
Private Combinatorial Group Testing

Mikhail J. Atallah∗

Department of Computer
Science

Purdue University
mja@cs.purdue.edu

Keith B. Frikken
Computer Science and

Systems Analysis
Miami University

frikkekb@muohio.edu

Marina Blanton
Department of Computer
Science and Engineering
University of Notre Dame

mblanton@cse.nd.edu

YounSun Cho†

Department of Computer
Science

Purdue University
cho52@cs.purdue.edu

ABSTRACT
Combinatorial group testing, given a set C of individuals
(“customers”), consists of applying group tests on subsets of
C for the purpose of identifying which members of C are
infected (or, more generally, defective in some way). The
outcome of a group test reveals only the presence or absence
of infection(s) in that group, but a number of group tests
exactly identifies all infected members.

Although the main motivation for group testing is eco-
nomic – it drastically cuts down the number of necessary
tests – it has an interesting privacy side-effect, namely, that
each individual customer is “hiding in a crowd” (the groups
within which it is being tested). This privacy side-effect is
currently thrown away because the analysis that pinpoints
who is infected is carried out by the same entity that pre-
pared the test samples. This paper gives a protocol in which
these two duties are separated between Alice and Bob: The
protocol informs each customer who is infected privately,
and without either Alice or Bob learning who is infected.
An interesting feature of our protocol is that a customer
need not have any computational power, i.e., the customer
can be notified by mailing her (possibly paper copies of) two
random strings – one from Alice and one from Bob – so all
she has to do is visually check whether these two strings are
equal or not.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information

∗Supported in part by Grants IIS-0325345 and CNS-0627488
from the National Science Foundation, and by sponsors of
the Center for Education and Research in Information As-
surance and Security.
†Supported by Grants IIS-0325345 and CNS-0627488 from
the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’08, March 18-20, Tokyo, Japan
Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

Systems]: Security and Protection; E.3 [Data]: Data En-
cryption; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems.

General Terms
Security, Algorithms, Design.

Keywords
Privacy, Secure Protocol, Group Testing, Integrity Verifica-
tion.

1. INTRODUCTION
Combinatorial group testing on a set C is used to effi-

ciently test which members of the set satisfy a specific test.
This is done by combining the members into groups and
running such tests on the groups rather than on individual
entries. Such group tests, whether of blood samples or of
digital objects, then reveal whether the elements of a group
are all “clean” – not infected in the case of blood, not cor-
rupted in the case of digital objects. From the outcomes of
remarkably few such group tests, it is possible to infer which
of a large set of n items are clean and which are defective.

The main application of group testing is to situations
where (i) it is expensive to individually test every one of
a large number n of samples (or, in the digital world, to
individually monitor the integrity of every one of a large
number n of data items, or to individually watch for anoma-
lies in many event streams); and (ii) it is necessary to pin-
point precisely which are defective among the n samples (or
data items, event streams, etc), based on a relatively small
number of group tests. This was the original motivation
for combinatorial group testing, as formulated for testing
blood supplies during World War II for the syphilis anti-
gen [3]. The cost of identifying which of n blood samples
is tainted, can be dramatically decreased by applying tests
to judiciously chosen subsets of the samples – given any
constant upper bound on the number of tainted samples, a
logarithmic (in n) number of tests suffice. A test consists
of taking a few drops from a subset of the samples, mixing
them, and applying a test to the mix, where a test outcome
is “bad” if and only if the corresponding subset contains one
or more infected blood samples. A more recent motivation

for CGT has been to integrity verification [9], with the fol-
lowing analogies:

• In data integrity monitoring, the cryptographic hash
of a subset of n digital items is analogous to a mix
of blood drops from a subset of n blood samples, and
comparing such a hash to what it is supposed to be,
is analogous to applying a blood test to the mix of
blood drops (a mismatch between the computed hash
and the stored hash indicates that there is at least one
corrupted element in the subset for that hash).

• In anomaly detection, an event stream may consist of
events from n distinct sources, and instances of the de-
tection mechanism are used for monitoring substreams
that correspond to different subsets of these n sources
(each instance learns what is normal for its monitored
substream, and it does the monitoring without having
to store all of its substream because there is not enough
space for that). A substream tagged as “anomalous”
implies that at least one of its constituent sources is
behaving anomalously.

There are many other applications of combinatorial group
testing in the digital world (see Section 5 for more of these),
but for the sake of definiteness the rest of this paper uses the
language of blood tests for n customers. We do so because
privacy-preserving blood testing is of inherent interest in
its own right, but it should be understood that our results
have relevance beyond privacy-preserving blood testing (we
further clarify this relevance later in this section).

It is not hard to see that there are situations where the
leakage of an outcome of“infected” for a customer is a source
of possible embarrassment, humiliation, or even more tan-
gible consequences (possibly becoming uninsurable or less
employable). A similar statement holds for entities that are
not individuals – a “corrupted” outcome for their digital ob-
jects or event sequences could be a source of embarrassment
and loss of reputation/goodwill, possibly triggering lawsuits
or a drop in stock market value. This is the basic motiva-
tion for our work, which aims at providing a way to carry
out group tests but without anyone other than the customer
learning of their own diagnosis.

