the bit 𝑤 that the client wants to use in the protocol with the previously communicated
random bit 𝑢. AŌer receiving the 2𝑚-bit correcƟon string 𝑤ଵ ⊕ 𝑢ଵ, …, 𝑤ଶ ⊕ 𝑢ଶ, the server needs
to compute encrypƟon of 𝑤 's using 𝐸𝑛𝑐(𝑢) and 𝑣, which is done by XORing 𝑢 and 𝑣 inside the en-
crypƟon. Using 𝑢 ⊕ 𝑣 = 𝑢(1 − 𝑣) + (1 − 𝑢)𝑣 = 𝑢 + 𝑣 − 2𝑢𝑣, we see that when 𝑣 = 0, the
server can simply set 𝐸𝑛𝑐(𝑤) = 𝐸𝑛𝑐(𝑢), but when 𝑣 = 1, the server will need to perform subtracƟon
of (encrypted) 𝑢. While subtracƟon is usually one of the most expensive operaƟons, note that because
of our use of DGK encrypƟon with short plaintexts the subtracƟon operaƟons can be performed on a ci-
phertext significantly faster than using generic full-domain encrypƟon schemes such as Paillier. The speed
up is on the order of 𝑘/𝑛 ≈ 50, where 𝑘 ≥ 1024 is the security parameter for a public-key encrypƟon
scheme and 𝑛 = ⌈log𝑚⌉ + ℓ = 20 is the length of the values we operate on. Furthermore, this enƟre
computaƟon can be completely removed from the online stage if, upon the receipt of 𝐸𝑛𝑐(𝑢), the server
computes 𝐸𝑛𝑐(1 − 𝑢) during the offline stage. Then when the protocol begins, the server sets either
𝐸𝑛𝑐(𝑤) = 𝐸𝑛𝑐(𝑢) or 𝐸𝑛𝑐(𝑤) = 𝐸𝑛𝑐(1 − 𝑢) depending on the bit 𝑣 it receives.

4.4 Security Analysis
Security of the iris protocol relies on the security of the underlying building blocks. In parƟcular, we need
to assume that (i) the DGK encrypƟon scheme is semanƟcally secure (which was shown under a hardness
assumpƟon that uses subgroups of an RSA modulus [21, 20]); (ii) garbled circuit evaluaƟon is secure (which
was shown in [41], but the version we use [40] relies on a hash funcƟon which is assumed to be correlaƟon
robust or otherwisemodeled as a randomoracle); and (iii) the oblivious transfer is secure aswell (to achieve
this, techniques of [35] require the hash funcƟon to be correlaƟon robust and the use of a pseudo-random
number generator, while techniques of [47] model the hash funcƟons as a random oracle and use the
computaƟonal Diffie-Hellman (CDH) assumpƟon). Therefore, assuming the security of the DGK encrypƟon,
CDH, and using the random oracle model for hash funcƟons is sufficient for our approach.

To show the security of the protocol, we sketch how to simulate the view of each party using its inputs
and outputs alone. If such simulaƟon is indisƟnguishable from the real execuƟon of the protocol, for semi-
honest parƟes this implies that the protocol does not reveal any unintended informaƟon to the parƟcipants
(i.e., they learn only the output and what can be deduced from their respecƟve inputs and outputs).

First, consider the client 𝐶. The client's input consists of its biometric template 𝑋,𝑀(𝑋) and the private
key, and its outputs consists of a bit 𝑏 for each record in 𝑆's database 𝐷. A simulator that is given these
values simulates 𝐶's view by sending encrypted bits of 𝐶's input to the server as prescribed in step 1 of
the protocol. It then simulates the messages received by the client in step 3(a).iii using encrypƟons of
two randomly chosen strings 𝑟 and 𝑡 of length 𝑛. The simulator next creates a garbled circuit for the
computaƟon given in step 3(b) that, on input client's 𝑟 's and 𝑡 's computes bit 𝑏, sends the circuit to the
client, and simulates the OT. Note that the simulator can set the other party's inputs in such a way that the
computaƟon results in bit 𝑏. It is clear that given secure implementaƟon of garbled circuit evaluaƟon in
the real protocol, the client cannot disƟnguish simulaƟon from real protocol execuƟon. Furthermore, the
values that 𝐶 recovers in step 3(a).iv of the protocol are distributed idenƟcally to the values used in the
real protocol execuƟon that uses DGK encrypƟon (and they are staƟsƟcally indisƟnguishable when other
encrypƟon schemes are used).

Now consider the server's view. The server has its database 𝐷 consisƟng of 𝑌,𝑀(𝑌) and the threshold
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Table 1: Breakdown of the performance of the iris idenƟficaƟon protocol.

Setup Offline
EncrypƟon Circuit Total

𝑐 = 5 1398 msec + 71 msec/rec 1780 msec + 8.5 msec/rec 3178 msec + 79.5 msec/rec
Server 𝑐 = 0 1398 msec + 6.5 msec/rec 1457 msec + 0.75 msec/rec 2855 msec + 7.25 msec/rec

𝑐 = 5 with [50] 131.37 sec + 780 msec/rec 1780 msec + 8.5 msec/rec 131.37 sec + 993.5 msec/rec
𝑐 = 5 11.93 sec 1693 msec + 3.39 msec/rec 13.62 sec + 3.39 msec/rec

Client 𝑐 = 0 11.93 sec 1055 msec + 0.34 msec/rec 12.99 sec + 0.34 msec/rec
𝑐 = 5 with [50] 161.37 sec 1693 msec + 3.39 msec/rec 163.06 sec + 3.39 msec/rec

𝑐 = 5 512KB 11.6KB + 22.1KB/rec 524KB + 22.1KB/rec
Comm 𝑐 = 0 512KB 11.6KB + 2KB/rec 524KB + 2KB/rec

