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ABSTRACT
The emergence and availability of remote storage providers prompted
work in the security community that allows a client to verify in-
tegrity and availability of the data she outsourced to an untrusted
remove storage server at a relatively low cost. Most recent solutions
to this problem allow the client to read and update (insert, modify,
or delete) stored data blocks while trying to lower the overhead as-
sociated with verifying data integrity. In this work we develop a
novel and efficient scheme, computation and communication over-
head of which is orders of magnitude lower than those of other
state-of-the-art schemes. Our solution has a number of new fea-
tures such as a natural support for operations on ranges of blocks,
and revision control. The performance guarantees that we achieve
stem from a novel data structure, termed balanced update tree, and
removing the need to verify update operations.

Categories and Subject Descriptors
K.6 [Management of Computing and Information Systems]: Se-
curity and Protection; E.1 [Data Structures]: Trees; H.3.4 [Information
Storage and Retrieval]: Systems and Software—distributed sys-
tems

General Terms
Security, Algorithms, Verification

Keywords
Authentication, dynamic provable data possession, balanced up-
date tree, outsourced storage, proof of retrievability

1. INTRODUCTION
Cloud computing and storage services today enable convenient

on-demand access to computing and data storage resources, which
make them attractive and economically sensible for clients with
limited computing or storage resources. Security and privacy, how-
ever, have been suggested to be the top impediment on the way of
harnessing full benefits of these services (see, e.g., [1]). For that
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reason, there has been an increased interest in the research commu-
nity in securing outsourced data storage and computation, and in
particular, in verification of remotely stored data.

The line of work on proofs of retrievability (POR) or provable
data possession (PDP) was initiated in [4, 20] and consists of many
results [11, 25, 5, 24, 19, 10, 29, 6, 8, 9, 16, 26, 27, 13, 28, 30, 21,
17, 22] that allow for integrity verification of large-scale remotely
stored data. At high level, the idea consists of partitioning a col-
lection of data into data blocks and storing the blocks together with
metadata at a remote storage server. Periodically, the client issues
integrity verification queries (normally in the form of challenge-
response protocols), which allow the client to verify a number of
data blocks independent of the overall number of outsourced blocks
using the metadata to ensure with high probability that all stored
blocks are intact and available. Schemes that support dynamic op-
erations [5, 19, 16, 26, 27, 30, 21, 17, 22], DPDP, additionally allow
the client to issue modify, insert, and delete requests, after each of
which the integrity of the newly stored data is verified.

The motivation for this work comes from (i) improving the per-
formance of the existing schemes when modifications to the data
are common, and (ii) extending the available solutions with new
features such as support for revision control and multi-user ac-
cess to shared data1. Toward this end, we design and implement
a novel mechanism for efficient verification of remotely stored data
with support for dynamic operations. Our solution uses a new data
structure, which we call a balanced update tree. The size of the
tree is independent of the overall size of the outsourced storage,
but rather depends on the number of updates to the remote blocks.
The data structure is designed to provide a natural support for han-
dling ranges of blocks (as opposed to always processing individual
blocks) and is balanced allowing for very efficient operations. Un-
like all prior work with support for dynamic operations where each
dynamic operation is followed by verification of its correct exe-
cution by the server, our scheme eliminates such checks. Instead,
verification is performed only at the time of retrieving the data or
through periodic challenge queries (both of which are also present
in prior work). This distinctive feature of our scheme therefore re-
sults in substantial communication and computation savings.

Today many services outsource their storage to remote servers
or the cloud, which can include web services, blogs, and other
applications in which there is a need for multiple users to access
and update the data, and modifications to the stored data are com-
mon. For example, many subscribers of a popular blog hosted by a
cloud-based server are allowed to upload, edit, or remove blog con-
tent ranging from a short commentary to a large video clip. This
demands support for multiple user access while maintaining data

1Due to space constraints, multi-user access is described in the full
version of this work.



consistency and integrity, which current schemes do not provide.
In addition to supporting this feature, our solution provides support
for revision control which can be of value for certain applications
as well. Because in the existing solutions the server maintains only
the up-to-date values of each data block, support for revision con-
trol can be added by means of additional techniques (such as [3]),
but they result in noticeable overhead per update. In our solution,
on the other hand, there is no additional cost for enabling retrieval
and verification of older versions of data blocks beyond the obvi-
ous need for the server to store them with small metadata. Finally,
because the size of the maintained data structure grows with the
number of dynamic operations, by issuing a commit command, the
client will be able to keep the size of the maintained update tree
below a desired threshold if necessary.

To summarize, our solution enjoys the following features:

• Improved efficiency in handling dynamic operations. In our
solution there is no need to verify integrity of updates (e.g., a
data block which is modified a large number of times and is
subsequently deleted), while prior schemes invest resources
in verifying correct implementation of each user’s action by
the storage server.

• Support for range operations. The natural support and use of
range operations allows for additional performance improve-
ment compared to the existing solutions.

• Balanced data structure. The update tree used for verifying
correctness of the stored data blocks is always balanced re-
gardless of the number and order of dynamic operations on
the storage. This results in similar performance for locating
information about each data block in the tree and is logarith-
mic in the size of the tree.

• Size of the maintained data structure. In our solution the
size of the maintained update tree is independent of the out-
sourced data size, while it is linear for other solutions that
support dynamic operations. The size of the update tree grows
with the number of dynamic operations, but can be reduced
by issuing a commit command.

• Support for revision control. We provide natural support for
revision control and allow clients to retrieve previous ver-
sions of data and efficiently verify their integrity. There is
no additional overhead for either the client or the server for
enabling this feature (besides the obvious need to maintain
different versions of data by the server).

• Public verifiability. Our scheme can be easily modified to
support public verifiability, which allows the client to out-
source periodic verification of storage integrity to a third party
auditor (who is different from the server).

These features come at the cost of increased storage (compared to
other schemes) at the client who in our solution maintains the up-
date tree locally. Because the data structure size is not large (and
is independent of the outsourced data size), we believe it is a rea-
sonable tradeoff for other improvements that we achieve. In partic-
ular, any PC-based client will not be burdened by the local storage
even if it reaches a few MB. Other weaker clients (such as mobile
users) and battery-operated devices in particular are power-bound
and benefit from the reduced computation in our scheme while still
are able to store the data structure locally. A detailed comparison
of the performance of our and other DPDP schemes is given in
section 8, which shows that both computation and communication
overhead of our scheme is orders of magnitude lower than those of
other existing solutions.

2. RELATED WORK
We next review selected PDP/POR schemes from prior literature

and their difference with the proposed solution. In particular, we
are interested in the schemes that support dynamic operations on
outsourced storage.

One line of research [20, 5, 26] relies on so-called sentinels
which are outsourced together with the client’s data and are used
to verify remotely stored blocks. Such scheme, however, poorly
scale when blocks need to be updated and allow only for a limited
number of audits.

Another line of research with support for dynamic operations
utilizes specialized data structures such as Merkle hash trees or
chained hashes [27, 21, 22] or skip lists [16, 19, 17] to organize
the data blocks outsourced to a server. When a Merkle hash tree
is used, each leaf node corresponds to the hash of a data block,
and the client locally keeps the root value of the tree. Correctness
of a read request on the ith block is verified in a standard way by
reconstructing the root value from the ith block and hashes of the
sibling nodes on the path from the block to the root. For an update
request on the ith block, the client retrieves and verifies the same
information as that of the read request. The client then computes
a new root value based on the new ith block, substitutes it for the
previously stored root value, and uses it afterwards.