This kind of protocol where only the customer is aware of
her test outcome is advisable as a risk-mitigation technique
even in cases where most customers would feel comfortable
trusting a single facility (Alice) with all four steps of blood
sample handling: Collection, mixing, testing, inference of
infecteds. That is, not only could such a need for risk miti-
gation come from the small percentage of Alice’s customers
who are demanding when it comes to privacy, but Alice her-
self may insist on using it, e.g., because it decreases her lia-
bility insurance premium (alternatively, the insistence that
Alice not be completely trusted with such critical data may
come from Alice’s insurance company). Because no system
or network is perfect, it is wise to recognize that the pri-
vacy of Alice’s data could be breached (through a break-in,
spy-ware, insider misbehavior, etc.) and to use technologies
(such as our protocol) that make the consequences of such
a compromise less disastrous.

Therefore, in our solution this task is divided between two
parties – a data collection center Alice and a testing facil-
ity Bob – neither of which is entrusted with the result of
the computation (which is to determine who is infected).

In privacy-preserving blood testing this separation of du-
ties is not far from current practice, as it corresponds to
what often happens today in clinical environments: The Al-
ice facility, where customers’ blood samples are taken (pos-
sibly in the context of a blood donation drive), is not phys-
ically equipped to carry out the sophisticated and expen-
sive testing, which is done at a remote facility Bob that
is equipped for testing (that is, Alice and Bob already ex-
ist, and our proposal is merely for a change in the way
they interact). The relevance of our techniques for cyber-
security, however, needs some further elaboration. As al-
ready stated, in integrity verification the equivalent to Bob’s
testing of a “blood mix”would be Bob’s verification that the
Alice-computed cryptographic hash of the concatenation of a
group of records or files (the“blood mix”) matches the signed
version of that hash that is pre-stored securely with Bob.
The storing of the signed “expected” values of the hashes
with Bob would occur at system set up time, well before
any run of our protocol – the signature would be carried out
by a trusted authority (not by Bob) and Bob (but not Alice)
would be provided with the signed hashes. In anomaly de-
tection the event sub-streams would be pseudonymized be-
fore being mixed in groups and sent for anomaly analysis to
Bob; events from the same source have different pseudonyms
in the various groups of which they are part. Bob uses its
own proprietary (and possibly computationally expensive)
technology to monitor each group for the presence of anoma-
lies. One of the drawbacks of anomaly detection technologies
becomes a privacy advantage in this case: Unlike signature-
based intrusion detection, which is capable of providing pre-
cise reasons why it sounded an alarm, an anomaly-based
system typically does not provide such precise reasoning on
why its conclusion of “anomaly” was reached.

Our contribution
We give a protocol for combinatorial group testing, that is
privacy-preserving in the sense that it informs the customers
of whether they are infected, without any other entity learn-
ing this. A distinctive feature of our protocol is that the
customers do not need to have any computational power at
all and are not required to have access to a computer: A
customer obtains two random strings and learns whether it
is infected or not by visually comparing these two strings for
equality.

While ensuring the privacy of customers’ outcome, we also
minimize the computation needed by Alice and Bob – our
solution is computationally efficient for both Alice and Bob
even when the number of customers is large.

Additionally, we provide enhancements to the protocol
that allow the detection of cases when the number of in-
fected customers exceeds the assumed upper bound for it,
and that lower the number of operations performed in the
protocol.

We prove the security of our solution under the assump-
tion that the underlying primitives used (such as encryption
and random permutations) are secure. We assume that play-
ers Alice and Bob will follow the protocol and will not col-
lude with each other, but they may collude with customers.

The rest of this paper is organized as follows. Section 2
presents the framework considered. Section 3 presents the
protocol, its analysis, and extensions. Section 4 gives re-
sults from our experimental implementation of the protocol.
Section 5 describes related work, and Section 6 concludes.

2. FRAMEWORK
This section sets forth the framework and security model

we use. It also defines notation that is used throughout the
paper.

2.1 Group testing background
Here we review the terminology and some known results

from combinatorial group testing, that are needed in the
rest of the paper. As mentioned earlier, combinatorial group
testing (CGT) aims to perform group tests on subsets of a
given set C to identify infected elements in C. The outcome
of a group test is “contains at least one infected item” or
“contains no infected items.” We are interested here in non-
adaptive CGT, in which all the subsets to be tested have to
be decided ahead of time, i.e., before any subset is tested.
In adaptive CGT, by contrast, the next subset to be tested
can be chosen based on the outcomes of the previous tests.
Non-adaptive is more appropriate for our framework – for
example, in integrity verification, the decision of which sub-
sets of n records will have their hashes computed and stored,
has to be made ahead of time and before any compromise in
integrity has occurred (hence before learning the outcomes
of any tests).

