
US-AID: Unattended Scalable Attestation of IoT
Devices

Ahmad Ibrahim

TU Darmstadt, Darmstadt, Germany
Ahmad.Ibrahim@trust.tu-darmstadt.de

Ahmad-Reza Sadeghi

TU Darmstad, Darmstadt, Germany
Ahmad.Sadeghi@trust.tu-darmstadt.de

Gene Tsudik

UC Irvine, Irvine, CA, USA
Gene.Tsudik@uci.edu

Abstract—Embedded devices, personal gadgets and networks
thereof are becoming increasingly pervasive, mainly due the
advent of, and hype surrounding, the so-called Internet of Things
(IoT). Such devices often perform critical actuation tasks, as
well as collect, store and process sensitive data. Therefore, as
confirmed by recent examples (such as the Mirai botnet), they
also represent very attractive attack targets. To mitigate attacks,
remote attestation (RA) has emerged as a distinct security service
that aims at detecting malware presence on an embedded device.
Most prior RA schemes focus on attesting a single device and
do not scale. In recent years, schemes for collective (group or
swarm) RA have been designed. However, none is applicable to
autonomous and dynamic network settings.

This paper presents US-AID – the first collective attestation
schemes for large autonomous dynamic networks of embedded
devices. US-AID verifies overall network integrity by combining
continuous in-network attestation with a key exchange mecha-
nism and Proofs-of-non-Absence. Using device absence detection
US-AID defends against physical attacks that require disconnect-
ing attacked devices from the network for a non-negligible time.

We demonstrate feasibility of US-AID via proof-of-concept
implementations on a state-of-the-art security architectures for
low-end embedded devices and on an autonomous testbed com-
prising six drones. We also assess its scalability and practicality
via extensive simulations.

Keywords-Security; Attesation; IoT; Embedded Devices;

I. INTRODUCTION

In recent years, embedded devices proliferated into numer-

ous domains, collecting, processing and exchanging sensitive

information, while performing safety- and security-critical

operations. Interconnection of embedded devices within the

existing network infrastructure enables a wide range of ap-

plications, including centrally managed “smart” environments

(e.g., cars, homes, buildings, and factories) and autonomous

dynamic ad-hoc networks, such as vehicular ad-hoc networks

for autonomous driving, and swarms of self-organizing col-

laborating embedded devices, e.g., robots and drones. Despite

many benefits, allowing embedded devices to be accessed and

controlled remotely poses a formidable security challenge,

since it greatly broadens the attack surface and magnifies

consequences of a successful attack.

Remote malware attacks usually involve modifying de-

vice firmware and/or software, e.g., Stuxnet [28], and Jeep

hack [21]. Unfortunately, sophisticated security features com-

mon on general-purpose computing devices are lacking on

most embedded devices, due to their limited resources. This

makes them attractive targets for remote attackers. On the other

hand, IoT networks can involve hundreds and even thousands

of autonomous, mobile and inter-connected devices, operating

in hostile environments. In particular, whenever devices are

not always within a physical security perimeter, they can be

subject to capture and physical attacks.

For this reason, much effort has been invested in recent

years into Remote Attestation (RA) – a distinct security service

that aims to detect presence of malware on a remote and

potentially compromised embedded device. RA is usually

realized as a protocol between an untrusted Prover device

that securely reports its current software state to a trusted

remote Verifier. Most prior work focused on this setting.

There are three general types of RA protocols: software-
based [22], [18], hardware-based [2], [17], and hybrid (based

on software/hardware co-design) hybrid [10], [11], [16]. Cur-

rently, hybrid attestation is viewed as the most promising

approach, since it provides strong security guarantees while

involving lightweight hardware features: a small amount of

Read-Only Memory (ROM), and a simple Memory Protection

Unit (MPU).

Most prior attestation schemes – regardless of the type

– are geared for a single-prover setting, i.e., they do not

scale to many provers, and only consider remote software-

only attacks. Several recent efforts [5], [1], [13], [6] yielded

attestation methods for networks or groups of devices that

provide collective or swarm attestation. SEDA [5] efficiently

attests a network of low-end embedded devices. SANA [1] is

based on Optimistic Aggregate Signatures (OAS) to provide

better efficiency and resiliency. Finally, DARPA [13] allows

detection of physical attacks by extending SEDA with a

periodic network-wide heartbeat protocol. DARPA assumes

that a physical attack requires disconnecting the target device

for a non-negligible amount of time, and uses a global absence

detection protocol to detect such physical attacks.

Problem Statement. Prior collective RA schemes focused on

centralized IoT networks with restricted mobility, meaning

that network topology must remain static during the entire RA

protocol execution. Moreover, such schemes cannot mitigate

physical attacks, except for DARPA [13], which scales poorly,

since it incurs high computation and communication costs

– quadratic in network size. Some emerging IoT networks

have highly dynamic topologies and include large numbers of

21

2018 IEEE 37th International Symposium on Reliable Distributed Systems

2575-8462/18/$31.00 ©2018 IEEE
DOI 10.1109/SRDS.2018.00013

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 31,2021 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

devices. In such settings, multiple devices can be subject to

physical attacks.

Goals and Contributions. This paper presents US-AID – the

first attestation protocol for large, autonomous and dynamic-
topology networks of embedded devices. Designing US-AID

poses several challenges. In particular, attestation and physical

attack detection should be combined with key management

in order to identify malicious devices, while preserving scal-

ability (i.e., keeping overhead constant in terms of network

size) and device mobility. This requires ensuring secure flow

of attestation results throughout the network, in order to allow

mobile devices to prove their trustworthiness to new neighbors

while incurring minimal and constant costs. Finally, computa-

tion, communication, and energy costs should be evenly dis-

tributed over all devices, to prevent performance bottlenecks.

US-AID combines continuous attestation of neighbors and

periodic local heartbeats with a key exchange mechanism to

detect both software attacks and physical attacks with minimal

cost. It handles dynamic topology using a dedicated roaming

protocol.

