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Abstract. Conditional e-cash or conditional e-payments have been in-
troduced by Shi et al. as the means for enabling electronic payments to
be based on the outcome of a certain condition not known in advance. In
this framework, a payer obtains an electronic coin and can transfer it to
a payee under a certain condition. Once the outcome of the condition is
known, if it was favorable to the payee, the payee can deposit the coin;
otherwise, the payer keeps the money. In this work, we formalize con-
ditional payments and give a scheme to achieve conditional e-payments
that outperforms the original solution in several respects.

1 Introduction

Recently Shi et al. [24] introduced conditional electronic payments which allow
a participant to anonymously cash bank-issued electronic coin at a future time
if a certain agreed-upon condition is satisfied. That is, a payer engages in a
protocol with a payee after which the payee has a (conditional) payment that
can later be cashed only if a certain public condition is satisfied (or a certain
event happens). Such scenarios arise in several contexts including, for instance,
trading of financial securities and prediction markets. The conditional nature
of electronic payments can, however, be taken more broadly with the outcome
of the condition determined by the performance of the payee in carrying out a
certain task or by a combination of different conditions.

Such conditional payments have similarities with traditional e-cash systems,
but the requirements placed on interaction between entities in a conditional e-
payment protocol are different enough for an e-cash scheme to be adopted to
this problem. Thus, new tools need to be developed to meet the requirements of
conditional payments. To illustrate why e-cash solutions are not sufficient for con-
ditional e-payments, we list some distinctive features of conditional e-cash next.
In conditional payments, a payer obtains an electronic coin and anonymously
transfers it to an anonymous payee. In traditional e-cash systems, however, the
coin is normally bound to the identity of the merchant during the transfer, and
the merchant cannot remain anonymous. Furthermore, in conditional payments
the payee should be unable to spend the coin until after the outcome of the
condition is determined and only if the outcome is favorable to the payee. Ad-
ditionally, the payer should have the ability to cash the payment in case of an
unfavorable to the payee outcome of the condition, which cannot be done in



traditional e-cash. Thus, existing e-cash schemes do not provide an adequate
solution to the conditional e-payment setting with the above requirements.

Shi et al. [24] defined the model and necessary properties for conditional
e-payments, as well gave the first solution to the problem. Unfortunately, this
solution lacks efficiency due to the use of expensive cut-and-choose techniques,
and in this work we show that recent advances in electronic cash systems allow
conditional payments to be implemented in a more efficient manner completely
avoiding cut-and-choose techniques. More precisely, the solution of [24] requires
O(n1n2k) computation and communication, where n1 and n2 are cut-and-choose
parameters and k is a security parameter for RSA-based systems. Recall that in
cut-and-choose techniques with a parameter n a dishonest user can cheat with
probability 1/n, therefore a protocol that has the overhead of O(n2k) is likely
to be too computation and communication heavy for practical use, which we
remedy in this work with a faster solution. In our solution, probability of cheating
drops exponentially with the increase in computation and communication. More
precisely, we achieve O(k′ log n2), where k′ is a security parameter for groups
with bilinear maps, which significantly lowers O(n1n2k). (The logarithmic factor
in our solution is due to the use of verifiable encryption.)

Our contributions. The basis of construction is an e-cash system of Camenisch
and Lysyanskaya that follows from CL-signatures with protocols. We modify it
to (i) permit payers and payees to stay anonymous during the transfer protocol
while maintaining the ability of the bank to trace dishonest payers, and to (ii)
incorporate the conditional nature of the transfer. Compared to the solution of
Shi et al., our simple scheme has the following advantages:

– Our scheme has lower computation and communication overhead.
– Shi et al.’s solution requires the payee to contact the bank at the time of coin

transfer to verify the validity of the coin, while in our scheme all transfers
between the payer and the payee are performed off-line, with no participation
of the bank or other entities.

– Shi et al.’s solution gave only informal arguments regarding the security
of the solution. In this work, we formally state security requirements for a
conditional e-payment scheme and provide proofs of security.

Another important contribution of this work is an extension that permits payees
to further transfer (conditional) payments to other payees. In this case, double-
spending by both payers and payees is addressed.

The rest of this paper is organized as follows. We first give a more detailed
description of the model in section 2 and list preliminaries and building blocks
in section 3. Our conditional payment scheme is presented in section 4. An
extension for handling additional transfers is given in section 5. And section 6
concludes the paper.

2 The Model

A conditional e-payment scheme involves several parties, namely: a bank that
issues electronic coins; a publisher that announces public conditions and later



their outcomes; a payer who obtains an electronic coin from a bank and can
conditionally transfer it to a payee. In this model, the payer withdraws a certain
amount of money from his bank account and obtains an electronic coin for
the amount of the withdraw. The publisher announces future events by posting
information about them. The payer can conditionally transfer his coin to a payee
using the public conditions announced by the publisher. When the outcome of
the public condition becomes known, the publisher is trusted to correctly publish
the outcome of the event and any other information associated with it. After the
event, the payee will be able to validate her coin and cash it only if the published
outcome of the event was favorable to her. Otherwise, the payee’s coin remains
unspendable, and the payer cashes it back.

In the rest of the paper, we use the following terminology: when the payer
contacts the bank to have an electronic payment issued to him, we will refer to the
token that the payer receives from the bank as a coin. Once a coin is transferred
to a payee, we will refer to the token that the payee receives as a conditional
payment. Once the outcome of the condition on the payee’s conditional payment
is announced, it can be transferred into a validated (or casheable) coin. Finally,
in the event of unfavorable outcome of the condition, the conditional payment
becomes uncasheable.

The properties that the conditional e-cash system in [24] was (informally)
shown to have are as follows:

Anonymity. The bank is unable to associate its previously issued coins with
the identities of principals cashing them (payers or payees).