There are known constructions that, given an upper bound
d on the number of possible infected elements in C, can pin-
point the (at most d) infected items using a remarkably small
number m of tests (that is, m subsets of C are tested). For
example, when d is constant, m = O(log n) tests suffice.
More specifically, the best known general-purpose adaptive
schemes use m = O(d log(n/d)) tests, whereas the number of
tests used by the best known general-purpose non-adaptive
schemes is m = O(d2 log n) [4].

We now review the specific construction that we use here.
An m × n Boolean matrix M is d-disjunct [4] if, for any
d+1 columns one of which is designated, there always exists
a row with a 1 in the designated column and 0’s in the
other d columns. Given a d-disjunct Boolean matrix M ,
a non-adaptive combinatorial group testing scheme consists
of simply performing the test indicated by each row i of M
(that is, test the subset Si corresponding to the columns
containing 1 in that row i). The results of these m tests are
then used as follows:

1. Initialize all n items as being infected.

2. For every row i whose test’s outcome was clean (i.e.,
no infected is in the subset Si), mark all the elements
of Si as being clean.

3. The items not marked clean by the time this process
ends are infected.

The correctness of this algorithm follows from M being d-
disjunct: Any clean item x cannot fail to be marked as clean,
because no matter which the d infected items are, there ex-
ists an Si that contains x and none of the d infected ones,
and this clean Si will in turn cause x to also be marked
clean.

It is well known [4] that a d-disjunct matrix M can be
constructed in O(mn) time by setting each of its entries to
1 with probability 1/(d+1). See [9] for how this can be done
using only O(d3 log n log d) random bits, with the resulting
m being O(d2 log n).

2.2 Cryptographic background
We now briefly review a cryptographic primitive used in

the protocol. Our protocol utilizes a public-key semantically
secure additively homomorphic encryption scheme such as
Paillier [13]. Recall that such encryption makes it possible
to carry out certain computations on encrypted data. In
particular, given messages m1 and m2 and encryption key
k, we have: Ek(m1) ·Ek(m2) = Ek(m1 +m2), and therefore
Ek(m1)

m2 = Ek(m1 · m2).

2.3 Security model
As was mentioned above, we rely on two entities who are

not expected to collude to perform the testing: A data col-
lection center Alice and a laboratory facility Bob. For each
customer, Alice receives the customer identifying informa-
tion and the blood sample, but does not have equipment
to run the tests. Bob, on the other hand, does not have
access to customers’ blood samples, but rather runs tests
on mixes comprised of samples from many customers. Fur-
thermore, we assume Bob can neither identify the customers
from a specific blood mix, nor learn the number of customers
in the blood mix (i.e., all mixes contain approximately the
same amount of blood). This last assumption is certainly
true in integrity verification because a “blood mix” in that
domain is a cryptographic hash, which consists of a fixed
number of bits (independent of the number of customers in
the mix). But it is also true in the physical blood situa-
tion, because the expected number of customers in a blood
mix is the expected number of 1s in a row of the d-disjunct
matrix M , which is n/(d + 1) because each entry of M has
probability 1/(d + 1) of containing a 1.

2.3.1 Security objective
We require that, under the adversarial model described

below, it is infeasible for any party to compute the result
of the test for a customer ci. More formally, we require
that no protocol participant can gain any information during
the protocol execution, other than its own inputs and the
outputs it is supposed to learn from the protocol (e.g., its
own infection status). In other words, a participant’s view
of the protocol execution can be simulated given the inputs
and outputs alone.

In addition to showing that the protocol execution does
not leak information to the participants, we also need to
guarantee that recovering a customer’s status from the in-
puts and outputs of the protocol is difficult. In other words,
it should be difficult for Alice or Bob to recover the status
of a customer ci after the execution of the protocol, even in
cases where all the other customers voluntarily reveal their
own infection status to Alice and Bob.

2.3.2 Model of adversary
If we let C = {c1, . . . , cn} denote the set of customers, our

model of the adversary is then as follows.

• Alice and Bob do not collude against a customer.

• Alice may collude against a customer ci with (possibly
all) the other customers.

• Bob may collude against a customer ci with (possibly
all) the other customers.

Our protocol will ensure that, assuming that Alice and
Bob do not collude with each other, it is infeasible for any

party to compute the result of the test for a customer ci.
As will become clear from the protocol description, the cus-
tomers are not an active part of the protocol, and colluding
with them during the protocol does not provide any advan-
tage against the intended victim ci.

3. PROTOCOL FOR NON-ADAPTIVE COM-
BINATORIAL GROUP TESTING

This section presents the protocol, its analysis, and im-
plementation enhancements. As we desire to lower compu-
tational requirements of all entities involved, we pay a spe-
cial attention to public-key cryptographic operations. Since
the number of operations involved in CGT is unavoidably
O(mn), our private protocol will have to maintain this bound.
The number of expensive modular exponentiation opera-
tions (which are also used to encrypt and decrypt data in
homomorphic encryption schemes) can, however, be mini-
mized. A more straightforward realization of this computa-
tion could require O(mn) such operations, but our construc-
tion uses only O(n) modular exponentiations and O(mn)
modular multiplications. Additionally, the O(mn) bound on
the number of multiplications can be lowered, as described
in Section 3.3.2.