A disadvantage of Merkle hash tree based solutions is that the
tree becomes unbalanced after a series of insert and delete requests.
That is, a block insert request at position i is handled by replacing
the (i − 1)th block’s node with a new node that has two children:
a node for the previously stored (i− 1)th and a node for the newly
inserted ith block. Similarly, a deletion request is handled by re-
moving the corresponding node from the tree and making its sib-
ling take the place of its parent. As access patterns normally do not
uniformly span across the stored data, inserting multiple blocks at
the same position will result in the height of the tree growing for
each inserted data block. This will result in a large variance in the
time to locate different blocks in the tree. Using an advanced tree
structure (e.g., red-black tree) can help mitigate this problem by
balancing the tree when necessary, but it comes with an additional
cost of recomputing the hash of nodes affected by the balancing
process.

To support the dynamic operations, [16] develops a scheme based
on a skip list, which extends the original skip list [23] by incorpo-
rating label [18] and rank information to enable efficient authenti-
cation of client’s updates. This allows for each update to be ver-
ified in expected O(logn) time with high probability, where n is
the size of the skip list. The skip list remains balanced regardless
of the client’s access or update patterns. The authors also propose
support for variable-sized blocks, which is achieved by handling a
number of fixed size blocks as a single block and performing stan-
dard operations on it. While this approach guarantees the integrity
of variable-sized data blocks in their entirety, it becomes impos-
sible to verify an individual block upon receiving a request on it.
Furthermore, the time to locate a fixed size block is linear in the
number of blocks stored in a node, which may dominate the overall
time when a node contains many blocks.

The original Merkle hash tree and skip list schemes maintain
only the most recent copy of data. To incorporate revision con-
trol capabilities, [3] used a persistent authenticated data structure,
which adds O(logn) extra space for each update, where n is the
number of nodes in the data structure.

The data structure that we build has three properties that make
it favorably compare to the existing schemes. First, each node in
our update tree corresponds to a range of block indices (instead of a
specific index as in prior work) defined by a dynamic operation per-



formed on a range of consecutive blocks. The reason for assigning
a range of block indices to a node is motivated by a study [15] on
user’s file access patterns that observed that a large number of file
accesses are sequential. Second, unlike maintaining a data struc-
ture of size linear in the number of outsourced data blocks, in our
solution it is independent of the size of the stored data. Previously,
the large size required the client to outsource the data structure to
the cloud while locally maintaining only a constant-size data for
integrity verification. In our update tree, on the other hand, a node
represents a user-triggered update, and multiple updates issued on
the same range of blocks can also be condensed into a single node.
Due to its moderate size, the client can maintain the data structure
locally, which makes the verification process more efficient. Third,
we can specify requirements that define when the data structure
should be rebalanced. Once the requirement is violated, the tree
is re-organized to satisfy the constraint. As an example, the con-
straint of AVL trees [2] can be used that requires that the heights of
a node’s subtrees must differ by at most 1.

Prior to this work, the notion of a range tree was used in the
databases to deal with range queries [7]. The range tree data struc-
ture, however, is majorly dissimilar to our update trees. For in-
stance, range trees store one record per node as opposed to a range,
are static as opposed to be dynamically updated and balanced through-
out system operation, etc. Similarly, interval trees [12] cannot sup-
port insertions and deletion of block ranges which require partition-
ing of existing ranges/intervals in the tree and index changes. The
operational details of update trees are therefore very different from
those of interval trees. One of most significant challenges of this
work was to design a dynamic update tree that can be rebalanced
at low cost after arbitrary changes to it. A balanced update tree is
therefore one of the novel aspects of this work.

3. PROBLEM DEFINITION
We consider the problem in which a resource-limited client is in

possession of a large amount of data partitioned into blocks. Let N
denote the initial number of blocks and mi denote the data block
at index i, where 1 ≤ i ≤ N . The client C outsources her data
to a storage or cloud server S and would like to be able to update
and retrieve her data in a way that integrity of all returned data
blocks can be verified. If the data is sensitive and its secrecy is to
be protected from the server, the client should encrypt each data
block using any suitable encryption mechanism prior to storing it
at the remote server. In that case, each data block mi corresponds
to encrypted data, and the solution should be oblivious to whether
data confidentiality is protected or not. We assume that the client
and the server are connected by (or establish) a secure authenticated
channel for the purposes of any communication.

The primary feature that we would like a scheme to have is sup-
port for dynamic operations, which include modifying, inserting,
or deleting one or more data blocks. We also consider minimal-
overhead support for revision control which allows the client to
access and verify previous versions of its data, as a desirable fea-
ture to have, but it is not strictly necessary for a PDP scheme. Our
scheme achieves this property at no extra cost beyond maintaining
previous versions by the server, and we defer any additional discus-
sion of this feature to the full version of this work.

We define a dynamic provable data possession scheme (DPDP)
in terms of the following procedures:

• KeyGen(1κ) → {sk} is a probabilistic algorithm run by C
that on input a security parameter 1κ produces key sk.

• Init(〈sk,m1, . . .,mN 〉, 〈⊥〉)→ {〈MC〉, 〈MS , D〉} is a pro-
tocol run betweenC and S during whichC uses sk to encode

the initial data blocks m1, . . .,mN and store them at S who
maintains all data blocks outsourced by the client in D. C’s
and S’s metadata are maintained in MC and MS , resp.

• Update(〈sk,MC , op, ind, num,mind, . . .,mind+num−1〉, 〈MS ,
D〉)→ {〈M′C〉, 〈M′S , D′〉} is a protocol run between C and
S, during which C prepares num blocks starting at index ind
and updates them at S. The operation type op is either mod-
ification (0), insertion (1), or deletion (−1), where no data
blocks are communicated for deletion.

• Retrieve(〈sk,MC , ind, num〉, 〈MS , D〉) → {〈mind, . . .,
mind+num−1〉, 〈⊥〉} is a protocol run between C and S, dur-
ing which C requests num data blocks starting from index
ind, obtains them from S and verifies their correctness.

• Commit(〈sk,MC , ind, num,mind, . . .,mind+num−1〉, 〈MS ,
D〉)→ {〈M′C〉, 〈M′S , D′〉} is a protocol run between C and
S, during which C re-stores metadata of num data blocks
starting from index ind at S. S erases all previous copies of
the data blocks in the range as well as previously deleted by
C blocks that fall into the range if they were kept for revision
control.

Our formulation of the scheme has minor differences with prior
definitions of DPDP, e.g., as given in [16]. First, update and retrieve
operations are defined as interactive protocols rather than several
algorithms run by either the client or the server. Second, in addition
to using the Retrieve protocol for reading data blocks, in the cur-
rent formulation it is also used to execute periodic audits. That is,
verification of each read is necessary to ensure that correct blocks
were received even if the integrity of the overall storage is assured
through periodic challenges, and the verification is performed sim-
ilar to periodic audits. In particular, because the Retrieve protocol
is executed on a range of data blocks and can cover a large number
of blocks, verification is performed probabilistically by checking a
random sample of blocks of sufficient (but constant) size to guar-
antee the desired confidence level. (And if the number of requested
blocks is below the constant, all of them are verified.) This protocol
can then be easily adapted to implement periodic audits denoted as
Challenge(〈sk,MC〉, 〈MS , D〉) → {〈mi1 , . . .,mic〉, 〈⊥〉} during
which a random subset of blocks at indices i1, . . . , ic is verified. To
implement Challenge, we simply call Retrieve on the entire stor-
age with the difference that data blocks which are not being verified
are not returned. In other words, during each Challenge query, the
client receives and verifies correctness of c data blocks. We stress
that defining audit Challenge queries in terms of Retrieve requests
is the matter of notational preference: the functionality and prob-
abilistic nature of verification of both Retrieve and Challenge re-
quests is the same in our and other DPDP schemes. We obtain that
prior work requires verification for each block update operation and
a constant number of verifications per audit or read request. In our
proposed scheme, only read and audit requests need to be verified
by checking a constant number of blocks per request.