Overall, this paper makes three technical contributions:

• In-network Attestation: US-AID is the first efficient, scal-

able and secure attestation scheme for large autonomous

dynamic networks of embedded devices, that allows

isolation of potentially malicious devices.

• Proof-of-Concept Implementation: US-AID was imple-

mented on two recent RA architectures for low-end

embedded devices: SMART [10] and TrustLite [16], and

on an autonomous testbed formed of six interconnected

drones equipped with a Raspberry Pi 3 Model B.

• Performance Analysis: We conducted a thorough perfor-

mance and security assessment of US-AID with simula-

tion results for networks of up to 1, 000, 000 devices.

II. US-AID
A. System Model

We consider a dynamic network E composed of devices:

Ei for i = 1, . . . , n. Each Ei has a unique ID id i. Devices can

be heterogeneous and might be spread over a large physical

area. As discussed in Section II-B, devices can have various

software and hardware. However, all devices should support

a lightweight RA architecture. We assume that mobility is

contiguous, i.e., a device can move gradually and change its set

of direct neighbors.1 However, a moving device never disap-

pears from one neighborhood and instantaneously reappears

in a remote neighborhood. Each Ei is always available and

reachable, e.g., smart IoT environments. In other words, we

do not consider networks where devices can be completely

switched off for an extended period of time.2 We denote by

IDi the set of current neighbors of Ei. The (trusted) network

operator O is responsible for initialization and maintenance

of E , e.g., adding new, and removing defective, devices. The

overall goal of US-AID is to detect and isolate devices as

1Two devices are considered neighbors if they can communicate directly,
i.e., if they are within each other’s communication range.

2Sleep mode is allowed as long as devices are awake to execute the protocol.

described in our adversary model in Section II-B). Policies

that govern the network reaction to isolated malicious devices

are out-of-scope.

B. Requirements Analysis

Adversary and Trust Model. We assume that O is fully

trusted and initializes devices in a secure environment. Other

entities (devices) can potentially be under the control of

A, which aims to compromise devices and evade detection,

similar to Stuxnet [28]. Since A aims to remain stealthy, we

do not consider DoS attacks which reveal A’s presence.

A can compromise communication channels and/or de-

vices. More concretely, it can: (1) control all communication

channels, inject its own packets and eavesdrop on, modify,

and delay packets exchanged between devices; (2) exploit

software vulnerabilities to gain control over devices, extract

unprotected secrets and modify unprotected software; and (3)

mount physical attacks in order to modify devices’ hardware or

software components and/or learn hardware-protected secrets.

In order to physically attack a device, we assume that A has

to turn it off for a non-negligible amount of time tphy .

We consider three types of physical attacks: invasive, semi-
invasive and non-invasive. An invasive attack [24] involves

A trying to extract information from a device through direct

access to its internal components. It requires sophisticated and

expensive lab equipment. Semi-invasive attacks [25] are less

expensive and less complicated. They use cheaper equipment

(e.g., laser microscopes) and only require de-capsulation. Ex-

amples include: thermal imaging, ultra-violet attacks, optical

fault injections and laser scanning. Both invasive and semi-

invasive attacks require possession of the victim device for a

non-negligible period of time: from hours to weeks [24], [23].

Meanwhile, non-invasive attacks [29] use low-cost electrical

engineering tools, such as fault injection and various side-
channels (e.g., time, power or electromagnetic radiation) to

extract device’s cryptographic keys during normal operation.

We do not claim that US-AID can mitigate all physical

attacks. We specifically exclude non-invasive hardware side-

channel attacks that might not require physically disconnecting

the target device from the network. presence and proximity,

unlike software attacks where A remotely and automatically

infects many devices. Since physical attacks are usually not

scalable, we assume that A can physically attack a limited

number of devices.

Main objectives. In the assumed settings, there is no cen-

tral authority to initiate the RA protocol and verify results.

Hence, we envisage a collective attestation scheme that: (1) is

efficient, ideally with constant computation and communica-

tion costs in terms of tnetwork size, achieved by requiring

each device to only assess trustworthiness of its neighbors;

(2) assures detection and isolation of compromised devices,

achieved by combining attestation and absence detection with

key exchange; and (3) captures network’s dynamic behavior,

whereby devices move and gradually change their neighbor-

hood, done through a dedicated roaming protocol which allows

the secure flow of RA results.

22

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 31,2021 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

Device Requirements. Every Ei has a signing key-pair

(sk i, pk i), and a lightweight RA trust anchor. The trust anchor

may consist of a small ROM and a simple MPU, as described

in Section IV. This hardware protects US-AID protocol code

and cryptographic keys against software-based attacks. We

assume that each Ei has a loosely synchronized reliable read-

only clock (RROC), i.e., a clock that is not modifiable by

software. We acknowledge that tight clock synchronization

across all devices is not always feasible, especially, in very

large networks. For this reason, US-AID requires loosely

synchronized clocks with skews on the order of minutes.

Network Requirements. We assume that the network is al-

ways connected and devices are available at all times. Time to

transmit a message between two neighboring devices is upper-

bounded by ttr . We assume smooth mobility, meaning that

devices approach each other gradually, i.e., when Ei moves

towards Ej it establishes a neighborhood with all devices on

its path to Ej . Consequently, before Ei and Ej come within

each others range, they have at least one common neighbor.3

C. High Level Protocol Description

We present a high-level overview of US-AID based on the

sample network E illustrated in Figure 1 with E1–E8. US-AID

incorporates multiple protocols executed at different phases

and for various purposes.

• init 1 : is executed by O before enrollment. O initializes

each device with the required cryptographic materials,

e.g., a signing key-pair and a device certificate (E8 in the

figure).

• connect: is executed when two devices become neigh-

bors, i.e., when a new device (E8 2) joins E , or

changes its position (E6 3). The purpose of connect
is twofold: (1) it allows devices to share secret keys

used for authenticating protocol messages; and (2) it

enables benign devices to report their state to newly

established neighbors. New neighbors establish a secure

communication (i.e., share keys) only if they can verify

each other’s trustworthiness.