At a high level, the protocol works as follows: Upon re-
ceipt of m blood mixes from Alice, Bob tests each of these
and sends to Alice an encrypted bit bi for the ith mix, where
bi = 0 if the mix is infected and bi = 1 otherwise. Us-
ing homomorphic properties of the encryption scheme, Al-
ice computes for each customer R

P

bj + r, where R and
r are random values and the sum is over all mixes where
the customer’s blood was used. Now notice that a customer
who is infected will have all of his bits bi set to 0, result-
ing in R

P

bi + r = r. Alice sends to Bob an encryption
of r (with her key) and an encryption (with Bob’s key) of
R

P

bi + r. Bob chooses two random values A and B for
each customer. He decrypts the second value and forwards
A (R

P

bi + r) + B to the customer. He also sends an en-
cryption (with Alice’s key) of Ar + B to Alice. Alice then
sends Ar + B to the customer. Now the customer compares
the strings received and concludes that she is infected if they
match.

The detailed protocol steps are given below (where all
arithmetic is modular and the modulus is either that for
Alice’s or Bob’s homomorphic encryption, with the context
making it implicitly clear which one it is).

3.1 Protocol specification
This section gives the main steps of the protocol – we post-

pone various implementation enhancements and algorithmic
optimizations until section 3.3 (including them at this early
stage would break the flow of the exposition).

Participants: A set of customers C = {c1, . . . , cn}, a data
collection entity Alice who can obtain blood samples from
customers and prepare mixes, and a mix-testing entity Bob
who can tell whether a mix is infected or not.

Input: An upper bound d on how many members of C can
be infected. An m× n d-disjunct Boolean matrix M known
to Alice but not to Bob. Linked lists S1, . . . , Sm where Si

contains the column positions of row i of M that are 1.
Linked lists V1, . . . , Vn where Vj contains the row positions
of column j of M that are 1.

Output: Each customer ci ∈ C learns whether he is in-
fected. Neither Alice nor Bob learn which customers are
infected.

Protocol steps:

1. Alice generates a private-public key pair for a homo-
morphic semantically secure encryption scheme [13];
we denote such encryption using Alice’s public key as
EA. Similarly, Bob generates his own pair, and we
denote encryption with Bob’s public key by EB.

2. Alice randomly assigns each customer ci to a column
of M ; for the sake of notational simplicity, we re-name
the customers so that ci is assigned to column i.

3. Alice collects the n blood samples. For each of S1,
. . . , Sm in turn, Alice prepares a mix µi of the blood
samples according to Si: If column j is in Si then the
blood sample of the customer assigned to column j is
a part of µi. Alice sends these m mixes (in the order
µ1 to µm) to Bob who tests each of them and obtains
a bit bi from testing µi: If µi is infected then Bob sets
bi = 0, otherwise Bob sets bi = 1.

4. For i = 1, . . . , m in turn, Bob encrypts bi with his pub-
lic key, obtaining EB(b1), . . . , EB(bm) which he sends
to Alice.

5. For each j = 1, . . . , n in turn, Alice chooses two ran-
dom numbers Rj and rj from ZnB , where nB is the
modulus used for EB, and computes the following two
quantities: Yj = rj and

Zj =

„

Y

i∈Vj

EB(bi)

«Rj

· EB(rj) =

= EB

„„

Rj

X

i∈Vj

bi

«

+ rj

«

Alice sends Zj and EA(Yj) to Bob.

6. For j = 1, . . . , n in turn, after Bob receives the Zj and
EA(Yj) pair he decrypts Zj to obtain

Wj =

„

Rj

X

i∈Vj

bi

«

+ rj

He then chooses two random values Aj and Bj from
ZnA , where nA is the modulus used for EA, and sends
Aj ·Wj+Bj (modulo nA) to customer cj . He also sends
`

EA(Yj)
Aj

´

EA(Bj) = EA(Aj · Yj + Bj) to Alice.

7. For j = 1, . . . , n in turn, Alice decrypts the EA(Aj ·
Yj +Bj) received from Bob to obtain Aj ·Yj +Bj which
she sends to customer cj .

8. Each customer cj compares the Aj · Yj + Bj received
from Alice to the Aj ·Wj+Bj received from Bob in Step
7: If they are equal, then the customer cj learns that
she is infected, otherwise the customer learns nothing
other than the fact that she is not infected.

In the above, Alice does O(n) modular exponentiations and
O(nm) total work. Bob, on the other hand, performs O(m+
n) work. The communication costs of the protocol are also
O(m + n).

3.2 Security analysis
We will now show that Alice and Bob cannot infer signifi-

cant information about whether an individual customer is in-
fected. If Alice or Bob do not collude with other customers,
then this is relatively straightforward (actually a simpler ver-
sion of the above protocol would work). However, suppose
Alice (resp., Bob) colludes with a set of participants C′ and
thus the adversary obtains all of Alice’s (resp., Bob’s) infor-
mation along with the information on both sheets of paper
for all customers in C′.