This constant c is computed in our and prior work by using de-
tection probability of 1 − ((num − t)/num)c, where num is the
number of blocks being checked, from which the server tampers
with t. Then, say, using c = 460 the client can detect the problem
with 99% probability if the server tampers with 1% or more of the
data regardless of the data size. This means that during Retrieve or
Challenge calls, min(c, num) data blocks need to be verified.

To show security, we follow the definition of secure dynamic
PDP from prior literature. In particular, we base our definition on
the original definition of secure DPDP from [16] and introduce log-
ical changes to account for the slightly different setting. In this



context, the client should be able to verify the integrity of any data
block returned by the server. This includes the verification that the
returned data block corresponds to the most recent version of it
(or, when revision control is used, a specific previous version, in-
cluding deleted content, as requested by the client). The server is
considered fully untrusted and can modify the stored data in any
way it wishes (including deleting the data). Our goal is to design a
scheme in which any violations of data integrity or availability will
be detected by the client. More precisely, in the single-user set-
ting the security requirements are formulated as a game between a
challenger (who acts as the client) and any probabilistic polynomial
time (PPT) adversary A (who acts as the server):

Setup: the challenger runs sk ← KeyGen(1κ). A specifies the
data blocks m1, . . .,mN and their number N for the initial-
ization and obtains initial transmission from the challenger.

Queries: The adversary A specifies what type of a query to per-
form and on what data blocks. The challenger prepares the
query and sends it to A. If the query requires a response,
A sends it to the challenger, who informs A about the result
of verification. The adversary can request any polynomial
number of queries of any type, participate in the correspond-
ing protocols, and be informed of the result of verification.

Challenge: At some point, A decides on the content m1, . . .,mR

on which it wants to be challenged. The challenger prepares
a query that replaces the current storage with the requested
data blocks and interacts with A to execute the query. The
challenger and adversary update their metadata according to
the verifying updates (non-verifying updates are considered
not to have taken place), and the challenger and A execute
Challenge(〈sk, MC〉, 〈MS, D〉). If verification of A’s re-
sponse succeeds, A wins. The challenger has the ability to
reset A to the beginning of the Challenge query a polyno-
mial number of times with the purpose of data extraction.
The challenger’s goal is to extract the challenged portions of
the data from A’s responses that pass verification.

DEFINITION 1. A DPDP scheme is secure if for any PPT ad-
versaryA who can win the above game with a non-negligible prob-
ability, there exists an extractor that allows the client to extract the
challenged data in polynomial time.

The existence of an extractor in this definition means that the adver-
sary that follows any strategy can win the game above with proba-
bility negligibly larger than the probability with which the client is
able to extract correct data. In our case, the probability of catching
a cheating server is the same as in prior literature, and its security
is analyzed in section 6.

Besides security, efficient performance of the scheme is also one
of our primary goals. Toward that goal, we would like to minimize
all of the client’s local storage, communication, and computation
involved in using the scheme. We also would like to minimize
the server’s storage and computation overhead when serving the
client’s queries. For that reason, the solution we develop has a nat-
ural support for working with ranges of data blocks which is also
motivated by users’ sequential access patterns in practice.

4. PROPOSED SCHEME
Building blocks. In this work we rely on a message authentication
code (MAC) scheme, defined by three algorithms:

1. The key generation algorithm Gen, which on input a security
parameter 1κ produces a key k.

2. The tag generation algorithm Mac, which on input key k and
message m ∈ {0, 1}∗, outputs a fixed-size tag t.

3. The verification algorithm Verify, which on input a key k,
message m, and tag t outputs a bit b, where b = 1 iff verifi-
cation was successful.

For compactness, we write t← Mack(m) and b← Verifyk(m, t).
The correctness requirement is such that for every κ, every k ←
Gen(1κ), and every m ∈ {0, 1}∗, Verifyk(m,Mack(m)) = 1.
The security property of a MAC scheme is such that every PPT
adversary A succeeds in the game below with at most negligible
probability in κ:

1. A random key k is generated by running Gen(1κ).
2. A is given 1κ and oracle access to Mack(·). A eventually

outputs a pair (m, t). Let Q denote the set of all of A’s
queries to the oracle.

3. A wins iff both Verifyk(m, t) = 1 and m 6∈ Q.

Overview of the scheme. To mitigate the need for performing ver-
ifications for each update on the outsourced data, in our solution
both the client and the server maintain metadata in the form of a bi-
nary tree of moderate size. We term the new data structure a block
update tree. In the update tree, each node corresponds to a range of
data blocks on which an update (i.e., insertion, deletion, or modifi-
cation) has been performed. The challenge with constructing such
a tree was to ensure that (i) a data block or a range of blocks can be
efficiently located within the tree and (ii) we can maintain the tree
to be balanced after applying necessary updates caused by client’s
queries. With our solution, we obtain that all operations on the
remote storage (i.e., retrieve, insert, delete, modify, and commit)
involve only work logarithmic in the tree size.

Each node in the update tree contains several attributes, one of
which is the range of data blocks [L,U]. Each time the client re-
quests an update on a particular range, the client and the server first
need to find all nodes in the update tree with which the requested
range overlaps (if any). Depending on the result of the search and
the operation type, either 0, 1, or 2 nodes might need to be added to
the update tree per single-block request. Operating on ranges helps
to lower the size of the tree. For any given node in the update tree
the range of its left child always covers data blocks at strictly lower
indices than L, and the range of the right child always contains a
range of data blocks with indices strictly larger than U. This allows
us to efficiently balance the tree using standard algorithms such as
that of AVL trees [2]. Furthermore, because insert and delete oper-
ations affect indices of the existing data blocks, in order to quickly
determine (or verify) the indices of the stored data blocks after a se-
quence of updates, we store an offset value R with each node of the
update tree which indicates how the ranges of the blocks stored in
the subtree rooted at that node need to be adjusted. Lastly, for each
range of blocks stored in the update tree, we record the number of
times the blocks in that range have been updated. This information
will allow the client to verify that the data she receives corresponds
to the most recent version and integrity of the data (or, alternatively,
to any previous version requested by the client).

At the initialization time, the client computes a MAC of each
data block together with its index and version number (which is
initially set to 0). The client stores the blocks and their correspond-
ing MACs at the server. If no updates take place, the client will
be able to retrieve a data block by its index number and verify its
integrity. To support dynamic operations, the update tree is first ini-
tialized to empty. To modify a range of existing blocks, we insert a
node in the tree that indicates that the version of the blocks in the
range has increased. To insert a range of blocks, the client creates
a node in the tree with the new blocks and also indicates that the
indices of the blocks that follow need to be increased by the num-



ber of inserted blocks. A node’s offset affects its entire subtree,
which removes the need to touch many nodes. To delete a range of
blocks, the deleted blocks are marked with operation type “−1” in
the tree and the offset of blocks that follow is adjusted accordingly.
Then to perform an update (insert, delete, or modify), the client
first modifies the tree, computes the MACs of the blocks to be up-
dated, and communicates the blocks (for insertion and modification
only) and the MACs to the server. Upon receiving the request, the
server also modifies the tree according to the request and stores
the received data and MACs. If the server behaves honestly, the
server’s update tree will be identical to the client’s update tree (i.e.,
all changes to the tree are deterministic). To retrieve a range of
blocks, the client receives a number of data blocks and their corre-
sponding MACs from the server and verifies their integrity by using
information stored in the tree.

Update tree attributes. Before we proceed with the description of
our scheme, we outline the attributes stored with each node of the
update tree, as well as global parameters. Description of the update
tree algorithms is deferred to Section 5.

With our solution, the client and the server maintain two global
counters together with the update tree, GID and CID, both of which
are initially set to 0. GID is incremented for each insertion oper-
ation to ensure that each insert operation is marked with a unique
identifier. This allows the client to order the blocks that have been
inserted into the same position of the file through different oper-
ations. CID is incremented for each commit operation and each
commit is assigned a unique identifier. For a given data block, the
combination of its version number and commit ID will uniquely
identify a given revision of the block. In addition, each node in the
update tree stores several attributes:

Node type Op represents the operation type associated with the
node, where values −1, 0, and 1 indicate deletion, modifi-
cation, and insertion, respectively.

