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ABSTRACT

This work treats the problem of designing data-oblivious al-
gorithms for classical and widely used graph problems. A
data-oblivious algorithm is defined as having the same se-
quence of operations regardless of the input data and data-
independent memory accesses. Such algorithms are suit-
able for secure processing in outsourced and similar envi-
ronments, which serves as the main motivation for this work.
We provide data-oblivious algorithms for breadth-first search,
single-source single-destination shortest path, minimum span-
ning tree, and maximum flow, the asymptotic complexities
of which are optimal, or close to optimal, for dense graphs.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms; K.6 [Management of Computing and Infor-
mation Systems]: Security and Protection
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Graph algorithms; oblivious execution; secure computation

1. INTRODUCTION

Cloud computing has become prevalent today and allows
for convenient on-demand access to computing resources
which enable clients to meet their unique needs. Such ser-
vices are used for as diverse a range of applications as man-
agement of personal photos, carrying out computationally
intensive scientific tasks, or outsourcing building and main-
tenance of an organization’s computing infrastructure. Plac-
ing large volumes of one’s data and computation outside
one’s immediate control, however, raises serious security and
privacy concerns, especially when the data contains per-
sonal, proprietary, or otherwise sensitive information. To
protect such information while being able to utilize exter-
nal computing resources, secure processing of data used for
specialized tasks has become an active area of research. Ex-
amples of such results include secure and verifiable storage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASIA CCS’13, May 8-10, 2013, Hangzhou, China.

Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$15.00.

outsourcing (e.g., [19]) and secure outsourcing of common
tasks such as linear algebra operations (e.g., [4]) or sequence
comparisons (e.g., [6]). There is, however, a lack of effi-
cient techniques for computation on protected data in out-
sourced environments for most commonly used algorithms
and data structures. To help eliminate this void, we de-
velop data-oblivious algorithms for fundamental graph prob-
lems. Data-oblivious, or just oblivious, execution is defined
as having the same sequence of operations regardless of the
input data and data-independent memory accesses, which
makes it suitable for use in outsourced tasks. Note that the
great majority of data structures and algorithms commonly
used in practice are not data-oblivious and thus reveal in-
formation about data, while naive approaches for achieving
data-obliviousness incur a substantial increase in computa-
tion time over best-known solutions (consider, e.g., search,
binary trees, etc.). Therefore, a careful design of data struc-
tures and algorithms is essential for bringing the complexity
of oblivious execution as close to the complexity of its non-
oblivious counterpart as possible.

While secure computation on sensitive data in outsourced
and similar environments serves as the main motivation for
our data-oblivious techniques, we would like to abstract the
presentation of the developed techniques from a concrete set-
ting or underlying mechanisms for securing the data. Nev-
ertheless, to guarantee privacy of the data used in the com-
putation, throughout this work we assume that the compu-
tation proceeds on protected data (e.g., using suitable se-
cure multi-party computation techniques) and the only val-
ues that can be observed are memory accesses and results
of the computation that lead to accessing specific memory
locations. Data privacy is then guaranteed if the memory
accesses are data-independent or oblivious.

In this work we focus on classical graph problems such as
breadth-first search (BFS), shortest path, minimum span-
ning tree, and maximum flow and construct data-oblivious
algorithms of practical performance. Several of them are
fundamental graph problems with many uses both by them-
selves (e.g., for traversing a social network graph) and as
building blocks for more complex problems on graphs. It
therefore would be desirable to obtain data-oblivious solu-
tions suitable for use in secure computation and outsourcing
for the above problems.

1.1 Related work

One topic closely related to secure and oblivious compu-
tation is Oblivious RAM (ORAM) [23, 33, 24]. ORAM was
introduced as the means of secure program execution in an
untrusted environment. Only the CPU with a small amount



of internal memory (O(1) or O(n®) for 0 < a < 1, where
n is the size of used external memory) is assumed to be
trusted, while the program itself and the data are stored
encrypted on untrusted storage. The goal is to ensure that
no information about the program is revealed by observing
its memory accesses and therefore the accesses must appear
random and independent of the actual sequence of accesses
made by the program. There is a renewed interest in ORAM
due to the emergence of cloud computing and storage ser-
vices, and recent results include [39, 40, 34, 1, 17, 27, 7,
36, 37, 29]. ORAM techniques then can be used to make
a non-oblivious algorithm oblivious at the cost of polyloga-
rithmic (in the size of the data) amortized cost per access.
Current solutions achieve O((logn)?) overhead per access (if
random functions are used or server’s storage is superlinear
in n; otherwise, the overhead is O((logn)?®) per access). A
comparison of several ORAM schemes and their complexi-
ties can be found in [1].

Another related topic is private information retrieval (PIR)
(see, e.g., [14, 15, 30, 11, 22, 31, 38] among others), where
a server holds a database and a clients wants to a retrieve
a record at a specific position with the goal that the server
should not learn what record was accessed. Symmetric PIR
(SPIR) solutions also require that the user should not learn
anything about any other records in the database except the
record of interest. Current PIR solutions exist in both the
information-theoretic and computational settings.

Privacy-preserving graph algorithms have become a re-
cent area of interest with the prevalent adoption of location
based services (LBS) for cloud services and mobile devices.
With the widespread use of LBS there is an increased need
for maintaining users’ privacy. The approach in [32] utilizes
PIR techniques to query a data-set while keeping the user’s
position, path, and desired destination private. Also moti-
vated by LBS is the work proposed in [18]. It introduced
data-oblivious algorithms for calculating classical geomet-
ric problems, such as convex hull and all nearest neighbors,
using secure multi-party computation.

Other solutions that focus on privacy-preserving graph al-
gorithms include algorithms designed for a public or joint
graph. In particular, [8] presents a two-party solution for
computing all pairs shortest distance and single source short-
est path when each party holds a portion of the graph. The
solution uses Yao’s protocol [41] as the primary building
block and achieves better efficiency than naively applying
Yao’s protocol to existing graph algorithms. Similarly, [20]
presents a two-party method for privately performing an A*
search over a public graph where different parties hold the
edge weights and the heuristics. Additionally, there are sev-
eral techniques for constructing a graph privately. One such
solution is [21], which shows how many clients, each pos-
sessing a portion of the distributed graph, can privately
construct a graph so that an adversary is unable to de-
anonymize any part of it after the construction process.

There are also recent data-oblivious graph algorithms de-
signed for the external-memory model. This model assumes
that the client has access to some amount of working-memory
that is inaccessible to any adversary, but the remaining stor-
age is outsourced. The solution in [26] introduces data-
oblivious algorithms for compaction, selection, and sorting.
A final technique of interest is [28], which introduces data-
oblivious algorithms for graph drawing problems (e.g., Euler
Tours, Treemap Drawings) and develops efficient compressed-

scanning techniques, which in turn allow for private data to
be searched in an efficient manner.

Similar to the external-memory model is the cache-oblivious
model, where algorithms are designed to perform optimally
using a CPU-cache without the size of the cache as an explicit-
parameter. Several cache-oblivious algorithms and data struc-
tures are described in [2, 10, 9, 3]. Of particular interest is
[10], where the authors describe cache-oblivious solutions for
breadth-first search and shortest path.

