
Remote Revocation of Smart Cards in a Private DRM System∗

Keith Frikken Mikhail Atallah Marina Bykova

CERIAS and Department of Computer Sciences
Purdue University

{kbf,mja,mbykova}@cs.purdue.edu

Abstract

We describe a DRM smartcard-based scheme in which
content access requests are not linked to a user’s iden-
tity or smartcard, and in which compromised cards
can be revoked without the need to communicate with
any card (whether revoked or not). The scheme has
many other features, such as efficiency and requiring
minimal interaction to process an access request (no
complex interactive protocols), forward and backward
security, stateless receivers, and under certain crypto-
graphic constructions collusion-resistance. The above
is achieved while requiring the smartcard to store only
a single key and to perform a single modular expo-
nentiation per revocation. Furthermore, our solution
introduces a combinatorial problem that is of inde-
pendent interest.

Keywords: DRM, revocation scheme, privacy preser-
vation.

1 Introduction

One of the problems with smartcard-based DRM
schemes is that, when a card is compromised and
its keys are revealed to an adversary, he could dis-
tribute or sell the keys and enable massive unautho-
rized access to any digital content that is encrypted
with these keys. Although it is not easy to “crack”
a smartcard, it is more likely and inexpensive than is
commonly believed (Anderson & Kuhn 1996, Ander-
son & Kuhn 1997). This is why it is prudent for a con-
tent distributor to plan for such occurrences: When
the content distributor learns of the compromise of
such a card, he must stop using the compromised keys
for the delivery of encrypted content, and switch to
using other, non-compromised keys. We investigate
how this can be achieved when privacy requirements
prevent the content owner from knowing which card
is at the receiving end of the encrypted content he is
sending, i.e., when all cards (whether revoked or not)
must be treated in the same way and receive the same
encrypted content. We also do not want the content
owner to have to contact any card to effectively carry
out a revocation.

We present a scheme that achieves these goals, at

∗Portions of this work were supported by Grants IIS-0325345,
IIS-0219560, IIS-0312357, and IIS-0242421 from the National Sci-
ence Foundation, Contract N00014-02-1-0364 from the Office of
Naval Research, by sponsors of the Center for Education and Re-
search in Information Assurance and Security, and by Purdue Dis-
covery Park’s e-enterprise Center.
Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at the Australasian Information Security Work-
shop, Digital Rights Management (AISW’05), Newcastle, Aus-
tralia. Conferences in Research and Practice in Information
Technology, Vol. 44. R. Safavi-Naini and P. Montague, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

the cost of having to send very little additional in-
formation with each encrypted content as a result of
each compromised card. In the scheme, what is sent is
the encryption of the (possibly large) content M with
a random (session) key k (denoted by Enc(M, k)),
together with Enc(k, k1), Enc(k, k2), . . . , Enc(k, kt)
such that (i) each non-revoked card is guaranteed to
be able to obtain at least one of the ki that allows
it to get k (hence the content M), (ii) none of the
revoked cards can get such a ki. This allows for “im-
plicit revocation” by the content distributor, with-
out having to either contact or update any of the
deployed cards (whether revoked or not). A larger
number of compromised cards necessitate a larger t,
so one of our design goals is to keep t small; however,
all the Enc(k, ki)’s combined typically take up much
less space and bandwidth than the (typically large)
Enc(M, k) that is sent by the server to the client.

Here when we say that the “client obtains M”,
what we mean is that a special “reader” software
(e.g., a media-viewer), that interacts with (and uses)
the smartcard at the client’s end, obtains M and dis-
plays it to the user. It is this server-trusted reader
that mediates access to M by the user at the client’s
end and interacts with the smartcard so as to ob-
tain from it k (and hence M). Note that k is not
stored in the smartcard. How a client-side reader can
be server-trusted is achieved using techniques (soft-
ware, hardware, and combinations thereof) that are
well documented in the literature (Arbaugh, Farber
& Smith 1997, Kuhn 2004, Lipton, Rajagopalan &
Serpanos 2002) and some of these are in fact a part
of the planned next generation of “trusted computing
platforms”.

In our scheme, it is also possible to “undo” a revo-
cation and therefore restore the ability of a previously
revoked card to use the service. This means that our
scheme has the expressive power to represent every
possible subset of clients in the dynamically changing
environment, and is suitable for applications such as
pay-TV where customers can leave and later re-join
the set of users who receive the service.

Finally, our scheme does not require k to be a
one-time session key: In that case there is no need
to re-encrypt any content, but, on the other hand,
that would make piracy easier through the pirate dis-
tributing a short key rather than the voluminous dig-
ital content. We, however, assume in the rest of this
paper that k is used as a session key.

The organization of this paper is as follows: Sec-
tion 2 provides a description of the problem. Section
3 gives an overview of related literature. In section
4, we provide description of cryptographic primitives
used later in our protocols. Section 5 presents our ba-
sic protocol, extensions to which are given in section
6. Such extensions significantly improve the perfor-
mance of the basic protocol in terms of both its com-
putational and space requirements, as well as provide

generalization of the scheme to higher dimensions. In
section 7, we list open problems, and finally section 8
concludes the paper.