• attest 4 : is launched at random times between every

two neighboring devices, allowing each device to attest its

direct neighbors and keep track of their software state. For

instance, E6 attests its every neighbor, e.g., E5. Then, E6

records its list of neighbors that attested successfully, and

drops secure communication (i.e., deletes shared keys)

with all devices that failed attestation.

• beat 5 : is executed periodically allowing each device to

keep track of its neighbors’ presence, based on absence

detection. Each device sends a heartbeat to all neighbors

demonstrating its presence. Each device records the list

of devices from which it received a heartbeat and drops

secure communication with all devices that did not send

a heartbeat. Moreover, as a response to a heartbeat, each

3Network partitioning is tolerated, though it requires O to reconnect
partitions. Similarly, power losses and node crashes always require O’s
assistance, e.g., to replace a depleted battery.

device gets Proof-of-non-Absence (PonA) tokens from its

neighbors. These are used by a mobile device to prove

its trustworthiness to new neighbors through connect.

Each device keeps track of software/hardware trustworthiness

of its neighbors through attestation and absence detection. By

establishing secure communication with only those neighbors

that have proven their trustworthiness, US-AID allows forma-

tion of a secure connected sub-network of devices that are not

compromised, i.e., passed attestation and are always present,

e.g., for E6 this includes: {E1, E3, E4, E5, and E7}. This

allows detecting and isolating possibly compromised devices

(E2).

III. DETAILED PROTOCOL DESCRIPTION

A. Notation and Definition

Before describing US-AID, we introduce the notation:

Benign and Secure Device Lists. Each Ei keeps two lists:

(1) Bi stores IDs of neighbors, that Ei believes to have benign

software. They are known to Ei through continuous attestation.

(2) Si stores IDs of neighbors that Ei believes have not been

physically attacked. These are known to Ei through absence

detection, as described in Section II-B).

Heartbeat Interval. Time is divided into uniform-size heart-

beat intervals. An interval is upper-bounded by the minimum

time for A to perform a physical attack: thb < tphy . Every

heartbeat interval starts at Thb and is identified by its ID qi.

Present Device List. For every heartbeat interval, each Ei

keeps a list Pi of neighbors present during this interval.

Heartbeat. Each Ei with ID id i generates at Thb of every

heartbeat interval qi a heartbeat. Ei authenticates the heartbeat

using a MAC μij based on a heartbeat key kbeat
ij shared

between Ei and every neighbor Ej , and sends it to Ej . We

denote this heartbeat by HB ij = {{qi, id i}, μij}. It proves

continuous presence of Ei to Ej .

Proof-of-Secure-Enrollment (PoSE). At Ei’s initialization

time Tinit, O generates a token formed of Ei’s ID id i and

Tinit, creates a digital signature σi over it, and sends it to

Ei. We denote this token by PoSE πi = {{id i,Tinit}, σi}. πi
proves that Ei was enrolled securely.

Proof-of-non-Absence (PonA). Every Ei with ID id i proves

its presence, at heartbeat interval qi, to all its neighbors. As a

response, each neighbor Ej creates a set of tokens formed of

id i, qi, and time TEi

A of the last attestation of Ei by Ej . It then

authenticates them based on a heartbeat key kbeat
jk shared with

every neighbor Ek of Ej , and sends them to Ei. We denote

by ψjk/i = {{id i, qi,T
Ei

A }, μ̂jk/i, idk} an individual token,

and by Πi – the set of all authenticated tokens received by Ei

from every neighbor Ej . Each ψjk/i in Πi proves that Ei was

continuously present and successfully attested.

B. Protocol Details

US-AID includes the following protocols:

Initialization. Each Ei is initialized by O with:

23

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 31,2021 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

Figure 1: US-AID in a network of 8 devices.

Πi|πi, idi / Πk|πk, idk

kmaster
ik ← KEP(sk i, skk, cert(pk i), cert(pkk))

ATTESTATION

Πi|πi = {{idi,Tinit}, σi}, IDi,Bi,Si, ci, sk i, pkO , cert(pk i)

Device Ei

append(idk, IDi)

kbeat
ik ← hash("beat:"|kmaster

ik)

kattest
ik ← hash("attest:"|kmaster

ik)

idj ← findNeighbor(Πk)

if vermac(kbeat
ij ; {idk, qk,TA}, μ̂ij/k) then

if qk = qi then
append(idk,Si)
append(idk,Pi)

endif
endif

if versig(pkO ; {idk,Tinit}, σk) then
if Thb + δt + ttr − Tinit < thb then

endif
endif

append(idk,Si)

if TA < tmax
A then

append(idk,Bi)

endif

else if attest(Ek)then
append(idk,Bi)

if idk ∈ Si and idk ∈ Bi then

k enc
ik ← hash("encrypt:"|kmaster

ik)

kauth
ik ← hash("authenticate:"|kmaster

ik)

endif

(1) Share protocol keys

(2a) Find and verify a token in PonA

(2b) Or verify PoSE

(3) Attest new neighbor (if needed)

(4) Create authentication and encryption keys

Device Ek

Πk|πk = {{idk,Tinit}, σk}, IDk,Bk,Sk, ck, skk, pkO , cert(pkk)

append(idi, IDk)

kbeat
ik ← hash("beat:"|kmaster

ik)

kattest
ik ← hash("attest:"|kmaster

ik)

idj ← findNeighbor(Πi)

if vermac(kbeat
jk ; {idi, qi,TA}, μ̂jk/i) then

if qi = qk then
append(idi,Sk)
append(idi,Pk)

endif
endif

if versig(pkO ; {idi,Tinit}, σi) then
if Thb + δt + ttr − Tinit < thb then

endif
endif

append(idi,Sk)

append(idi,Bk)

endif
append(idi,Bk)

else if attest(Ei)then

if TA < tmax
A then

k enc
ik ← hash("encrypt:"|kmaster

ik)

kauth
ik ← hash("authenticate:"|kmaster

ik)

if idi ∈ Sk and idi ∈ Bk then

endif

(1) Share protocol keys

(2a) Find and verify a token in PonA

(2b) Or verify PoSE

(3) Attest new neighbor (if needed)

(4) Create auth and enc keys

Figure 2: Protocol connect: executed when a device joins or changes its position.