𝑐 = 5 with [50] 1024KB 11.6KB + 22.1KB/rec 1036KB + 22.1KB/rec

Setup Online
EncrypƟon Circuit Total

𝑐 = 5 108 msec + 148 msec/rec 1.25 msec/rec 89 msec + 149.25 msec/rec
Server 𝑐 = 0 108 msec + 13.6 msec/rec 0.11 msec/rec 89 msec + 13.71 msec/rec

𝑐 = 5 with [50] 427 msec + 586 msec/rec 1.25 msec/rec 427 msec + 587.25 msec/rec
𝑐 = 5 20 msec/rec 2.61 msec/rec 22.61 msec/rec

Client 𝑐 = 0 1.8 msec/rec 0.22 msec/rec 2.02 msec/rec
𝑐 = 5 with [50] 197 msec/rec 2.61 msec/rec 199.61 msec/rec

𝑐 = 5 0.5 KB + 2.7 KB/rec 17.2 KB/rec 0.5 KB + 19.9 KB/rec
Comm 𝑐 = 0 0.5 KB + 0.2 KB/rec 1.6 KB/rec 0.5 KB + 1.8 KB/rec

𝑐 = 5 with [50] 0.5 KB + 5.5 KB/rec 17.2 KB/rec 0.5 KB + 22.7 KB/rec

𝑇 as the input and no output. In this case, a simulator with access to𝐷 first sends to 𝑆 ciphertexts (as in step
1 of the protocol) that encrypt bits of its choice. For each 𝑌 ∈ 𝐷, 𝑆 performs its computaƟon in step 3(a) of
the protocol and forms garbled circuits as specified in step 3(b). The server and the simulator engage in the
OT protocol, where the simulator uses arbitrary bits as its input to the OT protocol and the server sends the
key-value mapping for the output gate. It is clear that the server cannot disƟnguish the above interacƟon
from the real protocol execuƟon. In parƟcular, due to semanƟc security of the encrypƟon scheme 𝑆 learns
no informaƟon about the encrypted values and due to security of OT 𝑆 learns no informaƟon about the
values chosen by the simulator for the garbled circuit.

4.5 Implementation and Performance
The implementaƟon of the secure iris idenƟficaƟon protocol that we describe was performed in C using
MIRACL library [34] for cryptographic operaƟons. It also used the DGK encrypƟon scheme with a 1024-bit
modulus and another security parameter 𝑡 set to 160, as suggested in [21, 20]. To illustrate the advantage
of the tools the soluƟon uƟlizes, we also give performance of selected experiments using Paillier encryp-
Ɵon [50]. The Paillier encrypƟon scheme was implemented using a 1024-bit modulus and a number of
opƟmizaƟons suggested in [50] for best performance. In parƟcular, small generator 𝑔 = 2 was used to
achieve lower encrypƟon Ɵme, and decrypƟon is sped up using pre-computaƟon and Chinese remainder
computaƟon (see [50], secƟon 7 for more detail). The security parameters 𝑘 = 1024 for public-key cryp-
tography and 𝜅 = 80 for symmetric and staƟsƟcal security are used for compaƟbility with experiments
reported in other sources, while larger security parameters would be preferred today. The experiments
were run on an Intel Core 2 Duo 2.13 GHz machine running Linux (kernel 2.6.35) with 3GB of RAM and gcc
version 4.4.5.

Table 1 shows performance of the secure iris idenƟficaƟon protocol and its components. The perfor-
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mance was obtained using the following set of parameters: the size of iris code and mask𝑚 = 2048 (this
value of 𝑚 is used in commercial iris recogniƟon soŌware), 75% of bits are reliable in each iris code, and
the length of (plaintext) values used in the protocol is 20 bits (i.e., 𝑛 = ⌈log𝑚⌉+ℓ = 20 in Figure 1). All op-
ƟmizaƟons described earlier in this secƟon were implemented. In the implementaƟon, upon the receipt of
client's data, the server precomputes all combinaƟons for pairs of ciphertexts 𝑏𝑏ାଵ in step 3(a).ii (one-Ɵme
cost of the total of 4(𝑚/2) modular mulƟplicaƟons) and all combinaƟons of 4 elements 𝑑𝑑ାଵ𝑑ାଶ𝑑ାଷ
in step 3(a).iii (one-Ɵme cost of 11(𝑚/4)modular mulƟplicaƟons). This cuts the server's Ɵme for process-
ing each 𝑌 by more than a half. Furthermore, the constant overhead associated with the OT (circuit) can
be reduced in terms of both communicaƟon and computaƟon for both parƟes if public-key operaƟons are
implemented over ellipƟc curves.

The table shows performance using three different configuraƟons: (i) the amount of rotaƟon 𝑐 was set
to 5, (ii) no rotaƟon was used by seƫng 𝑐 = 0 (this is used when the images are well aligned, e.g., during
supervised image acquisiƟon or when simultaneously acquiring images of both eyes), and (iii) with 𝑐 = 5
using Paillier encrypƟon instead of DGK scheme. In the table, we divide the computaƟon and communica-
Ɵon into offline pre-computaƟon and online protocol execuƟon. No inputs are assumed to be known by
any party at pre-computaƟon Ɵme. Some of the overhead depends on the server's database size, in which
case the computaƟon and communicaƟon are indicated per record (using notaƟon ''/rec''). The overhead
associated with the part of the protocol that uses homomorphic encrypƟon is shown separately from the
overhead associated with garbled circuits. The offline and online computaƟon for the part based on homo-
morphic encrypƟon is computed as described in SecƟon 4.3. For circuits, garbled circuit creaƟon, commu-
nicaƟon, and some of OT is performed at the offline stage, while the rest of OT (as described in SecƟon 4.3)
and garbled circuit evaluaƟon take place during the online protocol execuƟon. We also note that while
the table lists computaƟonal overhead of each party separately, the overall runƟme for a single biometric
comparison will be approximately the runƟme of the server (which is typically faster than the client and
is not expected to be the boƩleneck of the protocol) and the runƟme of the server. The reason is that
computaƟon is iniƟally carried out on encrypted data by the server, followed by the OT between the client
and the server, followed by the client evaluaƟng the garbled circuit. When, however, the parƟes perform
a number of biometric comparisons, the amorƟzed Ɵme per record in the database is going to be lower
(i.e., it is the maximum of the server's and client's Ɵme instead of their sum) because all records can be
evaluated in parallel and the amount of communicaƟon is low.