1.2 Our contributions

In this work, we present data-oblivious algorithms for sev-
eral fundamental graph algorithms, namely, breadth-first
search, single-source single-destination (SSSD) shortest path,
minimum spanning tree, and maximum flow. Given graph
G = (V,E) as the input, our solutions assume adjacency
matrix representation of the graph, which has size ©(|V|?)
and is asymptotically optimal for dense graphs with |E| =
O(|V|?). Our oblivious solutions achieve the following com-
plexities: O(|V[?) for BFS, O(|]V|?) for SSSD shortest path,
O(|V|?) for the minimum spanning tree, and O(|V|*|E|log(|V]))
for the maximum flow. This performance is optimal, or
close to optimal, for dense graphs and outperforms applying
ORAM techniques to the fastest conventional non-oblivious
algorithms for these problems.

Because our algorithms use adjacency matrix representa-
tion, they are not well suited for sparse graphs. For such
graphs, combining ORAM with the best non-oblivious algo-
rithm is likely to result in superior performance, even though
ORAM techniques are often not particularly fast in prac-
tice. We leave the design of efficient oblivious algorithms for
sparse graphs as a direction for future work.

Our solutions assume that numeric values can be com-
pared, multiplied, and added in a protected form; the cost of
such operations is considered to be constant (see section 1.3
for a specific instantiation of these operations). We also rely
on random permutation of a vector as our building block.
This functionality can be accomplished by assigning random
values to each element of the vector and sorting them accord-
ing to the assigned values. Oblivious sorting can be accom-
plished, e.g., using the techniques in [25] at cost O(nlogn)
for a set of size n. We therefore assume that a vector can
be randomly permuted at the same asymptotic cost.

All of the graph algorithms considered in this work pro-
ceed in iterations. At the core of achieving the above com-
plexities obliviously is the idea that we do not need to touch
all locations of the adjacency matrix at each iteration to hide
information about the access pattern, but are able to access
a single row of the matrix per iteration. Because we access
each row of the matrix exactly once and the accesses are per-
formed in random order, we show that the accesses are data
oblivious. We first develop our solution for the BFS prob-
lem and then extend it with path reconstruction to obtain a
solution to the SSSD shortest path problem. Both BFS and
SSSD shortest path solutions are consecutively used to build
our data-oblivious algorithm for the maximum flow problem.
Lastly, we also present an oblivious algorithm for the mini-
mum spanning tree problem that utilizes similar techniques.

1.3 Applications to secure computation and out-
sourcing

As mentioned earlier, secure outsourcing serves as the
main motivation for our data-oblivious graph algorithms.



We therefore sketch how our algorithms can be used in out-
sourced environments for securely computing on protected
data. We utilize the setting in which the computation is car-
ried out by multiple computational nodes, which allows us to
formulate the problem as secure multi-party computation.

To allow for as general problem formulation as possible,
we place all participants into the following three categories:
(i) the party or parties who hold private inputs; (ii) the
party or parties who learn the outcome of the computation,
and (iii) the parties who conduct the computation. There
are no constraints on how these three groups are formed,
and a single entity can be involved in a solution taking on
one or more of the above roles. This framework formula-
tion naturally fits several broad categories of collaborative
and individual computing needs. For example, a number
of parties with private inputs can engage in secure function
evaluation among themselves and learn the result (or their
respective results). They can also choose a subset among
themselves, a number of outside parties, or a combination
of the above to carry out the computation. Note that this
includes the important use case of a single entity outsourc-
ing its computation to computational servers, in which case
the data owner is the only input and output party.

The algorithms that we present can be realized in this
setting using a number of underlying techniques such as lin-
ear secret sharing, threshold homomorphic encryption, or
Boolean garbled circuits. Then if we, for instance, utilize an
information-theoretically secure linear secret sharing scheme
(such as [35]), any linear combination of secret-shared val-
ues is computed locally and multiplication is the very basic
interactive building block. Comparisons such as less-than
and equality tests can be performed efficiently using, for in-
stance, techniques of [13]. In this setting, the arithmetic is
efficient and complexity is measured in the number of inter-
active operations (while in settings that rely on public-key
cryptography, the complexity will additionally need to be
measured in the number of modular exponentiations). This
gives us a secure implementation of our data-oblivious graph
algorithms which are suitable for outsourced environments
as the sequence of operations they execute does not reveal
any information about the data.

2. PROBLEM DEFINITION

In this work we consider graph problems which take graph
G = (V, E) as part of their input. We assume that the graph
is specified in the form of the adjacency matrix M. To avoid
ambiguities, we explicitly specify the adjacency matrix rep-
resentation used in our description. The adjacency matrix
M is a |V]| x |V| matrix containing Boolean values (if the
edges do not have weights), where the row corresponding to
node v € V contains information about the edges leaving v.
If (v,u) € E, then the cell at row v and column w is set to 1;
otherwise, it is set to 0. For undirected graphs, both M, .
and M,,, are set to 1, where M; ; refers to the cell at row ¢
and column j. M, , is set to 0. Without loss of generality,
we assume that the nodes are numbered 1 through |V|. For
problems that use weighted graph G, we will specify the dif-
ferences to the adjacency matrix representation at the time
of specifying the respective graph problem.

Because secure outsourced computation is used to moti-
vate this work, we assume that the computation proceeds
on properly protected data. This means that all inputs and
intermediate results are not known to the party or parties

carrying out the computation unless we explicitly open their
values for the purposes of accessing data at specific loca-
tions. For concreteness of exposition, we use notation [x] to
indicate that the value of x is protected from the entities
performing the computation.

To maintain data privacy, we must guarantee that the
computational parties do not learn anything about the data
during the execution of the algorithm. Because each pri-
vate value is assumed to be adequately protected, the only
way for the computational parties to deduce information
about the private data is when the sequence of instructions
or algorithm’s memory access pattern depends on the data.
Thus, to guarantee data privacy, we formally formulate data-
oblivious execution of a deterministic algorithm as follows:

DEFINITION 1. Let d denote input to a graph algorithm.
Also, let A(d) denote the sequence of memory accesses that

the algorithm makes. The algorithm is considered data-oblivious

if for two inputs d and d' of equal length, the algorithm exe-
cutes the same sequence of instructions and access patterns
A(d) and A(d') are indistinguishable to each party carrying
out the computation.

Without loss of generality, in the description that follows, we
use arithmetic operations to implement Boolean operations.
In particular, we write a - b to implement conjunction a A b
and we write (1—a) to implement complement a for Boolean

?
a. We also use notation (a < b) and (a < b) to denote
conditions comparing two values, which produce a bit.

3. BREADTH-FIRST SEARCH

Breadth-first search is one of the most basic algorithms
for searching a graph, but it is applicable to a large num-
ber of problems and is the basis for many important graph
algorithms. Given a graph G = (V, E) and a source vertex
s € V, BFS systematically explores the edges of G to com-
pute the distance (measured in the number of edges) from
s to each reachable vertex in (G, where nodes at distance 4
from s are discovered before nodes at distance i + 1.

The conventional algorithm for BF'S starts from the source
node s and colors the nodes white, gray, and black, where
the nodes start white and may later become gray and black.
The intuition is that white nodes have not been discovered
yet, gray nodes have been discovered, but nodes adjacent
to them may have not been discovered yet, and black nodes
have been discovered themselves as well as their adjacent
nodes. The conventional algorithm works by maintaining
a queue with gray nodes which initially contains only the
source s. When a gray node is being removed from the
queue, it becomes black and all white nodes adjacent to it
are colored gray and added to the queue.