2 Problem Description

Suppose n + 1 users have purchased the right to ac-
cess some copyrighted media for a given period of time
(e.g., for a particular month), and were given for that
purpose respective smartcards C0, C1, . . . , Cn. Ac-
cess is through one or more servers operated by the
content-distributors (for this paper we assume there is
a single server S, but our schemes could easily be ex-
tended to multiple servers). Although a user’s smart-
card Ci may have been issued to them by the server
S, another possibility for the privacy-conscious user
is the anonymous purchase of Ci (e.g., at a bookstore
using a cash payment). The properties we seek to
achieve for our scheme are the following:

1. Protected: Only a client with a smartcard should
be able to access the data.

2. Private: S should not be able to determine which
smartcard is making an access request. There-
fore, when a client requests a message, it should
send the server a request for content that gives
no clue as to which Ci is requesting the content.
The purpose of this is to avoid the possibility of
tracking and profiling by S of a Ci’s content ac-
cess patterns; such tracking would have the dan-
ger that if even once the Ci is associated with an
event that is linked to the customer’s real iden-
tity (e.g., access from a particular IP address),
the whole access history of that individual be-
comes known to the server. The client would
normally make the request either through some
form of anonymous communication such as us-
ing a mix (e.g., (Chaum 1981)) or using a public
PC at a cyber-cafe, but if the client occasionally
makes a request from an IP address that can be
traced back to him, then only this particular re-
quest is linked to him, not the whole history of
requests he previously made using that Ci.

3. Revocable: S should be able to revoke a set of
client’s smartcards (remotely “shred” them by
rendering them useless). This would occur when
S learns that a smartcard has been cracked and
the keys in it compromised, but it is crucial that
this does not require reissuing of keys for any
cards not in the revoked set, or communicating
with any card (whether revoked or not).

4. Non-interactive: Upon receipt of a request, the
server should send suitably encrypted content
such that only non-revoked smartcards can de-
crypt it. The client and server do not engage
in any protocol (such as a zero-knowledge proof)
to determine whether the smartcard is valid or
revoked.

5. Efficient: The system should be efficient in terms
of both communication and computation.

6. Forward and backward secure: No newly added
smartcards can read previous messages, and no
users whose keys have been revoked can read fu-
ture messages, even with collusion by arbitrarily
many other users with revoked keys.

3 Related Work

Our work is closely related to other work on broadcast
encryption. A broadcast encryption scheme (which, in

some sources, is also referred to as revocation scheme)
allows a distribution center to securely broadcast data
to a dynamically changing set of users (so called privi-
leged users) over an insecure channel. In other words,
the scheme should allow to selectively exclude a sub-
set of users from receiving the data by carefully con-
structing keys used to encrypt broadcast material.
Broadcast encryption was motivated by applications
such as pay-TV where users who fail to pay for the
service leave the set of privileged users.

The idea of broadcasting of a secret was first ex-
plored in (Berkovitz 1991), and the formal study
of broadcast encryption was initiated in (Fiat &
Naor 1994). In (Fiat & Naor 1994), a scheme is given
that requires each user to store O(k log k log n) keys
and the center to broadcast O(k2 log2 k log n) mes-
sages, where n is the total number of users and k
is the maximum number of excluded users (so called
revocation threshold). The scheme is based on the
idea of constructing a scheme that is 1-resilient (i.e.,
works when a single user is excluded) and applying
multi-level hashing to subgroups of users to provide
resilience against a larger number of excluded users.
Subsequent work of (Blundo & Cresti 1994, Blundo,
Mattos & Stinson 1996, Luby & Staddon 1998) and
others further explore and provide analysis of broad-
cast encryption schemes. Many other broadcast en-
cryption schemes based on hierarchies, secret shar-
ing, cover-free set systems, etc. have been proposed
in the literature. We categorize them based on their
intended use and the underlying methods used.

Practical schemes for multicast security were
first designed in (Wong, Gouda & Lam 1998) and
(Wallner, Harder & Agee 1999). Both (Wong et al.
1998) and (Wallner et al. 1999) are tree-based ap-
proaches that use key hierarchies and achieve O(log n)
keys per user and O(r log n) communication overhead
to revoke r users. The work in (Canetti, Garay, Itkis,
Micciancio, Naor & Pinkas 1999) and (McGrew &
Sherman 1998) improve (by a constant factor) on
the schemes, and another work (Canetti, Malkin &
Nissim 1999) studies tradeoffs between communica-
tion overhead and space requirements of the schemes.
All of the work above, however, require stateful re-
ceivers (i.e., keys of all of the users change after a
leave/join) and therefore are not appropriate in our
setting where clients do not always stay online and
the keys of cards not in the revoked set should stay
unchanged.

Another broadcast encryption scheme based on
trees (using layered subset difference) was developed
(Halevy & Shamir 2002). The scheme is stateless

and requires O(log1+ε n) keys per user, O(r) mes-
sage length, and O(log n) computation per message
received.

Combinatorial approaches to broadcast encryption
include (Kumar, Rajagopalan & Sahai 1999) who
use error-correcting codes and cover-free set systems
to give solutions with O(k log n) keys per user and
O(k2), O(k log n), and O(k) message lengths. Their
scheme is threshold-based, i.e., provides k-resilience.
Another work (Garay, Staddon & Wool 2000) at-
tempts to minimize the amount of re-carding needed
per epoch by introducing so called long-lived broad-
cast encryption for a combinatorial threshold-based
scheme. Note that schemes that provide full col-
lusion resilience (including our own scheme) do not
require re-carding at all. In (Abdalla, Shavitt &
Wool 2000) the theoretical lower bounds of (Luby &
Staddon 1998) were lowered by providing a relaxed
definition of security. We, however, seek a solution
where an adversary has a negligible probability of suc-
cess.