As the table indicates, the design of the soluƟon and the opƟmizaƟons employed in it allow for a parƟc-
ularly efficient performance. In parƟcular, comparison of two iris codes, which among other things includes
computaƟon of 2(2𝑐+1) = 22Hamming distances (i.e., for the numerator and denominator in EquaƟon 1)
over 2048-bit biometric templates in encrypted form, is done in 0.15 sec. This is comparable in speed to the
latest developments in other funcƟonaliƟes (e.g., [32, 15, 54], which can be used to compute the Hamming
distance) and in part due to the use of efficient DGK encrypƟon scheme and other opƟmizaƟons. When iris
images arewell aligned and no rotaƟon is necessary, our protocol requires only 14msec online computaƟon
Ɵme and under 2KB of data to compare two biometric templates.

5 Secure Fingerprint Identiϐication
Before proceeding with new techniques for fingerprint idenƟficaƟon based on minuƟae pairing, we first
illustrate how the techniques given in this chapter for iris idenƟficaƟon can be applied to other types of
biometric computaƟons such as FingerCodes. In parƟcular, they can be used to improve the efficiency of
the secure protocol for FingerCode idenƟficaƟon in [5].
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Input:  has biometric template  ୀ (௫భ, …, ௫) and DGK encrypƟon key pair (, ௦); ௌ has a database  composed of
biometric templates  ୀ (௬భ, …, ௬).
Output:  learns what records in  resulted in match with  if any, i.e., it learns a bit as a result of comparison of  with each
 ∈ .
Protocol steps:

1.  computes and sends to ௌ encrypƟons ா(ିଶ௫భ), …, ா(ିଶ௫), ா(∑
సభ ௫మ ).

2. For each  ୀ (௬భ, …, ௬) ∈ , ௌ and  perform in parallel:

(a) ௌ computes the encrypted distance ௗ between  and  as ௗ ୀ ா(∑
సభ ௫మ ) ⋅ ா(∑

సభ ௬మ
 ) ⋅

∏
సభ ா(ିଶ௫) ୀ ா(∑

సభ(௫ ି ௬)మ), blinds it as ௗᇲ ୀ ௗ ⋅ ா(ೄ), where ೄ
ೃ← {, ଵ}, and sends

ௗᇲ to .
(b)  decrypts the value it receives and sets  ୀ (ௗᇲ).

(c)  and ௌ engage in a secure protocol that computes (( ି ೄ) ୫୭ୢ ଶ)
?
ழ ்మ using garbled circuit evaluaƟon.

ௌ creates the circuit and sends it to  along with the key-value mapping for the output gate.  obtains keys
corresponding to its inputs from ௌ using OT, evaluates the circuit, and learns the result.

Figure 2: Secure two-party protocol for FingerCode idenƟficaƟon.

5.1 FingerCode Identiϐication
The computaƟon involved in FingerCode comparisons is very simple, which results in an extremely efficient
privacy-preserving realizaƟon. We rewrite the computaƟon in EquaƟon 4 as∑

ୀଵ(𝑥−𝑦)ଶ = ∑
ୀଵ(𝑥)ଶ+

∑
ୀଵ(𝑦)ଶ − ∑

ୀଵ 2𝑥𝑦 < 𝑇ଶ. In our protocol, the Euclidean distance is computed using homomorphic
encrypƟon, while the comparisons are performed using garbled circuits. The secure FingerCode protocol
is given in Figure 2: The client contributes encrypƟons of −2𝑥 and ∑(𝑥)ଶ to the computaƟon, while the
server contributes ∑(𝑦)ଶ and computes encrypƟon of −2𝑥𝑦 from−2𝑥. Note that by using 𝐸𝑛𝑐(−2𝑥)
instead of 𝐸𝑛𝑐(𝑥), the server's work for each 𝑌 is reduced since negaƟve values typically use significantly
longer representaƟons. The protocol in Figure 2 uses DGK encrypƟonwith the plaintext space of [0, 2−1].
To be able to represent the Euclidean distance, we need to set 𝑛 = ⌈log𝑚⌉+2ℓ+1, where ℓ is the bitlength
of elements 𝑥 and 𝑦. This implies that all computaƟon on plaintexts is performedmodulo 2; for instance,
2 − 2𝑥 is used in step 1 to form 𝐸𝑛𝑐(−2𝑥). The circuit used in step 2(c) takes two 𝑛-bit values, adds
them modulo 2, and compares the result to a constant as described in SecƟon 4.3.

Finally, some of the computaƟon can be performed offline: For the client it includes precompuƟng the
random values used in the𝑚+1 ciphertexts it sends in step 1 (i.e., the computaƟon of ℎ mod 𝑁). For the
server it includes precompuƟng 𝐸𝑛𝑐(𝑟ௌ), preparing a garbled circuit for each 𝑌, and one-Ɵme computaƟon
of random values for 𝐸𝑛𝑐(∑

ୀଵ(𝑦)ଶ) since the reuse of ciphertexts in this case does not affect security.
The client and the server also perform some of OT funcƟonality prior to protocol iniƟaƟon, as previously
discussed.