Range L,U specifies the start and end indices of the data blocks,
information about which is stored at the node.

Version number V indicates the number of modifications performed
on the data blocks associated with the node. The version
number is initially 0 for all data blocks (which are not stored
in the update tree), and the version is also reset to 0 during a
commit operation for all affected data blocks (at which point
information about them is combined into a single node).

Identification number ID of a node has a different meaning de-
pending on the node type. For a node that represents an inser-
tion, ID denotes the value of GID at the time of the operation,
and for a node that represents a modification or deletion, ID
denotes the value of CID at the time of the last commit on
the affected data blocks (if no commit operations were previ-
ously performed on the data blocks, the value is set to 0). In
order to identify the type of ID (i.e., GID or CID) by observ-
ing its value, we use non-overlapping ranges for the values
from which IDs for the two different types are assigned.

Offset R indicates the number of data blocks that have been added
to, or deleted from, the range of data block indices that pre-
cede the range of the node (i.e., [0, L− 1]). The offset value
affects all data blocks information about which is stored di-
rectly in the node as well as all data blocks information about
which is stored in the right child subtree of the node.

Pointers Pl and Pr point to the left and right children of the node,
respectively, and Pp points to the node’s parent.

In addition to the above attributes, each node in the server’s update
tree also stores pointers to the data blocks themselves (and tags
used for their verification).

Construction. We next provide the details of our construction. Be-
cause the solution relies on our update tree algorithms, we outline
them first, while their detailed description is given in Section 5.
• UTInsert(T, s, e) inserts a range of new blocks into the up-

date tree T, where the range starts from index s and consists
of (e−s+1) data blocks. It returns a node v that corresponds
to the newly inserted block range.
• UTDelete(T, s, e) marks blocks in the range [s, e] as deleted

in the update tree T and adjusts the indices of the data blocks
that follow. It returns an array of nodes C from T that corre-
spond to the deleted data blocks.
• UTModify(T, s, e) updates the version of the blocks in the

range [s, e] in the tree T. If some of blocks in the range have
not been modified in the past (and therefore are not repre-
sented in the tree), the algorithm inserts necessary nodes with
version 1. The function returns all the nodes in T that corre-
spond to the modified data blocks.
• UTRetrieve(T, s, e) returns the nodes in T that correspond

to the data blocks in the range [s, e].
• UTCommit(T, s, e) replaces nodes in T that correspond to

the data blocks in the range [s, e] with a single node and bal-
ances the remaining tree.

The protocols that define our solution are as follows:

1. KeyGen(1κ)→ {sk}: C calls sk← Gen(1κ).

2. Init(〈sk,m1, . . .,mN 〉, 〈⊥〉) → {〈MC〉, 〈MS , D〉}: C and
S initialize the update tree T to empty and set MC = T
and MS = T, respectively. For 1 ≤ i ≤ N , C computes
ti = Macsk(mi||i||0||0||0), where “||” denotes concatena-
tion and the three “0”s indicate the version number, CID, and
operation type, resp. C sends each 〈mi, ti〉 to S who stores
this information in D.

3. Update(〈sk,MC , op, ind, num,mind, . . .,mind+num−1〉, 〈MS ,
D〉) → {〈M′C〉, 〈M′S , D′〉}: the functionality of this proto-
col is determined by the operation type op and is defined as:

(a) Insert op = 1: C executes u ← UTInsert(MC , ind,
ind+ num− 1).

Delete op = −1: C executes U ← UTDelete(MC ,
ind, ind+ num− 1).

Modify op = 0: C executes U ← UTModify(MC ,
ind, ind+ num− 1).

C stores the updated update tree in M′C .
(b) For each u ∈ U (or a single u in case of insertion),

C locates the data blocks corresponding to the node’s
range from themi’s, for ind ≤ i ≤ ind+num−1, and
computes ti ← Macsk(mi||u.L + j||u.V||u.ID||op),
where j ≥ 0 indicates the position of the data block
within the node’s blocks. C sends op, ind, and num
together with the 〈mi, ti〉 pairs to S, except that for
deletions the data blocks themselves are not sent.

(c) Insert op = 1: S executes u ← UTInsert(MS , ind,
ind+ num− 1).

Delete op = −1: S executesU ← UTDelete(MS , ind,
ind+ num− 1).

Modify op = 0: S executesU ← UTModify(MS , ind,
ind+ num− 1).

S stores the updated tree in M′S and combines D with
received data (using returned u or U ) to obtain D′.



Recall that the protocol does not involve integrity verifica-
tion for each dynamic operation, which removes a round of
interaction between the client and server. Instead, the server
records the operation in its metadata, which will be used for
proving the integrity of returned blocks at retrieval time.

4. Retrieve(〈sk,MC , ind, num〉, 〈MS , D〉) → {〈mind, . . .,
mind+num−1〉, 〈⊥〉}:

(a) C sends ind and num to S.
(b) S executesU ← UTRetrieve(MS , ind, ind+num−1).

For each u ∈ U , S retrieves the attributes (L, U, and
pointer to the data blocks) from u, locates the blocks
and their tags 〈mi, ti〉 in D, and sends them to C.

(c) Upon receiving 〈mi, ti〉,C executesU ← UTRetrieve(MC ,
ind, ind + num − 1). C chooses a random subset of
data blocks of size min(c, num). For each chosen data
blockmi,C locates the corresponding u ∈ U and com-
putes bi ← Verifysk(mi||u.L+j||u.V||u.ID||u.Op, ti),
where j ≥ 0 is the data block position within the node’s
data blocks. If bi = 1 for each verifiedmi,C is assured
of integrity of returned data.

5. Challenge(〈sk,MC〉, 〈MS , D〉)→ {〈mi1 , . . .,mic〉, 〈⊥〉}:
(a) C chooses c distinct indices i1, . . ., ic at random from

the range [1, N ] and sends them to S.
(b) If none of the indices are adjacent, S executes Uj ←

UTRetrieve(MS , ij , ij) for each j ∈ [1, c]. Other-
wise, S combines adjacent indices in ranges and exe-
cutes UTRetrieve for each range.

(c) For eachUj , S retrieves the attributes (L, U, and pointer
to the data block) from MS , locates the blocks and their
tags 〈mij , tij 〉 in D, and sends them to C.

(d) Upon the receipt of c data blocks and their correspond-
ing tags 〈mi1 , ti1〉, . . ., 〈mic , tic〉, C executes Uj ←
UTRetrieve(MC , ij , ij) for each j (or for each range
when some indices are adjacent). For each data block
mij , C verifies its tag using the same computation as
in Retrieve.

6. Commit(〈sk,MC , ind, num,mind, . . .,mind+num−1〉, 〈MS ,
D〉)→ {〈M′C〉, 〈M′S , D′〉}:

(a) C executes u← UTCommit(MC , ind, ind+num−1)
and stores updated metadata in M′C . C next computes
tind+i ← Macsk(mind+i||L+ i||0||CID||0) for 0 ≤ i ≤
num − 1, and sends the tags and parameters ind and
num to S (the blocks are assumed to be unchanged).

(b) S executes u← UTCommit(MS , ind, ind+num−1)
and updates its metadata to M′S . S updates the affected
blocks’ tags in D to obtain D′.

Public verifiability. To enable outsourcing of periodic challenge
queries to a third party auditor, instead of choosing a private key
sk, the client creates a public-private key pair (pk, sk). The client
then replaces MAC computation with a signature produced using
sk. An auditor with an up-to-date copy of the update tree will be
able to perform challenge queries on behalf of the client and verify
them using pk.

