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ABSTRACT
Privacy-preserving set operations and set intersection in par-
ticular are a popular research topic. Despite a large body
of literature, the great majority of the available solutions
are two-party protocols and are not composable. In this
work we design a comprehensive suite of secure multi-party
protocols for set and multiset operations that are compos-
able, do not assume any knowledge of the sets by the parties
carrying out the secure computation, and can be used for se-
cure outsourcing. All of our protocols have communication
and computation complexity of O(m logm) for sets or mul-
tisets of size m, which compares favorably with prior work.
Furthermore, we are not aware of any results that realize
composable operations. Our protocols are secure in the in-
formation theoretic sense and are designed to minimize the
round complexity.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Algorithms, Security

Keywords
Private set and multiset operations, secure multi-party com-
putation and outsourcing, secret sharing, oblivious sorting.

1. INTRODUCTION
The ability to securely perform set operations on private

inputs has numerous applications. As an example, we men-
tion computing the intersection of databases belonging to
different agencies or organizations, which by law or other
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provisions are not permitted to share their records in the
clear, but want to compute the set of records common to
both of them. This can be useful in contexts ranging from
finding passengers of an airline who appear in the national
no-fly list to computing the list of customers common to two
companies for more effective advertising. The importance of
the topic is also evidenced by a large body of prior work such
as [28, 43, 29, 26, 41, 35, 3] and others.

Work on privacy-preserving set operations started with
the seminal work of Freedman at el. [28]. Consequently,
many other publications appeared with the goal of extend-
ing the functionality or improving its performance. Secure
protocols are known for set intersection (e.g., [28, 43, 34, 26,
41]), set union (e.g., [43, 29, 35]), set intersection cardinal-
ity or over the threshold cardinality (e.g., [55, 24]), multiset
element reduction ([43]), and others. The great majority
of publications assume the two-party setting, in which Alice
and Bob each possessing a private set A and B, respectively,
apply a set operation to A and B, and learn the result (or
only one party learns the result). In such protocols, the
knowledge of the private input A or B is essential for cor-
rectly recovering the result. While this problem formulation
has a large number of applications, the existing solutions for
set operations cannot be securely used as building blocks in
larger protocols as they are not designed to be composable.
That is, a set operation has to comprise the entire compu-
tation as neither the output can remain private from both
parties nor the existing solutions apply when set A or B is
the result of prior secure computation and is not known to
either party in the clear.

The literature that provides solutions for the multi-party
setting [43, 29] likewise assumes that each participant has
access to her private set in the clear. Even the publications
that use the information-theoretic setting [46, 48, 47, 49]
require each participant to create a polynomial from its in-
put set prior to distributing it to other participants. The
recent emergence of cloud computing demands techniques
for secure outsourcing that will allow the benefits of avail-
able cloud services to be utilized to the fullest extent, which
otherwise might not be used due to the fear of informa-
tion disclosure. In that setting, the computational parties
do not have access to the private inputs and it is essential
that they do not learn any information about the data they
process, while still being able to correctly carry out the re-
quired operations. In other words, the computation needs to
be data-independent or oblivious. From that point of view,
it is desirable to have protocols that are both composable
and can be used in outsourced tasks, which we set as one of



our goals.

Our contributions. In this work, we provide secure multi-
party protocols for set and multiset operations, which are
union, intersection, difference, and element reduction (for
multisets). Besides computing the main functionality, we
provide variants of the protocols that produce cardinality of
the resulting (multi)set or compute over-the-threshold cardi-
nality and produce a bit. Furthermore, our protocols can be
used to always hide the size of the input/output (multi)sets
or the size can be revealed to make any computation that
follows more efficient (since complexity of set operations is
proportional to the size of their representation). Finally, we
provide a generic conversion from a multiset to a set that
allows our protocols for secure set operations to be run on
multisets.

The advantages of our solutions over previously available
results are as follows:

1. The requirement that each input set/multiset is known
by a participant in the clear is removed. This implies
that the elements of the input sets can be arbitrarily
partitioned among the participants. The input sets can
also be a result of prior privacy-preserving computa-
tion and are not known in the clear to any participant.

2. Our protocols are composable. Because both the in-
puts and outputs are split among the participants, our
protocols can be composed an arbitrary number of
times or they can be used as building blocks in larger
computations.

3. No intermediate results or other information are re-
vealed to the participants, which makes the solution
suitable for secure computation outsourcing. In other
words, the parties who provide the inputs and/or learn
the results can be different from the parties carrying
out the computation. This is in contrast with prior
results, where the knowledge of a set in the clear was
essential for protocol correctness.

4. Our solution provides natural support for hiding the
sizes of the sets. The input sets can be padded for
additional security, and the size of the result is never
revealed, unless the parties decide to do otherwise.

5. Unlike most prior literature, our techniques make no
use of expensive operations based on public-key cryp-
tography and achieve information-theoretic security (as-
suming the existence of secure channels between the
participants).

6. All of our protocols are efficient and have O(m logm)
communication and computation complexity where m
is the sum of the input sets’ sizes. This compares fa-
vorably with the existing solutions (which we detail
below).

Security of our protocols is shown in both passive (also
known as semi-honest or honest-but-curious) and active (ma-
licious) adversarial models.

2. RELATED WORK
Privacy-preserving set operations. The first custom
protocols for securely computing the intersection of two data

sets and the two-party set intersection cardinality were de-
scribed by Freedman et al. [28]. They are based on the use of
homomorphic encryption, polynomial representation of sets
and balanced hash functions that result inO(m ln lnm) com-
putation and O(m) communication for two parties. Here m
is the set size and in what follows n ≥ 2 will denote the num-
ber of parties. Kissner and Song [43] extended that work by
building a framework of multiset operations which included
set union, intersection, set intersection cardinality, and sub-
set relation. The protocols secure against honest-but-curious
adversaries and the set intersection protocol secure in the
malicious model have communication and computation com-
plexities of O(n2m) and O(n2m2), respectively. Until very
recently, available multi-party set operation protocols had
complexity quadratic in the set size, but a few recent pub-
lications improve the efficiency of such protocols. In par-
ticular, Cheon et al. [13] proposed the first set intersection
protocol that achieves non-quadratic costs with respect to
set sizes for both communication and computation. Subse-
quently, Dachman-Soled et al. [18] achieved linear in the
number of parties broadcasts and operations by represent-
ing sets as multivariate polynomials and adopting a round
table communication paradigm. Set union protocols for the
malicious adversary are proposed in [29, 38]. The former
achieves communication complexity of O(n2m2 + n3m) in
O(n) rounds while the latter aims at reducing the size of
communication.