3.2.1 Alice’s view
We first show that, given Alice’s inputs and the infec-

tion status of all members in C′, a simulated transcript can
be generated that is computationally indistinguishable from
Alice’s view of the protocol. For each customer ci Alice
knows ri, Ri, and Vi. She also knows several values en-
crypted with EB (but these are easily simulated since EB is
a semantically-secure encryption scheme). However, she also
learns the two following pieces of information: (i) Airi + Bi

for all customers and (ii) Ai

“

Ri

P

j∈Vi
bj + ri

”

+ Bi for all

customers in C′. A simulation algorithm can generate pairs
of values (given infection status of members of C′) as follows:

1. For infected customers in C′, choose a random value
x from ZnA (where nA is the modulus of Alice’s ho-
momorphic encryption scheme) and output x for both
pieces of information.

2. For non-infected customers in C′, choose a random
values x and y from ZnA and output x for the first
piece of information and y for the other.

3. For every customer not in C choose a random value x
from ZnA and output x for the first piece of informa-
tion.

It is trivial to show that parts 1 and 3 are indistinguishable
from their counterparts. For the second part, it is enough to
show that for any value x and y (x 6= y) there is a single value
of Ai and Bi where Airi + Bi = x and Ai(Ri

P

j∈Vi
(bj) +

ri) + Bi = y. This is satisfied when

Ai =
y − x

Ri

P

j∈Vi
bj

and Bi = x −
ri(y − x)

Ri

P

j∈Vi
bj

.

Thus such a value exists whenever Ri

P

j∈Vi
bj has an inverse

(which will be true with all but negligible probability).
The above shows that Alice learns only information that

can be deduced from the infection status of customers in C′

and her input. However, given this information, we would
like to determine whether it would be possible for Alice to
infer information about honest customers. This is a valid
concern because Alice knows the mapping between the cus-
tomers and the sets Vj . Thus, if it is possible for Alice to
infer the status of which samples are infected, she can use
these mappings Vj to infer information as to which honest
customers are infected.

Definitely, in our framework some inferences can be made.
For example, if C′ contains d infected customers, then Al-
ice can infer that everyone else is not infected.1 However,

1We are assuming that Alice knows for sure that there are
d or less infected customers. In Section 3.3.1 we introduce

if C′ contains at most d − 1 infected customers, then she
cannot determine if an individual customer cs is infected as
illustrated below.

• If cs is infected, then Alice’s view of the customers in
C′ is still consistent. Clearly, this could not change her
view of the samples that contain an infected member of
C′. Furthermore, since every non-infected member of
C′ is in at least one sample that does not contain cs or
any other infected members of C (otherwise the matrix
would not be d-disjunct), her view of the non-infected
members would not change.

• Similarly, if cs was not infected, then clearly this would
not affect her view of the non-infected members of C′,
but it would also not affect her view of infected mem-
bers, because cs is in at least one sample that does
not contain any infected members of C′ (otherwise the
matrix would not be d-disjunct).

3.2.2 Bob’s view
The proof that Bob’s view is simulateable given his inputs

is similar to Alice’s proof. We first show that, given Bob’s
inputs and the infection status of all members in C′ with
whom he conspires, a simulated transcript can be gener-
ated that is computationally indistinguishable from his view
of the protocol. For each customer ci Bob knows Ai and
Bi, and he knows bi for i ∈ [1, m]. He also knows several
values encrypted with EA (but these are easily simulated
since EA is a semantically-secure encryption scheme). How-
ever, he also learns the two following pieces of information:
(i) Ri

P

j∈Vi
bj + ri for all customers and (ii) ri for all cus-

tomers in C′. A simulation algorithm can generate these
pairs of values (given infection status of members of C′) as
follows:

1. For infected customers in C′, choose a random value x
from ZnA and output x for both pieces of information.

2. For non-infected customers in C′, choose a random
values x and y from ZnA and output x for the first
piece of information and y for the other.

3. For every customer not in C′ choose a random value x
from ZnA and output x for the first piece of informa-
tion.

It is trivial to show that parts 1 and 3 are indistinguishable
from their counterparts. For the second part, it is enough
to show that for any value x and y (x 6= y) there is a single
value of Ri and ri where ri = x and Ri

P

j∈Vi
bj + ri = y.

This is satisfied when

ri = x and Ri =
y − ri

P

j∈Vi
bj

.

Note that Ri exists whenever
P

j∈Vi
bj has a multiplicative

inverse in ZnA . Since x 6= y, we know that
P

j∈Vi
bj is in

[1, m], and for any practical value of m this will be a coprime
with any secure RSA modulus.2

an extension that aborts the protocol when more than d
customers are found to be infected. If this extension is used,
then this inference can always be made.
2We are assuming a homomorphic scheme such as Paillier
where the modulus is an RSA modulus.