• A signing key-pair (sk i, pk i), public key certificate

certO(pk i), and public key pkO of O – sk i is hardware-

protected and is only accessible to US-AID code,

• A reference software configuration ci indicating correct

software that should be present on Ei, and a software

configuration certificate certO(ci),
• A Proof-of-Secure-Enrollment (PoSE) πi, which proves

that Ei is not compromised directly after initialization.

Roaming. As shown in Figure 2, connect has four main mod-

ules executed between Ei and Ek: (1) sharing protocol keys,

(2a) verifying a token in PonA or (2b) a PoSE, (3) attesting

new neighbors, and (4) creating authentication and encryption

keys.

In detail, upon joining, or moving within, E , each Ei uses

a Key Exchange Protocol KEP (authenticated Diffie-Hellman

based on signing key-pairs) to compute, with every neighbor

Ek, two protocol keys:

• Attestation key k attest
ik used for mutual attestation between

Ei and Ek,

• Heartbeat key kbeat
ik used for authenticating heartbeats and

PonA-s exchanged between Ei and Ek.

Two devices also:

• Exchange their respective reference software configura-

tions ci and ck as well as certificates: certO(ci) and

certO(ck). This allows devices to attest each other at any

later point in time.

• Add each other’s ID idk and id i to their respective list

of neighbors IDi and IDk.

24

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 31,2021 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IDi, Ki, cj

Device Ei

for each Ej ∈ IDi

Nj ←R {0, 1}�N

startTimer(tA)

tA ← random(tmax
A)

TA = time()

if vermac(kattest
ij ;Nj‖cj , μij) then

endif

T
Ej

A = TA

delete(idj ,Bi)
delete(kauth

ik , kij)

delete(k enc
ik , kij)

else

endfor
endif

if timerExpired() then

(1) Generate nonce for each neighbor

(3) Verify attestation report and store time

Device Ej

kattest
ij

μij ← mac(kattest
ij ;Nj‖c′j)

c′j ← getSoftConfig()

(2) Measure software stateNj

μij

Figure 3: Protocol attest: executed at random times between neighboring devices.

• Exchange PoSE (for newly added devices) or PonA (for

roaming devices). Recall that, PoSE-s and PonA-s allow

a device to prove to its new neighbors that it has not been

compromised.

When Ek receives a PoSE or a PonA from a neighbor Ei

during connect, it does the following:

• Verifies its authenticator (MAC or digital signature).

• Verifies its freshness by checking Tinit (or qi).
• Decides whether to accept the latest attestation of Ei, or

to attest it again, based on Tinit (or TEi

A).

If authenticator verification and attestation are successful on

both devices participating in connect, Ei and Ek then:

• Share two new keys: authentication key k auth
ik , and en-

cryption key k enc
ik . The list of all keys shared between Ei

and its neighbors is denoted by Ki.

• Mark each other as trustworthy: add each other’s ID to

their B and S lists.

Consequently, connect allows benign devices to share authen-

tication and encryption keys with benign neighbors.

Attestation. As shown in Figure 3, attest has three modules

executed between Ei and Ej . These are: (1) generating a

nonce, (2) measuring software state, and (3) verifying attes-

tation report. In detail, every Ei attests each neighbor Ej at

random times (upper bounded by tmax
A). attest is executed as

follows:

• At attestation time TA, Ei sends Ej a random challenge

Nj .

• Ej replies with a MAC μij of its current software

configuration c′j and received challenge.

• If verification of μij fails, Ei deletes idj from its list of

benign neighbors Bi. Ei also deletes functionality keys

(k enc
ij and k auth

ij) from set kij of keys shared with Ej .

• If attestation succeeds, Ei stores the time TA (as T
Ej

A)

for inclusion in any future PonA sent to Ej .

attest allows each device to continuously check software

integrity of all its neighbors and update B of benign neighbors.

Algorithm 1: checkTime on Ej

1 Function checkTime(qi, t, qj)
2 if qi = qj ∧ Thb < t < Thb + δt + ttr then
3 return true
4 else if qi = qj + 1 ∧ Thb − δt < t < Thb then
5 return true
6 else
7 return false

Heartbeat. As shown in Figure 4, beat has four main modules

executed between Ei and Ej . These are: (1) generating a

heartbeat, (2) verifying a heartbeat, (3) generating tokens for

PonA, and (4) verifying MAC on PonA tokens. In detail,

each Ei periodically (i.e., at Thb) sends a heartbeat HB ij to

every neighbor Ej to prove its presence in E . Upon receiving

HB ij , Ej verifies its authenticity, and freshness according

to checkTime, as shown in Algorithm 1). This allows Ej

to verify that HB ij belongs to current heartbeat interval qj
and is received within accepted tolerance interval ttol around

the current Thb . ttol is required to tolerate clock drifts and

transmission delays between devices.

If all checks are successful, Ej adds id i to its list of present

devices Pj . It then creates a tuple �i = {id i, qi,T
Ei

A }, and

generates MACs over this tuple based on every symmetric

key kbeat
jk shared with each neighbor Ek, thus creating tokens

ψjk/i. The set of all created tokens is then sent to Ei, which

stores them along with other tokens received from all other

neighbors into a PonA Πi. At the end of ttol , each Ej compares

IDs of its neighbors that have not been physically attacked Sj

to the list of present neighbors Pj . Every id i not present in Pj

is deleted from Sj , and devices’ corresponding functionality

keys (k auth
ij and k enc

ij) are deleted from kij .

