
Privacy-Preserving Smart Metering

Alfredo Rial
K.U.Leuven, ESAT/COSIC & IBBT

Leuven, Belgium
alfredo.rial@esat.kuleuven.be

George Danezis
Microsoft Research

Cambridge, UK
gdane@microsoft.com

ABSTRACT
Smart grid proposals threaten user privacy by potentially
disclosing fine-grained consumption data to utility providers,
primarily for time-of-use billing, but also for profiling, set-
tlement, forecasting, tariff and energy efficiency advice. We
propose a privacy-preserving protocol for general calcula-
tions on fine-grained meter readings, while keeping the use
of tamper evident meters to a strict minimum. We allow
users to perform and prove the correctness of computations
based on readings on their own devices, without disclosing
any fine grained consumption. Applying the protocols to
time-of-use billing is particularly simple and efficient, but we
also support a wider variety of tariff policies. Cryptographic
proofs and multiple implementations are used to show the
proposed protocols are secure and efficient.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: Privacy; K.4.4 [Electronic
Commerce]: Payment schemes

General Terms
Security

Keywords
Billing, Smart metering, Cryptographic Protocol, Verifiable
Computing

1. INTRODUCTION
The concept of smart grid refers to the modernization of

the existing electrical grid, including bidirectional commu-
nication between meters and utilities, more accurate meter
readings and flexible tariffs [9]. Expected electricity sav-
ings depend on matching generation and demand, achieved
partly through dynamic tariffs with higher rates during peak
consumption periods. Further savings are expected through
the use of smart meter data for more accurate forecasting,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’11, October 17, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1002-4/11/10 ...$10.00.

more accurate settlement of costs between suppliers and pro-
ducers (in the UK energy market) as well as customised en-
ergy efficiency advice. Both the United States and the Eu-
ropean Union currently promote the deployment of smart
grids.1

Currently, most smart grid deployment projects lean to-
wards an architecture with severe privacy problems [2]: me-
ters send all fine-grained measurements to the utilities or a
centralised database. Yet, it is recognised that meter read-
ings leak personal information. For example, load moni-
toring [23, 27] allows the identification of specific electrical
appliances. As a result, detailed consumption data would
facilitate the creation of user lifestyle profiles, including but
not limited to house occupancy, meal times, working hours,
or prayer or fasting patterns.

To alleviate such concerns, privacy impact assessments
(PIA) are included in ongoing standardization processes.
The National Institute of Standards and Technology (NIST)
[37] lists fine-grained readings as being used for load moni-
toring, forecasting, demand-response, efficiency analysis and
billing. Time-of-use billing is a major reason for collecting
and storing all fine-grained readings, and thus we use it to
illustrate our techniques. Other computations on readings
are also supported.

Consumer privacy concerns have already jeopardised the
mandatory deployment of smart meters in the Netherlands
[12], leading to a deployment deadlock. This deadlock stems
from the assumption that smart metering is necessarily pri-
vacy invasive and that a balance needs to be struck between
privacy and the social utility of fine-grained billing. Our
work refutes this assumption: we demonstrate an architec-
ture that guarantees privacy and high integrity for a very
broad set of smart-metering and billing applications.

Our Contribution. We propose a set of privacy-preserving
protocols amongst a provider, a user agent and a simple
tamper-evident meter. The meter outputs certified readings
of measurements and gives them to the user, either directly
or through a wide area network secure channel. For billing,
the user combines those readings with a certified tariff policy,
to produce a final bill. The bill is then transmitted to the
provider alongside a zero-knowledge proof that ensures the
calculation to be correct and leaks no additional information.

Our solution has the following advantages compared with
other approaches.

• Complex non-linear tariff policies can be applied over
individual meter readings or arbitrary periods of time

1US Energy Independence and Security Act of 2007 and EU
directive 2009/72/EC

49

(i.e. per day, per week). Other calculations can also
be performed and certified to support forecasting, pro-
filing, settlement, or fraud detection. Complex calcu-
lations are enabled by our scheme for applying non-
linear functions as well as look-ups to certified read-
ings, with efficient zero-knowledge proofs based on re-
randomizable signatures. We provide concrete con-
structions for complex non-linear policies, and an eval-
uation of their performance.

• The need for certifying meter readings is the only mod-
ification necessary to the meters. Users can delegate
the calculation of their bill or other computations to
any device or service they trust without compromis-
ing the integrity of the scheme. Our key aim is for
users to be able to perform all privacy friendly oper-
ations within a web-browser, keeping their experience
of interacting on-line with their provider unchanged.
We have implemented a web-browser Silverlight con-
trol that performs private billing computations to il-
lustrate the practicality of this approach on deployed
web technologies.