Also with respect to malicious adversaries, [40, 17, 35, 26,
25] delineate protocols for privacy preserving set intersection
in the two-party setting. The approach in [25] was able
to yield linear (in m) complexities for both communication
and computation. One noticeable recent work [3] adds to
intersection operations the feature of completely hiding the
size of the set (including the upper bound) held by the client
(i.e., the participant who learns the result). In that scenario,
however, the client performs O(mc logmc) operations, where
mc is the client’s set size. A series of other protocols [43,
55, 47, 24, 51] focus only on computing the cardinality of
the intersection. Lastly, another line of work [34, 40, 41]
builds two-party private set intersection protocols based on
oblivious pseudo-random functions (OPRFs).

Other relevant literature deals with protocols in the information-
theoretic setting [46, 48, 47, 49]. Li and Wu [46] proposed
the first such set intersection protocol for semi-honest adver-
saries. It assumed polynomial representation of sets, used a
secret sharing scheme to distribute values among the players,
and achieved communication complexity of O(n3m2). Patra
et al. [48, 49] present two information-theoretically secure
private set intersection protocols, the second of which is an
optimization of the previous one. The communication com-
plexity of the protocol proposed in [49] is O(n4m2+n5) with
a constant number of rounds and resilience against t < n/2
corrupted parties. Lastly, we highlight the work by Sang
and Shen [51], which describes protocols for most set op-
erations in the Universal Composability model with static
adversaries and O(n2m2) complexities, and the recent pri-
vate set intersection implementation by Huang et al. [39]
that despite being based on garbled circuits, have compara-
ble performance to that of custom two-party protocols.

Table 1 provides a brief comparison of the most relevant
protocols with respect to their complexities and function-
ality. Notations PSI and PMI stand for “private set inter-
section” and “private multiset intersection,” respectively. U



Ref. Operation Computation Communication
Multi- Public- Size

Composable
party key hiding

[25] PSI O(m) O(m)
√

[24] PSI-CA O(m) O(m)
√

[3] PSI O(m logm) O(m)
√ √

[13] PSI O(n3m) O(n3m)
√ √

[18] PSI O(nm2) O(nm + m log2 m)
√ √

[38] PMU O(n2m2) O(n2m)
√ √ √

[48] PSI O(n3m2 + n4) O(n3m2 + n4)
√

This work

PSI, PSI-CA, PSU, PSU-CA,

O(n2m logm) O(n2m logm)
√ √ √PSDiff, PSDiff-CA, PER, PER-CA,

PMI, PMI-CA, PMU, PMU-CA,
PMDiff, PMDiff-CA

Table 1: Summary of most recent (and relevant) protocols for set operations.

stands for “union,” ER stands for “element reduction,” and
CA means “cardinality.” All complexities are listed for the
malicious adversary. In the table, a solution is marked as
size hiding if the sizes of the input sets can be protected
by means of padding, which is the same as the protection
mechanism used in this work. We note that work by Ate-
niese et al. [3] achieves a stronger notion of size hiding in
which no information about one of the two input sets is
revealed. We additionally achieve that information about
the size of the output set (beyond the bounds imposed by
the sizes of the (padded) input sets) is not revealed to the
parties. The complexity of the results in Table 1 that rely
on public-key cryptography is measured in public-key op-
erations reported in them and the security parameters for
communication are implicit. The remaining solutions that
do not rely on public-key operations (namely, [48] and this
work) achieve information-theoretic security. All computa-
tion and communication complexities reflect the combined
work and communication of all parties.

Secure multi-party computation. The literature on se-
cure multi-party computation and function evaluation is very
extensive and its review is beyond the scope of this work.
In the multi-party setting, which is employed in this work,
the available techniques are garbled circuit evaluation (see,
e.g., [31, 6]), computation based on linear secret sharing
(see, e.g., [52, 15]), and threshold homomorphic encryption
(see, e.g., [27, 23, 16]). In this work we employ techniques
based on a linear sharing scheme and design efficient and
information-theoretically secure protocols for set and multi-
set operations.

Parallel set operations. Computing set operations has
also been examined in the realm of parallel computing. Early
works such as [44, 53] described solutions for set operations
that utilized specially designed array structures to efficiently
compute these operations directly in hardware. More recent
parallel techniques such as [9] involve a careful arrangement
of the data into random balanced binary trees. While these
techniques allow set operations to be performed efficiently,
they were not designed to be secure, are not data-oblivious,
and do not naturally lend themselves to secure multi-party
protocols.

3. PRELIMINARIES

3.1 Framework
In this work we use the multi-party setting in which n > 2

parties P1, . . ., Pn jointly execute prescribed functionality on

private inputs and outputs. We utilize a linear secret shar-
ing scheme (such as Shamir secret sharing scheme [52]) for
representation of and secure computation on private values.
To ensure composability of our protocols, we assume that
prior to the computation, the parties P1 through Pn hold
their respective shares of the input and also compute shares
of the output. Then any party holding a private input will
produce shares of its values before the computation starts,
and upon computation completion the computational par-
ties P1 through Pn send their shares to the entities that
are entitled to learn the result. This gives flexibility to the
problem setting in that the parties holding the inputs may
be disjoint from the parties carrying out the computation
(as in the case with outsourcing). Similarly, the parties re-
ceiving the output do not have to coincide with the input
parties or computational parties.

Throughout this work we assume that parties P1, . . ., Pn
are connected by pair-wise secure authenticated channels.
Each input and output party also establishes secure channels
with P1 through Pn. With a (n, t)-secret sharing scheme,
any private value is secret-shared among n parties such that
any t + 1 shares can be used to reconstruct it, while t or
fewer shares reveal no information about the shared value,
i.e., it is perfectly protected in information-theoretic sense.
Therefore, the values of n and t should be chosen such that
an adversary is unable to corrupt more than t computational
parties.

In a secret sharing scheme that we utilize, any linear com-
bination of secret-shared values can be performed by each
computational party locally, without any interaction, but
multiplication of two secret-shared values requires commu-
nication between all of them. In other words, if we let [x]
denote that value x is secret-shared among P1, . . ., Pn, op-
erations [x] + [y], [x] + c, and c[x] are performed by each Pi
locally on its shares of x and y, while computation of [x][y]
is interactive. The most common way of implementing mul-
tiplication is by sending the total of O(n2) messages (where
each Pi sends n − 1 messages, one to each other partici-
pant) using, for instance, the techniques of [30], but recent
results [37, 5] lower the communication to O(n) messages
per multiplication at the cost of preprocessing. We assume
complexity O(n2) in our analysis.

All operations are assumed to be performed in a field Zp
for a small prime p greater than the maximum value that
needs to be used in the computation (i.e., the range of values
of set and multiset elements). Without loss of generality, we
assume that the domain of (multi)set elements consists of
integers greater than 0.