Another related line of work goes under the

name of traitor tracing. Traitor tracing schemes
(such as (Chor, Fiat, Naor & Pinkas 2000, Fiat &
Tassa 1999, Naor & Pinkas 1998) among many oth-
ers) were introduced to help to trace pirate smart-
cards or decoders back to the users who produced and
distributed those pirate copies to illegal subscribers.
An interesting class of schemes combine tracing with
revocation capabilities, thus producing new revoca-
tion schemes. For instance, (Naor & Pinkas 2000)
and later (Kogan, Shavitt & Wool 2003) describe
revocation schemes based on secret sharing; their
systems are, however, stateful and have a revoca-
tion threshold. Another scheme, (Naor, Naor &
Lotspiech 2001), gives a tree-based stateless revoca-
tion scheme with no upper bound on the number
of revocations. In this scheme, the number of keys
per user is O(log n) and O(log2 n), and communi-
cation overhead is O(r log n

r) and O(r), respectively.
There is also work on trace and revocation schemes
in the public setting (Naor & Pinkas 2000, Tzeng &
Tzeng 2001, Dodis & Fazio 2003), where any entity
can play the role of the sender, but we concentrate
only on the centralized setting in this work.

Recent work, (Attrapadung, Kobara & Imai 2003),
provides a stateless revocation scheme based on one-
way accumulators. In the scheme, each user needs to
store O(1) keys and there is no transmission overhead
because additional non-secret storage is used to store
keys. This scheme allows to trade security against
collusion for storage size and computational power.
However, to make this scheme resilient to collusions
of any size, it would require to store O(2n) keys and
each client to process O(2n) keys in order to decrypt
a message. The authors provide another scheme for
non-decomposely-one-way accumulators that is more
efficient than their other scheme but no construction
for which is known to exist.

Other recent work, (Boneh & Franklin 1999), in-
troduced a scheme that provides anonymous authen-
tication of an arbitrary subset of smartcards. This
scheme had the added property of identity escrow,
but it requires an interactive protocol to be run be-
tween the smartcard and the server.

Our scheme is based on commutative one-way
functions. It requires each card to store only 1 key
and has O(r) message overhead (where r, as before,
is the number of revoked keys) which can further be
lowered if higher dimensions are used. The scheme
is stateless and fully collusion resilient. Our scheme
also preserves customer privacy, which is usually not
addressed in other revocation schemes.

4 Cryptographic Primitives

We use a pseudorandom function (such as AES) and,
as was done above, when a message M is being en-
crypted with k, we write this as Enc(M, k). The de-
cryption function is represented by Dec().

Our primary cryptographic primitive is that of
a commutative one-way function. Two functions G
and H are said to be commutative one-way functions
if: (i) both G and H are one-way functions and (ii)
G(H(x)) = H(G(x)). We now present a candidate
for commutative one-way functions: We use RSA in
a private key manner; it is commonly believed that
this function is one-way, i.e., we assume the Strong
RSA Assumption (Baric & Pfitzmann 1997).

An outside party (in our case this is the server
S) chooses two large primes p and q, and computes
N = pq. S also creates two values h and g that are
encryption keys for N , that is, G(x) = xg mod N and
H(x) = xh mod N . Note that any number of commu-
tative functions could be generated with this scheme.

As a shorthand notation, we introduce Hi(Gj(x)) to
be i applications of H and j applications of G; note
that since the hash functions are invertible (given the
factorization of N) it is possible to have negative su-
perscripts. Also, it is obvious that this scheme is com-
mutative.

We now state an assumption for two commutative
one-way functions that is key to the security proper-
ties of our paper; this assumption can easily be ex-
tended to more than two hash functions. Note that
the RSA scheme described above is not such a scheme.

Assumption 1 Given two commutative hash func-
tions G and H and any number of triplets:
(i1, j1, H

i1(Gj1(x))), . . . , (ik, jk, Hik(Gjk(x))), it is
tractable to compute Hi(Gj(x)) only for (i, j) such
that ∃t ∈ [1, k] : it ≤ i and jt ≤ j. In all other cases
it is computationally intractable.

5 A Preliminary Protocol

In this section we present a preliminary protocol that
should be viewed as a “warmup” for later ones, and
postpone discussion of extended versions of the pro-
tocol until Section 6. We describe the protocol in
phases, then show that is satisfies the properties out-
lined in Section 2, and then discuss the complexity of
the protocol.

The Protocol

Server Initialization
The server keeps the following state information

(C,R, H, G, x,K), where these state variables are ini-
tialized to:

1. C is the set of all cards and is initialized to
C0, C1, . . . , Cn. Note that the server typically
does not know the identity of the user who has
a particular Ci (because it may have been pur-
chased anonymously at a public store).

2. R is the set of all revoked smartcards and is ini-
tialized to ∅.

3. H and G are commutative one-way functions
that are chosen randomly by the server.

4. x is a random element in the domain of H and
G.

5. K is the set of keys that are used to encrypt the
messages. This is initialized to the single-element
set {Hn(Gn(x))}.

We now define a shorthand notation for the possible
keys in the system: We use Ki,j to denote Hi(Gj(x)).
Note that anyone who has key Kx1,y1

can use it to
generate key Kx2,y2

iff x1 ≤ x2 and y1 ≤ y2 (the
“only if” part is a special case of Assumption 1). We
say that a tuple (x1, . . . , xd) dominates another tuple
(y1, . . . , yd) iff ∀i ∈ {1, . . . , d}, xi ≤ yi.

Smartcard Initialization
The smartcards are given an ordering

C0, C1, . . . , Cn. Smartcard Ci contains key Ki,n−i.
Note that each smartcard can initially generate the
key Kn,n. This is depicted in Figure 1.

Sending a Message
When the server receives a request for digital con-

tent M , it sends back the following information:

1. Enc(M, k) where k is a random encryption key
generated and used to encrypt M as a result of
the request for M .

0

2

4

6

8

10

12

0 2 4 6 8 10 12

V
al

ue
 (

n-
x)

Client number x

Client keys
System Key(s)

Figure 1: The keys in a system with 11 clients (n =
10), along with the system key Kn,n.