The above shows that Bob can only infer information
about an honest customer’s infection status if he can make
that inference based upon his inputs alone. Bob’s only
knowledge from the protocol is the bi values (he knows what
samples were infected), but he does not know the mapping
between customers and samples. However, from this infor-
mation he may be able to deduce some information about
the number of infected customers (e.g., lower and upper
bounds). In some extreme cases, this may leak informa-
tion. For example, if Bob knows that all samples are clean,
then he can deduce that all customers are not infected. As
another example, suppose only a few samples are infected,
and, given the number of infected samples, Bob deduces that
exactly one customer is infected (at least with high proba-
bility). Now if Bob colludes with all but one customer all
of which are not infected, he can deduce that this honest
customer is infected. However, extreme cases that lead to
Bob identifying an honest customer as infected are unlikely
in practice. That is, at most, Bob learns the number of in-
fected customers. Thus to be able to pinpoint a customer
as infected, Bob needs to collude with almost all customers,
which will be unlikely in many environments.

We summarize what we have proved in the following the-
orem.

Theorem 1. As long as Alice and Bob do not collude
with each other against a customer ci, it is infeasible for
any participant to infer the infection status of ci.

3.3 Implementation enhancements
In this section we consider various enhancements of our

protocol. In section 3.3.1 a modification is presented that
detects when there are more than d infected customers. Sec-
tion 3.3.2 decreases the cost of computing all of the Zj ’s.
Section 3.3.3 gives a more efficient protocol for the special
case when d = 1.

3.3.1 Handling more than d defectives
In the previous protocol, if there are more than d infected

customers, then several false positives may occur. Bob may
be able to detect such an overflow since he knows the num-
ber of infected samples, but it would be better to have a
detection mechanism that invalidates all of the results when
the threshold d is surpassed. Thus, here we show how it can
be achieved. The main idea in our solution is as follows:
Alice will transmit to Bob the number of marked customers
(without revealing which customers are infected). If this is
above the threshold d, then he aborts the protocol. Note
that this reveals slightly more information to Bob in that he
now knows exactly the number of infected customers instead
of an estimate of the number of infected customers (which he
obtained from knowing the number of infected samples). As
to not clutter the exposition, we describe only the changes
to the protocol:

• In Step 5 of the protocol, Alice also generates a value

Dj = EB

“

P

i∈Vj
bj · R

′
j

”

for some random value R′
j .

She transmits these values to Bob in a randomly per-
muted order (to hide which value corresponds to each
customer).

• In Step 6, Bob decrypts the Dj values from Alice and
counts the number of zeroes. If the number is larger

than d, then Bob aborts the protocol. Otherwise, the
protocol continues as before.

3.3.2 Algorithmic optimization
This sub-section gives an improved algorithm for decreas-

ing the number of scalar multiplications needed for the com-
putation of all the Zj ’s. Specifically, we bring the number
of arithmetic operations from O(mn/d) to O(d2n).

The computation of the Zj ’s could be done naively, by
computing each Zj separately from the others. The number
of scalar multiplications done by such an approach would
then be proportional to the number of nonzero entries in
the d-disjunct matrix M , whose expected value is

mn/(d + 1) = O((d2 log n)(n/(d + 1))) = O(dn log n).

Had our m × n matrix M been an arbitrary Boolean ma-
trix, the problem of minimizing the total number of scalar
multiplications done for computing all the Zj ’s would have
been NP-hard. This can be proved by a straightforward re-
duction from the ENSEMBLE COMPUTATION problem [6], and
in fact the NP-hardness would hold even if every Vj con-
sisted of no more than 3 elements. However, our M matrix
is generated by a very specific randomized construction, and
has m = O(d2 log n) rows. We show below how the compu-
tation time of the Zj ’s can be brought down from O(mn/d)
to O(d2n).

Recall that m = αd2 log n where α is a constant. Also
recall that Vj contains the row positions of column j that are
1 and we will assume that each Vj is stored in αd2 memory
cells of size log n bits each. Let Xi denote EB(bi) for i =
1, . . ., m. The algorithm steps for computing

Q

i∈Vj
EB(bi)

for each customer cj , all of which are carried out by Alice,
are as follows.

Input: X1, . . . , Xm and V1, . . . , Vn.

Output: Z′
1, . . . , Z

′
n where Z′

j =
Q

i∈Vj
Xi.

Algorithm steps:

1. Partition the interval of integers [1, m] into αd2 chunks
of size log n each, let Ik denote the kth such chunk.
Our strategy will be to compute each Z′

j as the sum of

αd2 values Zj,k, 1 ≤ k ≤ αd2, where Zj,k is the con-
tribution to Z′

j coming from the rows in row interval
Ik.

2. For k = 1 to αd2 in turn, compute each of Z1,k, . . . , Zn,k

as follows.

(a) For every one of the subsets of the rows in Ik,
compute the product of the Xi’s that correspond
to the rows of that subset. The number of such
subsets is 2|Ik| = 2log n = n, and the computation
of the products for them can be done in O(n)
time by scheduling them in an order such that
each product is obtained with one additional mul-
tiplication (i.e., multiplying one of the already-
computed products by an Xi).

(b) Store the n products computed in the previous
step in an array of size n, so that the value of
each such product can be read in constant time
from the array.

(c) Read from the array created in the previous step
each of Z1,k, . . . , Zn,k.