Performance of secure computation techniques is of grand
significance, as protecting secrecy of data throughout the
computation often incurs substantial computational costs.
For that reason, besides security, efficient performance of
the developed techniques is one of our prime goals. Nor-
mally, performance of a protocol in the current setting is
measured in terms of two parameters: (i) the number of in-
teractive operations (multiplications, distributing shares of
a private value or opening a secret-shared value) necessary
to perform the computation and (ii) the number of sequen-
tial interactions, i.e., rounds. We employ the same metrics
throughout this work.

3.2 Building blocks
We now proceed with a brief description of building blocks

which are used in our solutions, namely, oblivious sorting,
comparisons, and prefix multiplication.

Oblivious sorting. When sorting is utilized in secure com-
putation, the sequence of operations that the parties exe-
cute must be independent of the set they are sorting, or
oblivious, to ensure that no information about the private
data is revealed. While most sorting algorithms are not
oblivious, a sorting network is. Such techniques use a fixed
(input-independent) sequence of compare-and-switch oper-
ations. In our setting, a compare-and-switch operation can
be implemented as follows:

[s]← GE([a], [b]);
[c]← [s][b] + (1− [s])[a];
[d]← [s][a] + (1− [s])[b];

where GE denotes a “greater than or equal” operation (de-
tailed below) which produces a bit. After comparing two
values a and b, c corresponds to min(a, b) and d corresponds
to max(a, b).

Ajtai et al. [2] describe a sorting network with O(m logm)
comparisons for a set of cardinality m, but it has a very
high constant. More practically, Batcher’s network [4] uses
O(m log2m) comparisons and was the basis of secure multi-
party sorting in [42]. More recent results [45, 32, 33] devel-
oped oblivious randomized sorting algorithms withO(m logm)
comparisons and low constants which succeed with very high
probability. Another recent solution is due to Zhang [57], in
which oblivious sorting is achieved in constant round using
O(m2) or O(mR) communication and computation, where
[0, R] is the range of numbers to be sorted.

Throughout the paper (and in the complexity analysis in
particular), we will assume that O(m logm) oblivious sort-
ing of Goodrich [32] is used. We use notation ([y1], . . ., [ym])←
Sort([x1], . . ., [xm]) to denote secure implementation of obliv-
ious sorting in this framework.

Other protocols. In addition to oblivious sorting, we rely
on other secure protocols from prior literature in this frame-
work, which are as follows:

• [b]← Eq([x], [y]) is an equality protocol that on input
two secret-shared values x and y outputs a bit b which
is set to 1 iff x = y. The most efficient implementa-
tion of this operation in our framework that we are
aware of is due to Catrina and de Hoogh [11] which
uses ` + 4 log ` interactive operations in 4 rounds to
compare `-bit integers, where most of the cost is input
independent and can be performed ahead of time.

• [b] ← GE([x], [y]) is a comparison protocol that on in-
put two secret-shared `-bit values x and y outputs a
bit b which is set to 1 iff x ≥ y. Efficient implemen-
tations of this function also exist, e.g., we can use the
comparison protocol from [11] with 4 rounds and 4`−2
interactive operations, where precomputation can also
reduce the cost.

• ([y1], . . ., [yn])← PreMul([x1], . . ., [xn]) computes prefix-
multiplication, where on input a sequence of integers
x1, . . ., xn, the output consists of values y1, . . ., yn, where
each yi =

∏i
j=1 yj . Secure multi-party implementation

of PreMul in [11] uses 2 rounds and 3` − 1 interactive
operations for `-bit operands.

The complexities of Eq, GE, and PreMul functionalities cited
above correspond to statistically secure protocols, but al-
ternative implementations that achieve perfect secrecy are
available as well. All other parts of our solutions are per-
fectly secure, and therefore by using perfectly secure imple-
mentations of these building blocks the overall solutions will
be perfectly secure as well.

Finally, another recent work due to Toft [54] provides
equality and comparison protocols of sublinear (in `) com-
plexity. In particular, the equality protocol in [54] uses O(κ)
interactive operations in a constant number of rounds, where
κ is a correctness parameter, and a comparison is performed
using O(log `(κ+log log `)) interactive operations in O(log `)

rounds or using O(
√
`(κ+ log `)) interactive operations in a

constant number of rounds for the same κ. These protocols
are, however, more suitable for secure multi-party computa-
tion based on homomorphic encryption and are applicable
to our setting only when t = 1.

3.3 Security model
For each presented protocol, we define its secure func-

tionality such that the parties carrying out the computation
do not provide any input and do not receive any output.
Instead, it is assumed that prior to the beginning of each
protocol the parties with inputs will secret-share their sets
among the parties carrying out the computation. Likewise,
if the result of a computation is to be revealed to one or more
parties, the computational parties will send their shares to
the output parties who reconstruct the result.

We next formally define security using the standard def-
inition in secure multi-party computation for semi-honest
adversaries. We will prove our techniques secure in the semi-
honest model and will then show that standard techniques
for making the computation robust to malicious behavior
apply to all of our protocols.

Definition 1. Let parties P1, . . ., Pn engage in a protocol
π that computes function f(in1, . . ., inn) = (out1, . . ., outn),
where ini and outi denote the input and output of party Pi,
respectively. Let VIEWπ(Pi) denote the view of participant
Pi during the execution of protocol π. More precisely, Pi’s
view is formed by its input and internal random coin tosses
ri, as well as messages m1, . . .,mk passed between the parties
during protocol execution:

VIEWπ(Pi) = (ini, ri,m1, . . .,mk).

Let I = {Pi1 , Pi2 , . . ., Pit} denote a subset of the participants
for t < n and VIEWπ(I) denote the combined view of partic-
ipants in I during the execution of protocol π (i.e., the union



of the views of the participants in I). We say that protocol
π is t-private in presence of semi-honest adversaries if for
each coalition of size at most t there exists a probabilistic
polynomial time simulator SI such that

{SI(inI , f(in1, . . ., inn)} ≡ {VIEWπ(I), outI},

where inI =
⋃
Pi∈I{ini}, outI =

⋃
Pi∈I{outi}, and ≡ denotes

computational indistinguishability.

4. SET OPERATIONS
This section presents our solutions for several set oper-

ations – namely, set intersection, union, and difference, as
well as our multiset element reduction protocol. All other
multiset operations are treated in the consecutive section.

Intuitively, computing an operation on sets A and B with-
out any knowledge of the values that these sets contain ap-
pears to be hard if fewer than m2 comparisons are used (one
comparison for each ai ∈ A and bj ∈ B). Indeed, if any given
pair of elements ai, bj have not been (explicitly or implicitly)
compared, then for arbitrary sets A and B the result is not
guaranteed to be correct. If, however, the result is known
to be correct with fewer comparisons, then some informa-
tion about the input sets must be known which violates our
security requirements. Fortunately for us, relationships be-
tween some pairs ai, bj can be determined implicitly, based
on other explicit comparisons of elements of A and B and
eliminates the need for explicit m2 comparisons. We no-
tice that once data-oblivious sorting is used as a building
block, we can realize all of our set and multiset operations
using O(m logm) interactive operations (comparisons) and
their round complexity exceeds that of sorting by a small
(additive) constant.