5. UPDATE TREE OPERATIONS
In this section we describe all operations on the new type of data

structure, balanced update tree, that allow us to achieve attractive
performance of the scheme. The need to maintain several attributes
associated with a dynamic operation and the need to keep the tree

balanced add complexity to the tree algorithms. Initially, the tree
is empty and new nodes are inserted upon dynamic operations trig-
gered by the client. All data blocks information about which is not
stored in the tree have not been modified and their integrity can be
verified by assuming version number and commit ID to be 0.

When traversing the tree with an up-to-date range [s, e] of data
blocks, the range will be modified based on the R value of the nodes
lying on the traversal path. By doing that, we are able to access the
original indices of the data blocks (prior to any insertions or dele-
tions) to either correctly execute an operation or verify the result
of a read request. We illustrate the tree operations on the example
given in Figure 1, in which the leftmost tree corresponds to the re-
sult of three modify requests with the ranges given in the figure. We
highlight modifications to the tree after each additional operation.

The first operation is an insertion, the range of which falls on left
side of node A’s range and overlaps with the range of node B. To
insert the blocks, we partition B’s range into two (by creating two
nodes) and make node D correspond to an insertion (Op = 1). Note
that the offset R of node A is updated to reflect the change in the
indices for the blocks that follow the newly inserted blocks. Fur-
thermore, for the insertion operation, only the position at which the
new blocks are inserted matters, not its range. For instance, execut-
ing an insertion with a block range [61, 300] or [61, 70] will have
the same impact on the tree structure. The second operation is a
modification, the range of which lies on the right to node A’s range.
When going down the tree, we modify the block range contained in
the original request based on A’s offset R (for the right child only),
which now overlaps with node C’s range. To accommodate the re-
quest, we increment the version of C’s blocks and insert two new
nodes with ranges before and after C’s range. The last operation is
a deletion, the range of which likewise fall on the right to A’s range
and the indices in the original request are adjusted. Because the
adjusted range falls before all ranges in C’s subtree, it is inserted as
the left child of E1 with type Op = −1 and the offset R of both C
and E1 is adjusted to reflect the change in block indices for these
nodes and their right children.

We first list sub-routines called by the main algorithms followed
by an outline of main operations. Due to space constraints, pseudo-
code and detailed explanations are given in the full version.

Sub-routines:

UTInsertNode(u,w, dir) inserts a node w into a (sub-)tree rooted
at node u. The routine is called only in the cases when after the in-
sertion, w becomes either the leftmost (dir = left) or the rightmost
(dir = right) node of the subtree.

When the node w is inserted into the left subtree of node u, the
offset R of each node on the path should be updated according to
the range of indices of w when the operation is insertion or deletion,
because the new range lies to the left of the blocks of the current
u. When the node w is inserted into the right subtree of node u,
the range of node w should also be modified as it traverses the tree,
since we need to store the original indices of data blocks .

UTFindNode(u, s, e, op) searches the tree rooted at node u for a
node corresponding to block range [s, e] for the purposes of execut-
ing operation op on that range.

After the function is invoked on range [s, e] and that range does
not overlap with the ranges of any of the existing nodes, the func-
tion creates a new node and returns it. Otherwise, the function
needs to handle the case of range overlap, defined as follows: (i)
op is insertion and the index s lies within the range of a tree node
or (ii) op is modification or deletion and the range [s, e] overlaps
with the range of at least one existing tree node.



Figure 1: Example of update tree operations.

The tricky part of the algorithm is to avoid returning nodes that
correspond to deleted block ranges. If such a node is found, we
should ignore it and keep searching until we find a node that rep-
resents either an insertion or modification operation. The function
can be invoked for any dynamic operation and takesO(logn) time.
UTUpdateNode(u, s, e, op) is called by a modification or deletion
routine on a sub-tree rooted at node u when the range [s, e] of data
blocks needs to be updated and falls into the range of u.

The function handles four different situations based on the type
of intersection of ranges [s, e] and [u.L, u.U]. If the two ranges are
identical several attribute of u (i.e., V, ID and Op) will be reset with
values that depend on the operation type. If only the lower (only
the upper) bound of the two ranges coincide, we reset the range
of the current root node to [s, e], fork a new node corresponding
to the remaining range, and insert it into the right (resp., left) sub-
tree of current root node. If neither the lower nor the upper bound
matches with each other, we fork two child nodes corresponding
to the head and tail remaining ranges, and insert each of them into
the left or right subtree of current root node respectively. As can be
expected, the node generated with the remaining range will become
either a leftmost or a rightmost node of the subtree, and we use
UTInsertNode sub-routine to achieve it. The time complexity of
the sub-routine is O(logn).
UTBalance(u) balances the tree rooted at node u using AVL trees
method and returns the root of a balanced structure. This function
will only be called on trees both direct child sub-trees of which are
already balanced rather than on arbitrarily unbalanced trees. The
time complexity of this function is linear in the height difference of
u’s child sub-trees.

Main routines:
UTInsert(T, s, e) updates the tree T for an insert request with the
block range [s, e] by inserting a node in the tree.

The main functionality of the routine is (i) to find a position for
node insertion (using UTFindNode sub-routine), and (ii) to insert a
new node into the tree. When the range [s, e] does not overlap with
any existing nodes, UTFindNode inserts a new node into the tree
and no other action is necessary. Otherwise, an existing node u′ that
overlaps with [s, e] is returned and determines the number of nodes
that need to be created. That is, if the (adjusted) insertion position
s equals to the lower bound of u′, u′ is substituted with a new node
and is inserted into the right subtree of the new node. Otherwise,
u′ is split into two nodes, which are inserted into the left and right
subtrees of u′, respectively while u′ itself is set to correspond to
the insertion. The insert request in Figure 1 corresponds to the
scenario.
UTModify(u, s, e), when called with u = T, updates the tree T
based on a modification request with the block range [s, e] and re-

turns the set of nodes that correspond to the range. The algorithm
creates a node for the range if T is empty, and otherwise invokes
UTFindNode to locate the positions of nodes to be modified. Af-
ter finding them, the algorithm distinguishes between three cases
based on how the (adjusted) range [s, e] overlaps with the range of
a found node ui (i.e., [ui.L, ui.U] ):

1. If the adjusted range is contained in ui’s range, ui is the only
node to be modified, and this is handled by UTUpdateNode.
The modify request in Figure 1 corresponds to the scenario.

2. If the adjusted range overlaps with the ranges of ui and its
one subtree, the algorithm updates the range of ui and then
recursively calls itself to update the remaining nodes.

3. If the adjusted range overlaps with the range of ui and both
of its subtrees, the algorithm updates ui and calls UTModify
twice to handle changes to its child subtrees.

UTDelete(u, s, e), when called with u = T, updates the update
tree T based on a deletion request with the block range [s, e]. It
does not delete any node from T, but rather finds all nodes whose
ranges fall into [s, e], sets their operation types to −1, and returns
them to the caller. UTDelete works similar to UTModify.

UTRetrieve(u, s, e), when called with u = T, returns the nodes
whose ranges fall into [s, e]. Its high-level structure follows that of
UTModify.

UTCommit(T, s, e) replaces all nodes in tree T whose ranges falls
into [s, e] with a single node with the range [s, e]. The goal of a
commit operation is to reduce the tree size, but in the process it
may become unbalanced or even disconnected. Thus, to be able to
maintain the desired performance guarantees, we must restructure
and balance the remaining portions of the tree. To achieve that, we
first search for two nodes that contain the lower and upper bounds
s and e, respectively, and make the adjusted s and e (denoted s′ and
e′, respectively) become the left or right bound of the nodes that
contain them. We then traverse T from the two nodes to their least
common ancestor T′, remove the nodes with ranges falling into the
range [s′, e′], and apply UTBalance sub-routine to balance the tree
if necessary. Lastly, we traverse T from T′ to the root, and balance
the tree if necessary. We also add a node with [s, e] and new CID.
The routine returns adjusted lower bound s′ and updated CID.