The time to compute all of Z1,k, . . . , Zn,k in the above algo-
rithm is O(n), and this must be done for αd2 distinct values
of k, resulting in an overall time complexity of O(d2n) for
the algorithm. For a constant d and/or large n, this com-
pares favorably with the naive algorithm’s O(dn log n) time
complexity.

3.3.3 Better handling of the case d = 1

A particularly efficient (log n+1)-test deterministic CGT
solution exists for the special case of d = 1 [3]. We first
briefly describe it, and then point out how the protocol can
be modified to implement it.

One of the tests performed is for a mixture of all the blood
samples – it serves to determine whether there is contami-
nation somewhere. The remaining log n tests are for deter-
mining which sample is corrupted, and are as follows. For
j = 1, 2, . . . , log n, the jth test is for the mixture of those
samples i for which the integer i has a 1 in the jth least
significant bit of its binary representation. After obtaining
the test results, we need to find out which sample is contam-
inated. To determine its number, the binary representation
of such sample is constructed one bit at a time, as follows:
For j = 0, . . . , log n−1 in turn, if the jth test says “contam-
inated” then the jth bit of i is 1, and if it says “clean” then
the bit is 0.

To illustrate this on an example, consider the case of 2000
samples 1, 2, . . . , 2000, of which only one is contaminated
(assume it is the sample 676). In that case the test of
the mixture of all the 2,000 samples says “contaminated,”
which indicates that there is a contamination. The other
11 (= log n) auxiliary tests reveal which sample is contam-
inated, as follows. The 11-bit binary representation of 676
is 01010100100, and the sample 676 is therefore a part of
the tests for bit positions 2, 5, 7, 9, and it is not a part of
the tests for bit positions 0, 1, 3, 4, 6, 8, 10. The four tests
that contain 676 will say “contaminated,” whereas the other
seven tests will say “clean.” This implies that the contam-
inated sample i has (i) a 1 in bit positions 2, 5, 7, and 9,
of the 11-bit binary representation of i; and (ii) a 0 in bit
positions 0, 1, 3, 4, 6 ,8, 10.

To modify our protocol to take advantage of this faster
algorithm, all that needs to be done is:

1. Change the Vj sets to reflect the way the tests are
perform. In this case, m = log n + 1 and for security
reasons we do not have a special treatment for the first
test.

2. In Step 6 of the protocol, change the formula for Zj to

Zj =

„

Y

i∈Vj

EB(bi) ·
Y

i6∈Vj

EB(1 − bi)

«Rj

·EB(rj).

Note that, as before, for an infected mix i bi is set to 0
and bi is set to 1 if the mix is clean. It is not difficult to
verify that the above formula will produce the correct
result for all customers in both cases when there are no
infected customers and when there is a single infected
customer.

4. EXPERIMENTAL PERFORMANCE
EVALUATION

The purpose of this section is to demonstrate the per-
formance and scalability of the protocol of Section 3. Our

n
2000 3000 4000 5000 6000

d = 2 548 577 598 614 627
d = 3 913 961 996 1023 1044

Table 1: The number of tests m necessary for vary-
ing values of n and d.

implementation was built and the experiments were run on
a commodity hardware (a 2.67 GHz computer with 2GB
of memory), which should be viewed as modest resources
for data computing centers A and B. But even with such
resources, our protocol scales well to a large number of cus-
tomers. Also note that the protocol will not be invoked with
high frequency, and a rather high overhead can be tolerated.

Our implementation was built using Paillier homomorphic
encryption scheme [13] with 1024-bit modulus and the GMP
large number library [1] and was written in C. Our Paillier
implementation included an optimization for decryption op-
erations as described in [13].

The results reported correspond to the computation car-
ried out for the entire protocol (i.e., the computation per-
formed by A and the computation performed by B). The
communication is not included in the measurements and
such overhead will depend on the type of communication
link between the participants. We only note that Alice and
Bob exchange O(m+n) values during the protocol (and then
distribute n values each to the customers at the end of or
after the protocol).

In the measurements, we separate computation that can
be performed in advance by Alice or Bob (pre-computation)
from the computation that must be performed during the
actual execution of the protocol. Table 1 shows the values
of m used as a function of n and d. Figure 1 shows the
amount of pre-computation needed for the protocol and the
runtime of the protocol with different values of n and d (and
the corresponding values of m). From the graphs we can see
that both pre-computation and running times grow linearly
with the number of customers. This growth is expected,
but it is an interesting and somewhat unexpected result that
increasing the threshold d had only a marginal impact on the
performance (recall that increasing d even by 1 significantly
increases m).