4.1 Core protocols
Set union. The first protocol that we describe computes
the set union C = A ∪ B, where A = {a1, . . ., am1}, B =
{b1, . . ., bm2}, C = {c1, . . ., cm}, and m = m1 +m2. Initially
the elements of A and B are combined into a new set and
subsequently sorted. Next, we eliminate duplicates, as we
wish to keep only a single instance of each item appearing
in either of the sets. To accomplish this, our protocol looks
at adjacent items in the sorted set, xi and xi+1. If the
elements are the same, the first instance is erased by setting
the corresponding item ci in the resulting set to 0 (recall that
0 is not a valid element of A or B). The protocol makes no
changes to those items that occur a single time.

Protocol 1. [c1], . . ., [cm] ← Union([a1], . . ., [am1 ], [b1], . . .,
[bm2 ])

1. [x1], . . ., [xm]← Sort([a1], . . ., [am1 ], [b1], . . ., [bm2 ]);
2. for i = 1 to m− 1 do in parallel
3. [ui]← Eq([xi], [xi+1]);
4. [ci]← [xi](1− [ui]);
5. [cm]← [xm];
6. return [c1], . . ., [cm];

Note that the computation in the Union protocol can be par-
allelized, and each element of the resulting set is computed
independently of others. While this protocol provides the
most basic version, we subsequently describe how the size of
the set C can be reduced to contain only non-zero elements
(the actual members of the union) if desired.

Set intersection. Following the set union logic, we could
implement our protocol for set intersection in a similar man-
ner. This time, after sorting the combined set of size m =
m1+m2, we wish to erase (i.e., set to 0) each distinct element
once (note that there will be either one or two instances of
each distinct element). In its simplest form, in the proto-
col we could compare two consecutive elements xi and xi+1

in the sorted set and keep xi if they are equal. Huang et
al. [39], however, notice that the size of the output set can
be reduced in half if instead we compare each even element
of the sorted set to its adjacent elements. Then if either
comparison results in 1, we keep the current element and
otherwise set it to 0. The output consists of only even el-
ements, which gives us bm/2c elements in the output set.
Implementing this logic in our framework results in simi-
lar (in fact, slightly more efficient) performance compared
to the simpler logic, but the output size is reduced in half,
which improves efficiency of the computations that follow.
We also note that from the set operations that we implement
in this work, set intersection is the only operation where the
output size can be reduced to a fraction of the input set sizes
without any knowledge of the inputs by computing values
at certain fixed locations.

In our set intersection protocol we implement the logic
described above, where we have to make an exception for the
last element in case m = m1+m2 is even (i.e., in the case the
element at position m is compared only to its predecessor at
position m−1). For any given element x2i of the sorted set,
let ui denote the result of the comparison of x2i with x2i−1

and v2 denote the result of x2i’s comparison with x2i+1.
Then to compute the corresponding element of the output
set ci, we need to multiply x2i with the OR of ui and vi.
In general, Boolean OR a ∨ b can be implemented as a +
b − ab, but we note that in our case ui and vi will never
be simultaneously 1. This means that the sum ui + vi will
correspond to their OR, reducing the number of interactive
operations. As before, computing all elements of the result
A ∩ B proceeds in parallel, which is of grand importance
because the size of A and B can be very large.

Protocol 2. [c1], . . ., [cbm/2c] ← Int([a1], . . ., [am1 ], [b1], . . .,
[bm2 ])

1. [x1], . . ., [xm]← Sort([a1], . . ., [am1 ], [b1], . . ., [bm2 ]);
2. for i = 1 to b(m− 1)/2c do in parallel
3. [ui]← Eq([x2i], [x2i−1]);
4. [vi]← Eq([x2i], [x2i+1]);
5. [ci]← ([ui] + [vi])[xi];
6. if (m mod 2 = 0)
7. [um/2]← Eq([xm], [xm−1]);
8. [cm/2]← [um/2][xm];
9. return [c1], . . ., [cbm/2c];

Set difference. An intuitive solution to computing the
set difference A \ B is to combine sets A and A ∩ B, sort
the combined set, and eliminate all values that appear twice
in the resulting multiset (by erasing both instances). This
approach, however, results in running sorting twice (where
sorting is executed on the set of size 2|A| + |B| the second
time) and thus more than doubling the overhead compared
to other protocols. Our solution instead is to label the el-
ements of the two sets with opposite bits which will allow
us to perform this asymmetric operation using a single sort.
In detail, we associate a zero bit with each element of set



A and a bit with value 1 with each element of B. The
concatenation of these m = |A| + |B| tuples is then sorted
using a slightly modified sorting procedure that we denote
by SortT. In this case, the comparisons performed during
the sorting process only take into consideration the first el-
ement of each (2-)tuple, but the entire tuples are swapped
based on the outcome of a comparison.

After sorting, we compare (in parallel) each element of
the sorted set to its successor and store the results into a bit
vector u. Based on these results, the protocol will then erase
(set to 0) each pair of elements that have the same value,
while keeping those that have unique values unchanged. To
erase both instances of duplicate elements, we can compute
values ci’s by executing

[ci]← [xi](1− [ui]); [ci+1]← [xi+1](1− [ui]);

for each i, where xi’s represent the previously sorted con-
catenation of the elements of A and B. Although this logic
can be safely realized when the computation is executed se-
quentially, it needs to be modified if we want it to be paral-
lelized. To achieve this, we make sure that the value of each
ci in the resulting set depends on the result of the compar-
ison of xi with xi−1 and xi+1, and each ci is set only once.
In particular, we set ci to 0 if either ui−1 or ui is true and
it is set to xi otherwise. Similar to the OR computation in
the set intersection, because at most one of ui−1 and ui can
be set for each value of i, the OR computation is performed
as ui−1 + ui instead of full ui−1 + ui − ui−1ui.

Finally, as the last step of the protocol we compute the
elements ci’s of the set difference A \ B by erasing all el-
ements of B that still remain. This is accomplished using
the second element of each tuple of the sorted set, which
stores information about the input set from which the value
originated.