In literature on FingerCodes, each fingerprint in the server's database is represented by 𝑐 FingerCodes
that correspond to different orientaƟons of the same fingerprint, which improves the accuracy of compar-
ison. Then if the client is enƟtled to receiving all matches within the 𝑐 FingerCodes corresponding to the
same fingerprint, our protocol in Figure 2 computes exactly this funcƟonality. If, on the other hand, it is de-
sirable to output only a single bit for all 𝑐 instances of a fingerprint, it is easy to modify the circuit evaluated
in step 2(c) of the protocol to compute the OR of the bits produced by the original 𝑐 circuits.
Security. The security of this protocol is straighƞorward to show and we omit the details of the simulator
from the current descripƟon. As before, by using only tools known to be secure and protecƟng the informa-
Ɵon at intermediate stages, neither the client nor the server learns informaƟon beyond what the protocol
prescribes.
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Table 2: Breakdown of the performance of the FingerCode idenƟficaƟon protocol.

Offline
EncrypƟon Circuit Total

Server 3.6 msec + 3.9 msec/rec 1448 msec + 0.37 msec/rec 1451.6 msec + 4.3 msec/rec
Client 61 msec 1025 msec + 0.15 msec/rec 1086 msec + 0.15 msec/rec
Comm 0 11.6 KB + 1.26 KB/rec 11.6 KB + 1.26 KB/rec

Online
EncrypƟon Circuit Total

Server 0.22 msec + 1.37 msec/rec 0.05 msec/rec 0.22 msec + 1.42 msec/rec
Client 4.7 msec + 0.92 msec/rec 0.16 msec/rec 4.7 msec + 1.08 msec/rec
Comm 2.12 KB + 0.12 KB/rec 0.74 KB/rec 2.12 KB + 0.86 KB/rec

ImplementaƟon and performance. The FingerCode parameters can range as 𝑚 = 16-640, ℓ = 4-8, and
𝑐 = 5. The implementaƟon we report uses parameters 𝑚 = 16 and ℓ = 7 and therefore 𝑛 = 19. The
performance of the secure FingerCode idenƟficaƟon protocol is given in Table 2. No inputs (𝑋 or 𝑌) are
assumed to be known at the offline stage when the parƟes compute (among other things) randomizaƟon
values of the ciphertexts. For that reason, a small fixed cost is inquired in the beginning of the protocol
to finish forming the ciphertexts using the inputs. We also note that, based on addiƟonal experiments,
by using Paillier encrypƟon instead of DGK encrypƟon, the server's online work increases by an order of
magnitude, even if packing of mulƟple elements into a single ciphertext is used with Paillier encrypƟon.

It is evident that the overhead reported in the table isminimal and the protocol is suitable for processing
fingerprint data in real Ɵme. For example, for a database of 320 records (64 fingerprints with 5 FingerCodes
each), client's online work is 0.35 sec and the server's online work is 0.45 sec, with online communicaƟon of
277KB. As can be seen from these results, computaƟon is no longer the boƩleneck and this secure two-party
protocol can be carried out very efficiently.

5.2 Minutia-Based Fingerprint Identiϐication
We next present a secure protocol for minuƟa-based fingerprint idenƟficaƟon. It preserves the high-level
idea of using homomorphic encrypƟon for compuƟng the distance betweenminuƟa points and garbled cir-
cuit evaluaƟon for comparisons, but introduces a number of new techniques. At high-level, compuƟng the
pairing between minuƟae of fingerprints 𝑋 = ⟨(𝑥ଵ, 𝑦ଵ, 𝛼ଵ), …, (𝑥 , 𝑦 , 𝛼)⟩ and 𝑌 = ⟨(𝑥ᇱଵ, 𝑦ᇱଵ, 𝛼ᇱଵ), …,
(𝑥ᇱೊ , 𝑦ᇱೊ , 𝛼ᇱೊ)⟩ based onminimum distances between the points proceeds in iteraƟons as follows. 𝐶 and
𝑆 maintain an𝑚-bit array𝑀, the 𝑖-th bit of which indicates whether minuƟa 𝑌 has been marked or not.
IniƟally, all bits of𝑀 are set to 0. For 𝑖 = 1,…,𝑚, perform:

1. Compute the set 𝑍 of minuƟae from 𝑌 matching 𝑋 that have not been marked, i.e.,
𝑍 = {𝑌 | 𝑚𝑚(𝑋 , 𝑌) and𝑀[𝑗] = 0}.

2. Compute the minuƟa 𝑌 (if any) from 𝑍 with the minimum (spaƟal) distance from 𝑋, and set
𝑀[𝑘] = 1.

To preserve secrecy of the data, each bit of the array𝑀 is maintained by 𝐶 and 𝑆 in XOR-split form, i.e., 𝐶
stores𝑀[𝑖] and 𝑆 stores𝑀ௌ[𝑖] such that𝑀[𝑖] = 𝑀[𝑖]⊕𝑀ௌ[𝑖]. During each iteraƟon of the computaƟon,
at the end of step 2 above, 𝐶 and 𝑆 obtain XOR-shares of an array 𝐴 that has bit 𝑘 set to 1 and all other bits
set to 0 (and all bits are set to 0 if no pairing for 𝑋 exists). Both 𝐶 and 𝑆 update their share of𝑀 by XORing
the share of 𝐴 that they received with the current share of 𝑀. This ensures that the array 𝑀 is properly
maintained.
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Input:  has biometric template  ୀ ⟨(௫భ, ௬భ, ఈభ), …, (௫ , ௬ , ఈ)⟩ and DGK encrypƟon key pairs (భ, ௦భ) and
(మ, ௦మ); ௌ has a database  composed of biometric templates in the form  ୀ ⟨(௫ᇲభ, ௬ᇲ

భ, ఈᇲ
భ), …, (௫ᇲೊ , ௬ᇲ

ೊ , ఈᇲ
ೊ)⟩.