Double spending. It is either infeasible to achieve or the identity of a payer
will be uncovered if (i) the payer transfers a coin to more than one payee
and the payees cash it or (ii) one payee cashes the coin and the payer cashes
it as well.

Conditional transfer. In the case of an unfavorable outcome, the payer can
cash back his coin. If the payee accepts the coin during the transfer protocol,
in the case of a favorable outcome, she will be able to cash the coin.

Deniability. Neither payer nor the payee can prove to outside parties that they
participated in a conditional payment protocol.

Limited information flow. The bank cannot infer any event-specific details.
The publisher cannot infer any information about bank-payer-payee interac-
tions through the protocol.

In some interactions in the conditional payments scheme, a participant is to
stay anonymous. We then assume that in such cases the participant will use a
network anonymizer (e.g., [16]) to hide her location information or engage in a
protocol using other anonymous means (e.g., a protocol between the bank and
an anonymous user can take place at a bank’s kiosk).

We show the security of our solution with respect to all properties stated
above. The bank and the publisher are trusted to perform their function in
the protocol correctly (i.e., the bank issues electronic payments and cashes its
previously issued valid coins and the publisher announces the events correctly),



but we also design the protocols to be resilient to collision between different
participants. For example, a payer, a payee, and the publisher should not be
able to conspire to over-spend a bank-issued payment. Similarly, the bank, the
publisher, and payees should not be able to conspire to link a coin to the identity
of an honest payer.

As stated above, there are four players in the conditional e-payment system:
the bank, the publisher, the payer, and the payee. We will assume that the bank
will setup is public-private key pair prior to any payment can be made. The
functionality of the system and the interaction between the bank, a payer, and
a payee can be described using the following algorithms (the publisher does not
interact with other parties, it has a passive role of announcing events and their
outcomes):

Payment Generation: A protocol between the bank and a payer that allows the
payer to obtain electronic payments from the bank. The bank withdraws
from the payer’s account the value of the electronic coin it issued.

Conditional Transfer: A protocol between a payer and a payee during which the
payer transfers an electronic payment to the payee in such a way that the
payee will be able to cash the payment only after the favorable outcome of
the agreed-upon condition.

Validating the Payment: After the publisher announces the outcome of the event,
if the outcome was favorable to the payee, the payee will use the informa-
tion posted by the publisher to transform the conditional payment into a
casheable coin.

Cashing the Payment: Cashing can be done by either the payee in case of fa-
vorable outcome of the condition or by the payer otherwise. In either case
the claimant anonymously submits an electronic payment to the bank and
receives cash in the amount of the payment.

Identifying Double-Spenders: This algorithm is invoked by the bank on input a
coin’s serial number s and two validity proofs for it. If a payee does not
attempt to spend the same coin twice (with the same proof), this algorithm
will reveal the identity of the payer (who either transferred the coin to more
than one payee or cashed the coin that was also casheable by a payee).

The solution of [24] also included a Payment Activation protocol: a protocol
between the bank and the payer, where the payer anonymously contacts the
bank and activates the electronic payment issued during the payment generation
protocol. This protocol, however, is not required.

We now give a more formal definition of a conditional e-payment system and
its security properties.

Correctness. If an honest payer generates a conditional payment and engages
in a conditional transfer protocol with a payee, then the payee will accept. If a
payee is honest and accepts during the conditional transfer protocol, then in case
of the favorable outcome the payee will be able to cash the payment. If a payer
is honest and does not transfer the payment or transfers the payment and the
outcome is unfavorable to the payee, the payer will be able to cash the payment.



Anonymity. When addressing anonymity of users, we need to consider two
different cases: anonymity of payers and anonymity of payees. Anonymity of
payers means that other participants (e.g., the bank, the publisher, and the
payee) cannot link the coin an (honest) payer transfers to a payee to the payer’s
identity (assuming that the payer does not double-spend the coin). Thus, we
model the adversary A as colluding bank, payees, and the publisher. A will be
able to create the bank’s private and public keys and engage in queries, where A
executes the payment generation protocol with various users idi. Then A engages
in a challenge conditional transfer and the consecutive payment validation, where
it is interacting either with a real user or a simulator with no access to any
user information. The anonymity requirement for the payer is such that, for
any adversary A, given all information A receives during payment generation,
transfer, and validation, A is unable to distinguish between a real payer and a
simulator with more than negligible probability.

To model anonymity of payees, the adversary A will represent the bank
colluding with payers. In this case, A will be able to create the bank’s key,
create users, and issue coins. To ensure that a payee’s identity is not revealed at
any point during the protocols, we require that A cannot distinguish between a
real user idj and a simulator (with no access to user-specific information) with
more than negligible probability during both the conditional transfer protocol
and cashing payment protocol.

Balance. There are two parts to this property. From the bank’s point of view,
we would like to assure that no coalition of dishonest payers and payees can cash
more coins than they withdrew. This is often shown by treating the payment
generation protocol as a proof where the user plays the role of the prover and
the bank plays the role of the verifier. Let x denote the user’s input to the
payment generation protocol. Then if the bank accepts at the end of the protocol,
there will be a knowledge extractor that extracts a witness w = s, which is the
serial number associated with the issued payment. Let the adversary A engage
in a number of payment generation, payment transfer, and payment cashing
protocols. Let on ith successful execution of the payment generation protocol
the extractor’s output be (xi, si). We say that adversary wins if, for any number
n of payment generation protocol executions, A is able to cash a payment with
a serial number s 6∈ {s1, . . ., sn}. We say that the balance property holds if A
has at most negligible probability of winning.