Protocol 3. [c1], . . ., [cm] ← Diff([a1], . . ., [am1 ], [b1], . . .,
[bm2 ])

1. 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉 ← SortT(〈[a1], [0]〉, . . ., 〈[am1 ],
[0]〉, 〈[b1], [1]〉, . . ., 〈[bm2 ], [1]〉);

2. for i = 1 to m− 1 do in parallel [ui]← Eq([xi], [xi+1]);
3. for i = 2 to m− 1 do in parallel [ci] ← [xi](1− [ui]−

[ui−1]);
4. [c1]← [x1](1− [u1]);
5. [cm]← [xm](1− [um−1]);
6. for i = 1 to m do in parallel [ci]← [ci](1− [yi]);
7. return [c1], . . ., [cm];

Element reduction. Element reduction is applied to a sin-
gle multiset A, during which one instance of each distinct
element is erased. The logic for its implementation is simi-
lar to that of the intuitive implementation of set intersection
with the difference that in the set intersection protocol each
distinct element appeared only once or twice in the combined
set, while in this case, each element can appear any number
of times. We therefore erase the elements in a different or-
der. In particular, the first instance of each distinct element
is erased. This is implemented by comparing adjacent xi
and xi+1 in the sorted multiset and setting the element at
position i + 1 in the result, ci+1, to 0 iff xi and xi+1 differ
(i.e., xi+1 is a new distinct element). For correctness, the
first element c1 is always set to 0. As before, computation
of each element of the result can proceed in parallel.

Protocol 4. [c1], . . ., [cm]← Red([a1], . . ., [am])

1. [x1], . . ., [xm]← Sort([a1], . . ., [am]);
2. [c1]← 0;
3. for i = 1 to m− 1 do in parallel
4. [ui]← Eq([xi], [xi+1]);
5. [ci+1]← [ui][xi+1];
6. return [c1], . . ., [cm];

4.2 Protocol variants
The above protocols implement the basic functionality of

multi-party set operations. Next, we show how they can be
modified or extended to enable several new features.

Opening the result of a (multi)set operation. The
output of the protocols in section 4.1 cannot be safely opened
without leaking information about their inputs because the
locations of erased items will be revealed. If the result is to
be opened (e.g., when one of the above operations is the last
in the computation), the parties will need to additionally
sort the result, or randomly permute it, prior to opening to
hide all patterns. To do so, the last line of each protocol in
section 4.1 should be changed from

return [c1], . . ., [ck];
to

return Sort([c1], . . ., [ck]);

for the appropriate value of k. In the full version of this
work [7] we also show how this can be performed more effi-
ciently by using set compaction instead of full sorting.

Reducing the size of the result of a (multi)set oper-
ation. The way our protocols are specified does not reveal
the size of the resulting set or multiset. In certain cases,
however, for efficiency reasons it is desirable to reveal the
size of the resulting set and eliminate all extra elements. We
distinguish between these two modes by referring to them
as length-hiding and length-preserving, respectively. To per-
form a length-preserving set or multiset operation, the par-
ties need to follow each protocol as specified after which
they sort the outcome and discard 0 elements by comparing
each of them to 0 and opening the result of the comparison.
More precisely, each “return [c1], . . ., [ck]” statement (for ap-
propriate k) in the original protocols needs to be replaced
with:

1. [d1], . . ., [dk]← Sort([c1], . . ., [ck]);
2. S ← ∅;
3. for i = 1 to k in parallel
4. [b]← Eq([di], 0);
5. b← Open([b]);
6. if (b = 0) S ← S ∪ {[di]};
7. return S;

The Open operation above corresponds to broadcasting the
shares of its argument, so that all parties can reconstruct its
value. As before, for efficiency reasons compaction can be
used instead of sorting.

Computing (multi)set cardinality and over-the-threshold
cardinality. Our basic protocols for set operations compute
the resulting set, while in certain applications different infor-
mation such as the set cardinality needs to be computed. It
is, however, rather straightforward to modify our protocols
to instead compute the cardinality (i.e., |A∩B| for set inter-

section) or over-the-threshold cardinality (i.e., |A ∩ B|
?

≥ T



for set intersection and threshold T ) of the resulting set. For
completeness, we next describe such modifications, which
give us even simpler protocols than the original versions.

To compute the set union cardinality, it is no longer nec-
essary to compute the ci’s in the Union protocol. Instead, it
suffices to compute only the number of elements that differ
from the next adjacent element in the combined sorted set
x1, . . ., xm. In particular, we replace lines 2–6 in Union with
the following computation:

2. for i = 1 to m− 1 do in parallel
3. [ui]← Eq([xi], [xi+1]);
4. return m−

∑m−1
i=1 [ui];

The set union over-the-threshold cardinality can likewise
compute and return GE(m−

∑m
i=1[ui], T ).

The set intersection cardinality and the cardinality of a
multiset after element reduction follow a similar logic, where

now the parties need to compute and return
∑bm/2c
i=1 [ui] +∑b(m−1)/2c

i=1 [vi] and
∑m−1
i=1 [ui], respectively. The over-the-

threshold versions are formed analogously to the correspond-
ing set union version.

Finally, to compute the set difference cardinality, the par-
ties need to produce the count of the number of elements
that do not get erased from the resulting set. This can be
achieved by replacing lines 3–7 of the Diff protocol with the
following:

3. return m1 −
∑m−1
i=1 [ui];

As before, the over-the-threshold cardinality version is pro-
duced analogously.

Performing set operations on multiple input sets.
Our protocols for set union and intersection have been de-
fined to work on two input sets, while existing literature on
multi-party set operations considers the problem of comput-
ing set intersection or union of n input sets with n partic-
ipating parties. Here we show that it is straightforward to
modify our Union and Int protocols to work on k inputs for
any k ≥ 2 (i.e., k may or may not depend on n).

First, observe that a protocol for multiple-input set union

[c1], . . ., [cm]← Union(a
(1)
1 , . . ., a

(1)
m1 , . . ., a

(k)
1 , . . ., a

(k)
mk ), where

C =
⋃k
i=1A

(i), A(i) = {a(i)1 , . . ., a
(i)
mi} for i = 1, . . ., k, and

m =
∑k
i=1mi, can be obtained from the original Proto-

col 1 with virtually no changes. The only obvious difference
is that the first step of the protocol now consists of sorting
the concatenations of all of the A(i)’s, i.e., [x1], . . ., [xm] ←
Sort(a

(1)
1 , . . ., a

(1)
m1 , . . ., a

(k)
1 , . . ., a

(k)
mk ). As before, the algo-

rithm keeps a single instance of each present distinct value
and eliminates the rest.