Output:  learns what records in  resulted in match with  if any, i.e., it learns a bit as a result of comparison of  with each
 ∈ .
Protocol steps:

1.  computes encrypƟons ⟨భ, మ, య, ర⟩ ୀ ⟨ாೖభ(ିଶ௫), ாೖభ(ିଶ௬), ாೖభ(௫మ ା ௬మ
 ), ாೖమ(ିఈ)⟩ for

each  ୀ ଵ,…, and sends them to ௌ.
2. For each  ୀ ⟨(௫ᇲభ, ௬ᇲ

భ, ఈᇲ
భ), …, (௫ᇲೊ , ௬ᇲ

ೊ , ఈᇲ
ೊ)⟩ ∈ , ௌ and  perform in parallel:

(a) ௌ and  setupೊ-bit vectorெ, where iniƟally ௌ's and 's sharesெೄ andெ, respecƟvely, are set to all 0's.

(b) For  ୀ ଵ,…, ௌ and  perform the following computaƟon:

i. ௌ computes the encrypted spaƟal distance ௦ೕ between  and each ೕ in  as ௦ೕ ୀ (భ)ೣ
ᇲ
ೕ ⋅ (మ)

ᇲ
ೕ ⋅

య ⋅ ாೖభ((௫ᇲೕ)మ ା (௬ᇲ
ೕ)మ) and encrypted direcƟonal distance as ௗೕ ୀ (ర)ഀ

ᇲ
ೕ . ௌ blinds all pairs as ௦ᇲೕ ୀ

௦ೕ ⋅ ா(ೕೄ), where ೕೄ
ೃ← {, ଵ}మℓశమ and ௗᇲ

ೕ ୀ ௗೕ ⋅ ா(௧ೕೄ) where ௧ೕೄ
ೃ← ℤయలబ and sends ௦ᇲೕ, ௗᇲ

ೕ to .
ii.  decrypts received pairs for all  ୀ ଵ,…,ೊ and sets ೕ ୀ ೞೖభ(௦ᇲೕ) and ௧

ೕ
 ୀ ೞೖమ(ௗᇲ

ೕ).
iii.  and ௌ engage in garbled circuit evaluaƟon, where ௌ inputs the bits of ெೄ and ିೕೄ (୫୭ୢ

ଶమℓశమ), ି௧ೕೄ (୫୭ୢ ଷ) for  ୀ ଵ,…,ೊ,  inputs the bits of ெ and ೕ, ௧ೕ for  ୀ ଵ,…,ೊ, ௌ learns
ೊ-bit ೄ, and  learnsೊ-bit . The vector  ୀ ೄ ⊕  has at most one bit set which indicates the
index of the mate of minuƟa  in .

iv. ௌ updates itsெೄ asெೄ ୀ ெೄ ⊕ೄ, and  updates itsெ asெ ୀ ெ ⊕.

(c)  and ௌ engage in the garbled circuit evaluaƟon where, on input ெೄ from ௌ and ெ from ,  learns the bit

corresponding to the computaƟon ||ெೄ ⊕ெೄ||
?
ழ ்.

Figure 3: Secure two-party protocol for minuƟa-based fingerprint idenƟficaƟon.

In the beginning of the protocol the client sends informaƟon about its fingerprint 𝑋. For best perfor-
mance, the soluƟon uƟlizes DGK encrypƟon with two pairs of keys. The first pair (𝑝𝑘ଵ, 𝑠𝑘ଵ) is used for
encrypƟng spaƟal coordinates 𝑥 , 𝑦 and compuƟng Euclidean distance between points, and the second
pair (𝑝𝑘ଶ, 𝑠𝑘ଶ) is used for encrypƟng orientaƟon informaƟon 𝛼 and direcƟonal difference. Therefore, we
set the plaintext space 𝑢 = 2ଶℓାଶ in 𝑝𝑘ଵ, where ℓ is the bitlength of coordinates 𝑥 , 𝑦, and 𝑢 = 360 in 𝑝𝑘ଶ.
This implies that compuƟng 𝛼ᇱ−𝛼 on encrypted values will automaƟcally result in the value being reduced
modulo 360, which simplifies computaƟonwith the direcƟonal difference in this form. Also note that, while
decrypƟon in the DGK encrypƟon scheme involves solving the discrete logarithm, when 𝑢 = 360 this can
be achieved at low cost using Pohlig-Hellman algorithm because 360 has only small factors.

Our secure fingerprint idenƟficaƟon protocol is given in Figure 3. At iteraƟon 𝑖, aŌer compuƟng the
distances in encrypted form (step 2(b).i) and decrypƟng them in a secret-shared form (step 2(b).ii), the par-
Ɵes engage in garbled circuit evaluaƟon using a circuit that performs the main computaƟon and produces
an𝑚-bit vector 𝐴 with at most one bit set to one indicaƟng the posiƟon of the mate of minuƟa 𝑋. This
(opƟmized) circuit is the most involved part of the protocol and is discussed in detail below. At the end of
each iteraƟon the vector𝑀 is updated with the output of the circuit. And aŌer all iteraƟons have been per-
formed, the rest of the protocol consists of counƟng the number of marked elements in𝑀 and comparing
that number to the threshold 𝑇. This is done using an addiƟonal garbled circuit, where the client learns the
output bit.