From the payer’s point of view, if the payment was transferred to a payee
and the outcome is unfavorable to the payee, that payee should not be able to
produce a valid casheable payment. To be able to show this, we let A act as
either the payer or the payee with various users (by possibly corrupting other
users) and, when acting as the payee, request favorable outcome for its events.
Then A, acting as the payee, engages in a challenge conditional transfer protocol
with an uncorrupted payer, such that the outcome of this event is unfavorable.
We say that the protocol is secure if any A can recover a casheable token with
at most negligible probability.



Double-spending. In this case the adversary A represents a payer possibly in
coalition with one or more payees; the bank is assumed to be honest. A engages
in the payment generation, conditional transfer, and cashing protocols as many
times as it likes. A wins the game if the bank accepts two requests to cash the
same payment with serial number s without being able to recover the identity of
A. We say that identification of double-spenders is achieved if any A can succeed
at double-spending with at most negligible probability.

Deniability. Deniability was defined in [24] as the inability of a payer or a
payee to prove to outside parties that he or she participated in a conditional
payment protocol. This issue, however, requires further investigation to specify
what constitutes a proof of engagement in such a protocol. If, for example, the
format or the use of coins issued for a conditional payment protocol differs from
coins issued by the bank for different purposes, then the mere fact that a user
requests the bank to issue a conditional e-payment token to her indicates the
intent to engage in a conditional transfer protocol. In this case, both the solution
of Shi et al. and our solution fail to provide deniability. Furthermore, we argue
that in many applications of conditional e-payments deniability might not be a
requirement or a different type of deniability might be preferred (where, e.g., a
participant – a payer or a payee – cannot provide a proof that its peer engaged
in a conditional transfer protocol). Thus, we do not further treat deniability in
this work.

3 Preliminaries

In this section, we review certain cryptographic primitives used as building blocks
in our solution, as well as their security guarantees.

3.1 Zero-knowledge proofs of knowledge

Prior literature provides efficient zero-knowledge proofs of knowledge (ZKPK)
for a variety of statements, with many efficient proofs being based on the dis-
crete logarithm problem (see, e.g., [14, 13, 11, 3, 4]). Camenisch and Stadler [12]
introduced notation for various proofs of knowledge and we follow their notation
here. For example,

PK{(α, β, γ) : A = gαhβ ∧ B = gαhγ ∧ (α ≥ a)}

denotes a ZKPK of integers α, β, and γ, where A = gαhβ, B = gαhγ , and α ≥ a.
ZKPKs used in our protocols are proof of knowledge of the discrete loga-

rithm representation, equality of discrete logarithms, and linear equations on
the discrete logarithms, solutions to which are well known. We also utilize proof
of knowledge that a discrete logarithm is the product of two other committed
values [11].

3.2 Signature schemes

In this work, we use signature schemes with protocols due to Camenisch and
Lysyanskaya [8, 9]. These schemes have two protocols associated with them: (i)



they allow a user to obtain a signature on a committed value without revealing
that value to the signer; and (ii) they enable the user to convince a third party
that she possesses a signature on a certain message.

The commitment scheme used is the Pedersen commitment scheme [22]. Re-
call that in this scheme the public parameters are a group Gq of prime order
q such that the discrete logarithm problem in Gq is hard and generators g0,
g1, . . . , gk. In order to compute a commitment to x1, . . ., x` ∈ Zq, we choose

r ∈ Zq at random and compute com(x1, . . ., x`; r) = gr
0

∏`
i=1 gxi

i . This com-
mitment is unconditionally hiding (i.e., com(x1, . . ., x`; r) reveals no information
about x1, . . ., x`) and is computationally binding (assuming that the discrete
logarithm problem is hard in Gq, the sender cannot open the commitment to
values other than x1, . . ., x`).

Then given a commitment com(x1, . . ., x`; r), it is possible obtain the signer’s
CL signature σ(x1, . . ., x`) without revealing any information about the values
x1, . . ., x` to the signer. Furthermore, possession of σ(x1, . . ., x`) allows its owner
to use commitments to x1, . . ., x` to prove to other parties that she has the
signer’s signature on the values included in the commitments without revealing
additional information about the signed values themselves. If this protocol is
combined with a ZK proof that the values included in these commitments sat-
isfy certain properties, it becomes possible to convince a third party that the
prover possesses a CL signature that meets these conditions without disclosing
additional information about the signed values.

The signature scheme [8] relies on the Strong RSA assumption for its security.
The scheme [9] relies on LRSW assumption in groups with bilinear maps. Our
and other e-cash solutions built on such schemes require certain ZK proofs to be
non-interactive, which is normally done by applying Fiat-Shamir heuristic [18].
Such non-interactive ZK proofs are, however, secure only in the random oracle
model. Recent work by Belenkiy et al.[2] is the first to give new signatures
with protocols, called P-signatures, that have non-interactive protocols without
relying on the random oracle model. In particular, they utilize techniques of
Groth and Sahai [19] to permit non-interactive zero-knowledge proofs that the
contents of a commitment has been signed and that a pair of commitments are
committed to the same value. The protocols used in this work, however, involve
proofs of more general statements than equality, and more research is needed
to determine what types of statements about discrete logarithms can be proven
non-interactively using techniques of Groth and Sahai.

3.3 Verifiable encryption

Verifiable encryption is a protocol between an encryptor and verifier that allows
the encryptor to convince the verifier that encryption was performed correctly.
Given a public encryption key pk and a commitment C = com(x), this proto-
col allows the encryptor to produce encryption, Epk(x), of the opening of C,
such that the verifier can accept an invalid encryption only with a negligible
probability. Then given the corresponding decryption key sk and the proto-
col transcript for Epk(x), opening of C can be computed efficiently. Camenisch



and Damgard [5] provide techniques for converting any semantically secure en-
cryption scheme into a verifiable encryption scheme, and this is what adds the
logarithmic factor to the complexity of our scheme. For our purposes, any secure
verifiable encryption scheme will suffice.