To be able to implement a multiple-input set intersection,

[c1], . . ., [cm]← Int(a
(1)
1 , . . ., a

(1)
m1 , . . ., a

(k)
1 , . . ., a

(k)
mk ), where now

C =
⋂k
i=1A

(i), the algorithm in Protocol 2 needs to be
modified. Because of the multiple input sets, we would like
to keep only the elements that appear exactly k times in
the sorted array. To accomplish that, instead of checking
two consecutive elements, we need to compare two elements
k − 1 positions apart. Similar to Protocol 2, instead of
producing a set of size m, this time we output a set of size
d(m−1)/ke and the OR of multiple bits from which at most
one is set is computed as their sum. More precisely, we
obtain:

Protocol 5. [c1], . . ., [cd(m−1)/ke]← Int([a
(1)
1 ], . . ., [a

(1)
m1 ], . . .,

[a
(k)
1 ], . . ., [a

(k)
mk ])

1. [x1], . . ., [xm]← Sort([a
(1)
1 ], . . ., [a

(1)
m1 ], . . ., [a

(k)
1 ], . . ., [a

(k)
mk ]);

2. for i = 1 tom−k+1 do in parallel [ui]← Eq([xi], [xi+k−1]);
3. d← b(m− 1)/kc;
4. for i = 1 to d do in parallel [ci] ←

∑k
j=1([u(i−1)k+j ] ·

[x(i−1)k+j ]);
5. if ((m− 1) mod k 6= 0)

cd(m−1)/ke ←
∑(m−1) mod k
j=1 [ud·k+j ][xd·k+j ];

6. return [c1], . . ., [cd(m−1)/ke];

4.3 Length-hiding set operations
Recall that our original protocols do not reveal any in-

formation about the size of the resulting set (beyond the
bounds implied by the sizes of the input sets). To ensure
that they can be used in the full length-hiding mode, we
need to make sure that our protocols work correctly when
the length of the input sets is also protected. To hide the
actual length of a set, one adds to that set a number of ad-
ditional elements that have value 0. In this framework, for
instance, all sets can be padded to be of the same size (or
one of few fixed sizes). It remains to show that correctness
of our protocols is preserved when the input sets contain
dummy zero elements. We consider each protocol in turn.

In the Union protocol, after step 1, all dummy elements
will occupy the lowest indices in the sorted set which we
denote 1 through s. During the loop execution, the zero
elements will be set to zero again, which has no effect on
the result of the operation. The only place where a care
needs to be exercised is during a comparison of zero element
xs and the next non-zero element xs+1. Notice that in the
Union protocol, the result of computing Eq([xs], [xs+1]) has
no effect on xs+1. We therefore obtain that the output of
the protocol will be correct regardless of the number of reg-
ular elements contained in the sets A and B (including the
case when A and B are entirely composed of dummy ele-
ments). By applying the same reasoning to other protocols,
we obtain that regardless of whether zero elements are reset
to zero or their values are preserved, the result of the com-
putation is not affected. In the intersection protocol Int we
have that computation “at the border” of dummy and regu-
lar elements, namely using xs and xs+1, has no effect on xs+1

and therefore the protocol works as expected on padded in-
puts. This is not the case in the element reduction protocol
Red, but we can see that the result of Eq([xs], [xs+1]) will be
0 and xs+1 will be set to 0 as required. Finally, in the Diff
protocol, us will be 0 as well and therefore will not affect
the correctness of cs+1.

We conclude that all of our protocols can be used unmod-
ified on inputs padded with zero elements so that the size of
both the input sets and the output set is protected.

4.4 Security
Correctness of the computation has been discussed with

each respective protocol, and we now proceed with showing
our protocols’ security.

First, we note that the linear secret sharing scheme achieves
perfect secrecy in presence of collusions of size at most t (i.e.,
zero information can be learned about secret-shared values
by t or fewer parties) in the case of passive adversaries. Sim-
ilarly, the multiplication protocol does not reveal any infor-
mation, as the only information transmitted to the partici-



pants are the shares. Furthermore, because other building
blocks used in this work (i.e., Eq, GE, PreMul, and Sort)
have been previously shown to be secure, information is not
revealed during their execution as well. We obtain that our
protocols combine only secure building blocks without re-
vealing any information to the computational parties (i.e.,
they only receive shares which information-theoretically pro-
tect private values). By Cannetti’s composition theorem [10],
we obtain that composition of secure sub-protocols results
in security of the overall solution. More formally, to com-
ply with the security definition, we can build a simulator
for our protocols by invoking simulators for the correspond-
ing building blocks to result in the environment that will
be indistinguishable from the real protocol execution by the
participants.

The only exception from the above is the extension to set
operation protocols that allow the parties to learn informa-
tion about the actual size of the resulting set, but this is
intended by design and is considered to be acceptable.

To show security in presence of malicious adversaries, we
need to ensure that (i) all participants prove that each step
of their computation was performed correctly and that (ii)
if some dishonest participants quit, others will be able to
reconstruct their shares and proceed with the rest of the
computation. The above is normally achieved using a ver-
ifiable secret sharing scheme (VSS), and a large number of
results have been developed over the years (e.g., [30, 14,
36, 37, 5, 22, 20, 21] and many others). In particular, be-
cause any linear combination of shares is computed locally,
each participant is required to prove that it performed each
multiplication correctly on its shares. Such results normally
work for t < n

3
in the information theoretic or computa-

tional setting with different communication overhead and
under a variety of assumptions about the communication
channels. Additional proofs associated with this setting in-
clude proofs that shares of a private value were distributed
correctly among the participants (when the dealer is dishon-
est) and proofs of proper reconstruction of a value from its
shares (when not already implied by other techniques). In
addition, if at any point of the computation the participants
are required to input values of a specific form, they would
have to prove that the values they supplied are well formed.
Such proofs are not necessary for the computation that we
use to construct our protocols, but are needed by the imple-
mentations of some of the building blocks that we cite (such
as comparison protocols).

Thus, security of our protocols in the malicious model can
be achieved by using standard VSS techniques, e.g., [30, 15],
where a range proof, e.g., [50] will be additionally needed
for the building blocks. These VSS techniques would also
work with malicious input parties (who distribute input sets
or multisets among the computational parties), who would
need to prove that they generate legitimate shares of their
data.

4.5 Performance
With the standard techniques for implementing multipli-

cation (which the most basic interactive building block) in
our setting such as [30], each multiplication has the com-
bined cost of O(n2), which results in O(n2m logm) complex-
ity of our (multi)set operation protocols. When the compu-
tational parties can be malicious, they will need to prove
correctness of each multiplication, secret sharing, and pos-

sibly input reconstruction execution using VSS techniques,
which also involves O(n2) communication and with recent
techniques [37, 5] is even O(n). Such results are known
for both computational and unconditionally secure settings.
There are also recent publications [22, 21] that achieve over-
head only polylogarithmic in the number of parties n, but
the complexity also includes a factor logarithmic in the over-
all amount of computation (i.e., the arithmetic circuit size).