Note that the protocol requires that both parƟes know the number ofminuƟae in client's𝑋 and server's
𝑌s, which is assumed not to leak informaƟon about the fingerprints themselves. While biometric images
of similar quality are expected to have similar numbers of minuƟae, if for the purposes of this computaƟon
𝑚 and 𝑚 are considered to be sensiƟve informaƟon, the fingerprints can be slightly padded to always
use the same number𝑚 of minuƟa points. This can be achieved by agreeing on a fixed𝑚 and inserƟng fake
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Figure 4: Component of circuit in fingerprint idenƟficaƟon protocol performed for each value of 𝑗 ∈ [1,𝑚].

elements into each fingerprint unƟl its size becomes 𝑚. The fake elements should not affect the result of
the computaƟon, which means that the fake elements of client's 𝑋 should not match either the original or
fake elements of any𝑌. The easiest way to ensure this is by seƫng fake 𝑥 in𝑋 to its maximum value plus 𝑑
and by seƫng fake 𝑥ᇱ in each 𝑌 to its maximum value plus 2𝑑. This slightly increases the range of values
that spaƟal distances betweenminuƟa points can take, but is not likely to result in addiƟonal overhead due
to the increased space (i.e., the overhead can increase only when the bitlength needed to represent the
distances grows).

We design the circuit in step 2(b).iii of the protocol to minimize the number of comparisons. In parƟc-
ular, each direcƟonal difference 𝛼ᇱ −𝛼 is compared to the threshold 𝛼 in the beginning, and if it exceeds
the threshold, the corresponding distance between 𝑋 and 𝑌 is modified so that it will not be chosen as
the minimum. This is done by prepending the resulƟng bit of computaƟon ((𝛼ᇱ−𝛼) ≥ 𝛼)∧((𝛼ᇱ−𝛼) ≤
(360 − 𝛼)) to the spaƟal distance between 𝑋 and 𝑌 (as the most significant bit). The same technique
is used to ensure that marked minuƟae from 𝑌 are not selected as well. What remains to do is to verify
what spaƟal distances fall below the threshold and compute theminimum of such values. In the (oblivious)
garbled circuit, instead of first comparing each distance to the threshold and then compuƟng the minimum
of (possibly modified) distances, the soluƟon directly computes the minimum and then compares the min-
imum to the threshold. This reduces the number of distance comparisons from 2𝑚 − 1 to𝑚. The two
previously prepended bits are preserved throughout the comparisons, and the final result will have nomate
for 𝑋 selected if the computed minimum (squared) distance is not below the threshold (𝑑)ଶ.

Both the computaƟon of the minimum and creaƟon of vector 𝐴 require the use of mulƟplexers in the
circuit. In parƟcular, aŌer comparing two values 𝑎ଵ and 𝑎ଶ one type of mulƟplexer used in our circuit
chooses either the bits of 𝑎ଵ or 𝑎ଶ based on the resulƟng bit of the comparison. This permits the computa-
Ɵon of the minimum in a hierarchical manner using a small number of non-XOR gates as described in [39].
We also use mulƟplexers to collect informaƟon about 𝐴 throughout the circuit. In parƟcular, aŌer a single
comparison of distances 𝑎ଵ and 𝑎ଶ, the porƟon of 𝐴 corresponding to these two bits will be chosen to be
either 01 or 10. Suppose that aŌer comparing 𝑎ଵ and 𝑎ଶ this value is 01 and aŌer comparing 𝑎ଷ and 𝑎ସ the
value is 10. Then aŌer performing the comparison ofmin(𝑎ଵ, 𝑎ଶ) andmin(𝑎ଷ, 𝑎ସ) either 0100 or 0010 will
be chosen as the current porƟon of 𝐴. This process conƟnues unƟl the overall minimum and the enƟre 𝐴
is computed. This value of 𝐴 will have a single bit set to 1, and aŌer the final comparison of the minimum
with the threshold 𝐴 will either remain unchanged or will be reset to contain all 0s.

Figure 4 shows the iniƟal computaƟon in the circuit performed for each value of 𝑗, where𝑛 = 2ℓ+2, and
Figure 5 shows the computaƟon of the minimum and the output for a toy example of𝑚 = 4. In Figure 4,
aŌer adding 𝑡 and −𝑡ௌ (mod 360) together, the sum is compared to 360. If it exceeds the value, 360 is
subtracted from the sum (in our concrete realizaƟon the subtracted value is bitwise AND of the outcome of
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Figure 5: ComputaƟon of minimum and its index in circuit of fingerprint idenƟficaƟon.

the comparison and each bit of the binary representaƟon of 360). Finally, the resulƟng value is compared
to two thresholds and the result is prepended to the spaƟal distance 𝑟−𝑟ௌ. In Figure 4, mulƟplexer𝑚𝑢𝑥ଵ
chooses the smaller value based on the result of the comparison,𝑚𝑢𝑥ଶ chooses either 01 or 10 based on
the result of the comparison,𝑚𝑢𝑥ଷ chooses a 4-bit string based on its inputs from two mulƟplexers𝑚𝑢𝑥ଶ
and the outcome of another comparison, and 𝑚𝑢𝑥ସ chooses either its input from 𝑚𝑢𝑥ଷ or a zero string
based on the result of the final comparison. The server (circuit creator) supplies a stream of random bits
𝐴ௌ to the circuit, and the client learns the outcome of the XOR of that stream and the output of the last
mulƟplexer.