To illustrate how the tree is being traversed and balanced in the
process, let us consider an example in Figure 2. In the figure, u1 and
u2 correspond to the tree nodes that incorporate the smallest and
largest block indices falling in the commit range (i.e., s and e), re-
spectively, and T′ is their lowest common ancestor. The nodes and
their subtrees shown using dotted lines corresponds to the nodes
whose entire subtrees are to be removed. To remove all nodes in
the subtree of T′ with block indices larger than adjusted s (located
in the left child’s subtree), we traverse the path from u1 to T′. Ev-



Figure 2: Illustration of the commit algorithm.

ery time u1 is the left child of its parent, we remove u1’s right
sibling and its subtree, remove u1’s parent node, and make u1 take
the place of its parent. For the example in the figure, it means that
nodes v10 and v9 are removed together with their subtrees, nodes
v8 and v7 are also removed, and u1 takes the place of v7. At this
point u1 becomes the right child of its parent, and we balance the
subtree rooted at u1’s parent and make u1 point to its parent node
(by calling UTBalance(u) sub-routine). This rebalancing proce-
dure is continued by traversing up to v7, v4, and v1, until the left
subtree of T′ is completely balanced.

The same process applies to the right child’s tree of T′ that con-
tain u2 with the difference that node removal is performed when u2
is the right child of its parent and rebalancing is performed when
u2 is the left child of its parent. For the example in Figure 2, we
obtain that node v5 is removed together with its subtree, node v2 is
removed, and u2 takes the place of v2.

The last step that remains is to rebalance the subtree rooted at T′

and the subtrees of all other nodes on the path from T′ to the root.
This is accomplished by making T′ point to its parent after each
rebalancing procedure. We obtain a balanced tree T with all nodes
in the range [s, e] removed and insert one single node correspond-
ing to this range that indicates that the commit number CID of all
blocks in the range [s, e] has been increased.

6. ANALYSIS OF THE SCHEME
Complexity analysis. In what follows, we analyze the complex-
ity of main update tree algorithms and the protocols that define the
scheme. Each UTInsert adds one or two nodes to the tree, and all
operations are performed during the process of traversing the tree.
Therefore, its time complexity is O(logn), where n is the current
number of nodes in the tree. Both UTModify and UTDelete can
add between 0 and O(min(n, e − s)) nodes to the tree, but as our
experiments suggest, a constant number of nodes is added per range
on average. Their time complexity is O(logn + min(n, e − s)),
and both the size of the block range and the number of nodes in
the tree form the upper bound on the number of returned nodes.
UTRetrieve does not add nodes to the tree and its complexity is
also O(logn + min(n, e − s)). Lastly, UTCommit removes be-
tween 0 and O(min(n, e − s)) nodes from the tree and its time
complexity is O(logn +min(n, e − s)). While the function calls
UTBalance, the worst case complexity of which is O(logn), at
most O(logn) number of times, due to the careful construction of
the tree and the commit function, we are able to achieve O(logn)
node rearrangement time (plus, node deallocation time). This is due
to the fact that balancing a tree, both subtrees of which are them-
selves balanced, but their heights differ by a constant, requires only
a constant number of operations. A detailed proof can be found in
the full version.

Next, we analyze the complexity of the protocols themselves. It
is clear that Init has time and communication complexity ofN , i.e.,
the number of transmitted blocks. Update for any operation type
has time complexity of O(logn+ num) and communication com-
plexity ofO(num). Retrieve has the same complexities as Update,
unless it is used for integrity verification rather than block retrieval.
In the latter case, its computation and communication complexities
become O(logn + min(num, c)) and O(min(num, c)), respec-
tively, where constant c bounds the number of 〈mi, ti〉 pairs used
for the purpose of probabilistic verification. Lastly, the complex-
ities of Commit are O(logn + num) and O(num), because the
client needs to communicate num MACs to the server.

Security analysis. Security of our scheme can be shown according
to the definition of DPDP in Section 3.

THEOREM 1. The proposed update tree scheme is a secure DPDP
scheme assuming the security of MAC scheme.

PROOF SKETCH. Suppose that the adversary A wins the data
possession game with a non-negligible probability. Then the chal-
lenger can either extract the challenged data blocks (i.e., if A has
not tampered with them) or break the security of the MAC scheme
(i.e., if A tampered with the data). In particular, in the former
case, the challenger can extract the genuine data blocks from A’s
response. In the latter case, if the adversary tampers with a data
block (by possibly substituting it with a previously stored data for
the same or a different block), it will have to forge a MAC for it,
which the challenger can use to win the MAC forgery game. This
is because our solution is designed to ensure that any two MACs
communicated by the client to the server are computed on unique
parameters. That is, two different versions of the same data block
i will have either their version, CID, or operation type differ, while
two different blocks that at different points in time assume the same
index i (e.g., a deleted block and a block inserted in its place) can be
distinguished by the value of their ID (i.e., at least one of them will
have a GID, and two GIDs or a GID and CID are always different).
2

The probability that a cheating server is caught on a Retrieve or
Challenge request of size num < c is 1, and otherwise the proba-
bility is 1− ((num− t)/num)c, where t is the number of tampered
blocks among the challenged blocks.

7. ENABLING REVISION CONTROL
In this section, we sketch how our scheme can be extended to

support revision control. The exact algorithms are omitted and can
be found in the full version. To enable versioning functionality, we
need to specify (i) how a user can retrieve a specific version of a
data block or range and (ii) how a user can retrieve deleted data
blocks (prior to a commit on them, which permanently removes
them from the server).

Specific version retrieval can be realized by modifying the Retrieve
protocol to add version number V to the set of parameters sent to the
server with the request. After receiving the request, the server exe-
cutes UTRetrieve as usual, but returns to the client the data blocks
and their tags that correspond to version V. To verify the response,
the client verifies the returned tags using the intended version V
and other attributes obtained from UTRetrieve.

Deleted data retrieval can be realized by extending the Retrieve
protocol’s interface with a flag that indicates that deleted data is
to be returned and modifying UTRetrieve that currently skips all
deleted data. The difficulty in specifying what deleted data to re-
trieve is caused by the fact that deleted blocks no longer have in-
dices associated with them. To remedy the problem, we propose to



specify in the request a range [s, e] that contains the desired deleted
range and includes one or more non-deleted blocks before and af-
ter the deleted range being requested. We also need to use an al-
ternative UTRetrieve function for retrieval of deleted data, which
instead of ignoring nodes that represent deletions will return them
as the output and will allow the server to locate the deleted blocks
and their tags.

8. PERFORMANCE EVALUATION
To evaluate performance of our scheme and provide a compar-

ison with prior solutions, we designed experiments which mea-
sure the computation, communication, and storage requirements of
three different schemes. The schemes that we compare are: (i) our
update tree (UTree) solution, (ii) the solution based on Merkle hash
tree (MHT) [27], and (iii) the solution based on skip lists (SL) [16,
19]. The asymptotic complexities of the schemes being compared
are given in Table 1. The table provides storage complexities for
both the server (in addition to the data blocks themselves, i.e., space
for maintaining metadata) and the client, as well as computation
complexities per operation. For a retrieve, update, insert, or delete
operation, it is assumed that the operation is executed on a range
consisting of t blocks. For MHT and SL schemes, the integrity of
a dynamic operation on t blocks is verified by executing the appro-
priate verification procedure for each of the t blocks. Verification
of retrieve and challenge operations is assumed to be probabilistic
in all schemes. For a retrieve operation, min(c, t) blocks are veri-
fied for constant c, while transmitting all t blocks to the client. The
complexity of the challenge query of the entire outsourced storage
is that of verifying c data blocks for constant c. In the table, N de-
notes the number of data blocks stored at the server, andM denotes
the number of dynamic operations on the stored blocks. The worst-
case complexity of an operation with the MHT-based solutions is
linear in the size of the repository because after arbitrary insertions
and deletions the height of the tree is O(N) in the worst case.