• We have optimized protocols to require no addtional
communications by the meter making it practical for
immediate deployment. In fact, we have implemented
and tested meter modifications on real-world meters in
collaboration with a team from the Elster Group SE.

• When a simple tariff policy is applied, we can con-
struct a very efficient protocol Fast-PSM for billing
that requires no zero-knowledge proofs and is particu-
larly well suited for time-of-use billing.

• Finally, our schemes have been shown to be crypto-
graphically correct – i.e. our concrete protocols comply
with an ideal functionality that expresses the privacy
and integrity properties claimed.

Outline of the Paper. We discuss related work in smart
metering privacy in Sect. 2. Then we present the require-
ments and purpose of our protocols in Sect. 3. In Sect. 4,
we describe the cryptographic building blocks employed, we
define security and we depict our schemes, including spe-
cial cases for specific billing calculations. We evaluate our
scheme for performance, as well as compatibility with cur-
rent meters and web-technologies in Sect. 5. In Sect. 6, we
describe applications of the scheme beyond the electricity
metering setting. We conclude in Sect. 7.

Due to space constraint a number of aspects of our privacy
metering schemes are not described in this paper, but are
available in the full report2. These include:

• Full cryptographic proofs in the ideal-world/real-world
model for our schemes.

• Different billing policies, including policies to encode
splines and approximate arbitrary functions.

• A discussion of deployment and interoperability issues.

2http://research.microsoft.com/apps/pubs/?id=
141726

2. RELATED WORK
Smart meters privacy concerns have previously been stud-

ied both from a technical [29, 30] and a legal perspective [9,
34]. These works propose enforcement of privacy properties
based on procedural means and assume that fine-grained
billing inevitably requires the sharing of detailed meter read-
ings.

Little work exists on the design of technical solutions to
protect privacy in the smart grid. Wagner et al. [39] pro-
pose a privacy-aware framework for the smart grid based
on semantic web technologies. Garcia and Jacobs [19] de-
sign a multiparty computation to compute the sum of their
consumption privately. The NIST privacy subgroup [37]
suggests anonymizing traces of readings, as proposed by
Efthymiou et al. [16], but also warns of the ease of re-
identification. Molina et al. [32] highlight the private in-
formation that current meters leak, and sketch a protocol
that uses zero-knowledge proofs to achieve privacy in meter-
ing. Kumari et al. [25] propose usage control mechanisms for
data shared by smart meters connected to web based social
networks.

Some work focuses on more general aspects of smart grid
security. Anderson and Fuloria [2] analyze the security eco-
nomics of electricity metering. McLaughlin et al. [31] ana-
lyze security of smart grids and conclude that they introduce
new vulnerabilities that ease electricity theft. The design of
algorithms that schedule energy consumption to reduce costs
has also been addressed [22]. Proposals to enhance the se-
curity of the smart grid infrastructure include Fatemieh et
al. [17]. No complete and thorough solution exists for com-
puting privately individual bills when complex time-of-use
tariffs are applied, or perform general private computations
needed to run a modern grid (the special case of linear poli-
cies was independently studied in [24] – yet it does not in-
clude the opimizations to reduce meter communication costs
we present, making their approach very expensive).

Smart metering is a special case of metering. LeMay et
al. propose an architecture for attested metering [28] based
on calculations performed on trusted hardware. Troncoso
et al. [38] propose an architecture in which secure meters
are used to calculate final bills for pay-as-you-drive insur-
ance. Our protocol follows an approach similar to the one
described in [3, 14] for the design of a privacy-friendly elec-
tronic toll pricing system. We extend their paradigm of
proving some aspects of a metering system using cryptogra-
phy by providing full end-to-end verifiability for computa-
tions.

Further Work. The work presented in this paper has
already been extended in several works. In Kohlweiss et
al. [13] it is extended to obscure inferences that can be
drawn from the final bill using a combination of differen-
tially private mechanisms and oblivious payments. Kursawe
et al. [26] propose an aggregation protocol to privately sum
readings from multiple meters, including protocols that are
compatible with the protocols presented in this work, as
well as making use of our low-communication overhead tech-
niques to make aggregation practical. Finally, Fournet et al.
have verified an implementation of the Fast-PSM protocol
in Fine [36], and Aizatulin et al. [1] have done verification
work on the concrete C implementation of our protocols for
real-world meters. We will not be discussing further these
extensions to the basic protocols presented here.