PrecomputaƟon. PrecomputaƟon in this protocol takes a similar form to that in the FingerCode proto-
col. Namely, the random values (ℎ mod 𝑁) in the ciphertexts are precomputed and the server chooses
all 𝑟ௌ and 𝑡ௌ in advance and encrypts them. Furthermore, omiƫng randomness in the encrypted values
𝐸𝑛𝑐((𝑥ᇱ)ଶ+(𝑦ᇱ)ଶ) at the server side does not compromise security and thus the server skips precomput-
ing the randomizaƟon component of such ciphertexts (and assumes ℎ mod 𝑁 = 1) for each 𝑗 and each
𝑌 ∈ 𝐷, resulƟng in substanƟal savings. In addiƟon, all garbled circuits are created and transferred in ad-
vance, as well as the expensive porƟon of the OT is performed in advance. Note that it is sufficient to have
two input wires to implement all constants in the circuit such as 360, 𝛼, 𝑑ଶ , inputs to the mulƟplexers, etc.

Security. As before, it is easy to show that the protocol is secure, where the simulator relies on the security
of the encrypƟon scheme, garbled circuits, and OT.

ImplementaƟon and performance. To show performance of the protocol, we use a grid of size 250×250
for minuƟae coordinates, which means that each 𝑥 , 𝑦 ∈ [0, 249] and ℓ is set to 8. In the experiments
that follow, 𝑚 = 𝑚 = 𝑚 with two values of 20 and 32 minuƟae per fingerprint. It is clear that the
protocol incurs cost quadraƟc in 𝑚 and is expected to have higher overhead than two previous iris and
FingerCode protocols. Table 3 shows performance of our secure minuƟa-based fingerprint comparisons.
The online work is dominated by 2𝑚ଶ decrypƟons at the client side and adds up to 0.73 sec per fingerprint
comparison for𝑚 = 20 and 1.88 sec for𝑚 = 32. The circuit evaluated by the client in step 2(b).iii of the
protocol has 2372 non-XOR and 8836 total gates for𝑚 = 20 and 3820 non-XOR and 14212 total gates for
𝑚 = 32. It is evaluated 𝑚 Ɵmes by the client for each 𝑌. The circuit evaluated by the client in step 2(c)
of the protocol has 39 non-XOR and 153 total gates for 𝑚 = 20 and 63 non-XOR and 246 total gates for
𝑚 = 32. It is evaluated once for each 𝑌.

We also would like to menƟon that a protocol solely based on garbled circuit evaluaƟon for this type of
computaƟon is likely to result in comparable or possibly even faster performance due to recent advances in
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Table 3: Breakdown of the performance of the fingerprint idenƟficaƟon protocol.

Setup Offline
EncrypƟon Circuit Total

Server 𝑚 = 20 72 msec + 2990 msec/rec 1868 msec + 1159 msec/rec 1940 msec + 4149 msec/rec
𝑚 = 32 114 msec + 7682 msec/rec 2114 msec + 2117 msec/rec 2228 msec + 9799 msec/rec

Client 𝑚 = 20 288 msec 1866 msec + 212 msec/rec 2154 msec + 212 msec/rec
𝑚 = 32 460 msec 2380 msec + 552 msec/rec 2840 msec + 552 msec/rec

Comm 𝑚 = 20 0 11.6KB + 83KB/rec 11.6KB + 83KB/rec
𝑚 = 32 0 11.6KB + 133KB/rec 11.6KB + 133KB/rec

Setup Online
EncrypƟon Circuit Total

Server 𝑚 = 20 3.6 msec + 100 msec/rec 30 msec/rec 3.6 msec + 130 msec/rec
𝑚 = 32 6 msec + 262 msec/rec 77 msec/rec 6 msec + 339 msec/rec

Client 𝑚 = 20 15 msec + 580 msec/rec 145 msec/rec 15 msec + 725 msec/rec
𝑚 = 32 25 msec + 1502 msec/rec 374 msec/rec 25 msec + 1876 msec/rec

Comm 𝑚 = 20 10KB + 100KB/rec 22.3KB/rec 10KB + 122.3KB/rec
𝑚 = 32 16KB + 256KB/rec 38.2KB/rec 16KB + 294.2KB/rec

the speed of garbled circuit evaluaƟon and OT extensions (such as [7] and [38, 2], respecƟvely). To realize
that, the circuit would need to perform addiƟonal 2𝑚ଶ mulƟplicaƟons (as well as addiƟonal addiƟons and
subtracƟons) per 𝑌, with the addiƟonal number of gates exceeding the current number of gates in the
circuits. This means that using the techniques that we implement the offline work associated with circuit
construcƟon (per 𝑌) will increase, but the online communicaƟon should decrease.

6 Summary of Design Principles and Results
The protocol design presented in this chapter suggests certain principles that lead to an efficient implemen-
taƟon of a privacy-preserving protocol for biometric idenƟficaƟon. First, noƟce that in the computaƟon
described in this chapter, as well as in other literature, first a distance between biometric template 𝑋 and
each biometric template 𝑌 in the database is computed followed by a comparison operaƟon. The compar-
ison can be performed to either (i) determine whether the distance 𝑑𝑖𝑠𝑡(𝑋, 𝑌) is below a certain threshold
(where the threshold can be specific to each 𝑌 or fixed for all 𝑌) or (ii) determine whether the minimum of
all distances 𝑑𝑖𝑠𝑡(𝑋, 𝑌) is below a certain threshold. In both cases an equivalent number of comparisons is
performed. Several exisƟng efficient protocols compute the distance funcƟon using homomorphic encryp-
Ɵon, but then resort to a different technique for the comparisons. Therefore, the client first communicates
its encrypted biometric template 𝑋 to the server, the server next computes the distances, and both the
client and the server are involved in the comparison protocol. We thus obtain the following:

1. RepresentaƟon of client's biometric data maƩers. The server's work for processing each record in
its database can be significantly reduced if the client's data is provided in the form that opƟmizes
server's computaƟon (for instance, compuƟng 𝐸𝑛𝑐(−𝑎) from 𝐸𝑛𝑐(𝑎) could be one of the most ex-
pensive operaƟons). This one-Ɵme cost at the client's side has far-reaching consequences for the
performance of the overall protocol.