Now notice that directly applying this algorithm to ob-
tain a data-oblivious version presents problems: as we must
protect the graph information, we cannot reveal how many
adjacent nodes a vertex has, which means that when remov-
ing a node from the queue O(|V|) nodes must be added to
the queue (many of which will be just empty records not
corresponding to actual nodes). This results in an exponen-
tially growing queue and is clearly unacceptable.

To protect the structure of the graph, we design our al-
gorithm to work on adjacency matrix representation which
allows us to achieve O(|V|?) runtime. This is optimal for
dense graphs with |E| = ©(]V|?) and any time an adjacency
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Figure 1: Illustration of the BFS algorithm.

matrix is used. We leave the problem of an efficient data-
oblivious algorithm for sparse graphs open.

The intuition behind our algorithms is as follows: instead
of maintaining a queue of gray nodes, node coloring is main-
tained in a (protected) vector C' of size |V|. Initially, only
the source is colored gray. Using the row of the adjacency
matrix M corresponding to the source, we obliviously up-
date the node coloring in vector C' using the adjacency in-
formation of the source s. Once this is accomplished, we
obliviously choose one of the gray nodes with the smallest
distance from the source from the vector, reveal its location
in the adjacency matrix, and use its adjacency information
to update the vector C. This process is then repeated until
all rows of the matrix have been processed.

We illustrate the idea on an example graph in Figure 1.
In the figure, the (protected) matrix M contains node ad-
jacency information where the nodes (i.e., both rows and
columns) are randomly permuted. For example, row and
column 1 correspond to node 5 in the graph. In the figure,
the source node 1 has already been processed and colored
black, and the nodes adjacent to it (nodes 2 and 3) has been
colored gray. This information is stored in vector C, where
the location of (black) node 1 after the permutation is equal
to 2 and the locations of (gray) nodes 2 and 3 after the
permutation are equal to 4 and 3, respectively.

There are subtleties in implementing the logic described
above. In general, revealing what row (and thus the corre-
sponding node) is being processed next can leak information
about the structure of the graph. A naive way of hiding
this information is to touch each element of matrix M when
only one row is being used. We, however, can ensure that
no information about the graph is revealed even if only a
single row is accessed. This is achieved using two crucial
ideas: (i) the order of the nodes of M is random and (ii)
the next gray node to be processed is chosen from all can-
didates at random. The former means that the nodes are
either randomly numbered in the adjacency matrix or they
are randomly permuted (i.e., both the rows and columns of
the matrix are randomly and consistently permuted). The
latter means that rather than choosing the first node that
meets the condition for the next iteration of the algorithm, it
should be chosen from all candidates at random in order to
hide the number of candidate nodes (and thus information
about graph connectivity).

Also, the graph must be connected in order for the above
algorithm to work. That is, to ensure that there is always
a way to proceed with another row of the matrix, all nodes
must be reachable from the source. For clarity of exposition,
we first provide a solution that assumes that the graph is
connected and later extend it to work with arbitrary graphs.

3.1 Basic algorithm for connected graphs

On input adjacency matrix [M] of graph G = (V, E) with
randomly ordered nodes and source node s € V:
Algorithm 1:

1. Create vector C of size |V|, each element of which cor-
responds to a node of G using the same node ordering
asin M. Each element of C contains three fields: color,
distance from s, and parent node in the BFS tree.

2. Initialize C' to set the color of all nodes except s to
white and the color of s to gray. The distance of s is
set to 0 and the distance of all other nodes is set to
oo (which for practical purposes can be set to |V, i.e.,
larger than any actual distance). The parent of each
node is set to a special character L indicating that the
parent is undefined. The values of the elements of C
are protected throughout the execution.

3. Set working node v to s and retrieve row M, of M.

4. Update C using M, as follows:

(a) For i =1 to |V|, if [M,,] is 1 and the color of C;
is white, set the color of C; to gray, the parent of
C; to v, and the distance of C; to the distance of
C, incremented by 1.

(b) Set the color of C, to black.

Oblivious execution of conditional statements can be

realized by executing both branches of the if-statement

(in cases when only one branch is present, the second

branch corresponds to keeping the original values). For

instance, executing statement

if ([cond]) then [a] = [b] else [a] =[]

becomes rewritten as

[a] = [cond] - [b] + (1 — [cond]) - []

In our case, the executed code is:

l.for i =1 to |V| do

2. [eond] = ([My.i] = 1) - ([Ci.color] = white)

3. |Ci.color] = [cond] - gray + (1 — [cond]) - [C;.color]

4. [Ci.parent] = [cond] - v+ (1 — [cond]) - [C;.parent]

5

5. Obliviously choose one of the gray nodes in C' with the
smallest distance from the source at random. Data-
oblivious execution in this case means that the algo-
rithm must be independent of the k& number of nodes
in C to choose from, yet random selection requires 1/k
probability of any qualifying node to be selected.

To achieve this, we use C to create another vector C’
in which the elements that contain gray nodes with the
smallest distance from s in C are set to contain their
index values and all other elements are set to 0. We
also choose a random permutation 7 of node indices
and assign the key () to each element i in C’ with
a non-zero value. All other elements have the key of
0. We select the element with the maximum key and
retrieve the index of the node stored with that element
as the next node to process. In more detail, we execute:
1. [min] = |V|

2. for i =1 to |V] do

3. [econd;] = ([C;.color] < gray)

4. [cond)] = ([C;.dist] < [min))

5. [min] = [cond;][cond}][C;.dist] + (1 — [cond;] -
[cond;])[min]

6. for i =1 to |V] do

7. [cond!] = ([Ci.dist] = [min])

Ci.dist] = [cond]([Cy.dist] + 1) + (1 — [cond)])[C;.dist]



8. [Cj.value] = [cond;][cond]] - i
9.  [C].key] = [cond;][cond]] - [m(i)]
10. [maz] =0

11. [imaz] =0

12. for i =1 to |V| do

13.  [cond] = ([C{.key]/ > [mazx])

14.  [max] = [cond][C}.key] + (1 — [cond])[max]
15.  [imaa] = [cond][C}.value] + (1 — [cond)])[imaz]
16. imaz = open([imaz])

17. v = open([C;, . .value))

max

In the above, w : [1,|V|] — [1,|V]] is a random per-
mutation of node indices and open(-) corresponds to
revealing (or opening) its argument. For efficiency rea-
sons, we can skip all previously processed (i.e., black)
nodes as we know that they no longer will be selected.

6. Use chosen node v to retrieve row M, of M, and repeat
steps 4-6 of the algorithm |V| — 1 times.

Because our algorithm always selects a gray node with the
shortest distance from the source for the next iteration, it
correctly implements the BFS queue.

3.2 Supporting general graphs

Algorithm 1 described in the previous section works as
long as the graph G is connected, i.e., there is at least a single
gray node to choose from at each iteration of the algorithm.
In general, however, the input graph is not guaranteed to be
connected and we next show how to modify the algorithm
to ensure that it is suitable for arbitrary graphs.

The main idea behind the change is that we introduce
fake nodes that will be chosen by the algorithm once there
are no gray nodes to process in one of the algorithm itera-
tions. In general, the algorithm may terminate after as few
as only a single iteration, which means that we need extra
|V | —1 nodes to simulate the remaining algorithm steps. We
therefore modify the adjacency matrix M to include |V|—1
extra rows and columns corresponding to fake nodes which
are placed at random indices within the matrix. Every fake
node is made adjacent to all other fake nodes, but none of
them are adjacent to the original nodes of the graph.