To estimate the performance of our protocols, we can
count the total number of interactive operations (rather than
their asymptotic complexities). The number of compar-
isons used in Goodrich’s and Batcher’s oblivious sorting al-
gorithms are 5m logm and 1

4
m log2m, respectively, for a set

of size m [56]. Then each compare-and-switch operation can
be implemented using 4`+2 interactive operations. We thus
obtain that for m = 1, 000, the protocols are dominated by
≈ 25, 000 compare-and-switch operations used in sorting,
while for m = 1, 000, 000 we need to use ≈ 100, 000, 000
such operations. Experimental results of optimized Share-
mind tool [1] (which implements operations using slightly
different arithmetic) with n = 3 and ` = 32 on a LAN show
that more a million of comparisons can be processed on the
order of several seconds. This gives our solution good scal-
ability even for input sets of significant size. Also, because
performance of a protocol depends on the number of sequen-
tial interactive operations or rounds, we need to compute
their number as well. With a O(log2m) depth of a sorting
algorithm and 4 rounds for a compare-and-switch operation
(using the comparison algorithm from [11]), the number of
rounds is in low hundreds for sets of size 210–220. From the
experiments in [8], one round of computation in this setting
on a LAN takes on the order of 3–5 ms (for n = 5), which
means that all rounds for sets of large size can be processed
in the matter of several seconds or tens of seconds.

5. GENERAL CONVERSION FROM A MUL-
TISET TO A SET

Our previous protocols do not meet correctness require-
ments when they are run on multisets. To enable computa-
tion on multisets, we describe a general conversion from a
multiset to a set, which will allow all previous protocols to
be run on multisets in this new representation with only no-
tational changes. We also develop protocols for direct imple-
mentation of multiset operations without the need for con-
verting them into a special form. These direct constructions
are about twice as fast as first applying a general conversion
procedure to the two input sets followed by a set operation.
They are, however, omitted due to space considerations and
can be found in the full version [7].

Our general solution converts a multiset a1, . . ., am to a
representation 〈x1, y1〉, . . ., 〈xm, ym〉, where xi’s correspond
to the ai’s, and indices yi’s count the number of instances
of each distinct value in the multiset. That is, if a value
v appears k times in the multiset, the indices of the corre-
sponding multiset elements will be numbered 1 through k.
This makes each pair 〈xi, yi〉 unique and our protocols for
set operations apply.

Protocol 6. 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉 ← M2S([a1], . . .,
[am])

1. [x1], . . ., [xm]← Sort([a1], . . ., [am]);
2. [y1]← 1;



3. for i = 1 to m− 1 do
4. [ui]← Eq([xi], [xi+1]);
5. [yi+1]← [ui][yi] + 1;
6. return 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉;

In the above protocol, indices yi’s have to be computed se-
quentially. In the attempt to design an algorithm that does
not require the number of rounds to be linear in the size
of the multiset, we resort to the techniques that were used
in [19] to design constant-round protocols for integer arith-
metic operations. In particular, suppose we are given an
associative binary operator ◦. Also suppose that we can se-
curely compute ◦mi=1[ai] in R rounds and C(m) operations.
Chandra et al. [12] describe a method for computing prefix-◦,
Pre◦, in 2R rounds and

∑log2m
i=1 2iC(m·2−i)+mC(log2m) ≤

log2mC(m) + nC(log2m) operations. Secure prefix-◦ func-
tionality is defined as ([b1], . . ., [bm]) ← Pre◦([a1], . . ., [am]),
where bi = ◦ij=1aj . In our context, this means that if we
define a procedure for computing 〈xm, ym〉 in the multiset-
to-set conversion using R rounds, we will be able to use the
above method to compute all 〈xi, yi〉 in 2R rounds.

Before we proceed with further description, we need to
specify the operator ◦ itself that we can use to perform
the conversion. The procedure in the M2S protocol can be
viewed as starting with individual elements, each with count
1, and aggregating the first i of them to compute the count
at position i. Because the operator must be able to work
on “individual” as well as “aggregate” values, we define it as
follows:

〈[c1], [c2]〉 ← 〈[a1], [a2]〉 ◦ 〈[b1], [b2]〉
1. [u]← Eq([a1], [b1]);
2. [c1]← [b1];
3. [c2]← [u][a2] + [b2];
4. return 〈[c1], [c2]〉;

The above assumes that b1 ≥ a1. We call this operation
addition with reset (i.e., the count is reset if the value of
the current element has changed, and the counts are added
otherwise). The operator can be shown to be associative.

To be able to use the method from [12] for computing
Pre◦([a1], . . ., [am]) from a solution to ◦mi=1[ai], we need a
constant round procedure for computing ◦mi=1[ai], where ai =
〈xi, yi〉. We realize it as shown below. Note that in this
protocol each yi can be an arbitrary count (i.e., if yi > 1,
〈xi, yi〉 corresponds to an “aggregate” of several multiset el-
ements with the same value), but the xi’s must form a non-
decreasing sequence.

Protocol 7. 〈[x], [y]〉 ← ◦mi=1〈[xi], [yi]〉
1. for i = 1 to m− 1 do in parallel [ui]← Eq([xi], [xi+1]);
2. ([vm−1], . . ., [v1])← PreMul([um−1], . . ., [u1]);
3. for i = 1 to m− 1 do in parallel [wi]← [vi][yi];
4. [y]← [ym] +

∑m−1
i=1 [wi];

5. [x]← [xm];
6. return 〈[x], [y]〉;

In the protocol above, as a result of prefix multiplication
in step 2, we obtain an array of bits vm−1, . . ., v1, where
vi is set to 1 iff all elements xi through xm are equal. This
allows us to count the number of elements in the input which
have the same value as xm. Their corresponding counts are
added together in step 4 and are returned as the count for

the entire set. This computation in particular implies that
if xm > xm−1, then the pair 〈xm, ym〉 will be returned as
required. This protocol allows us to obtain a new protocol
for multiset-to-set conversion where the round complexity is
the round complexity of sorting plus a small constant.

Protocol 8. 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉 ← M2S([a1], . . .,
[am])

1. [x′1], . . ., [x′m]← Sort([a1], . . ., [am]);
2. for i = 1 to m do in parallel [y′i]← 1;
3. 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉 ← Pre◦(〈[x′1], [y′1]〉, . . ., 〈[x′m],

[y′m]〉);
4. return 〈[x1], [y1]〉, . . ., 〈[xm], [ym]〉;

This concludes our description of the conversion procedure.
To illustrate how it can be used to perform multiset opera-
tions such as union, intersection, and difference, we briefly
describe such protocols next. The first protocol that we
demonstrate is for multiset union A ∪ B. It assumes that
the input multisets are already available in the proper for-
mat with numbered instances of each distinct value. This
can be achieved by executing the conversion protocol twice
as 〈[x′1], [y′1]〉, . . ., 〈[x′m1

], [y′m1
]〉 ← M2S([a1], . . ., [am1 ]) and

〈[x′′1 ], [y′′1 ]〉, . . ., 〈[x′′m2
], [y′′m2

]〉 ← M2S([b1], . . ., [bm2 ]). Alter-
natively, the input multisets might already be available in
the proper format as a result of prior processing. For in-
stance, the output of the multiset union protocol below pro-
duces a (not fully sorted) multiset with properly numbered
elements. The only exception to that are zero elements in
the result, the counts of which are also set to zero to ensure
that they do not affect correctness of our protocols during
their composition.