4 Conditional E-Payments

4.1 Description and Intuition

With the recent advances in e-cash systems, a natural place to seek alternatives
for expensive cut-and-choose techniques of Shi et al. [24] conditional e-cash is
to look at other e-cash solutions. Recent e-cash systems such as, e.g., [6, 7, 10]
use CL-signatures with constant overhead as their building block. Using CL-
signatures, it is possible to construct an e-cash system using a known method as
follows: to generate a payment, a user obtains the bank’s signature on (id, s, t),
where id is the user’s identity, s is the serial number of the coin, t is the blinding
value without the bank knowing s or t. Then when the user would like to spend
the coin at a merchant, the user provides the merchant with commitments to
id, s, and t and a ZK proof that she possesses a signature on these values. The
merchant chooses a random value R (computed as a function of the merchant’s
identity and additional information provided by the merchant) and communi-
cates R to the user. The user reveals to the merchant the serial number s and the
result of evaluating the double-spending equation D = id + R · t mod q on R, as
well as provides a ZK proof of correctness of both s and D (i.e., that s appears
in the signature, and D is computed using id and t from the signature). Now, if
only a single value D is computed for a coin, it does not reveal any information
about the user’s identity id (since t was chosen at random); but revealing two
such values for different R’s reveals the identity of the user.

The biggest difference between the regular e-cash setting and conditional e-
payments is that (i) in e-cash a coin transferred to a merchant carries a validity
proof that is bound to the merchant (and only that merchant can cash it), while
in conditional e-payments each payee is to stay anonymous, and (ii) the only way
for a user to spend a coin in e-cash is through a merchant, while in conditional
e-payments, the payer is able to cash coins herself. To address the first item,
we can require each (anonymous) payee to challenge the payer on a randomly
chosen value R, which, unlike the e-cash systems, is not bound to the payee’s
identity. This will ensure that if the payer transfers the coin to more than one
payee, the payer’s identity can be recovered. In case when the payer does not
transfer the payment or the outcome of the event is unfavorable, the payer can
transfer a coin to himself and cash it anonymously. This, however, creates a
problem, as the payer will be able to quickly cash the coin using the payee’s R
before the payee learns the outcome of the condition. And when the (honest)
payee attempts to cash the same payment, the request will be denied by the
bank as duplicate (without the ability to uncover the payer’s identity).



This could be fixed in the same way as in [24]: a trusted authority (e.g.,
the bank) keeps track of payment transfers.1 We, however, are interested in a
solution that can be performed completely off-line, without the need of the bank
to participate in payment transfers. Even though both participants are to stay
anonymous, we let the payee to obtain a proof of the payment in an oblivious
way, without the payer knowing the value of R. That is, the payee sends to the
payer a commitment to R, gR, and the payer then transfers that commitment
into gD and also provides a proof that the value was formed as prescribed. Note
that knowledge of R is required to be able to cash the payment, and the payer is
prevented from doing so. Given commitments to the double spending equation
evaluated on different values, it is still possible to recover the identity of the
payer (more precisely, now the bank will be able to recover gid instead of the
value of id itself, but this does not affect the security of the solution2).

In the above solution, the payee’s participation in the conditional transfer
and subsequent cashing protocols is linkable due to the use of the payer’s validity
proofs during cashing. Thus, to prevent colluding payer and the bank from re-
covering the payee’s identity, the payee must stay anonymous during the deposit
protocol. This means that either the payer cashes the e-payment anonymously or
exchanges it for another anonymous token such that its generation and deposit
protocols cannot be linked together (and this is what was suggested in [24]).
Furthermore, the techniques we are utilizing do not seem to permit a payee’s
participation in the conditional transfer and cashing protocols to be unlinkable,
as the payee is unable to modify the ZK proof generated by the payer. We leave
this unlinkability issue as an open problem.

The final issue that remains to be addressed is the conditional nature of the
transfer, where the payee’s payment must remain uncasheable at the time of the
transfer while still ensuring that the payee can verify all of the payer’s proofs.
We solve this by conditionally hiding only partial information which is necessary
for cashing the payment. In particular, the payee will be able to obtain access
to the serial number s only in case of favorable outcome of the condition.

We model events as follows: When event E is announced, the publisher posts
the public key pkE associated with this event. Later, when the outcome of the
event is determined, if the outcome satisfies the condition, the publisher releases
the corresponding private key skE . In case of unfavorable outcome, the publisher
does not release any additional information. At the time of transfer, the payer
encrypts the payment-related information using pkE , and the payee will be able

1 In more detail, a coin consists of two halves (the right half is used for conditional
transfers and the left half is used to cash unspent payments) such that spending both
halves reveals the identity of the payer. The payer first (anonymously) activates a
payment using its serial number s. During the transfer protocol, the payee contacts
the bank with s and obtains a secret value that must be presented to the bank upon
cashing the right half of the coin. Thus, the payer can cash only the left half.

2 Furthermore, in previous e-cash schemes [6, 7, 10], each user was identified by a
public key instead of her identity. Then for user U , the secret key is skU ∈ Zq and
the corresponding public key is pkU = gskU . Using our terminology, the secret key
is id and the public key is gid.



to decrypt it and produce a casheable coin only if the private key skE is an-
nounced. To ensure that the payer does not cheat during the encryption process,
we employ verifiable encryption. More precisely, the payer forms a commitment
to the serial number s and verifiably encrypts s using pkE . The payee will accept
the payment only is she is able to verify the correctness of the encryption.