The beat protocol allows every device to periodically check

presence of each neighbor and its hardware trustworthiness,

and then update S . Also, Πi acquired by every Ei after beat
allows it to later prove its hardware and software trustworthi-

25

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 31,2021 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

HB ij

Ψj/i, μ̃j/i

Device Ej

qj ,Sj , Kj ,T
Ei
A

if vermac(kbeat
ij ; hbi, μij) then

append(idi,Pj)

if checkTime(qi, time(), qj) then

if idi ∈ Sj then

�i ← {idi, qi,T
Ei
A }

for each kbeat
jk ∈ Kj \ {kbeat

ij } do
μ̂jk/i ← mac(kbeat

jk ; �i)

ψjk/i ← {�i, μ̂jk/i, idk}
append(ψjk/i,Ψj/i)

endfor
μ̃j/i ← mac(kbeat

ij ; Ψj/i‖qi)

endif
endif

endif

(2) Verify heartbeat

(3) Generate tokens for PonA

kij , qi, IDi

Device Ei

qi ← qi + 1

for each Ej ∈ IDi

hbi ← {qi, idi}
μij ← mac(kbeat

ij ; hbi)

HB ij ← {hbi, μij}

if vermac(kbeat
ij ; Ψj/i‖qi, μ̃j/i) then

append(Ψj/i,Πi)

endif

(1) Generate a heartbeat

(4) Verify MAC on PonA tokens

endfor

Figure 4: Protocol beat: executed periodically between neighboring devices.

Memory System

ski

LTi

STi

cert(pki)
cert(ci)

Device OS
Task 1

connect
attest
beat

Primitives

ROM RAM

PROCESSOR

MPU

if PC in access to is (rw)
1
2

r5r1
r1-5 r6-7

10
11

read protected r/w protected none

r1

r2

r3

r4

r5

r6

r7

Figure 5: Implementation of US-AID on SMART [10]

ness to any new neighbor via connect.

IV. IMPLEMENTATION

We implemented US-AID on two security architectures for

low-end embedded devices: SMART [10] and TrustLite [16]

in order to confirm its viability and evaluate performance.

However, since SMART and TrustLite are not available on

commodity devices, we also implemented US-AID on a small

autonomous network formed of six Raspberry Pi-based drones

communicating over WiFi. This implementation allowed us

to further demonstrate practicality of US-AID. Finally, in

order to evaluate US-AID for very large networks we used

network simulations based on measurements from our SMART

and TrustLite implementations. In the rest of this section we

describe our implementations.

A. SMART & TrustLite Overview

SMART [10] (see Figure 5) is an architecture for secure

remote attestation on low-end embedded systems based on

minimal hardware assumptions. Main hardware components

of SMART are: (1) read-only memory (ROM), which stores

program code used for attestation (denoted by ROM code) and

Memory System

ski

LTi

STi

cert(pki)
cert(ci)

Device OS
Task 1

Secure
Boot

kplatform

ROM RAM

PROCESSOR

MPU

if PC in access to is (rw)
1
2

r1-7r1
r3 r7

10
10

read protected r/w protected none

r1

r2

r3

r4

r5

r6

r7

r8

connect
attest
beat

Primitives

r9

3 r3-6 r8-9 11

Figure 6: Implementation of US-AID on TrustLite [16]

an attestation key. ROM provides immutability and ensures

integrity of the attestation code; and (2) simple memory

protection unit (MPU), which controls access to the attestation

key. MPU grants access to the key only to ROM code based

on the value of the program counter. Consequently, only

attestation code can access the attestation key. SMART also

provides additional features for protecting the attestation key,

e.g., it ensures that ROM code is executes in an uninterrupted

and atomic fashion, starting from the first, and terminating in

its last, instruction.

TrustLite [16] (see Figure 6) is an embedded security archi-

tecture which generalizes SMART allowing isolated execution

of multiple tasks (processes). Isolation of tasks is attained via

secure boot and an execution-aware memory protection unit

(EA-MPU), which is set up by access rules between tasks and

their corresponding data. Changes to EA-MPU are prevented

by starting the system via secure boot, which verifies that

26

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 31,2021 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

correct software sets up the rules in EA-MPU and sets EA-

MPU configurations registers to read-only to prevent further

changes. The main advantage of TrustLite over SMART is that

the former allows secure interruption of tasks while executing.

B. Implementation Details

SMART-specific Extensions. To implementat US-AID, we

needed to extend SMART to enable restricted access to

writable memory, and multiple entry and exit points of trusted

ROM code. The former is needed to store symmetric keys

shared with neighboring devices, in addition to US-AID’s

intermediate data. It was done by extending the MPU to

control access to a small area of writable non-volatile memory.

The latter is needed to run different protocols independently,

from within the same ROM. It was done by extending hard-

ware entry and exit points with software entry points. We

implemented the protocol as a single function called US-AID,

which takes as input the identity of the protocol, and always

exits from the same address. Note that no such extensions

were required for TrustLite, since it already provides secure

writable memory and multiple entry and exit points for trusted

code.

Keys and Variables. The secret key sk i, is both read- and

write-protected by a dedicated EA-MPU rule (rule #1 in Fig-

ure 5 and rule #2 in Figure 6), which ensures that connect has

exclusive read access to sk i while all other code has neither

read nor write access to sk i. Long term LTi and short term

STi protocol data (including symmetric keys and variables)

are also both read- and write-protected through dedicated EA-

MPU rules, (see Figure 5 and 6). At the same time, protocol

code integrity is assured by ROM (on SMART [10]) and secure

boot (on TrustLite [16]).

Real-Time Clock. As mentioned earlier, secure in-network

attestation and absence detection require a real-time clock.

The clock must be write-protected and must not wrap around

within the lifetime of a device. For example, a 64-bit regis-

ter would wrap around in 12, 186.3 years on our 48 MHz

TrustLite if incremented every clock cycle. On the other

hand, a 32-bit register can be made to wrap around every

3 years, if incremented every one million cycle, i.e., providing

a resolution of 21 ms, which is appropriate for US-AID.

Functionality. In order to reflect the outcome of attestation

and absence detection in the network functionality and provide

real isolation of detected malicious device, we implemented an

additional component – Primitives. It provides authenti-

cation (authenticate, and verify in Algorithm 2 and 3) and

encryption services to all software components residing on a

device and contributing to its functionality, without granting

them direct access to shared symmetric keys. In particular,

before performing the required action (i.e., authenticate or

encrypt), Primitives on Ei checks whether the ID id j of

Ej , to which Ei is communicating, exists in both Bi and Si.