2. For each key Ki,j ∈ K, the server sends
(i, j), Enc(k, Ki,j).

Revoking Keys
Suppose a card containing key Ki,j is to be re-

voked, i.e., it no longer should be able to reach any
key in K. Then the server does the following: Find
all keys Kx,y in K such that (i, j) dominates (x, y).
Delete each such Kx,y from K and replace it (in K)
with keys Ki−1,y and Kx,j−1. Figure 2 illustrates
changes in the key set K after a single revocation.

Note that it is possible that one of the indices of
the keys is −1, in which case the key is ignored; we
further discuss the issue of key elimination in Section
6.4.

0

2

4

6

8

10

12

0 2 4 6 8 10 12

V
al

ue
 (

n-
x)

Client number x

Client keys
System Key(s)
Revoked Key

Figure 2: System in Figure 1 after client C6 is re-
voked.

Proof of Scheme

At this point we state a system Invariant (1):

1. ∀Ci ∈ C − R with key Ki,n−i, ∃Ki,j ∈ K such
that (i, n − i) dominates (i, j). This means that
every smartcard that has not been revoked has
a key that can generate a key in the master key
set K.

2. ∀Ci ∈ R with key Ki,n−i, ∀Kx,y ∈ K, (i, n − i)
does not dominate (x, y). This means that every
smartcard that has been revoked has a key that
cannot generate any key in the master key set.

Lemma 1 The system invariant (1) holds regardless
of the number of revoked keys.

Proof We show this by induction of the number
of revocations. Suppose that there are no revoca-
tions, then property 2 holds trivially, since R = ∅.
Property 1 also holds since for any smartcard Ci ∈
{C0, . . . , Cn}, that smartcard has key Ki,n−i, and
thus can generate Kn,n, which is in K.

For the induction step, suppose that f smart-
cards have been revoked and that the state of the
system is (C,R, H, G, x,K). Suppose that a new
client Cr ∈ C − R is to be revoked. We parti-
tion the set of keys K into two groups K1 and K2,
where K1 are the keys reachable from Kr,n−r and
K2 is the rest of the keys. Note that K1 is not
empty, and let |K1| = k1. Suppose that the keys
in K1 are represented {Kx1,y1

, . . . , Kxk1
,yk1

}. Now
the revocation protocol replaces each of these keys
by two sets of k1 keys: {Kr−1,y1

, . . . , Kr−1,yk1
} and

{Kx1,n−r−1, . . . , Kxk1
,n−r−1}. We must show that if

a Cj ’s key could reach key Kxi,yi
then it can reach

either Kr−1,yi
or Kxi,n−r−1. Now Cj ’s key is Kj,n−j;

suppose j < r, then j ≤ r− 1 and n− j ≤ yi (since it
could reach Kxi,yi

). A similar argument can be made
when j > r, and it is known that j 6= r. 2

We now prove that the above mentioned protocol
satisfies properties (1)–(4) outlined in Section 2.

Theorem 1 The above protocol is protected, private,
revocable, non-interactive, and backward secure.

Proof The system is protected because without a
smartcard, an adversary is limited to guessing the
keys. The system is trivially private, because the
server sends the same message to every item request.
The system is trivially non-interactive by the design
of the system. The invariant property proves that the
system is revocable. Finally, backward security is a
natural consequence of Assumption 1, but note that
this requires the usage of a family of commutative
hash functions. Essentially, the assumption states
that, given a set of keys, one can only generate keys
that are dominated by one of the known keys. 2

Forward security of the scheme is shown in Section
6.5.

Efficiency

There are many efficiency metrics, we state these for
f revocations:

1. Server initialization: The server needs to gener-
ate n + 1 cards where each requires n commuta-
tive hash functions. The apparently O(n2) cost
can easily be reduced to O(n log n) by using a
divide and conquer approach. This is improved
to O(n) in Section 6.3.

2. Smartcard initialization: The card needs to do
n commutative hash functions, which might be
too expensive for a smartcard. We discuss ex-
tensions to the scheme that address the problem
in Section 6.1 and Section 6.2, and reduce the
card’s workload to one modular exponentiation
if an RSA-like scheme is used. Also, notice that
a card needs to perform this computation only
once at initialization and once per revocation.

3. Sending a message after f revocations: The
server must send out at most f + 1 different en-
cryptions of the “session key” k along with each
encrypted message Enc(M, k). This is stated
more formally later in Theorem 2.

4. Smartcard work after key revocation: The card
must again do O(n) work (of course, the more re-
vocations in the system the less work that needs
to be done). The smartcard’s work, however, in
this case can also be reduced by applying the
same techniques as those used during smartcard
initialization.

Lemma 2 At any time in the system, any smartcard
in C − R will have exactly one key in K that it can
reach.

Proof We prove this by induction on the number of
revocations. Clearly, when there are no revocations,
there is only one key in K and thus the statement
holds.

Suppose it also holds for f revocations. Now,
suppose that another card Ci that can reach key
Kx,y ∈ K (we know there is exactly one by the in-
duction hypothesis) is being revoked. Clearly, any
card in the range Cn−y, . . . , Cx can reach this key
(by system invariant each of these clients must be in
C − R), and thus n − y ≤ i ≤ x. Now the key Kx,y
will be split into Ki−1,y and Kx,n−i−1. Clearly clients
Cn−y, . . . , Ci−1 can only reach the first of these keys
and clients Ci+1, . . . , Cx can reach the second of these
keys. 2

Theorem 2 After f revocations, the worst-case
number of keys in K is f +1, and the expected number
is f − (f2/n) with a variance of (2(n− f)2f2 −n(n−
f)f)/2n2(n − 1).