The modified matrix M can be formed by appending |V|—
1 rows and columns to the original matrix and randomly
and consistently permuting its rows and columns. The new
location of the source node s then needs to be revealed. For
the purposes of our algorithm we also store a bit vector F
of size 2|V| — 1 with the nodes ordered in the same way
as in the matrix in which the element at location v is set
iff node v is fake. This vector is formed by initializing its
first |V elements to 0 and the remaining elements to 1 and
permuting it using the same permutation as in the matrix.

With this modified setup information, we are ready to
proceed with the BFS algorithm. The basic structure of Al-
gorithm 1 and most of its steps remain unchanged, and the
only modification that we introduce is the way a node is cho-
sen for the next algorithm iteration. That is, the algorithm
must account for the fact that there might be no gray nodes
to choose from at any given iteration and it should proceed
with choosing a fake node.

5. Create vector C' as before, but now before choosing
one element from it, we check whether it contains at
least one element to choose from. If it does, we leave
it unmodified; otherwise, we mark all fake nodes as
gray using vector F'. One of the qualifying nodes of

C' is chosen as before as the node to be processed in
the next iteration. To test whether there is a least one
node to choose from, we can simply test whether the
value of [min] has not been updated (i.e., it is still [V]).
More precisely, we execute the following code between
lines of 9 and 10 of the original code of step 5:

1. [cond] = ([min] = |V|)

2. fori=1to2[V|—1do

3. [Ciwalue] = [C}.value] + [cond][F;] - i

4. [Ci.key] = [Ci.key] + [cond][F}] - [m(3)]

The remaining code remains unchanged with the ex-
ception that all for-loops now range from 1 to 2|V|—1.

3.3 SSSD shortest path

The above algorithm already computes the distance from
the source node to all other nodes in the graph. In certain
problems, however, the knowledge of the shortest path it-
self is required. In this section we therefore show how to
obliviously reconstruct the shortest path from the source s
to a given destination node ¢. Both BFS and shortest path
computation are used as the building blocks in our solution
to the maximum flow problem.

For the ease of exposition, we divide our description in two
parts: we first present a solution that reconstructs the path,
where the information about the path itself is protected,
but the length of the path is revealed. We then show how
to modify this solution to also hide the length of the path.

3.3.1 Basic solution

On input G = (V, E) described by its adjacency matrix
M, source node s € V, and destination node t € V, our
solution first uses BF'S to compute the distances from s to all
other nodes and then starts from node ¢ and retrieves parent
node information from vector C. A simple oblivious solution
to the path reconstruction problem can be implemented in
O(|V[?) time. In particular, we can scan the vector C' up
to |V| times, each time retrieving and storing the parent of
the current node on the path. Then because in each round
we touch all |V| nodes (or all 2|V| — 1 nodes when fake
nodes are used), no information about the node added to the
path is revealed. Also note that because the BFS algorithm
requires Q(|V|?) time, this solution would not increase the
asymptotic complexity of the overall solution.

An asymptotically more efficient solution would be to re-
trieve one element of C at a time, where each consecutive
element is set to the parent node of the previously retrieved
node, and use ORAM techniques to hide information about
the elements of C' that have been accessed. This increases
both the storage necessary to maintain ORAM for C as well
as adds polylogarithmic computational overhead for each
memory access. Because of the complexity of ORAM tech-
niques and their simulation in a privacy-preserving frame-
work in particular, this approach would provide computa-
tional advantage only for very large graphs.

Also note that logic similar to what we have previously
used for BFS does not work here. That is, suppose we ran-
domly shuffle vector C and directly access its element to re-
trieve the next node on the path. This shuffling guarantees
that there is no correlation between the row accessed during
BFS and vertices accessed during path reconstruction. Un-
fortunately, translating parent information of the accessed
location to its shuffled version cannot be performed oblivi-
ously in constant time and we are back to either scanning



the entire vector or applying ORAM techniques to access the
mapping information. For these reasons, we next describe a
simple solution of O(|V|*) complexity.

In the description that follows, we conservatively assume
that the location of destination node ¢ in the adjacency ma-
trix is not known (i.e., it is protected). This algorithm can
then be easily modified for the case when the location of ¢
in M and C is known. The initial solution, i.e., the one that
does not hide the size of the path, is as follows:

Algorithm 2:

1. Execute BF'S to compute shortest distances from source
s to all other nodes.

2. Initialize the path P to ([t]). Set the current working
node [v] to [t].

3. Scan vector C to find node [w] such that [w] = [C\,.parent].

In more detail, we execute:

1. [w] =0

2. fori=1to2[V|—1do

3. [eond] = ([v] = 4)

4. [w] = [cond] - [C;.parent] + (1 — [cond)]) - [w]
4. Update the path as P = ([w], P) and set [v] to [w].
5. Repeat steps 3-5 until [v] = s.

When the location of ¢ in the adjacency matrix is known,
we can skip step 3 in the first iteration and directly add
[Ci.parent] to P and set [v] to value [Cy.parent] in step 4.

3.3.2 Hiding the length of the path

To protect information about the length of the path, we
need to ensure that the algorithm always performs |V| — 1
iterations and produces a path of length |V|. To achieve
this, we instruct the algorithm to continue adding nodes to
the path if the source s is reached, but the path is shorter
than |V vertices long.

To be able to hide the length of the path from s to t, we
must hide the fact that v = s and proceed with adding nodes
to the path. For that reason, we add s to the path, but set
one of the fake nodes as the current working node [v]. The
algorithm will then keep adding fake nodes to the path until
its length becomes |V| — 1.

To ensure that a sufficient number of fake nodes is added
without repetitions, we set their parent information to form
a cycle of length |V| — 1. Because the algorithm is oblivious,
the parents of the fake nodes can be assigned in an arbitrary
manner. We choose to assign them sequentially to form one
cycle. More precisely, the parent of fake node v is set to fake
node w with the highest index less than v (and the parent of
the fake node with the lowest index is set to the fake node
with the highest index). For that purpose, we utilize vector
F to update parent information of fake nodes in vector C.

In more detail, the computation that we need to perform
after step 1 of Algorithm 2 is as follows. We first scan F' to
find the index of the fake node with the highest number. It
will be used to initialize the parent value (to be used for the
fake node with the lowest index). We then scan the nodes
in C updating parent values of fake nodes and the current
parent value.

1. [parent] =0

2. fori=1to2|V|—1do

3. [parent] = [F}] - i+ (1 — [F}])[parent]

4. for 1 =1 to 2|V]|—1do

5. [Ci.parent] = [F3] - [parent] + (1 — [F3])[C;.parent]
6. [parent] = [Fi]-i+ (1 — [Fi])[parent]

The only other change that we need to make to Algorithm 2
is to hide the fact that source s has been reached by selecting
a fake node. To achieve this, we randomly select one of the
fake nodes and set the current working node to that fake
node if the source has been reached. Because we do not
know at which step of the computation the source might be
reached, we have to perform such testing at each iteration of
the algorithm. Fortunately, because the source node can be
reached only once, we can pre-select one of the fake nodes at
the beginning of the algorithm (instead of doing it at each
iteration), but test each time whether it should be chosen.
This means that after assigning parent node information to
the fake nodes as described above, we select one of the nodes
at random as follows:
1. choose (protected) random permutation 7(-)

2. for i =1 to 2|V| — 1 do [vs] = [Fi] - [ (4)]
3. [ul=0

4. fori=1to2|V|—-1do

5. [conds] = ([vi] > [u])

6. [u] =[cond;] i+ (1 — [cond;])[u]

Lastly, we modify steps 4-5 of Algorithm 2 to the following:
4. Prepend [w] to the path, ie., P = ([w], P). If [w] is
different from s, set [v] to [w]; otherwise, set [v] to a
randomly chosen fake node. That is, compute:
1. [cond] = ([w] = s)
2. [v] = [eond] - [u] + (1 — [cond])[w]
5. Repeat steps 3-5 |V| — 2 times.