Implementation on drones testbed. To further test and

demonstrate feasibility of US-AID, we implemented and eval-

uated US-AID on an autonomous testbed composed of six

Algorithm 2: authenticate on Ei

1 Function authenticate (m, idj)
2 if idj ∈ Si and idj ∈ Bi then
3 return mac(kauth

ij ;m)

Algorithm 3: verify on Ei

1 Function verify (m,μ, idj)
2 if idj ∈ Si and idj ∈ Bi then
3 return vermac(kauth

ij ;m,μ)

drones that form an ad-hoc network as shown in Figure 7.

Each drone is equipped with a Raspberry Pi 3 Model B

with a 1.2 GHz Quad-core 64-bit CPU. Furthermore, drones

communicate via WiFi using a 150 MBit/s USB WLAN stick.

Each drone is initialized with an RSA private key, a public

key certificate, and the public key of a network operator O .

We used C programming language and utilized mbed TLS [3]

library for handling cryptographic operations.

V. PERFORMANCE EVALUATION

We evaluated US-AID based on implementations described

in Section IV. We now present evaluation results for TrustLite.

Since results for SMART are very similar, they are omitted,

due to space limitations.

Software Complexity and Memory Requirements. All cryp-

tographic operations in US-AID (i.e., authentication and en-

cryption) already exist on TrustLite. We only need to add some

code responsible for creating, sending, and handling beat,
attest and connect messages, as well as handling lists K, ID,

P , S , and B. Letting g denote the number of neighbors of each

device, each device need to store 36 ·g2+56 ·g+228 bytes of

long-term LT and short-term ST protocol data, 56·g+80 bytes

of which should be read- and/or write-protected.

Hardware Costs. We compare our implementation to the

current implementation of TrustLite [16]. Results are shown

in Table I.

Table I: Hardware cost of US-AID

TrustLite US-AID % of increase

Register 6038 6186 2.45%

Look-up Table 15142 15356 1.41%

The total cost of US-AID is 6, 186 registers and 15, 356
LUTs, which is a very small increase of 2.45% and 1.41%,

respectively, over the cost of TrustLite in terms of registers

and LUTs respectively.

Energy Costs. Energy consumption estimates4 of US-AID

are shown in Figure 8. We base it on previously reported

4It is not possible to analyze the energy consumption of US-AID directly
on SMART [10] and TrustLite [16] since both are only available on FPGAs.

27

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 31,2021 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

Figure 7: Our autonomous drones testbed

energy consumption for communication and cryptographic

operations of TelosB and MICAz sensor nodes [9] which fall

into the same class of low-end embedded devices as supported

by SMART [10] and TrustLite [16]. Measurements exclude

energy for generating the software configuration and executing

a key exchange protocol, which is dependent on the specific

KEP protocol used. Energy consumption of one execution of

all of protocols is linear in the number of neighbors, except for

move (i.e., connect for a moving device), energy consumption

of which is cubic in the number of neighbors. This is mainly

due to the size of the Proofs-of-non-Absence (PonA-s). Energy

consumption in all protocols is constant in the size of the

network and can be as low as 1, 5, and 20 mJ for attest, join

(i.e., connect for a new device) / beat, and move, respectively,

in networks with up to 4 neighbors per a MICAz device.

Figure 9 shows the energy consumption of beat (executed

with 8 neighbors) as a function of the number of heartbeat

intervals elapsing within a specific period of time, where a

heartbeat interval is the time between two consecutive execu-

tions of beat protocol. The energy consumption of beat grows

linearly with the number of heartbeat intervals. The length of

a heartbeat interval depends on anticipated adversary’s budget

and devices’ hardware complexity. In other words, the length

of a heartbeat interval represents a trade-off between security

and performance. A short heartbeat interval provides more

accurate detection of physical attacks by adversaries with

bigger budgets. However, it also implies additional energy

consumption which grows linearly with the number of these

intervals.

 0
 10
 20
 30
 40
 50
 60

 2 4 6 8 10 12E
ne

rg
y

co
ns

um
pt

io
n

(m
J)

Number of neighbors

join
move
beat

attest

(a) TelosB

 0
 10
 20
 30
 40
 50

 2 4 6 8 10 12E
ne

rg
y

co
ns

um
pt

io
n

(m
J)

Number of neighbors

join
move
beat

attest

(b) MICAz

Figure 8: Performance evaluation of US-AID

Run-Time of Primitives. Table II presents an evaluation of

Primitives on TrustLite. Time to authenticate and encrypt

a 64Byte message can be as low as 780 μs. On the other

hand, verifying and decrypting such a message requires only

1, 190 μs.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 20 40 60 80 100 120

E
ne

rg
y

co
ns

um
pt

io
n

(m
J)

Number of heartbeat periods

Heartbeat (MICAz)
Heartbeat (TelosB)

Figure 9: Energy consumption of beat

Table II: Run-time of Primitives

Run-time at 48 MHz TrustLite [16] (μs)

for 64 Byte messages

authenticate verify encrypt decrypt

320 320 460 870

Simulation Results. We used OMNeT++ [19] simulation en-

vironment to evaluate performance of US-AID. Cryptographic

operations were simulated as delays based on real measure-

ments from SMART [10] and TrustLite [16] implementations.

Networks with up to 1, 000, 000 devices and variable number

of neighbors were simulated. We assume that each device has

100 KB of memory to be attested. We exclude the time to

execute a key exchange protocol KEP since it does not present

additional overhead5 and it depends on the specific KEP used.

Results are shown in Figure 10 and 11.

Run-times of beat and attest are linear, while run-times of

join and move are quadratic in the number of neighbors. This

is due to the exchange of local PonA-s, the size of which

is quadratic in the number of neighbors (see Figure 10(a)).

Figure 10(b) shows the run-time of US-AID in networks with

12 neighbors per device. The run-time of all US-AID protocols

is independent of the network size, which makes it scalable.

Finally, Figure 11 shows the run-time of US-AID in compar-

ison to the closest related work — SEDA [5] and DARPA [13].