We evaluate the performance of the schemes in three different
settings: the first uses 1GB of outsourced storage with 4KB data
blocks, the second uses 256GB of storage with 4KB blocks, and the
third uses 256GB of storage with 64KB blocks. The first 1GB+4KB
setting was chosen for consistency with experiments in prior work
and the other two allow us to examine the systems’ behavior when
one parameter remains fixed while the other changes (i.e., 4KB
block size in the first two settings and 256GB overall storage in the
last two settings). As another important observation about the cho-
sen settings, notice that the number of blocks are 218, 226, and 222,
respectively, which allows us to test the performance with respect
to its dependence on the number of outsourced data blocks. In situ-
ations when the amount of outsourced storage is significantly larger
than in our experiments, we expect the data block size to become
larger as well leaving the number of blocks within the range that
we evaluate. Lastly, we evaluate the performance of the schemes
in the realistic scenarios by utilizing the file traces gathered by Mi-
crosoft Research data centers for a week time period. We believe
the access patterns we observed in the trace are representative of a
large number of small to medium size enterprise data centers.

We implement our and MHT schemes in C, while the SL scheme
was implemented as in [16] in Java. Despite the programming lan-
guage difference, the time to compute a hash is similar in both im-
plementations. Because the overall computation of the SL scheme
is dominated by hash function evaluation, we consider the perfor-
mance of all implementations to be comparable. We use SHA-
224 for hash function evaluation and HMAC with SHA-224 for
MAC computation. The experiments were run on 2.4GHz Linux
machines (both the client and the server).

(a) single-block mixed opera-
tions

(b) multiple-block mixed opera-
tions

Figure 3: Aggregate client’s computation time after n opera-
tions with 1GB outsourced storage and 4KB block.

Computation. To evaluate computation, we measure the client’s
time after executing n client’s requests for n between 104 and 105.
The server’s overhead in all schemes is similar to that of the respec-
tive client’s overhead. The initial cost of building the data structures
in MHT and SL schemes or computing MACs in our solution is not
included in the measured times.

In the first experiment, we choose one of four operations (in-
sert, delete, modify, and retrieve) at random and execute it on a
randomly selected single data block. From the schemes that we
compare, only our solution provides a natural support for query-
ing ranges of blocks (the SL solution in [16] can provide a limited
support for block ranges as previously described). Then because
in practice accesses are often consecutive in their nature (see, e.g.,
[15]), the performance of our scheme is expected to be even bet-
ter in practice. For all of the above operations except deletion, the
client needs to compute a hash (or MAC) of the data block used
in the request. Because this computation is common to all three
schemes2, we separately measure it and also provide the times for
the remaining processing that the client needs to do.

Because of drastic differences in performance of the schemes,
we present many results in tables instead of displaying them as
plots. This allows us to convey information about the growth of
each function. For that reason, Figure 3(a) plots the aggregate
and Figure 4 plots average performance of all schemes for the first
1GB+4KB setting, while Table 2 provides average computation for
all three settings. Notice that in the figure the overhead of each
scheme is added to the common hash computation work, while in
the table the common and additional computation are shown sepa-
rately. We were unable to complete 256GB+4KB experiments for
SL due to its extensive computation (primarily to build the data
structure) and memory requirements. As can be seen from the re-
sults, the overhead of UTree scheme is 2 to 3 orders of magni-
tude lower for the settings used in the experiment. The majority of
the total work in a UTree scheme comes from MAC computation,
while in MHT and SL the proof often dominates the cost. Also note
that the overhead of SL is larger than that of MHT due to the use
of longer proofs and commutative hashing in the former, where the
majority of the difference comes from the hashing. As expected,
the number of data blocks in the storage affects performance of
MHT and SL schemes (the proof sizes of which are logarithmic in
the total number of blocks), while the average time per operation
remains near a constant for each setting. In our scheme, on the
other hand, the time grows slowly with the number of operations,
but does not increase with the total storage size.

2In MHT and SL schemes the client needs to compute the hash of
a data block, while in our scheme the client computes a MAC of
it. Because MAC computation is slightly more expensive than the
hash, we include MAC’s additional overhead into the performance
of our scheme.



Scheme
Cost per operation (Server and Client) Storage

Update or Insert Delete Retrieve Challenge Server ClientComputation Communic. Computation Communic. Computation Communication Computat. Communic.
MHT [27] O(Nt) O(Nt) O(Nt) O(Nt) O(min(c, t)N + t) O(min(c, t)N + t) O(cN) O(cN) O(N) O(1)
SL [16, 19] O(t logN) O(t logN) O(t logN) O(t logN) O(min(c, t) logN + t) O(min(c, t) logN + t) O(c logN) O(c logN) O(N) O(1)
This work O(logM + t) O(t) O(logM + t) O(1) O(logM + t) O(t) O(c logM) O(c) O(N) O(M)

Table 1: Asymptotic complexities of DPDP schemes.

Setting File Block Scheme Total number of operations n Block
size size 20000 40000 60000 80000 100000 hash

1GB 4KB
UTree 1.34 1.51 1.62 1.70 1.77

134MHT 127 127 127 127 127
SL 481 502 473 512 462

Single-block
256GB 64KB

UTree 1.19 1.33 1.43 1.49 1.57
1972mixed random MHT 148 147 148 147 148

operations SL 619 595 633 652 703

256GB 4KB UTree 1.20 1.32 1.43 1.50 1.56 134MHT 180 179 179 178 183
Multi-block

1GB 4KB
UTree 1.68 2.14 2.48 2.78 2.99

1340mixed random MHT 944 978 1000 1050 1090
operations SL 4750 4460 4570 4640 4800

Single block
1GB 4KB

UTree 1.13 1.17 1.21 1.26 1.76
134same position MHT 77400 155000 232000 308000 466000

insertions SL 250 235 242 258 212

Table 2: Average client’s computation time per operation measured after n operations for various schemes in µsec.

(a) MHT and SL (b) UTree

Figure 4: Average client’s computation time measured after n
single-block randomly chosen operations with 1GB storage and
4KB block (without block hash computation).

For the second experiment, we changed the first experiment to
execute each operation on a range of data blocks of size between
1 and 20. To be able to verify correctness of individual blocks,
we do not implement the variable-sized data block approach sug-
gested in [16], but rather repeat the single-block operation multi-
ple times for each operation. However, to improve efficiency of
MHT scheme, for a range insertion operation we construct an in-
dependent tree from the blocks specified in the request first and
then insert it into the MHT in the same way as a single node. The
performance results are given in Table 2 and Figure 3(b).

Compared to the single-block operations, performance of MHT
and SL schemes deteriorates by a factor of 9–10, while for our
UTree, which was designed to work on ranges, there is only a mod-
est (20%–70%) increase in the performance. The increase in the
tree size can be explained by using more nodes to partition an exist-
ing node. We expect that in the other settings with a larger number
of blocks (256GB+4KB and 256GB+64KB), the tree will have a
smaller size as the ranges are spread out over a larger space.

For the third experiment, we used a new access pattern that in-
serts data blocks at the same position in a file. The goal is to
demonstrate the effect of such operation on an unbalanced data
structure. The results are shown in Table 2. As we can see, UTree
and SL schemes exhibit stable performance due to their balanced
data structures, while performance of MHT grows significantly and

File Block Scheme Total number of operations n
size size 20000 40000 60000 80000 100000

1GB 4KB

UTree 0.4 0.8 1.2 1.6 2
MHT 9.6 19.3 28.9 38.6 48.3

SL 21 39.6 62.2 77.5 98.3
Data 60 120 180 240 300

256GB 64KB

UTree 0.4 0.8 1.2 1.6 2
MHT 11.7 23.5 35.3 47.0 58.8

SL 25.1 54.7 79.2 101 126
Data 960 1920 2880 3840 4800

256GB 4KB
UTree 0.4 0.8 1.2 1.6 2
MHT 13.9 27.8 41.7 55.5 69.4
Data 60 120 180 240 300

Table 3: Aggregate communication size after n operations for
various schemes measured in MB.

linearly with the number of operations (as its height in that case ex-
hibits linear in the number of operations growth). There is no easy
way to remedy the situation by balancing MHT in a similar way
to our solution, as the client does not have complete information
about the MHT.