5. RELATED WORK
Several researchers have studied combinatorial group test-

ing and its applications to cryptography and information
encoding. The work of Colbourn et al. [2] and Du and
Hwang [4] provide broad surveys. Stinson et al. [14] explored
applications of group testing to key distribution in cryptog-
raphy. The first work to use group testing for data integrity
was due to Goodrich et al. [9], which established a connec-
tion between data forensics marking and a new reduced-
randomness construction of a non-adaptive combinatorial
group testing scheme. The present paper’s analyses and ex-
periments use the randomized construction of d-disjunct ma-
trices given in [9]. This is the only overlap we have with [9],
whose main focus was to use the randomized construction it
introduced towards the forensic marking of data structures.
Specifically, it used it for organizing the indexing structures
of how data is stored so that alterations from an original
version can be detected and the changed values specifically

 10

 15

 20

 25

 30

 35

 2000 3000 4000 5000 6000

T
im

e
(m

in
)

Number of customers

d=2
d=3

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2000 3000 4000 5000 6000

T
im

e
(m

in
)

Number of customers

d=2
d=3

Figure 1: Pre-computation time (left) and runtime
(right) of the protocol.

identified. It gave forensic constructions for several funda-
mental data structures, including binary search trees, skip
lists, arrays, linked lists, and hash tables.

Much of the group testing literature is on adaptive group
testing schemes, which generally make fewer total tests, in
terms of d and n, than non-adaptive schemes. For exam-
ple, the best known general-purpose adaptive schemes use
O(d log(n/d)) tests, whereas the number of tests used by
the best known general-purpose non-adaptive schemes is
O(d2 log n) [4]. Adaptive schemes are clearly not applicable
in the context of the present paper (as was the case in [9]).
Another area where non-adaptive group testing schemes are
more applicable is in DNA sequence analysis [11].

Another related area is that of Secure Multi-party Com-
putation (SMC), which deals with computing a function over
private inputs without revealing anything other than what
can be computed from the result and some of the inputs
alone. While there are general results stating that any func-
tion can be computed in such a manner [15, 8], these would
lead to inefficient solutions for the PCGT problem. Our
techniques for using the properties of homomorphic encryp-
tion to build a special purpose protocol is reminiscent of
the techniques used in privacy-preserving protocols for: set
operations [5, 10], scalar product [7], and stream searching
[12].

6. CONCLUSIONS
We gave secure and private protocols for combinatorial

group testing of n customers, where the test samples are
prepared by Alice but the tests are carried out by Bob, and
only the customer learns whether it is infected or not. In
addition to the application areas mentioned in the above
(blood testing, data integrity, event stream anomaly), we
believe our techniques may be useful in providing privacy
in the DNA analysis domain (see [11] for a detailed survey
of the use of group testing in DNA analysis). This, how-
ever, requires further investigation because in DNA analysis
group testing is used as one of many steps. We leave this
exploration of DNA analysis privacy for future work.

7. REFERENCES
[1] The GNU multiple precision (GMP) arithmetic

library. http://gmplib.org.

[2] C. J. Colbourn, J. H. Dinitz, and D. R. Stinson.
Applications of combinatorial designs to
communications, cryptography, and networking. In
Walker, editor, Surveys in Combinatorics, volume 187
of London Mathematical Society Lecture Note Series,
pages 37–100. Cambridge University Press, 1993.

[3] R. Dorfman. The detection of defective members of
large populations. Ann. Math. Statist., 14:436–440,
1943.

[4] D.-Z. Du and F. K. Hwang. Combinatorial Group
Testing and Its Applications. World Scientific, 2nd
edition, 2000.

[5] M. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In Proceedings
of Advances in Cryptology - EUROCRYPT ’04,
volume 3027 of Lecture Notes in Computer Science,
pages 1–19, 2004.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, NY,
1979.

[7] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen.
On private scalar product computation for
privacy-prerving data mining. In The 7th Annual
International Conference on Information Security and
Cryptology (ICISC 2004), 2004.

[8] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In Proceedings of the
nineteenth annual ACM conference on Theory of
computing, pages 218–229. ACM Press, 1987.

[9] M. T. Goodrich, M. J. Atallah, and R. Tamassia.
Indexing information for data forensics. In ACNS,
pages 206–221, 2005.

[10] L. Kissner and D. Song. Privacy-preserving set
operations. In Proceedings of Advances in Cryptology -
CRYPTO ’05, volume 3621 of Lecture Notes in
Computer Science, 2005. Full version appears at
http://www.cs.cmu.edu/~leak/.

[11] H. Ngo and D.-Z. Du. A survey on combinatorial
group testing algorithms with applications to dna
library screening. In Discrete Mathematical Problems
with Medical Applications. DIMACS Series, 55,
American Mathematical Society, 2000.

[12] R. Ostrovsky and W. Skeith. Private searching on
streaming data. In CRYPTO, volume 3621 of Lecture

Notes in Computer Science, pages 223–240, 2005.

[13] P. Paillier. Public key cryptosystem based on
composite degree residue classes. In Advances in
Cryptology – EUROCRYPT’99, volume 1592 of LNCS,
pages 223–238, 1999.

[14] D. R. Stinson, T. van Trung, and R. Wei. Secure
frameproof codes, key distribution patterns, group
testing algorithms and related structures. Journal of
Statistical Planning and Inference, 86:595–617, 2000.

[15] A. C. Yao. How to generate and exchange secrets. In
Proceedings of the 27th Annual IEEE Symposium on
Foundations of Computer Science, pages 162–167,
1986.