3.3.3 Handling unreachable destination

The algorithm that we described so far for shortest path
computation works if there is a path from s to t. If, how-
ever, node t cannot be reached from the source node, the
algorithm must still proceed with the computation protect-
ing the fact that there is no path. According to our BFS
algorithm, node ¢ will have its parent set to L if there is
no path from s to t. We can use this information to slightly
modify the algorithm and proceed with one of the fake nodes
if 1 has been reached. This introduces a very minor change
to the algorithm described in section 3.3.2 because we can
reuse the selected fake node for our purposes. This is a safe
modification to the algorithm because a path will never si-
multaneously contain s and L. We therefore update step 4
of Algorithm 2 to the following;:

4. Prepend [w] to the path, ie., P = ([w], P). If [w] is
different from s or L, set [v] to [w]; otherwise, set [v]
to a randomly chosen fake node. That is, compute:

1. [cond:] = ([w] = s)

2. [conds] = ([w] =1)

3. [cond] = [cond1] + [cond2] — [cond,][conds)]
4. [v] = [cond] - [u] + (1 — [cond])[w]

In the above, we use a + b — a - b to implement a V b.

3.4 Analysis

For all of our oblivious graph algorithms, we first analyze
their time complexity followed by their security analysis.

3.4.1 Complexity analysis

In this section, we analyze the complexities of our BFS
algorithm and shortest path reconstruction.

It is easy to see that the complexity of steps 1-2 and 4-5 of
the BFS algorithm (both the basic and general versions) is



O(]V]), while the complexity of steps 3 and 6 is O(1). Then
because steps 4-6 are executed |V| times, the overall run-
time of O(|V|?), which is optimal for the adjacency matrix
representation and for graphs with |E| = O(|V|?). It also
outperforms any solution that combines the conventional al-
gorithm with ORAM when |E| = Q(|V|*/log(|]V])?).

If the labeling of the graph nodes is not guaranteed to be
random (i.e., the labeling can reveal information about the
structure of the graph) or the graph is not guaranteed to be
connected and the fake nodes need to be placed at random
locations in the graph, the nodes of the graph will need to be
randomly permuted. When this step is implemented using
oblivious sorting, its complexity is O(]V|*log(]V])), which
dominates the complexity of the algorithm.

Our algorithm for SSSD shortest path computation also
has O(]V)?) time. In particular, after executing BFS in step
1 of the algorithm, the only steps that have non-constant
time is one-time pre-processing of fake nodes and step 3,
both with complexity O(|V|). Because steps 3—4 are per-

formed |V'|—1 times, we obtain the overall runtime of O(|V[?).

3.4.2  Security analysis

To show security of our BFS and shortest path algorithms,
we show that they are oblivious with respect to Definition 1.

THEOREM 1. The BFS algorithm is data-oblivious.

ProOOF. To prove this theorem, we analyze each major
operation in the algorithm with respect to Definition 1. We
show that for any given input graph G = (V, E) and source
s, (i) the sequence of executed instructions is the same as for
all other input graphs with the same number of nodes |V/|
and (ii) the memory accesses are indistinguishable from the
memory accesses when the input G is a randomly generated
graph with |V| nodes.

The first three steps of the algorithm are independent of
the input graph G, and step 1 is also independent of the
source node s. This means that step 1 is exactly the same
for all possible inputs. Step 2 performs the same operations
for all inputs, but accesses and updates node s in C' with
different information than other nodes. Because according
to the solution, s has a random location in the graph, its
position is indistinguishable for real and randomly generated
input graphs G. The same applies to step 3 of the algorithm.

Steps 4 and 5 execute the same sequence of instructions
for all input graphs and access all memory locations of C and
M, in exactly the same manner, therefore they are identi-
cal for all input graphs. The only part that remains is to
show that revealing the locations of |V | nodes which are be-
ing processed by the algorithm cannot be used to extract
information about the input (G, s). In particular, because
of randomized order of the nodes, the revealed locations are
random and cannot be used to extract information about
the structure of the graph. Furthermore, when selecting
the next candidate node, one of them is selected at ran-
dom, which also protects information about the number of
candidate nodes. We obtain that the revealed locations are
random and the memory accesses are indistinguishable from
those of randomly generated graphs. [

THEOREM 2. The SSSD shortest path algorithm is data-
oblivious.

PRrROOF. Similar to the proof of BFS algorithm, we con-
sider all steps of the SSSD shortest path algorithm and show
that they are data-oblivious according to our definition.

Step 1 executes BFS and is data-oblivious according to
Theorem 1. All remaining steps (including fake node selec-
tion) execute exactly the same sequence of operations for
all inputs graphs and access exactly the same memory lo-
cations for all input graphs. This means that the execution
and memory accesses are identical for all inputs and the
algorithm is data-oblivious. [

4. MAXIMUM FLOW

In this section we provide an oblivious solution to another
graph problem, namely, maximum flow. Before we can pro-
ceed with its description, we need to provide background
information.

4.1 Background

A flow network is a directed graph G = (V, E), where each
edge (v,u) € E has a non-negative capacity c¢(v,u) > 0 (and
if (v,u) € E, ¢(v,u) = 0). Given a source vertex s € V and a
sink vertex t € V, a flow f in G is a function f: V xV — R
that must satisfy the properties of capacity constraint (i.e.,
for all v,u € V, f(v,u) < c(v,u)), skew symmetry (i.e.,
for all v,u € V, f(v,u) = —f(u,v)), and flow conservation
(e, for all v € V' \ {s,t}, >, oy f(v,u) = 0). The value
of a flow in the flow network is defined as the total flow out
of the source s |f| = >, oy f(s,u), and the maximum-flow
problem is to find a flow of maximum value.

A standard way of computing maximum flow relies on
the Ford-Fulkerson method, which proceeds as follows: We
initialize the flow to 0, and while there exists an augmenting
path p, we augment the flow f along the path p. Here an
augmenting path is defined as a path from the source s to
the sink ¢ which can admit more flow and therefore can be
used to increase the overall flow of the network.

In implementing the above high-level logic, existing algo-
rithms rely on the notion of residual network, which intu-
itively consists of edges that can admit more flow. In more
detail, given a flow network G = (V, E) and a flow f, the
residual network of G induced by f is Gy = (V, Ef) with
edges of positive capacity Ey = {(v,u) € VXV | ¢f(v,u) >
0}, where ¢ (v,u) = c¢(v,u) — f(v, u) is the residual capacity
of (v,u). An augmenting path p is then a simple path from s
to ¢ in the residual network G;. This means that each edge
on the path admits additional positive flow, and the (resid-
ual) capacity of p is defined as cy(p) = min{cs(v,u) | (v,u)
is on p}.