2. OperaƟons that manipulate bits are the fastest outside encrypƟon. Any protocol for biometric iden-
ƟficaƟon is expected to use comparisons. Despite recent advances in the techniques for carrying out
secure comparisons over encrypted data which make them pracƟcal (e.g., [21]), garbled circuit eval-
uaƟon is beƩer suited for a large volume of such operaƟons. Furthermore, when the range of values
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being compared is small and many comparisons are necessary, addiƟonal techniques such as OT can
be uƟlized at low cost [49].

3. A substanƟal speedup can be seen from proper tuning of encrypƟon tools. Privacy-preserving proto-
cols that rely on homomorphic encrypƟon can benefit immensely from a wise choice of encrypƟon
scheme and its usage. TradiƟonally, packing was used to reduce overhead of privacy-preserving pro-
tocols including asymptoƟc complexity (see, e.g., [44] for an example). When computaƟon is carried
out on integers of small size, alternaƟve encrypƟon schemes such as DGK or addiƟvely homomorphic
ElGamal implemented over ellipƟc curves can significantly improve performance. The performance
that the soluƟons presented in this chapter achieve would not be possible without the right choice
of encrypƟon schemes.

Using these principles and a number of new techniques, in this chapter we demonstrate secure proto-
cols for iris and fingerprint idenƟficaƟon that use standard biometric recogniƟon algorithms. The opƟmiza-
Ɵon techniques employed in this chapter allow for fast performance of three secure biometric idenƟficaƟon
protocols:

• One of the first privacy-preserving two-party protocols for iris codes using current biometric recogni-
Ɵon algorithms. Despite the length of iris codes' representaƟon and complexity of their processing,
the protocol we present allows a secure comparison between two biometric templates to be per-
formed in 0.15 second with communicaƟon of under 18KB. Furthermore, when the iris codes are
known to be well-aligned and their rotaƟon is not necessary, the overhead decreases by an order of
magnitude to 14 msec computaƟon and 2KB communicaƟon per comparison.

• A privacy-preserving and extremely efficient two-party protocol for FingerCodes used for low-cost
fingerprint recogniƟon. Comparing two fingerprints requires approximately 1 msec of computaƟon,
allowing thousands of biometric templates to be processed in a maƩer of seconds. CommunicaƟon
overhead is also very modest with less than 1KB per biometric comparison.

• Secure fingerprint recogniƟon based on minuƟae pairings that uƟlizes most complex algorithms over
unordered sets with spaƟal and direcƟonal differences. The implementaƟon results suggest that such
secure fingerprint idenƟficaƟon can be performed using approximately 1 second per record.

7 Further Reading
Most of thematerial presented in this chapter appeared in [10]. Two privacy-preserving approaches for Fin-
gerCodes (with higher overhead) are available in [5] and in [33]. MinuƟa-based fingerprint matching (also
with higher overhead) is available in [55]. AddiƟonally, some publicaƟons (e.g., [25]) propose alternaƟve
mechanisms for privacy-preserving authenƟcaƟon (as opposed to idenƟficaƟon) without using standard
algorithms for comparing two biometric templates.

A number of publicaƟons [24, 53, 49] target the problem of privacy-preserving face recogniƟon. The
first two of these [24, 53] build soluƟons based on the Eigenfaces algorithm (where [53] improves the per-
formance of the technique in [24]), while [49] designs a new face recogniƟon algorithm together with its
privacy-preserving realizaƟon called SciFi. The design targeted to simultaneously address robustness of the
face recogniƟon algorithm to different viewing condiƟons and efficiencywhen used for secure computaƟon.
Several papers have since improved on the techniques used in SciFi [32, 15, 54].

The problem of privacy-preserving iris matching has been addressed in [43] and [16] using garbled cir-
cuits. Luo et al. [43] reduce computaƟonal cost of iris matching by using a common mask between the two
protocol parƟcipants, although at the cost of a slight increase of false accept and false reject rates. Bringer
et al. [16] use filtering techniques to improve performance of secure iris matching.

20



There are also publicaƟons that treat biometric authenƟcaƟon with privacy protecƟon without imple-
menƟng an exact algorithm used to compare a specific biometric modality. For example, [13] describes a
biometric authenƟcaƟon mechanism where the Hamming distance is used as the distance metric and the
authenƟcaƟon server is composed of three enƟƟes that must not collude. Consequently, [4] extends that
work with a classifier.

General secure mulƟ-party computaƟon techniques can also be used for secure biometric idenƟfica-
Ɵon, and literature on this topic is extensive. StarƟng from the seminal work on garbled circuit evalua-
Ɵon [59, 28], it has been known that any funcƟon can be securely evaluated by represenƟng it as a boolean
circuit. Similar results are also known for securely evaluaƟng any funcƟon using secret sharing techniques
(e.g., [52]) or homomorphic encrypƟon (e.g., [19]). In the last several years a number of tools have been
developed for automaƟcally creaƟng a secure protocol from a funcƟon descripƟon wriƩen in a high-level
language. Examples include Fairplay [45], VIFF [22], TASTY [29], PICCO [60], and others. It is, however, usu-
ally the case that custom opƟmized protocols constructed for specific applicaƟons outperform soluƟons
based on general techniques. Such custom soluƟons are known for a wide range of applicaƟon (e.g., set
operaƟons, DNA matching, k-means clustering, etc.), and this chapter focuses on secure biometric idenƟfi-
caƟon using iris codes and fingerprints. Furthermore, some of the opƟmizaƟons presented in this chapter
can find their uses in protocol design for other applicaƟons, as well as general compilers and tools such as
TASTY [29].

An overview of privacy-preserving biometric idenƟficaƟon is presented in [14].
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