Proof By Lemma 2, each key will have at most one
key that it can reach, and therefore after each revoca-
tion there will only be one key that is modified in the
set. Each key that is modified produces at most two
keys, which means that the number of keys increases
by 1, and the worst-case bound of f + 1 follows. For
the average-case claim, the crucial observation is that
the expected number of keys is 1+(the number of con-
tiguous runs of ones in a random sequence containing
f ones and n − f zeros). Runs of ones in random
binary sequences are a well studied topic in probabil-
ity theory, and this theorem’s claims follow without
much difficulty from the “theorems on runs” found in
(Feller 1968). 2

6 Extensions

6.1 Grouping

In the previous scheme, before any revocations take
place (i.e., when K = {Kn,n}), a smartcard hav-
ing key Ka,b does not need to re-compute Kn,n from
Ka,b every time it makes an access request from the
server: Instead, it computes Kn,n only the first time,
and stores it for subsequent accesses. But if at some
point in time a smartcard Ki,j is cracked and its key
is posted on rogue bulletin boards on the Internet,
then the server will revoke it by replacing Kn,n with
Ki−1,n and Kn,j−1 in K. An access request after such
a change in K could cause the requesting smartcard
to have to do O(n) commutative hash function com-
putations to compute its new access key (which is
one of the two new keys in K). This is not efficient
for smartcards; thus in this section we introduce a
tradeoff, which consists of the server performing more
pseudorandom function evaluations and an increased
message size it sends to the smartcards in response to
an access request.

This is done by breaking the smartcards into c
groups with at most dn

c e cards per group and then cre-
ating a key for each group. Clearly, the cards would
need to perform at most O(n

c) commutative function

computations, but the message size would be O(f +c)
and the server would need to perform O(f + c) pseu-
dorandom function computations.

6.2 Offloading smartcard work

As smartcards are weak computational devices, it
would be desirable for the smartcard to be able of-
fload its expensive computations to a workstation.
This cannot be done by just sending the workstation
the key and having them do the work, as this would
provide an attacker with the ability to easily retrieve
the key. In this section we introduce a scheme that
allows the smartcard to do a single exponentiation
per key update. This technique can only be used if
the base scheme being used is the RSA-based scheme
(i.e., no collusion protection) or is a family of commu-
tative trapdoor functions (rather than being one-way
functions).

When issuing a smartcard Ci, the server, instead
of sending Hi(Gn−i(x)), creates another function and
its inverse (E, D), creates a key E((Hi(Gn−i(x)))),
and also puts D on the smartcard. Now the smartcard
can send E((Hi(Gn−i(x)))) to the workstation along
with H and G. The workstation can perform the com-
putation and send the result back to the smartcard,
which can then decrypt it with D to obtain the actual
key.

6.3 Reducing server’s load

When the underlying scheme is RSA (no collusion-
resilience), the server’s load at the card creation time
can be reduced to O(1) modular exponentiations per
smartcard, resulting in the total of O(n) exponenti-
ations. This can be done by utilizing the fact that
the server knows p and q: For smartcard Ci, the

server is to compute Hi(Gn−i(x)) = xhi
·gn−i

mod
N . Consequently, the server computes y = hi ·
g(n−i) mod (p − 1)(q − 1) and performs one exponen-
tiation xy mod N , where xy mod N ≡ Hi(Gn−i(x)).

6.4 Filtering keys

Another way to improve the efficiency of the protocol
is to reduce the number of keys in K by filtering out
unnecessary keys. There are two types of filtering:

1. Reachability: A key in K can be filtered out if
it is not reachable by any of the smartcards in
C −R. In our previous protocol, a key Kx,y can
be reached iff: (i) x ≥ 0, (ii) y ≥ 0, and (iii)
x + y ≥ n. This possibly reduces the number of
keys from the bound in Theorem 2, but if the
number of keys revoked is smaller than n

2 then
the bound is still tight in the worst case. We
omit the proof in this version of the paper.

2. Dominance: Suppose that there are two keys
Kx1,y1

and Kx2,y2
where (x1, y1) dominates

(x2, y2). Any key that could reach Kx1,y1
could

also reach Kx2,y2
and thus Kx1,y1

can be re-
moved. This type of filtering does not occur
in our previous protocols (trivial consequence of
Lemma 2), however our subsequent protocols use
this type of filtering (see sections 6.7 and 6.8).

The computational complexity of each of the above
types of filtering will be discussed in section 6.7.

6.5 Adding new smartcards

In this section, we show how with slight changes to
our protocol we can allow addition of new smartcards
to the system. Before describing the scheme we note
that in the modified protocol we assume that key fil-
tering based on key reachability is in place.

Server Initialization
The server keeps the following state information

(C,R, H, G, x,K, m), where C, R, H , G, x, and K
are defined as before. The new state variable m ≥ n
defines the total number of cards that the system can
accommodate. Now the set of keys K is initialized to
{Kn,m}.
Smartcard Initialization

Smartcard Ci contains key Ki,m−i.

Adding a Smartcard
When a new smartcard Cn+1 is created by S,

it is added to the set of smartcards C and a key
Kn+1,m−(n+1) is stored in it. If Kn,x ∈ K for
some m − n ≤ x ≤ m, then K is updated to
(K − {Kn,x}) ∪ {Kn+1,x}. Otherwise, a key Kn+1,x

has been filtered out (after revocation of card Cn) and
K is updated to K∪{Kn+1,m−(n+1)}. Notice that this
does not invalidate Theorem 2’s result.

The message encryption and key revocation mech-
anisms stay unchanged. Now the reachability rule
for key filtering is slightly different: a key Kx,y can
be reached by any of the smartcards in C − R, C =
C0, C1, . . ., Cn, iff (i) 0 ≤ x ≤ n, (ii) m − n ≤ y ≤ m,
and (iii) x + y ≥ m.

Theorem 3 The above protocol is forward secure.

Proof To show that no new smartcard can generate
a key to read previous messages, we use induction on
the number of new smartcards. For the basic step,
when there are no new smartcards in the system, the
protocol is trivially forward secure.