While run-times of attest and beat in US-AID are low and

constant in network size, run-time of attest (described in

SEDA) and the most efficient version of collect (described in

5Regardless of US-AID, devices must share keys. This overhead is also
shared with all existing collective attestation schemes [5], [1], [13], [6].

28

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 31,2021 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

 0
 0.2
 0.4
 0.6
 0.8

 1

 4 8 12 16 20

R
un

-ti
m

e
(s

)

Number of neighbors

join
move
beat

attest

(a) Per neighbors

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

250K 500K 750K 1M

R
un

-ti
m

e
(s

)

Number of devices

join
move

beat
attest

(b) Per network size

Figure 10: Run-time of US-AID

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0 2500 5000

R
un

-ti
m

e
(s

)

Number of devices

US-AID
SEDA

DARPA

(a) attest

 0
 5

 10
 15
 20
 25

 500 1000 1500 2000

R
un

-ti
m

e
(s

)

Number of devices

US-AID
DARPA

(b) beat

Figure 11: US-AID vs. SEDA and DARPA

DARPA) is logarithmic in the network size. Note that, collect

has a linear verification time for the verifier (Figure 11(a)).

On the other hand, the most efficient version of heartbeat

(described in DARPA) has a linear run-time, as compared to

constant run-time of beat in US-AID (Figure 11(b)).

Run-time on Autonomous Drones Network. US-AID run-

times in our testbed are much faster than those of SMART and

TrustLite (targeted by US-AID) due to the relatively powerful

CPU of our Raspberry Pis. For the sake of completeness, we

list run-times for all protocols.6 The run-time of beat of drone

#5 is less than 4 ms; the run-time of attest of drone #6 to attest

(100 KB of code on) drone #3, #4 and #5 is less than 17 ms;

and the run-time of move (i.e., connect for a moving device)

of drone #3 to connect to drone #1 is less than 12 ms (see

Figure 7).

VI. SECURITY CONSIDERATION

An adversary can break the security goal of US-AID (i.e.,

isolation) and convince a benign Eb to securely communicate

with a malicious Em, only if: (1) Em is one of Eb’s existing

neighbors which sends correct heartbeats at correct times, and

is successfully attested; or (2) Em is a mobile or a newly

added device, which proves trustworthiness of its state through

a correct PoSE or PonA. We consider the following cases:

A Attacks beat. Non-negligible tampering time implies that,

in order to physically attack Em, A must detach it for a non-

negligible amount of time, which is greater than the accepted

tolerance interval ttol around Thb ; see Section III for details.

Therefore, A should fake or replay a correct heartbeat HBmb

in order to convince a current neighbor Eb that Em is not

absent. This would require A to either forge the MAC μmb, or

find and replay an old MAC that is valid for a fresh heartbeat

interval qm, which is periodically incremented.

6Results are an average over 100 executions

A Attacks attest. The time between two consecutive at-

testation instances is upper-bounded by tmax
A . To keep Em

connected to the secure sub-network after its compromise, A
must fake or replay a valid attestation response μmb over a

benign software configuration c′m of Em. This would require

A to either forge the MAC μmb, or find and replay an old

MAC that is still valid over a fresh random nonce and a benign

software configuration, or find a collision for the hash function

used to measure software state and generate c′m.

A Attacks move (i.e., connect for a Moving Device). Em and

Eb can only become neighbors if they can prove to each other,

through a token (ψjb/m for Em and ψjm/b for Eb) in their

PonA-s, that they have been present in all previous heartbeat

intervals. Since each token in PonA should be authenticated

with a MAC μjb by a common neighbor Ej , which is in the

secure sub-network, A must fake or reuse ψjb/m. This would

require A to either forge the MAC μjb, or find and replay an

old MAC that is valid over a fresh heartbeat interval qm.

A Attacks join (i.e., connect for a New Device). A newly

added Em only acquires neighbors if: (1) it can prove the

trustworthiness of its state through a PoSE πm; and (2) every

new neighbor Eb in its first heartbeat interval can prove its

presence through a token ψjm/b in PonA. Consequently, in

order to add Em to the secure sub-network, A must fake or

replay a πm. This would require A to either forge σm of O , or

find and replay a digital signature that is still valid over a fresh

timestamp Tinit. Similarly, to add Em as a bridge between the

secure sub-network and malicious devices, A must fake or

replay ψjb/m. This would require either forging a MAC μjb,

or replaying a MAC that is valid over a fresh heartbeat interval

qm.

VII. RELATED WORK

Remote Attestation. In a remote attestation protocol, a trusted

verifier obtains an authenticated report about the current

software state of a remote and possibly compromised device

prover. A trust anchor on the prover is required to guarantee

the integrity of the attestation code. Typically the trust anchor

is implemented in hardware, e.g., based on Trusted Platform

Modules (TPM). However, TPMs and other similar modules

are complex and expensive [27], [17] and not suitable for

low-end embedded devices. On the other hand, software-

based attestation [22], [18] schemes require no hardware

security features and are suitable for attesting non-remote

embedded devices. Also, these schemes are based on strong

assumptions that are hard to achieve in practice [4]. Finally,

hybrid attestation methods [10], [11], [16] provide stronger

security guaranties while requiring minimal hardware security

features. All of the above assume a single prover device.

Collective Attestation. A collective attestation protocol is

a remote attestation protocol, with many provers [5], [1],

[13], [6]. SEDA [5] was the first step towards collective

attestation. It performs attestation of swarms of interconnected

embedded devices by distributing attestation burden across the

entire network. Unfortunately, SEDA considers only remote

29

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 31,2021 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

software attacks and fails as soon as a single device is

physically attacked. SANA [1] combines SEDA with a novel

aggregate signature scheme which makes it more resilient to

physical attacks. DARPA [13] builds on top of SEDA by

extending it with an absence detection protocol, which leads

to detection of physical attacks. However, its computation

and communication overhead is quadratic in terms of network

size. US-AID identifies physical attacks also based on absence

detection. However, it enables efficient detection of physical

attacks based on local heartbeats. Also, by combining frequent

attestation and absence detection with key exchange, US-AID

detects all software-compromised and/or physically-attacked

devices in autonomous dynamic networks.