The basic structure of the approach, which corresponds to
the Ford-Fulkerson algorithm, is then as follows: On input
G=(V,E),seV,andt €V,

1. for each (v,u) € FE do
2. f(v,u)=0
3. f(u,v)=0
4. while there exists path p from s to t in residual
network Gy do
cf(p) = min{cy(v,u) | (v,u) is on p}
for each (v,u) in p do
fv,u) = f(v,u) +cr(p)
f(uv ’U) = 7f(’0,u)
This algorithm has complexity O(|E| - | fmaz|), where frmaz
is the maximum flow returned by the algorithm, as finding
a path in each iteration of the algorithm involves O(|E|)
time. For networks with integral capacities and small f,qz,
the runtime of this algorithm is good; however, in the gen-

® NS ot



eral case a variant known as the Edmonds-Karp algorithm
is preferred. If we use a shortest path from s to ¢ on line
4 of the algorithm, we obtain the Edmonds-Karp algorithm
with complexity O(|V] - |E|?). Tt is guaranteed to find the
maximum flow in O(|V| - |E|) iterations, each of which in-
volves O(|E|) time (see, e.g., [16]). Finding a shortest path
can be accomplished using BF'S.

4.2 Oblivious algorithm

In our oblivious solution, we follow the overall structure of
the algorithm and use the implementation of BFS and short-
est path computation from Section 3. Because our oblivious
BFS algorithm processes one node at a time and reveals
its location in the adjacency matrix, we need to shuffle the
rows and columns of the matrix between each iteration of
the maximum flow solution to hide all access patterns. We
also now must maintain the residual network and obliviously
update it after computing the augmenting path p.

We obtain the solution, which takes as the input a flow
network G = (V, E) with the capacity function stored in the
(protected) adjacency matrix M, source node s, and sink
node t. We assume that positive capacity of edge (v, u) is
stored in [My,.], and M, = 0 indicates that there is no
edge from v to u. The algorithm proceeds as follows:

Algorithm 3:

1. Expand matrix M with |V|—1 fake nodes inserted into
M consistently as rows and columns. The capacity of
all edges (v,u) and (u,v) connecting two fake nodes v
and u is set to Cmax, Where Cpmay refers to the maxi-
mum possible capacity of an edge. The capacity of all
edges (v, u) and (u,v), where v is a node of the original
graph G and u is a fake node is set to 0. As before,
the information about which nodes of M are fake is
maintained in bit vector F'. The location of fake nodes
does not need to be randomized at this step.

2. Create (protected) matrix M’ for storing residual net-
work G and initialize each element of it M ; to M ;.
Also create (protected) matrix L for storing the flow
function and initialize each element of it L; ; to 0.

3. Repeat the computation that follows |V| - |E| times.

4. Apply a random permutation to the rows and columns
of M’ and L as well as to the elements of F' consis-
tently. Reveal the location of s after the permutation,
but keep the location of ¢ protected.

5. Execute SSSD shortest path algorithm on the graph
defined by M’ using source s and destination [t]. Be-
cause our algorithms in Section 3 were defined for un-
weighted graphs, we need to introduce changes to work
with weighted graphs and also preserve information
about the capacity of each edge on the path. For that
reason, for the purposes of the BFS algorithm, node u
is considered to be adjacent to node v if the capacity
of the edge (v, u) is positive, i.e., M, , > 0. In addi-
tion, when updating vector C' in step 4 of Algorithm 1
with parent and distance from the source information,
we also preserve information about the capacity of the
edge from the parent to the current node using matrix
M’. This information is stored in field C;.capacity and
is updated together with C;.parent and C;.dist. That
is, we execute:

1. for i =1 to |V| do
2. [cond] = ([M, ;] s 0) - ([Ci.color] < white)

3. [Ci.color] = [cond]- gray+ (1 — [cond]) - [C;.color]

4. [Ci.parent] = [cond] v+ (1—[cond])-[C;.parent]

5. [Ci.dist] = [cond](|Cy.dist] + 1) + (1 — [cond]) -

[Cldzst}
6. [Ci.capacity] = [cond][M, ;] + (1 — [cond]) -
[Ci.capacity]

To preserve edge capacity in the reconstructed path P,
we also introduce changes to Algorithm 2. In particu-
lar, instead of storing a single node [w] in P, we now
store a tuple of the form ([v1], [v2], [vs], [c]). Here [v1]
is the same as previously stored, i.e., the first elements
of the stored tuples form a path in the graph padded
in the beginning with fake nodes to be of length |V|.
Nodes v2 and w3 represent an edge, and c is capacity.
In almost all cases, v1 = v2 and (vs,v2) is the edge
on the path of capacity c, i.e., v3 is stored as the first
element of the preceding tuple. The only time when
this does not hold is during special cases when the
source or no path symbol L has been reached during
path computation. In those cases, we set v to s or L,
but the edge (vs,v2) is between two fake nodes, and
c is the capacity of that edge in M’ when v; = s and
¢ =0 when v; =1. Setting the capacity in such a way
will allow us to ensure that the capacity of the path
is computed correctly. For reasons that will soon be-
come apparent, we also set [v2] = [v1], [vs] = [t], and
[c] = 0 in the last iteration of path reconstruction (i.e.,
the first tuple on the path). The path reconstruction
algorithm becomes:

(a) Initialize the path P to empty and set [v] = [v] =
[t]. Randomly choose a fake node as before and
store it in [u].

(b) Repeat |V|— 1 times:

i. Scan vector C to retrieve parent and edge ca-
pacity information and compute data to be
added to the path by executing the following:

1. [w]=0
2. [c]=0
3. fort=1to02|V|—1do

4. [eond] = ([v] = 1)

5. [w] = [cond][C;.parent] + (1 — [cond])[w]
6. [d= [condl[Ci.capacity] + (1 — [cond])[c]
7. [cond] = (v' =1)

8. [v1] = [V']

9. [v2] = [v]

10. [vs] = [w]

11. [¢] = (1 — [cond])[]
12. [cond:] = ([w] = )
13. [conda] = ([w] =)
14. [cond] = [cond1] + [conds] — [condi][conds]
15. [v'] = [w]
16. [v] = [cond] - [u] + (1 — [cond])[w]
where, as before u, is a randomly selected
fake node. The purpose of v’ here is simply
to store node information from the previous
round (in case v is set to u, while we need to
remember w as well).
ii. Prepend ([v1], [v2], [vs], [¢]) to P.
(c) Set [v1] = [v'], [ve] = [v'], [vs] = [t], and [c] = [0]
and prepend ([v1], [v2], [vs], [¢]) to P.



6. Compute the residual capacity [cf] of the path in P.

Oblivious execution of this step is not difficult:

L. [ef] = [emaa]

2. for i =2 to |V| do

3. [cond] = ([P;.capacity] < [cf])

4.  [ef] = [cond] - [Pi.capacity] + (1 — [cond)])[cy]

Here P; is the ith element of the path P. Note that
the first tuple on the path is ignored as its capacity is
always 0, i.e., only |V|—1 edges are used in computing
the path’s capacity.

. To be able to update the residual network M’ and flow
function L, we obliviously rotate the entries in the path
P to have the first record contain an edge that leaves
the source s. This will allow us to proceed with one
edge of P at a time updating cells of M’ and L in the
next step.

When there is no path between s and ¢, vertex s does
not appear in P. To hide this information, we re-
place | with s in tuple ([t], [¢],[L],[0])." This does
not affect correctness of the algorithm. We also ignore
the preceding record (of the form ([s], [v2], [vs], [¢]) or
([L], [v2], [v3], [€])), i-e., process only |V| — 1 edges.