We also make use of another key pair (pkĒ , skĒ) that correspond to the event
Ē opposite of E (that is, skĒ is published in case of unfavorable outcome of the
event E). The key pkĒ enables encryption of the value R to the payer, which he
decrypts in case of unfavorable outcome and cashes the coin back.

4.2 The Scheme

Our scheme is as follows: The common parameters to all players consist of a
group G of prime order q (chosen according to a security parameter 1κ) and
generators g0, g1, . . .. The bank generates its private signing key skB and the
corresponding verification key pkB using one of the CL-signature algorithms.
This key will be used to sign e-payments the bank issues.

Payment Generation: The interaction between a payer and the bank is as follows:

1. The payer identifies herself as having id. The bank and the payer also agree
on the amount of withdraw v. (We assume that id, v ∈ Zq.)

2. The payer with the help of the bank computes a commitment to s, t, id, and
v, where s is a random value used as the payment’s serial number (jointly
generated by the payer and the bank). To achieve this:

(a) The payer chooses sP , t ∈ Zq at random, forms a commitment C1 =
com(sP , t; r) = gr

0g
sP

1 gt
2, and sends it to the bank along with a ZK proof

of knowledge of the representation of C1 with respect to bases g0, g1,
and g2.

(b) The bank chooses sB ∈ Zq at random and sends it to the payer.
(c) Both the payer and the bank use sB, id, and v to locally compute C =

com(s, t, id, v; r), where s = sP + sB. This is done by setting C = C1 ·
gsB

1 · gid
3 · gv

4 .

3. The payer and the bank run a protocol for obtaining a signature on a commit-
ted value, at the end of which the payer has bank’s signature σB(s, t, id, v).

4. The bank debits the payer’s account with amount v.
5. The payer stores (id, s, t, v, σB(s, t, id, v)) as his e-payment token.

When the payer would like to transfer the payment to a payee, both of them
need to agree on the public condition E announced by the publisher. The public
key pkE is then used during the conditional transfer.

In the conditional transfer protocol, the payer needs to convince the payee
in the validity of the payment, which is done by using protocols associated with
CL-signature and additional ZKPKs. Both participants stay anonymous during
the protocol.

Conditional Transfer: The protocol between a payer with (id, s, t, v, σB(s, t, id, v))
and a payee proceeds in the following steps:



1. The payer forms commitments C1 = com(s; r1), C2 = com(t; r2), and C3 =
com(id; r3), and sends them along with v to the payee.

2. The payer sends to the payee a proof of knowledge π1 of a CL signature from
the bank on the openings of C1, C2, and C3 as well as the value v.

3. The payee chooses R ∈ Zq at random and sends A = gR to the payer.
4. The payer computes B = gRt+id, sends it to the payee, and executes a proof

of knowledge π2 of well-formness of B. More precisely, the ZKPK is:

PK{(α, β, γ1, γ2) : B = Aαgβ ∧ C2 = gα
1 gγ1

0 ∧ C3 = gβ
1 gγ2

0 }

5. The payer verifiably encrypts s under the key pkE using C1. The payee
obtains EpkE

(s), which includes the proof that the encryption was formed
properly.

6. The payee verifiably encrypts R under the key pkĒ using A. The payer ob-
tains EpkĒ

(R), which includes the proof that the encryption was formed
properly.

7. As the result of this transfer, the payee stores (C1, C2, C3, v, π1, R, A, B, π2,
EpkE

(s)) and the payer stores (C1, C2, C3, v, π1, EpkĒ
(R), A, B, π2, s).

After the outcome of the event is announced, if it was favorable to the payee,
the payee obtains the private key skE corresponding to pkE and performs the
following payment validation procedure.

Validating the Payment: On input (C1, C2, C3, v, π1, R, A, B, π2, EpkE
(s)) and skE ,

the payee decrypts EpkE
(s) obtaining s and stores (C1, C2, C3, v, π1, R, A, B, π2, s)

as a casheable payment.

In case of unfavorable outcome, the payer transfers his coin into a casheable
payment using skĒ (i.e., given (C1, C2, C3, v, π1, EpkĒ

(R), A, B, π2, s), the payer
decrypts EpkĒ

(R) to obtain (C1, C2, C3, v, π1, R, A, B, π2, s). In case the payer
did not engage in any conditional transfer protocol and would like to cash the
coin back, the payer engages in the transfer protocol with himself without en-
crypting the serial number. In this case, the casheable coin is the same as in
other cases.

The following protocol is performed anonymously.

Cashing the Payment: The claimant’s input consists of a casheable coin (C1, C2, C3,
v, π1, R, A, B, π2, s).

1. The claimant submits the payment (C1, C2, C3, v, π1, R, A, B, π2, s) to the
bank.

2. The bank verifies all proofs and, in particular, that gR = A. The bank also
checks whether the pair (s, R) was previously submitted to the bank. If the
proofs are correct and (s, R) is fresh, the bank credits the claimant’s account
with amount v; otherwise, it rejects the payment.

3. The bank records the payment (C1, C2, C3, v, π1, R, A, B, π2, s) in the database
of spent payments and searches for another record with s. If s has been used
before, it invokes the identification algorithm.



Identifying Double-Spenders: If a coin with a serial number s can be found in the
bank’s database more than once, the bank identifies the guilty payer as follows:

– The bank locates two records (s, R1, B1) and (s, R2, B2). (Recall that each
Bi = gR1t+id for some value t unknown to the bank.)

– It computes the identity of the payer by first computing d1 = (B1/B2)
(R1−R2)

−1

and then d2 = B1/(dR1

1 ). The value of d2 will correspond to gid, where id is
the identity of the double-spender.

– The bank searches its database for an id that matches gid.