Attestation & Key Exchange. There is a lot of prior work that

combines attestation with key exchange [22], [20]. SAKE [22]

aims to establish shared keys between neighboring nodes in

sensor networks without relying on any prior shared secrets.

Key exchange in SAKE is based on the attestation result

of one involved sensor node. Unfortunately, SAKE relies on

a software-based attestation security of which is based on

strong and unrealistic assumptions [4]. [20] proposes extend-

ing IPsec [15] key exchange protocol IKEv2 [14] to support

attestation. The goal of this extension is to ensure the software

trustworthiness of end-points while an IPsec connection is

running. However, this extension targets legacy networks of

high-end computing platforms and is thus not applicable to

autonomous dynamic networks of embedded systems.

Absence Detection. Absence detection has been studied in

the context of Wireless Sensor Networks (WSNs) where it

was used for detecting node failures. There are several prior

techniques for both static [26] and dynamic topologies (e.g.,

[12]). However, these are not designed with security in mind,

and are thus ineffective in our adversarial setting. Furthermore,

there are WSN-focused techniques that use absence detection

to identify captured devices [7], [8]. However, some are

probabilistic and allow false negatives in dynamic networks,

while others are only suitable for static networks, and cannot

be easily extended to dynamic ones. The PonA protocol

proposed in this paper provides one such extension. Finally,

one common drawback of all prior work is that they not

provide security in our stronger adversary model, since they

are all vulnerable to remote software attacks.

VIII. CONCLUSIONS

Current remote attestation techniques are not scalable to

large networks of embedded devices. To this end, several

collective attestation techniques have been recently proposed.

However, these techniques are not applicable to large, au-
tonomous dynamic IoT networks. In this paper, we constructed

US-AID – the first collective attestation scheme for such

networks. We reported on implementations of US-AID on

recent security architectures for low-end embedded devices,

showing additional hardware cost. Furthermore, we demon-

strated US-AID’s feasibility by implementing and testing it on

an autonomous ad-hoc network of six inter-connected drones.

We also assessed performance of US-AID in terms of energy

and run-time, based on real measurements and simulations of

up to 1, 000, 000-device networks.

ACKNOWLEDGMENTS

This research was co-funded by the German Science Foun-

dation, as part of project S2 within CRC 1119 CROSSING,

HWSec, and Intel Collaborative Research Institute for Collab-

orative Autonomous & Resilient Systems (ICRI-CARS). Gene

Tsudik was supported in part by: (1) DHS under subcontract

from HRL Laboratories, (2) ARO under contract W911NF-

16-1-0536, and (3) NSF WiFiUS Program Award 1702911.

REFERENCES

[1] M. Ambrosin et al. SANA: Secure and Scalable Aggregate Network
Attestation. In ACM CCS, 2016.

[2] W. Arbaugh et al. A secure and reliable bootstrap architecture. In
IEEE S&P, 1997.

[3] ARM Limited. Ssl library mbed tls / polarssl. https://tls.mbed.org/.
[4] F. Armknecht et al. A security framework for the analysis and design

of software attestation. In ACM CCS, 2013.
[5] N. Asokan et al. Seda: Scalable embedded device attestation. In ACM

CCS, 2015.
[6] X. Carpent et al. Lightweight swarm attestation: A tale of two lisa-s.

In ASIACCS, 2017.
[7] M. Conti et al. Emergent properties: Detection of the node-capture

attack in mobile wireless sensor networks. In WiSec, 2008.
[8] M. Conti et al. Mobility and cooperation to thwart node capture

attacks in manets. EURASIP WCN, 2009.
[9] G. de Meulenaer et al. On the energy cost of communication and

cryptography in wireless sensor networks. In WiMob, 2008.
[10] K. Eldefrawy et al. SMART: Secure and minimal architecture for

(establishing a dynamic) root of trust. In NDSS, 2012.
[11] A. Francillon et al. A minimalist approach to remote attestation. In

DATE, 2014.
[12] N. Hayashibara et al. Failure detectors for large-scale distributed

systems. In SRDS, 2002.
[13] A. Ibrahim et al. DARPA: Device Attestation Resilient against

Physical Attacks. In WiSec, 2016.
[14] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306

(Proposed Standard), 2005.
[15] S. Kent et al. Security Architecture for the Internet Protocol. RFC

4301 (Proposed Standard), 2005.
[16] P. Koeberl et al. TrustLite: A security architecture for tiny embedded

devices. In EuroSys, 2014.
[17] X. Kovah et al. New results for timing-based attestation. In IEEE

S&P, 2012.
[18] Y. Li et al. VIPER: Verifying the integrity of peripherals’ firmware. In

ACM CCS, 2011.
[19] OpenSim Ltd. OMNeT++ discrete event simulator.

http://omnetpp.org/.
[20] A.-R. Sadeghi et al. Extending ipsec for efficient remote attestation. In

FC, 2010.
[21] D. Schneider. Jeep Hacking 101. http://spectrum.ieee.org/cars-that-

think/transportation/systems/jeep-hacking-101, 2015.
[22] A. Seshadri et al. SAKE: Software attestation for key establishment in

sensor networks. In IEEE DCOSS, 2008.
[23] S. Skorobogatov. Physical attacks on tamper resistance: Progress and

lessons. In Workshop on Hardware Assurance, 2011.
[24] S. Skorobogatov. Physical attacks and tamper resistance. In

Introduction to Hardware Security and Trust. Springer, 2012.
[25] S. P. Skorobogatov. Semi-invasive attacks: a new approach to

hardware security analysis. PhD thesis, University of Cambridge,
2005.

[26] P. Stelling et al. A fault detection service for wide area distributed
computations. Cluster Computing, 1999.

[27] Trusted Computing Group (TCG). Website.
http://www.trustedcomputinggroup.org, 2015.

[28] J. Vijayan. Stuxnet renews power grid security concerns, 2010.
[29] Y. Zhou et al. Side-channel attacks: Ten years after its publication and

the impacts on cryptographic module security testing. IACR
Cryptology ePrint Archive, 2005.

30

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 31,2021 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