Now suppose that k new smartcards have been
added to the system, i.e., C = C0, C1,. . ., Cn,
Cn+1, . . ., Cn+k, and the induction hypothesis (i.e.,
no new smartcard can read previous messages) is true.
Suppose another smartcard Cl, l = n+k+1, is added
to the system with key Kl,m−l. The set K is updated
to include key Kl,j reachable by Cl. Notice that no
other key Kx,y currently in or that previously has
been in K is reachable by Cl, because prior to ad-
dition of Cl, ∀Kx,y ∈ K, 0 ≤ x ≤ n + k and thus
(l, m − l) cannot dominate (x, y). 2

This modification does not affect backward security
of the scheme, and Theorem 1 still holds (with the
proof omitted).

6.6 “Undo”ing a revocation

There are two primary reasons for revocations: (i) a
smartcard was cracked and (ii) the smartcard’s user
did not pay some fee. In the first case, the server
would never want to “undo” a revocation, but sup-
pose that in the second case the smartcard owner paid
the appropriate fee. In this case it would be desirable
to undo the revocation without requiring communica-
tion with the smartcard or the user to obtain a new
smartcard. A consequence of such an ability would
be that the server could send messages to arbitrary
subsets of the smartcards.

To see that it is possible to undo a revocation, the
server can easily compute a set of keys required as if
the revocation did not happen, and use the resulting
set for the new keys. A naive implementation of this

would require the server to perform O(f2) work as it
would have to compute f−1 revocations, but this can
be improved to O(log f) in a straightforward manner
(we leave the details for the full version of the paper).

6.7 Higher dimensions

A three-dimensional version of the scheme has the
advantage of requiring a smaller number of appli-
cations of the hashes when computing a new key
after a change in K due to a revocation. Specifi-
cally, instead of two hash functions G and H , there
would now be three such functions H1, H2, H3. (As
stated in the earlier discussion of the use of RSA
for such commutative functions, any number of them
could be generated for the same pair of primes p, q.)
A smartcard would now contain key Kx,y,z where
x + y + z = n and 0 ≤ x, y, z ≤ n; hence the
number of initial (i.e., before any revocation) smart-
cards m would be quadratic in n (whereas in the two-
dimensional case m was n). The advantage here is
that whereas in the two-dimensional case computing
a new key (one that is dominated by the original key
in the card) requires O(m) applications of the hashes,
for a three-dimensional scheme this drops to O(

√
m).

It is not hard to see that, for a d-dimensional scheme
(d ≥ 2) with m initial keys, this worst-case work is
O(dm1/(d−1)).

Higher dimensions therefore seem to be better in
terms of cutting down on computation time. How-
ever, this advantage would be much less appealing if
a higher d resulted in an uncontrolled growth in the
number of keys in K as a function of the number of
revocations f . The revocation of a key in higher di-
mensions is done in a natural generalization of the
two-dimensional case, e.g., when a three-dimensional
key Ki,j,` ∈ K is to be revoked, the server finds all
keys Kx,y,z in K such that (i, j, `) dominates (x, y, z)
and for each such key it does the following:

1. The server deletes each such Kx,y,z from K and
replaces it (in K) with keys Ki−1,y,z, Kx,j−1,z,
and Kx,y,`−1.

2. The server filters out of K the keys that dom-
inate any other key of K, and also those that
are not reachable from any of the non-revoked
smartcards. Filtering eliminates keys on a mas-
sive scale (more on this later). We now briefly
discuss the algorithmics of such filtering.

(a) Dominance-filtering is easily seen to be a
computation of the minimal (“not domi-
nating any other”) vectors in a set of vec-
tors, for which very efficient algorithms
are known: Computing the minimal vec-
tors among a set of µ d-dimensional vec-
tors can be done in a simple recursive man-
ner in time O(µ(log µ)d−2 + µ log µ) (Kung,
Luccio & Preparata 1975), and in time
O(µ(log µ)d−3 log log µ + µ log µ) using a
more complicated technique (Gabow, Bent-
ley & Tarjan 1984). There are also dynamic
data structuring techniques (Overmars &
Leeuwen 1981) for maintaining the minimal
vectors as insertions and deletions occur.

(b) Reachability-filtering can be solved using
dominance range counting data structures,
which dynamically maintain a set of points
so as to efficiently answer queries of the
type “how many points in the data struc-
ture dominate the query point”. The d-
dimensional points in the data structure
correspond to the active (not revoked) card

keys, and a new key Ki,j,` is tested for
reachability by means of a query that counts
how many points in the structure dominate
Ki,j,` (if that number is zero then the key
is filtered out). If λ denotes the number
of points in the data structure, then inser-
tions, deletions, and queries can be done
in time O(log λd) each, using a variant of
the usual O(λ(log λ)d−1)-space range-query
data structure (Willard 1985), somewhat
faster using more complicated techniques
(see (Agarwal 1997) for a survey).
In the special case where the original set
of client keys is full, i.e., in d dimensions
it consists of all keys Kx1,x2,...,xd

where xi

are all non-negative and the
∑d

i=1 xi = n
for a fixed value n, it is possible to deter-
mine if a key is reachable in O(d) time.
We now present how this can be done for
three dimensions, which easily extends to
d dimensions. A key Kx,y,z is reachable iff
(i) x, y, and z are non-negative, and (ii)
x + y + z ≥ n. The proof that this is a nec-
essary and sufficient condition will be given
in the full version of the paper.

We can also prove that ‖ K ‖= O(df); the proof will
be given in the full paper. Figure 3 gives experimental
data on how ‖ K ‖ changes with f for random revo-
cations — note that df is an over-estimate of ‖ K ‖,
especially for larger values of f . A probabilistic anal-
ysis similar to the one we did for the case d = 2 clearly
needs to be done, and is left for future work.