A simple way of performing oblivious rotation of the
tuples in P is as follows:

l.fori=1to |V|—1do

2. [cond] = ([P;.vs] < s)

3. [temp] = [P1]

4. forj=1to|V|—1do

5. [Pj] = [cond][P;] + (1 — [cond]) [Pj+1]
6. [Pv] = [cond][Pv|] + (1 — [cond])[temp]

7. remove P; from P

For simplicity of exposition, we use assignment [z] =
[P] to indicate that the entire tuple at the ith position
of P is stored in variable z (where the value of i is
known, while the content of values at P; is not).

After rotating the elements of P in this manner, we
have that P stores a path from s to t padded at the
end with fake nodes and edges between them (and if no
path exists, there will be a path in P, but its capacity
is 0, which means that the residual network will not
be modified). Note that there is an edge leaving ¢ of
capacity 0 (i.e., the first element of P prior to its ro-
tation) which correctly forms the path and transitions
to a fake node (after which all nodes on the path are
fake). Figure 2 demonstrates how P is formed before
and after path rotation for two cases: (i) when a path
from s to ¢ is present and (ii) when there is no path
from s to t. Notation v; refers to an original node of
the graph, and notation f; is used for fake graph nodes.
. Update residual network M’ and flow function L. Now
because we use random labeling of vertices in the graph,
we can update M’ and L by revealing the path infor-
mation (i.e., open edges (vs,v2) in each element of P)
and update the corresponding cells of M’ and L with
(still protected) path capacity information. We, how-
ever, already revealed a certain sequence of nodes dur-
ing BFS computation, and to ensure that there is no
correlation between memory accesses during BFS and

P = <f3af3?t 0> <’U2 V2, S C3>
Py = (fa, f2, f3,¢5) p2 = <’U17’U17U2 c2)
Ps = (s, f1, f2,ca) — [Ps = (t, ¢, 01, 1)
Py = (va, va, 5, ¢c3) p4 ={fs, [3,1,0
Ps = <'U17'U17'U2702> <f27f27f23 C5>

P6 <t,t,’Ul,C1>
(a) Existing path before and after path rotation

Pl <fdafo,t 0> —
plhhall n-Giii
P §f37f37f47 ), Py = (fa, fa, f5, ca)
(
(

1134 f25f25f3a 2> P, = f3,f3,f4,c3>
Pzz<t,t,J_,O> P5:<f27f27f3702>

(b) Unreachable destination before and after
path rotation

Figure 2: Example of path computation for |V| = 6.

during residual network update, we need to randomly
shuffle the nodes again. This time, in addition to per-
muting the rows and columns of M’ and L, as well as
vector F, we also need to map each node v contained
in path P to its permuted index m(v). A simple way
of accomplishing this is to scan the (i, [r(¢)]) pairs for
each v in P and replace v with 7(7) when v = 4. That
is, for each node v included in P, we execute:

1. fori=1to2|V|—1do

2. [eond] = ([v] < i)

3. [r(v)] = [cond][n(i)] + (1 — [cond])[r (v)]

It is important that the location of ¢ is not known
after the random permutation in each iteration and

the nodes on any given path do not repeat. The cells
of M’ and L are then updated as follows:

1.fori=1to |V|—1do
2. open vz and vz in P;

3. [LU37'02] = [Lv3,v2] + [cf}
4. [va va] = _[Lvava]
5. [M'llzg, v2] [M’lllg,'uz] - [Cf}

6. [M{J27v3] [Mllfzws] + [Cf}
At the end of the computation we output the maximum
flow as the total flow Z‘V‘ [Ls,i] leaving the source node s.
If the flow information is desired with respect to the original
node labeling, the algorithm can maintain the composition
of random permutations used at each iteration.

4.3 Analysis

4.3.1 Complexity analysis

To show that our algorithm runs in O(|V|*|E|log(|V]))
time, we analyze the complexities of each step of it. In the
algorithm, steps 1, 2, 5, and 7 take O(|V|?) time, while the
complexity of step 6 is O(|V]) and that of steps 4 and 8 is
O(|V|?1og(|V])). Because steps 4-8 are repeated O(|V||E|)
times, we obtain the overall complexity as claimed. Our
complexity is higher by a factor log(|V]) than that of Edmonds-
Karp’s algorithm when the adjacency matrix is used or the

!This step can be performed at the time of forming the graph is dense with |E] = O(|V[*). It also outperforms any
tuples in P, but for clarity of presentation we choose to solution that combines the Edmonds-Karp algorithm with

form the path correctly in step 5. ORAM when |E| = Q(|V|*/log(]V])).



4.3.2  Security analysis

We show the security of the maximum-flow algorithm as
before using Definition 1.

THEOREM 3. The mazimum-flow algorithm is data-oblivious.

PRrROOF. As before, we analyze each major operation in
the algorithm with input G = (V, E), s, and ¢. In steps 1
and 2, we perform identical operations and touch exactly
the same locations for all inputs with |V | nodes and there-
fore the steps are data-oblivious. Step 3 is merely an itera-
tor with the same number of iterations for all graphs with
|V| nodes and |E| edges, so we proceed directly to step 4.
Step 4 only executes a data-oblivious shuffle operation and
is therefore oblivious. Step 5 calls BFS and SSSD shortest
path algorithms with small changes to preserve edge capac-
ity information. These algorithms have been shown to be
data-oblivious in Theorems 1 and 2, respectively. Step 6
performs identical operations and accesses the same mem-
ory locations for all graphs with |V| nodes and is therefore
data-oblivious. In step 7, the algorithm rotates the path,
once again executing identical operations for all inputs and
accessing the same memory locations. Lastly, in step 8§,
we execute the same operations for all graphs, but accessed
memory locations differ. Our algorithm crucially relies on
two facts to achieve data-obliviousness: (i) the vertices are
randomly permuted prior to any access is made and (ii) all
updates follow a path of size |V|, which always starts with
the source s and has no repeated nodes on it. This means
that, besides for the first accessed node s, all other memory
accesses are random and cannot be distinguished from ac-
cesses used for a randomly generated input graph. Lastly,
because the algorithm proceeds in iterations, we ensure that
every time a subset of memory locations is accessed (i.e.,
during BFS and when updating the residual network), the
nodes are randomly permuted right before that operations.
This ensures that all accesses cannot be distinguished from
a random sequence of vertex accesses. [

S. MINIMUM SPANNING TREE

Given the already developed techniques, it is not difficult
to design an oblivious algorithm for computing the minimum
spanning tree that runs in O(|V|?) time (unless the node la-
beling reveals information about the structure of the graph).
Our algorithm uses the structure of Prim’s algorithm, and
we start by describing background information.

5.1 Background

On input connected undirected weighted graph G = (V, E),
Prim’s algorithm initializes the spanning tree T' = (V’, E’)
to a single arbitrary vertex from V and no edges. Then
until V' # V, the algorithm selects an edge (v,u) with
the minimum weight such that v € V' and u ¢ V' and
sets V! = V' U{u} and E' = E' U {(v,u)}. The com-
plexity of this algorithm depends on the graph representa-
tion and data structures used. Using the adjacency ma-
trix, the algorithm runs in O(|V|?) time; using the adja-
cency list, the algorithm’s performance is O(|E|log(|V])) or
O(|E| + |V|log(|V])) if a binary heap or Fibonacci heap is
used, respectively.