We briefly show that d2 indeed corresponds to the value gid:

d2 =
B1

dR1

1

= B1

(

B2

B1

)(R1−R2)
−1R1

= gR1t+id
(

gR2t+id−R1t−id
)(R1−R2)

−1R1

= gR1t+id
(

g−t(R1−R2)
)(R1−R2)

−1R1

= gR1t+idg−R1t = gid

Efficiency. Computation and communication in all of our protocols are constant
(more precisely, linear in the security parameter), with the exception of verifi-
able encryption used in the transfer protocol. To achieve probability of cheating
2−k, O(k) encryptions must be performed during the transfer protocol. Addi-
tionally, to decrypt a value during payment validation, O(k) decryptions are to
be performed.

4.3 Security Analysis

Theorem 1. Assuming the security of the CL-signature scheme and the ver-

ifiable encryption scheme, the above scheme is a secure conditional e-payment

scheme in the random oracle model.

Proof. We analyze the scheme w.r.t. the properties given in section 2.

Correctness. This property can be shown by examination.

Balance. We first show that dishonest users cannot cash more coins than what
they withdrew. Let Xpg denote a knowledge extractor in the payment generation
protocol that acts as the bank and Xpk denote a knowledge extractor for the
proof of knowledge executed in step 2(a) of the protocol. Then during each
execution of the payment generation protocol by the adversary A, Xpg executes
the protocol as the bank would with the exception that it also executes Xpk to
obtain values id, s, t, v. After n executions of the protocol, Xpg has the knowledge
of n serial numbers s1, . . ., sn. Now note that the soundness property of the
proofs of knowledge prevents A from successfully producing a valid serial number
s′ 6∈ {s1, . . ., sn}. Therefore, A will attempt to deposit a coin for which it cannot
honestly generate a valid proof. For A to succeed in convincing the bank that
it has a valid coin with serial number s′, A must produce a proof that either A
knows the bank’s signature on openings of C1, C2, and C3 or B is well-formed.
The former can happen only with a negligible probability assuming that the



CL-signatures are secure, and the latter can also happen only with a negligible
probability assuming that the discrete logarithm problem is hard. Therefore, A
can succeed in winning this game with at most negligible probability.

To show that the adversary A, acting as a payee, is unable to spend its coin
in case of unfavorable outcome of the event, let c1, . . ., cn denote the sequence of
casheable coins A acquires in the first part of the game (acting as both payers and
payees), where the pairs (EpkE1

(s1), s1), . . ., (EpkEn
(sn), sn) are the correspond-

ing encryptions of coin serial numbers produced during the conditional transfer
protocols and their decryptions. A then engages in a challenge transfer protocol
with an honest payer and obtains coin (C1, C2, C3, v, π1, R, A, B, π2, EpkE

(s)).
Now assume that A is able to recover a casheable payment from this coin with-
out access to skE . Then A must either recover the correct value of s or produce
a valid coin using another serial number s′. As was argued above, the latter
is possible only with a negligible probability. A will then attempt to recover s
from the commitment C1 and the associated proof of knowledge or encryption
EpkE

(s). Since the commitment is unconditionally hiding and the proof of knowl-
edge is zero-knowledge, A must use EpkE

(s). Finally, assuming the security of
the verifiable encryption scheme, A can recover s from EpkE

(s) with at most
negligible probability. Therefore, A can succeed in producing a casheable coin
in this game with at most negligible probability.

Anonymity. Anonymity of a payee is trivially achieved, since at no point in
the protocol the payee is required to present her identity or include it in the
information exchanged between the payee and the payer or the bank.

To show payer anonymity, let the game setup be as described in section 2.
Adversary A represents other participants colluding together, who can create
users and engages in payment generation protocols. During the challenge, A is
asked to engage in a conditional transfer protocol and execute the consecutive
payment validation procedure with either a real user idj or a simulator S without
access to user idj’s information. Our simulator S participates in a conditional
transfer protocol by performing the following steps:

1. S chooses id, s, t, v ∈ Zq and produces commitments C1 = com(s; r1), C2 =
com(t; r2), and C3 = com(id; r3).

2. S produces a simulated proof of knowledge π1 of a CL signature from the
bank on the openings of C1, C2, C3, and the value v. This requires usage of
the corresponding simulator of CL-signatures.

3. After obtaining A = gR, S computes B = gRt+id and produces a proof of
knowledge π2 of well-formness of B.

4. S verifiably encrypts s under the key pkE using C1 producing EpkE
(s).

At the end of this interaction, A obtains (C1, C2, C3, v, π1, R, A, B, π2, EpkE
(s)).

After executing the challenge transfer protocol (with either a real user or a simu-
lator), A is given pkE and validates the coin obtaining (C1, C2, C3, v, π1, R, A, B,
π2, s). We next argue that a casheable coin produced by a real payer is indistin-
guishable from a casheable coin produced by the simulator.



First, the payment generation protocol does not allow the bank to learn any
information about the coin-specific values s and t. When a payer is issued a CL-
signature σB(s, t, id, v) by the bank, all values in it are information-theoretically
hidden (i.e., the signature is issued on the values (s, t, id, v, r) for a random
value r rather than (s, t, id, v); this r is obtained from the commitment that
the payer submits and information-theoretically hides the values both in the
commitment and in the signature). Therefore, the values s and t that S chooses
are indistinguishable from those chosen by real users.

Other values produced by S in the transfer protocol are commitments C1, C2,
C3 (which perfectly hide the values), real proofs of knowledge π2 (which therefore
are indistinguishable from a payer’s proofs), real verifiable encryption EpkE

(s)
which consequently is decrypted, and one simulated proof of knowledge π1. This
simulated proof differs from a real proof of knowledge of a CL signature, but due
to the security of CL-signatures, A can distinguish between a real and simulated
proofs only with a negligible probability.