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200

N
um

be
r

of
 k

ey
s

in
 K

Number of revoked keys

Run 1
Run 2
Run 3

Figure 3: Number of Keys in System in (3-D).

6.8 Hypercube

It is interesting to see what happens when n = 1 and
the d-dimensional “grid graph” of keys is one where
the length n + 1 of each dimension is 2 (because each
key’s dimension is now 0 or 1). The graph so-defined
is then a 2d-node hypercube. Recall that a hypercube
of dimension d is a graph that consists of 2d vertices
which are uniquely labeled with bitstrings of length d,
where two vertices are connected by an edge iff their
respective bitstrings differ from each other in exactly
one bit position (i.e., they are equal for d−1 bits). A
vertex has therefore degree d.

In this case of a hypercube, it is not interesting to
define the initial set of keys as those for which Ki1,...,id

satisfies i1 + . . . + id = n: This is because n = 2

and there would only be m = d initial keys, which
is too small a number to be useful. The number of
initial keys would be exponential in d if we defined
the initial set of keys to be those for which Ki1,...,id

satisfies i1 + . . . + id = d/2:

m =

(

d

d/2

)

∼ 2d
√

2/(πd)

where Stirling’s approximation was used.
With such an exponential (in d) number of initial

keys, the work done (for still-valid smartcards) as a re-
sult of a revocation is now O(d) and therefore asymp-
totically O(log m). Contrast this with, for example,
the three-dimensional case where it was O(

√
m). The

cost of this improvement, in terms of how ‖ K ‖
changes with f , is quite acceptable: Figure 4 gives
experimental data on how ‖ K ‖ changes with f for
random revocations.

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 k

ey
s

in
 K

Number of revoked keys

Run 1
Run 2
Run 3

Figure 4: Number of Keys in System in a Hypercube.

7 Open Problems

In this section we list several open problems as direc-
tions for future work.

Open Problem 1 In the higher dimensional
schemes for d dimensions, what is a tight upper
bound for the number of keys after f failures? What
is the expected number of keys after f failures?

Open Problem 2 In the hypercube schemes of d di-
mensions, what is a tight upper bound for the number
of keys after f failures? What is the expected number
of keys after f failures?

Open Problem 3 Is there a way to achieve similar
results without requiring the smartcard to perform any
modular exponentiations?

8 Conclusions

In this work we described a new revocation scheme
based on commutative one-way functions that pre-
vents owners of revoked smartcards from using the
service and at the same time preserves privacy of le-
gitimate cardholders. This scheme has the same ex-
pressive power as other revocation schemes previously
described in the literature: it allows to revoke smart-
cards and then later “undo” a revocation, which lets
the scheme to represent every possible subset of the

smartcards and be suitable for a wide range of appli-
cations.

Our scheme works with stateless receivers, i.e., no
interaction between smartcards and the center is re-
quired when a smartcard is revoked or, in turn, added
to the set of cards who have access to the service. Our
scheme is also fully backward and forward secure in
the presence of commutative one-way hash functions:
no newly added cards can read previous messages,
and no revoked cards can obtain access to future mes-
sages, even if they collude with any number of other
revoked cards.

Our base scheme requires each smartcard to store
only one key, has O(r) communication overhead
where r is the current number of revoked cards, and
one modular exponentiation at the smartcard’s end
per revocation if an RSA-like scheme is used. Hence,
this scheme outperforms many other known revoca-
tions schemes in terms of the number of keys stored
per smartcard, communication overhead, or both.

In order to make our scheme more efficient, we
introduce higher dimensions into the base model.
Higher dimensions allow for a reduced number of
keys, i.e., smaller communications overhead (as low as
O(log r) in a hypercube) and less work performed by
a smartcard. Higher dimensions are, however, gener-
ally more difficult to analyze: our scheme is not fully
explored in higher dimensions, thus providing direc-
tions for future work.

References

Abdalla, M., Shavitt, Y. & Wool, A. (2000),
‘Key management for restricted multicast us-
ing broadcast encryption’, IEEE/ACM Transac-
tions on Networking 8(4), 443–454.

Agarwal, P. K. (1997), Range searching, in J. E.
Goodman & J. O’Rourke, eds, ‘Handbook of Dis-
crete and Computational Geometry’, CRC Press
LLC, Boca Raton, FL, chapter 31, pp. 575–598.

Anderson, R. & Kuhn, M. (1996), Tamper resistance
- a cautionary note, in ‘USENIX Workshop on
Electronic Commerce’, pp. 1–11.

Anderson, R. & Kuhn, M. (1997), Low cost attacks on
tamper resistant devices, in ‘International Work-
shop on Security Protocols’, pp. 125–136.

Arbaugh, W., Farber, D. & Smith, J. (1997), A secure
and reliable bootstrap architecture, in ‘IEEE
Symposium on Security and Privacy’, pp. 65–71.

Attrapadung, N., Kobara, K. & Imai, H. (2003),
Broadcast encryption with short keys and trans-
missions, in ‘ACM Workshop on Digital Rights
Management (DRM’03)’, pp. 55–66.

Baric, N. & Pfitzmann, B. (1997), Collision-free ac-
cumulators and fail-stop signature schemes with-
out trees, in ‘Advances in Cryptology – EURO-
CRYPT’97’, LNCS, Springer–Verlag, pp. 480–
494.

Berkovitz, S. (1991), How to broadcast a secret, in
‘Advances in Cryptology – EUROCRYPT’91’,
Vol. 547 of LNCS, Springer–Verlag, pp. 535–541.

Blundo, C. & Cresti, A. (1994), Space require-
ments for broadcast encryption, in ‘Advances in
Cryptology – CRYPTO’94’, Vol. 950 of LNCS,
Springer–Verlag, pp. 287–298.