50

ü
Meter core (M)

Certified
meter readings

WAN

Provider (P)

Web Browser (Agent of U)

User (U):
choice & control

Any certified
calculation

ü

ü Certified
inputs

Smart meter

Home boundary: decrypted certified meter readings never leave this boundary.

ü
Encrypted & Certified

meter readings

ü Encrypted &
Certified

meter readings
Key

Privacy
Friendly

Computations

Figure 1: Interactions between parties.

3. DESIGN GOALS & RATIONALE
We propose a protocol to preserve user privacy in smart

metering applications that is flexible enough to be applied
in a number of settings including electricity, water and gas
metering. Our protocol guarantees the following security
properties. First integrity: the utility provider is assured
that the user reports the correct results of calculations. Sec-
ond privacy : the provider does not learn any information
but the result of computations. For the case of billing, the
provider is ensured the correct fee is calculated based on the
actual readings and time-of-use tariffs, without learning any
fine grained readings. Finally, the provider cannot claim
that a user must pay an incorrect fee.

The aim of our protocols is to keep meters extremely sim-
ple and to rely on cryptographic calculations outside the
tamper-evident part of the meter for the integrity of specific
calculations like billing. Meters need to be cheap and as a
result have limited connectivity and bandwidth. They offer
only a very limited user-interface that cannot deliver infor-
mation about energy usage, efficiency advice, or detailed
billing. Our protocols have been designed to impose a small
computational overhead on meters, and a negligible com-
munication overhead – both of which should be achievable
without any additional hardware.

Once meter readings are certified and output from the
meter, our protocols provide flexibility about where calcu-
lations are performed without compromising integrity. This
flexibility means that devices and software performing the
actual billing, or other computations on readings, can evolve
over time while the meters remain the same.

Figure 1 illustrates a key use case we would like to sup-
port: meter readings are certified by the meter, encrypted
using a local symmetric key and uploaded to remote servers
using a wide-area network. A customer simply uses a web-
browser to connect to their supplier’s site, at which point the
meter readings are downloaded and decrypted with the key.
Privacy-friendly calculations are performed in the browser,
along with the proofs they are correct, for billing, settle-
ment, fraud detection and profiling. The results and proofs

are then relayed back to the provider for verification and fur-
ther processing. The client side web-application can make
further use of the meter readings to generate efficiency re-
ports and a rich user interface based on the actual energy
consumption of the user. The provider never learns the de-
tailed readings, yet is able to provide a rich user experience,
as well as compute highly reliable results on readings to sup-
port billing and other processes.

Alternative user agents for computations could include
smart phones, standalone software clients, as well as third
party service providers trusted by the users. In all those
cases, as above, certified bills or other computations can be
proved correct, ensuring high integrity. This allows users to
choose clients and software they trust to perform the com-
putations.

System Model. Without loss of generality we will describe
our protocols in terms of billings, where certified fine-grained
readings and certified time-of-use tariffs are used to calculate
how much money a customer owes an electricity supplier for
some period of consumption.

We describe our protocol in an abstract setting that com-
prises three parties, as illustrated in Figure 1: a tamper-
resistant meter M that outputs consumption data cons and
related information other ; a service provider P that estab-
lishes a pricing policy Υ and that, at each billing period,
requests the user to pay the fee fee corresponding to her to-
tal consumption; finally a user U that receives consumption
readings from meter M and pays a fee to provider P. The
pricing policy Υ : (cons, other)→ price is a public function
that takes in consumption data cons along with other infor-
mation other (e.g., the time of consumption) and outputs a
price. The fee is computed by adding the prices correspond-
ing to the total consumption in a billing period, i.e. if n is
the number of readings, fee =

∑n
i=1 pricei. Pricing policies

can also be applied to aggregates of readings, to charge a
tariff as a function of consumption per day or per week.

The basic operation of the system is as follows. First, the
provider P sends the user U a pricing policy Υ. During a
billing period, the meter M outputs consumption readings
cons along with other information other that influences the
cost. This output is collected by the user U who computes,
on a device or service they trust, the total fee and sends it to
the provider P. The user U also produces and sends a proof
that the fee has been correctly computed using the pricing
policy Υ and all the consumption measurements output by
the meter M.

We present in Figure 2 some example pricing policies that
are fairly generic as well as efficient: a Linear Policy sets a
cost per unit of consumption (for example, how much each
unit of electricity costs at different times); a Cumulative Pol-
icy determines the price to be paid as a set of different linear
functions determined by the amount consumed. The lat-
ter mechanism allows the expression of complex, non-linear
pricing policies, such as imposing different rates per unit of
electricity before and after a certain consumption threshold.
Any policy can be applied to any time interval, i.e. per day,
week, month, and policies can be composed readily without
leaking additional information.