Double spending. There are two different ways for A (representing a coalition
of dishonest users) to double-spend a coin with serial number s: (1) by transfer-
ring it to two different (honest) payees, both of whom are able to cash it later, or
(2) by transferring it to a single (honest) payee, recovering the payee’s challenge
R, and cashing the coin while the payee has a casheable coin.

In the first case, suppose the bank accepts two casheable coins c1 = (C1, C2,
C3, v, π1, R, A, B, π2, s) and c2 = (C′

1, C
′
2, C

′
3, v, π′

1, R
′, A′, B′, π′

2, s) with the
same serial number s. Since there are knowledge extractors for all proofs included
in the payments, A knows σB(s, t, id, v) and B = gid+Rt (resp., B′ = gid+R′t)
(more precisely, these conditions can fail with at most negligible probability).
Now, because R and R′ can happen to be the same only with a small proba-
bility, the protocol for identifying double-spenders in this case will succeed in
recovering the identity id.

Next, consider the case where A transfers its payment to a single honest
payee, and the payee is later able to obtain a casheable coin (i.e., the condition
outcome is favorable). A might attempt to produce a casheable coin using the
payee’s challenge R from the transcript of the conditional transfer protocol. A
in this case has (C1, C2, C3, v, π1, EpkĒ

(R), A, B, π2, s). To produce a casheable
coin, A will have to recover R from either A = gR or EpkĒ

(R). However, in the
first case A will have to solve the discrete logarithm which, by our assumption, is
infeasible, and in the first case to circumvent verifiable encryption scheme E(·),
which is assumed to be secure. Therefore, in this case A also succeeds with at
most negligible probability.

5 Further Transfer of Coins

In this section, we sketch how a payee can further transfer a conditional pay-
ment to another payee. Solutions to achieve transferable e-cash, including off-line
systems, have been previously proposed in the literature (see, e.g., [15, 21, 1, 20,
23]), but to the best of our knowledge, no solution of the kind we propose (or



even another solution based on CL-signatures) has previously appeared in the
literature.

Now each payee who would like to be able to further transfer conditional
payments will need to be registered with the bank to permit recovering her
identity in case of double-spending. Note that a payee will be able to transfer
a coin under the same condition as the one used in issuing the payment to
that payee.3 To transfer a payment, each payee can use the bank’s signature on
the payee’s identity and other information similar to the coins themselves. This,
however, will require a signature per transfer since using it more than once reveals
the identity of its owner. To enable a user to perform multiple transfers using
the same credential from the bank, we modify the double-spending equation: the
property we now desire is that using this credential on a unique serial number
once will leave the user anonymous, but using it twice on the same serial number
will allow the identity of the user to be uncovered. More precisely, evaluating
this equation on a pair (s1, R1) and (s2, R2), where s1 = s2 and R1 6= R2

will lead to recovery of the identity, but observing the results of evaluating the
equation on any number of values (s1, R1), (s2, R2), . . ., (sn, Rn) where all si’s
are unique does not reveal information about the user. To achieve this, our idea
is to have the double-spending equation in the same form Di = id + Ri · t, but
make t dependent on si. This means that different values of si’s will result in
different values of t and therefore different equations, but evaluating it on the
same s and two values of R will permit recovery of id. The function t = f(s)
should be deterministic and such that, knowing s, computing t is difficult. For
example, we can compute t using a pseudo-random function and a secret key
u known to the user only. Then the user will obtain the bank’s signature on a
pair (id, u) without revealing u to the bank, and during a coin transfer compute
t = fu(s) and D = id + Rt. The function f should be such that the user is able
to convince the other protocol participant in zero-knowledge that both t and D
were computed as prescribed (and according to the bank’s signature on id, u).

User Registration: The interaction between a user and the bank is as follows:

1. The user identifies herself as having id and sends to the bank a commitment
C′ = com(u; r) for a randomly chosen u ∈ Zq.

2. The user proves to the bank in zero-knowledge that she knows the represen-
tation of C′ with respect to bases g0 and g1.

3. Both the user and the bank use id to locally compute C = com(u, id; r) by
setting C = C′ · gid

2 .

4. The user and bank run a protocol for obtaining a signature on a committed
value, at the end of which the user has bank’s signatures σB(u, id).

5. The user stores (id, u, σB(u, id)) as her payment transfer credential.

3 Since the payee does not have access to the serial number s, she cannot use other
conditions for hiding it. Furthermore, even when the payment becomes casheable
after successful outcome of the original event, that payee still will not be able to
construct verifiable encryption of s using the (payer’s) commitment C1.



The payment generation protocol and the conditional transfer protocol between
the payer and the first payee remain mostly unchanged. The only difference in
the first conditional transfer protocol is that, in order for the payee to further
transfer her coin, she will need to prove statements involving the coin’s serial
number (to prove that the double-spending equation was constructed correctly).
Therefore, we modify the commitment C1 generated in the first step of the
conditional transfer protocol to be C1 = com(s). This means that com(s) is of
the form gs and does not unconditionally hide the value of s. The knowledge
of s, however, is required for cashing the payment, and recovering it from gs

requires solving the discrete logarithm problem. Therefore, we relax the hiding
property of the commitment to permit further transfer of payments.