Blundo, C., Mattos, L. F. & Stinson, D. (1996),
Trade-offs between communication and storage
in unconditionally secure schemes for broadcast

encryption and interactive key distribution, in
‘Advances in Cryptology – CRYPTO’96’, Vol.
1109 of LNCS, Springer–Verlag, pp. 387–400.

Boneh, D. & Franklin, M. (1999), Anonymous au-
thentication with subset queries (extended ab-
stract), in ‘ACM Conference on Computer and
Communications Security’, ACM Press, pp. 113–
119.

Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor,
M. & Pinkas, B. (1999), Multicast security: a
taxonomy and some efficient constructions, in
‘IEEE INFOCOM’99’, pp. 708–716.

Canetti, R., Malkin, T. & Nissim, K. (1999), Effi-
cient communication-storage tradeoffs for multi-
cast encryption, in ‘Advances in Cryptology –
EUROCRYPT’99’, Vol. 1592, Springer–Verlag,
pp. 459–474.

Chaum, D. (1981), ‘Untraceable electronic mail, re-
turn addresses, and digital pseudonyms’, Com-
munications of the ACM 24(2), 84–88.

Chor, B., Fiat, A., Naor, M. & Pinkas, B. (2000),
‘Tracing traitors’, IEEE Transactions on Infor-
mation Theory 46(3), 893–910.

Dodis, Y. & Fazio, N. (2003), Public key trace
and revoke scheme secure against adaptive cho-
sen ciphertext, in ‘Public Key Cryptography
(PKC’03)’, Vol. 2567 of LNCS, pp. 100–115.

Feller, W. (1968), An Introduction to Probability The-
ory and Its Applications, Volume 1, Wiley.

Fiat, A. & Naor, M. (1994), Broadcast encryption, in
‘Advances in Cryptology – CRYPTO’93’, Vol.
773 of LNCS, Springer–Verlag, pp. 480–491.

Fiat, A. & Tassa, T. (1999), Dynamic traitor trac-
ing, in ‘Annual International Cryptology Con-
ference on Advances in Cryptology’, Springer–
Verlag, pp. 354–371.

Gabow, H., Bentley, J. & Tarjan, R. (1984), Scaling
and related techniques for geometry problems, in
‘Annual ACM Symposium on Theory of Compu-
tating’, pp. 135–143.

Garay, J., Staddon, J. & Wool, A. (2000), Long-lived
broadcast encryption, in ‘Advances in Cryp-
tology – CRYPTO’00’, Vol. 1880 of LNCS,
Springer–Verlag, pp. 333–352.

Halevy, D. & Shamir, A. (2002), The lsd broadcast
encryption scheme, in ‘Advances in Cryptology
– CRYPTO’02’, Vol. 2442 of LNCS, Springer–
Verlag, pp. 47–60.

Kogan, N., Shavitt, Y. & Wool, A. (2003), A practi-
cal revocation scheme for broadcast encryption
using smart cards, in ‘IEEE Symposium on Se-
curity and Privacy’, pp. 225–235.

Kuhn, M. (2004), The trustno1 cryptoprocessor con-
cept, Technical report, Purdue University.

Kumar, R., Rajagopalan, S. & Sahai, A. (1999), Cod-
ing constructions for blacklisting problems with-
out computational assumptions, in ‘Advances in
Cryptology – CRYPTO’99’, Vol. 1666 of LNCS,
Springer–Verlag, pp. 609–623.

Kung, H., Luccio, F. & Preparata, F. (1975), ‘On
finding the maxima of a set of vectors’, Journal
of the ACM 22, 469–476.

Lipton, R., Rajagopalan, S. & Serpanos, D. (2002),
Spy: a method to secure clients for network ser-
vices, in ‘IEEE Symposium on Security and Pri-
vacy Systems Workshops’, pp. 23–28.

Luby, M. & Staddon, J. (1998), Combinatorial
bounds for broadcast encryption, in ‘Advances
in Cryptology – EUROCRYPT’98’, Vol. 1403 of
LNCS, Springer–Verlag, pp. 512–526.

McGrew, D. & Sherman, A. (1998), ‘Key establish-
ment in large dynamic groups using one-way
function trees’, Manuscript.

Naor, D., Naor, M. & Lotspiech, J. (2001), Revoca-
tion and tracing schemes for stateless receivers,
in ‘Advances in Cryptology – CRYPTO’01’, Vol.
2139 of LNCS, Springer–Verlag, pp. 41–62.

Naor, M. & Pinkas, B. (1998), Threshold traitor trac-
ing, in ‘Advances in Cryptology – CRYPTO’98’,
Vol. 1462 of LNCS, Springer–Verlag, pp. 502–
517.

Naor, M. & Pinkas, B. (2000), Efficient trace and
revoke schemes, in ‘Financial Cryptography’00’,
Vol. 1962 of LNCS, Springer–Verlag, pp. 1–20.

Overmars, M. & Leeuwen, J. V. (1981), ‘Maintenance
of configurations in the plane’, Journal of Com-
puter and Systems Sciences 23, 166–204.

Tzeng, W. & Tzeng, J. (2001), A public-key traitor
tracing scheme with revocation using dynamic
shares, in ‘Public Key Cryptography (PKC’01)’,
Vol. 1992 of LNCS, Springer–Verlag, pp. 207–
224.

Wallner, D., Harder, E. & Agee, R. (1999), ‘Key man-
agement for multicast: Issues and architectures’,
RFC 2627.

Willard, D. (1985), ‘New data structures for orthogo-
nal range queries’, SIAM Journal on Computing
14, 232–253.

Wong, C., Gouda, M. & Lam, S. (1998), Secure group
communications using key graphs, in ‘ACM SIG-
COMM’, pp. 68–79.