5.2 Oblivious algorithm

In order to compute a minimum spanning tree obliviously
without incurring a large amount of additional overhead,

we maintain a vector with candidate nodes to potentially be
added to the tree T and select one of them which has an edge
with the minimum weight connecting it to 7. The vector is
updated each time a node is added to V’. To efficiently im-
plement this step, we crucially rely on the ability to process
a single row of the matrix, which can be safely performed
only when the node labeling is random and does not reveal
information about the structure of the graph. We obtain
the algorithm given below, which takes as input adjacency
matrix M representing the graph G. Because edge weights
in G can be arbitrary, we assume that each cell M, , of M
contains two fields: (i) Boolean field adjacent, which is set
if (v,u) € E and (ii) numeric value weight indicating the
weight of the edge (v, u).

Algorithm 4:

0. If the numbering of the nodes in G may convey in-
formation about the structure of the graph, randomly
and consistently permute the rows and columns of ad-
jacency matrix M.

1. Choose a single node v from G, e.g., at position 1 in M.
Set V' = {v} and E’ = {). Create (protected) vector C
of size |V|, where each element of C, C;, contains two
fields: weight and parent. Initialize each [C;.weight]
to oo (which for practical purposes can be any constant
larger than any weight in M) and each [C;.parent] to
1.

2. Retrieve row at position v from M and update C using
M,. That is, for each ¢ we store in C; the minimum of
C; and the weight at M, ; if v is adjacent to 7. Then if
Ci.weight is updated to the weight stored at M, ;, we
also store v in Cj.parent. The pseudo-code for oblivi-
ous implementation of this step is:

1. fori=1to |[V|—1do
”
2. [econd] = ([My,;.weight] < [C;])[My,;.adjacent]
3. [Cs.weight] = [cond][ M, ;. weight]+ (1 —[cond]) -
[Ci.weight]
4. [Ci.parent] = [cond] - v+ (1 — [cond)])[C;.parent]

3. Locate the minimum element of C, (..., considering

only locations i such that i € V’. That is, execute:

1. [min] = oo

2. [imin] = 0

3. fori=1to|V|—1do

4. ifi € V' then

5. [cond] = ([Ci.weight] < [min])

6. [min] = [cond][Ci.weight] + (1 — [cond])[min]
7. [imin] = [cond] - i + (1 — [cond])[imin]

8. tmin = open(imin)

4. Update the minimum spanning tree by setting V' =
V' U limin}, B = E' U{([C},,;,, -parent], [imin])}, and
U = imin. Repeat steps 2—4 |V| — 2 times and output
the edges E’.

Recall that the nodes of the graph are randomly permuted
and the order in which they are added to V' does not reveal
information about the graph. This means that the nodes
that form the set V' are not protected, where each node is
added to V' exactly once. This means that in step 3 we need
to consider only the nodes that have not yet been added to
the minimum spanning tree.

Correctness of this algorithm follows from the correctness
of Prim’s algorithm.



5.3 Analysis

5.3.1 Complexity analysis

The performance of our algorithm is not difficult to assess:
steps 1-3 take O(|V]) time, while step 4 takes O(1) time.
Because these steps are repeated O(|V]) times, we arrive at
O(|]V|?) overall time. It is optimal with matrix adjacency
representation and when |E| = O(|V|?). If step 0 is neces-
sary, however, the overall time raises to O(|V|*log(]V])).

5.3.2  Security analysis

To show that the minimum spanning tree algorithm is
oblivious, we as before follow Definition 1 and show that
the revealed information is indistinguishable from random.

THEOREM 4. The minimum spanning tree algorithm is
data-oblivious.

PROOF. We analyze each major operation in the algo-
rithm with input G = (V, E). Step 0 calls random shuffling,
which can be performed obliviously. Step 1 does not use
the input, only the input’s size. In step 2, after retrieving
a row of the adjacency matrix, the execution that follows
uses the same instructions and accesses the same memory
for all input graphs. Then, because this step is executed
multiple times, each iteration accesses a row corresponding
to a unique node. Since we know that the node ordering
is random and each node is used exactly once, the access
pattern induces a random permutation on the set of nodes
and is therefore indistinguishable from access patterns of
randomly chosen graphs. Steps 3 and 4 execute the same
instructions and access the same memory locations for all
input graphs and are therefore data-oblivious. [J

6. BUILDING SECURE PROTOCOLS

In this section we briefly illustrate how our oblivious al-
gorithms can be used to build protocols for graph problems
suitable for secure computation and outsourcing. We use
the BFS algorithm for illustration purposes.

Using the setting of section 1.3 with respect to compu-
tation participants, we denote the computational parties as
P, ..., P, and define security in presence of semi-honest par-
ticipants (who follow the prescribed computation, but might
attempt to learn additional information about private data
from the messages that they receive) as follows:

DEFINITION 2. Let parties P, ..., P, engage in a protocol
IT that computes function f(ini,...,in,) = (outy,...,out,),
where in; and out; denote the input and output of party P;,
respectively. Let VIEWn(P;) = (in;,ri, m1,...,my) denote
the view of participant P; during the execution of protocol
I, which is formed by its input, internal random coin tosses
ri, and messages mi, . .., my passed between the parties dur-
ing protocol execution. Let I = {P;,, Pi,,...,P;,} denote a
subset of the participants for t < n and VIEWr(I) denote
the combined view of participants in I during the execution
of protocol 11 (i.e., the union of the views of the partici-
pants in I). We say that protocol 11 is t-private in presence
of semi-honest adversaries if for each coalition of size at
most t there exists a probabilistic polynomial time simulator
St such that {Si(ing, f(in1,...,iny)} = {VIEWn(I),outs},
whereing = Up, ¢ {ini}, outr = Up, ;{outi}, and = denotes
computational or statistical indistinguishability.

To obtain a solution that complies with the above security
definition, we employ a (n,t) threshold linear secret sharing
scheme (such as [35]), using which a secret s is split into n
shares. Then any ¢ + 1 shares can be used to reconstruct
s exactly, while possession of ¢ or fewer shares information-
theoretically reveals no information about s. Using such
techniques for data protection, we obtain the following se-
cure protocol for BFS computation:

1. The input party/parties distribute shares of the graph
(in the form of adjacency matrix M) to the computa-
tional parties and indicate what node is the source.

2. If the node labels are not random, the computational
parties use a random permutation to randomize the
graph representation.

3. The parties execute Algorithm 1 on shares using the
following building blocks for computing with shares:

(a) addition and subtraction of shares, multiplication
of a shared value by a known or shared value con-
stitute elementary operations;

comparisons and equality tests are implemente
b i d li impl d
using protocols LT and Eq, respectively, from [13];

(c) random permutation is achieved by first choosing
random labels for all elements to be permuted,
e.g., by calling PRandFld from [13], and oblivi-
ously sorting the elements using the chosen ran-
dom labels as the sorting key as, e.g., shown in [5].

4. The parties send their shares of the result to the output
party /parties.

Security of the above solution can be shown based on
the facts that (1) the building blocks have been previously
proven secure in the same security model and (2) compo-
sition of secure building blocks leads to the security of the
overall solution using the composition theorem from [12]. In
more detail, to build a simulator as specified in Definition 2,
we can invoke the corresponding simulators of the building
blocks to simulate the view of a coalition of computational
parties which is indistinguishable from the real protocol ex-
ecution.

7. CONCLUSIONS

In this work we design data-oblivious algorithms for sev-
eral classical graph problems, namely, breadth-first search,
single-source single-destination shortest path, minimum span-
ning tree, and maximum flow. The algorithms are designed
to work on protected data and have applications to secure
computation and outsourcing. The algorithms have optimal,
or close to optimal, performance for dense graphs or when
adjacency matrix is used to represent the input graphs. It
is an open problem to design efficient data-oblivious algo-
rithms for sparse graphs.
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