In the multiset union protocol below, we utilize the same
SortT procedure as in Protocol 3 with the difference that
now longer tuples are sorted. As before, comparisons are
done using the first element of each tuple, and the entire
tuples are swapped based on the outcome of a comparison.

Protocol 9. 〈[x1], [y1]〉, . . ., 〈[xm1+m2 ], [ym1+m2 ]〉 ← MUnion
(〈[x′1], [y′1]〉, . . ., 〈[x′m1

], [y′m1
]〉, 〈[x′′1 ], [y′′1 ]〉, . . ., 〈[x′′m2

], [y′′m2
]〉)

1. k ← max(m1,m2) + 1;
2. 〈[α1], [β1], [γ1]〉, . . ., 〈[αm1+m2 ], [βm1+m2 ], [γm1+m2 ]〉 ←

SortT(〈k[x′1]+[y′1], [x′1], [y′1]〉, . . ., 〈k[x′m1
]+[y′m1

], [x′m1
],

[y′m1
]〉, 〈k[x′′1 ]+[y′′1 ], [x′′1 ], [y′′1 ]〉, . . ., 〈k[x′′m2

]+[y′′m2
], [x′′m2

],
[y′′m2

]〉);
3. for i = 1 to m1 +m2 − 1 do in parallel
4. [ui]← Eq([αi], [αi+1]);
5. [xi]← [βi](1− [ui]);
6. [yi]← [γi](1− [ui]); //optional
7. [xm]← [βm1+m2 ];
8. [ym]← [γm1+m2 ]; //optional
9. return 〈[x1], [y1]〉, . . ., 〈[xm1+m2 ], [ym1+m2 ]〉;

In the protocol k should be set to a value larger than any
y′i and y′′i (which are bounded by the size of the multisets).
In that way, the values will be sorted by the first elements
x′i’s and x′′i ’s, but in case of their equality, the ties will be
resolved – and the tuples will be sorted – by the second
elements y′i’s and y′′i ’s. The safest way to set k is therefore
to use k = max(m1,m2) + 1.

As we indicate above, lines 6 and 8 are optional. That is,
if the counts for each value do not need to be maintained,
the protocol returns only xi’s. Otherwise, the counts can be



computed at low cost (i.e., significantly lower than executing
the M2S protocol).

The multiset intersection protocol, MInt, can be derived
from Protocol 2 using a similar approach. We obtain the
following protocol, where m is used for m1 +m2:

Protocol 10. 〈[x1], [y1], 〉. . ., 〈[xbm/2c], [ybm/2c]〉 ← MInt
(〈[x′1], [y′1]〉, . . ., 〈[x′m1

], [y′m1
]〉, 〈[x′′1 ], [y′′1 ]〉, . . ., 〈[x′′m2

], [y′′m2
]〉)

1. k ← max(m1,m2) + 1;
2. 〈[α1], [β1], [γ1]〉, . . ., 〈[αm1+m2 ], [βm1+m2 ], [γm1+m2 ]〉 ←

SortT(〈k[x′1]+[y′1], [x′1], [y′1]〉, . . ., 〈k[x′m1
]+[y′m1

], [x′m1
],

[y′m1
]〉, 〈k[x′′1 ]+[y′′1 ], [x′′1 ], [y′′1 ]〉, . . ., 〈k[x′′m2

]+[y′′m2
], [x′′m2

],
[y′′m2

]〉);
3. for i = 1 to b(m− 1)/2c do in parallel
4. [ui]← Eq([α2i], [α2i−1]);
5. [vi]← Eq([α2i], [α2i+1]);
6. [xi]← ([ui] + [vi])[βi];
7. [yi]← ([ui] + [vi])[γi]; //optional
8. if (m mod 2 = 0)
9. [um/2]← Eq([αm], [αm−1]);

10. [xm/2]← [um/2][βm];
11. [ym/2]← [um/2][γm]; //optional
12. return [x1], . . ., [xbm/2c];

It is also not very difficult to derive the multiset difference
protocol MDiff from its set version Diff, which we provide
next.

Protocol 11. 〈[x1], [y1]〉. . ., 〈[xm1+m2 ], [ym1+m2 ]〉 ← MDiff
(〈[x′1], [y′1]〉, . . ., 〈[x′m1

], [y′m1
]〉, 〈[x′′1 ], [y′′1 ]〉, . . ., 〈[x′′m2

], [y′′m2
]〉)

1. `← max(m1,m2);
2. 〈[α1], [β1], [γ1], [δ1]〉, . . ., 〈[αm1+m2 ], [βm1+m2 ], [γm1+m2 ],

[δm1+m2 ]〉 ← SortT(〈`[x′1]+[y′1], [x′1], [y′1], [0]〉, . . ., 〈`[x′m1
]+

[y′m1
], [x′m1

], [y′m1
], [0]〉, . . ., 〈`[x′′1 ]+[y′′1 ], [x′′1 ], [y′′1 ], [1]〉, . . .,

〈`[x′′m2
] + [y′′m2

], [x′′m2
], [y′′m2

], [1]〉);
3. for i = 1 tom1+m2−1 do in parallel [ui]← Eq([αi], [αi+1]);
4. [x1]← [β1](1− [u1]);
5. [y1]← [γ1](1− [u1]); //optional
6. for i = 2 to m1 +m2 do in parallel
7. [xi]← [βi](1− [ui]− [ui−1]);
8. [yi]← [γi](1− [ui]− [ui−1]); //optional
9. for i = 1 to m1 +m2 do in parallel

10. [xi]← [βi](1− [δi]);
11. [yi]← [γi](1− [δi]); //optional
12. return 〈[x1], [y1]〉, . . ., 〈[xm1+m2 ], [ym1+m2 ]〉;

As before, we will only execute the lines marked as optional
if the counts need to be preserved.

Security of these protocols can be shown analogously to
the security of set operations.

6. CONCLUSIONS
This work is the first to provide a comprehensive suite of

protocols for multi-party set and multiset operations that
are composable and can be used for secure outsourcing.
They have natural support for hiding the size of a set oper-
ation’s result and can be easily extended to compute cardi-
nality or over-the-threshold cardinality of the result. All of
our solutions are secure in the information-theoretic sense
against malicious adversaries, achieve low communication
and computation cost of O(m logm) for data sets of size m,
and were designed to minimize round complexity.
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