Communication. To evaluate communication, we measure the
amount of data exchanged between the client and the server after
executing a number of single-block requests. The data transferred
in each operation consists of a data block (except for deletion) and
corresponding auxiliary data. The former cost is common to all
schemes, while the latter varies in its format and size. In particular,
for UTree the auxiliary data consists of a single MAC, while for
MHT and SL it is the proof linear in the height of the data struc-
ture. Another difference is that UTree involves a unidirectional
communication for all except one operation (i.e., Retrieve which
returns a response), while all operations in MHT and SL require
bidirectional communication. For that reason, we measured the ag-
gregated data exchanged for each operation, without considering
the direction of data transfer. The results are given in Table 3.

Because deletion does not involve data block transfer in all three
schemes, the average size of data block communication per oper-



ation is 3/4 of the block size. As can be observed from Table 2,
UTree scheme’s communication is independent of the data struc-
ture size or the setting and is constant per operation. For MHT and
SL scheme, on the other hand, performance depends on the data
structure size. For data blocks of small size, the proof overhead
of MHT and SL schemes constitutes a significant portion of the
overall communication volume (14–30%), which could be a fairly
large burden for a user constrained by a limited network band-
width. The overhead of UTree scheme, on the other hand, is no
more than 0.6%. Lastly, the difference in performance of MHT and
SL schemes can be explained by the length of the proof and the size
of elements within the proof.

Storage. To evaluate storage, we measure the size of data structures
after executing client’s requests on single blocks as well as ranges.
In both MHT and SL schemes, the server maintains a data structure
while the client keeps only constant-sized data for integrity verifi-
cation. In our scheme, both the server and the client maintain a data
structure, but it should be moderate in size for a variety of operating
environments (and can be reduced using commit).

The data structures maintained in the schemes consists of a static
portion that corresponds to the initially uploaded data and a dy-
namic portion that corresponds to dynamic operations issued after-
wards. In MHT and SL schemes, the static component is linear in
the number of outsourced blocks and is expected to be fairly large.
In our scheme, on the other hand, there is no static component.

As far as dynamic component goes, the size of the data structure
in our solution grows upon executing dynamic operations accord-
ing to the analysis in Section 6. The growth is always constant per
single-block operation, and the use of ranges allows us to reduce
the overall growth. With MHT and SL schemes, the size of the
data structure remains at the same level as long as the number of in-
sertions is similar to the number of deletions. Block modifications
do not affect the data structure size. Lastly, because MHT and SL
scheme do not support versioning functionality, to enable it, they
can be upgraded using persistent authenticated data structure [3].
The use of persistent data structures increase the data structure size
by O(logn) per single-block update, where n is the number of
nodes within the data structure. Therefore, considering both static
and dynamic components, UTree inevitably leads to a more com-
pact data structure, and its size is also the reason why the client can
store the data structure locally.

The results of our experiments are given in Table 4. For each
setting, the first row for UTree corresponds to single-block mixed
dynamic operations at random locations, while the second row cor-
responds to similar range operations (1–20 blocks per operations).
The performance is estimated based on the number of nodes (mea-
sured using UTree, MHT, and SL implementations) in the data
structures and the approximate node size of 50 bytes for each scheme.
It does not correspond to the memory measurement at the run time.
Clearly, there is a large difference in the performance of our scheme
and other approaches for the tested settings.

The experiments correspond to the original solutions, without
the support of versioning functionality. This means that a deletion
operation actually deletes a node and a modification does not con-
tribute additional nodes to the data structure, and the size of the
data structure remains constant after executing an equal number of
different types of updates. As expected, the size of UTree grows
linearly with the number of dynamic operations. Another observa-
tion that aligns with our experiments above is that the additional
UTree size of range operations compared to the single-block case
is significantly reduced with a larger number of outsourced blocks
(compare, e.g., 112%, 0.8%, and 1.1% overhead at 100000 oper-

File Block MHT SL UTree for n operations
size size any n any n 20000 40000 60000 80000 100000

1GB 4KB 25 24 0.70 1.37 2.03 2.66 3.28
0.97 2.26 3.74 5.32 6.94

256GB 64KB 400 391 0.71 1.43 2.15 2.85 3.57
0.71 1.46 2.15 2.89 3.60

256GB 4KB 6400 6206 0.71 1.43 2.15 2.86 3.57
0.72 1.44 2.16 2.88 3.61

Table 4: The size of data structures for various schemes after n
single-block or range mixed operations in MB.

Volume Max offset Operations (×106) MHT SL UTree
Proj-0 170 GB 4.2 6400 21000 8.4
Proj-1 880 GB 24 29000 95000 1200
Proj-2 880 GB 29 48000 120000 2200
Proj-3 240 GB 2.2 670 2300 3
Proj-4 240 GB 6.5 3400 12000 150

Table 5: Client’s aggregate computation time measured in sec-
onds for each volume (without block hash computation).

ations). As before, it is caused by fewer range overlaps, which
results in fewer node partitioning and smaller tree size.

Real life data. In the above experiments, we evaluated the effi-
ciency of the schemes on synthetic randomly generated data. To
provide more convincing results, we also conduct experiments on
real life data sets from [14], which consist of file traces gathered
from Microsoft data centers for a period of a week. We believe
that the access patterns in the traces are representative of data us-
age types seen in practice. The traces were collected per volume
below the file system cache and capture all block-level reads and
writes performed on 36 volumes. Out of these volumes, for our
experiments we select five that belong to a single server (a research
project server) and contain 66 million events. Each event contains
information such as a timestamp, a disk number, the start logical
block number (i.e., offset), the number of blocks transferred, and
its type (i.e., read or write).

For the purposes of MHT and SL schemes, we find the maximum
offset that appears in the trace of a volume, consider it as the size
of “outsourced data,” and use it construct the corresponding data
structure. (In contrast, the operation of our scheme does not need
that information.) We then map a “read” or “write” operation in
a event will to a respective “retrieve” or “modify” operation in all
three schemes. Because there are no insertions or deletions, each
operation takes the same amount of time in MHT and SL schemes.

Because the communication overhead of our scheme is always
smaller than those of MHT and SL schemes in all cases, here we
concentrate on computation and storage overhead. As before, we
leave out the initial cost of building the data structures in MHT and
SL schemes and exclude the time for computing MACs for our so-
lution. We also do not measure the time of computing a hash (or a
MAC) of a data block in the request. The results are presented in ta-
ble 5 and assume a block size of 4KB. As can be observed from the
table, out of five volumes our solution is almost two orders of mag-
nitude faster than the other two schemes. For the storage overhead,
we measure the data structure size after executing all operations
appeared in a file trace. In case of MHT and SL schemes, the data
structures depend on the size of outsourced data and range from 4
to 22GB. In our scheme, after executing all requests in a volume,
the data structure size ranges from 1 to 150MB.



9. CONCLUSIONS
We propose a novel solution to provable data possession with

support for dynamic operations, access to shared data by multiple
users, and revision control. Our solution utilizes a new type of data
structure that we term balanced update tree. Unique features of our
scheme include orders of magnitude faster than in other schemes
data verification and removing the need for the server to maintain
data structures linear in the size of the outsourced data. The ad-
vantages come at the cost of requiring the client to maintain a data
structure of modest, but non-constant size.
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