Now suppose that a payee would like to transfer her conditional payment to
another payee. This operation can be performed any number of times, and we de-
note the chain of payees associated with some payment s as P1, P2, . . .. When P1

transfers her conditional payment to P2 using coin c = (C1, C2, C3, v, π1, R0, A,
B, π2, EpkE

(s)), the new challenge R1 is computed as a one-way function of the
previous value R0 and randomness r1 contributed by P2. That is, R1 = f(R0, r1)
and the idea is to chain the sequence of challenges R0, R1, R2, . . ., so that fu-
ture values in the chain are unpredictable to earlier participants and Pi cannot
completely control the value of Ri. For P2 to convince P1 that R1 was com-
puted correctly, the computation must be verifiable in zero-knowledge without
disclosing R1 or r1. Therefore, we can, for example, use the verifiable random
function fk(x) = g1/(k+x) of Dodis and Yampolskiy [17] (which is the most
efficient construction) as Ri = f(Ri−1, ri) = g1/(ri+Ri−1).

Going back to evaluating the double-spending equation on coin- and user-
specific values, we have t = fu(s). The above DY function can also be used here
to compute t. But since computation of this function would require access to the
serial number s, which is not known at the time of the transfer, commitment
C1 = gs can be used instead. If all participants use an agreed-upon method
of mapping any gs to an element s′ of the appropriate group (i.e., Z

∗
q), the

computation will be of the form t = fu(s′).
We next describe the protocol for transferring a payment from P1 to P2.

Further transfers from Pi to Pi+1 are performed analogously, and each new
transfer maintains information about all previous transfers. P1’s input is the
original coin c = (C1, C2, C3, v, π1, R0, A, B, π2, EpkE

(s)).

Additional Transfer:

1. P2 chooses r1 and sends C = com(r1; r
′) to P1. P1 sends R0 to P2.

2. P2 computes R1 = f(R0, r1) and sends gR1 and a proof of its well-formness
to P1.

3. P1, who is in possession of σB(u, idP1
), sends to P2 commitments C

(1)
1 =

com(u; r′1), C
(1)
2 = com(idP1

; r′2) and proves possession of the bank’s signa-

ture on the openings of these commitments with proof π
(1)
1 .

4. P1 computes t1 = f(s′, u) and gD1 = gidP1
+R1t1 . P1 sends to P2 gD1 and a

proof π
(1)
2 of its well-formness.



5. P1 transfers c to P2. P2 verifies all of the proofs in c and that R0 was used

in c and pays P1. P2 stores c and c1 = (r1, R1, C
(1)
1 , C

(1)
2 , gD1 , π

(1)
1 , π

(1)
2 ).

Each additional transfer adds ci = (ri, Ri, C
(i)
1 , C

(i)
2 , gDi , π

(i)
1 , π

(i)
2 ) to the coin.

This information is used to recover the identity of Pi in case of double spending.
Payment validation is performed as before, by decrypting the serial number s,
but now only the last person in the chain is entitled to the payment.

During the cashing protocol, the bank will challenge the user on a newly
chosen value of R computed in the same way as in the above additional transfer
protocol. The user cashing the coin will evaluate the double spending equation
D = id + R · fu(s′) mod q using her transfer credential σB(u, id). This applies
to every user, including the original payer (note that in payer’s case, transfer
is performed using the coin σB(s, t, id), while the cashing protocol also requires
from that user transfer credential σB(u, id)).

Cashing the Payment:

1. The banks sends to the claimant a randomly chosen value r.
2. The claimant presents a coin c and transfer values c1, c2, . . ., ci for i ≥ 0 (i.e.,

the claimant is participant Pi+1 in the chain).
3. The bank first verifies all values and proofs in c and each ci. It then retrieves

the value Ri from ci and computes Ri+1 = f(Ri, r).
4. Similar to the additional transfer protocol, the claimant proves possession of

transfer credentials σB(u, idPi+1
) and sends to the bank gDi+1 along with a

proof of its well-formness.
5. The bank stores all values and issues to the claimant a payment for amount

v recorded in c.

Double-spending now can happen in different ways (in all of the following cases
double-spending occurs only if the coins in question become casheable): (1) as
before, a payer can transfer his coin to more than one payee, (2) a payee can
transfer her coin to more than one payee, or (3) a payee can transfer her coin
to another payee and cash the coin herself. In case (1), the payer’s identity is
recovered as before using the serial number s and two different values for R0

and B. The case of dishonest payees is handled as follows. Suppose payee Pi

transfered c to Pi+1 and P ′
i+1 (case (2) above), and now there are two chains

P1, . . ., Pi, Pi+1, . . ., Pn and P1, . . ., Pi, P
′
i+1, . . ., P

′
m. When Pn and P ′

m cash the

payments, the bank will be able to retrieve gDi and gD′

i computed using Ri and
R′

i, respectively, and recover idPi
in the same way. Case (3) above is handled in

a similar way. The difference is that the bank obtains one value gDi that encodes
idPi

when user Pn cashes the payment. Another value gD′

i is obtained during
the cashing protocol, where Pi is challenged on a new value R′

i.

6 Conclusions

Conditional e-payments, first introduced by Shi et al. [24], allow an electronic
payment between two parties to be based on the outcome of a condition not



known in advance. This work formalizes the security of a conditional e-payment
scheme and gives a solution based on CL-signatures. Compared to work of [24],
our scheme completely avoids cut-and-choose techniques, thus exponentially re-
ducing the protocols’ overhead. We also eliminate the need for the bank to be
involved in all conditional transfer protocols by making the protocol off-line.

Another significant contribution of this work is an extension that permits
a conditional payment to be further transfered to other users. This extension
builds a chain of users involved in a transfer of a particular coin, and each chain
contains enough information to prevent double-spending by each user in the
chain.

While our solutions satisfy the stated goals, there are a few directions that
can be pursued in refining the properties we achieve. In particular, it would be
interesting to see if the information used in the conditional payment protocol
and the consecutive cashing protocols could be made unlinkable (this, however,
is likely to require drastically different tools). Also, some of our constructions
use commitments of the form gx, which do not unconditionally hide x. Thus, it
would be desirable to achieve stronger hiding properties.
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