51

Consumption

P
ri

ce

8:00pm – 8:30pm

2:30am – 3:00am

Consumption

P
ri

ce

8:00pm – 8:30pm

2:30am – 3:00am

consmin consmax

F

(a) Two linear policies (b) Two cumulative policies

Figure 2: (a) A linear policy specifies the rate per
unit consumption that is applied to determine the
price to be paid for each measurement. The rate can
be selected through information associated with the
reading, like the time of the day or the location of
a vehicle (without revealing this information). (b)
A cumulative policy specifies a rate per unit that
is determined as a function of the hidden consump-
tion – allowing non linear functions to be applied
for pricing. Higher order polynomials can be used
to express pricing functions within intervals allowing
pricing functions that can be expressed as arbitrary
splines.

4. CONSTRUCTION

4.1 Cryptographic Building Blocks
Signature Schemes. A signature scheme consists of the
algorithms (Keygen,Sign,Verify). Keygen(1k) outputs a key
pair (sk , pk). Sign(sk ,m) outputs a signature s on message
m. Verify(pk , s,m) outputs accept if s is a valid signature on
m and reject otherwise. This definition can be extended to
support multi-block messages ~m = {m1, . . . ,mn}. Existen-
tial unforgeability [20] requires that no probabilistic poly-
nomial time (p.p.t.) adversary should be able to output a
message-signature pair (s,m) unless he has previously ob-
tained a signature on m.

The signature schemes of M and U can be instantiated
with any existentially unforgeable signature scheme – we
have used the NIST Digital Signature Algorithm (DSA). For
P’s signature scheme, we choose the signature scheme pro-
posed by Camenisch and Lysyanskaya [6].

Commitment schemes. A non-interactive commitment
scheme consists of the algorithms ComSetup, Commit and
Open. ComSetup(1k) generates the parameters of the com-
mitment scheme parc . Commit(parc , x) outputs a commit-
ment cx to x and auxiliary information openx. (We also
employ the notation Commit(parc , x, openx), which outputs
a commitment cx to x.) A commitment is opened by reveal-
ing (x, openx) and checking whether Open(parc , cx, x, openx)
outputs accept. The hiding property ensures that a com-
mitment cx to x does not reveal any information about
x, whereas the binding property ensures that cx cannot be
opened to another value x′.

Our fast protocols use homomorphic commitment schemes
extensively. A commitment scheme is said to be additively
homomorphic if, given two commitments cx1 and cx2 with
openings (x1, openx1) and (x2, openx2) respectively, there

exists an operation ⊗ such that, if c = cx1 ⊗ cx2 , then
Open(parc , c, x1+x2, openx1+openx2) outputs accept. Addi-
tionally, we require a commitment scheme that also provides
an operation � between a commitment cx1 and a value x2
such that, if c = cx1�x2, then Open(parc , c, x1×x2, openx1×
x2) outputs accept.

For the purposes of proving security, we employ a trap-
door commitment scheme, in which algorithm ComSetup(1k)
generates parc and a trapdoor td . Given a commitment c
with opening (x1, openx1) and a value x2, the trapdoor td
allows finding openx2 such that algorithm Open(parc , c, x2,
openx2) outputs accept.

For our implementation we choose the integer commit-
ment scheme proposed by Groth [21].

Proofs of Knowledge. A zero-knowledge proof of knowl-
edge [4] is a two-party protocol between a prover and a ver-
ifier. The prover demonstrates to the verifier her knowledge
of some secret input (witness) that fulfills some statement
without disclosing this input to the verifier. The protocol
should fulfill two properties. First, it should be a proof
of knowledge, i.e., a prover without knowledge of the se-
cret input convinces the verifier with negligible probability.
Second, it should be zero-knowledge, i.e., the verifier learns
nothing but the truth of the statement. Witness indistin-
guishability is a weaker property that requires that the proof
does not reveal which witness (among all possible witnesses)
was used by the prover.

We use several existing results to prove statements about
discrete logarithms: proof of knowledge of a discrete loga-
rithm [35]; proof of knowledge of the equality of some el-
ement in different representations [10]; proof with interval
checks [33], range proof [5] and proof of the disjunction or
conjunction of any two of the previous [11]. These results
are often given in the form of Σ-protocols but they can be
turned into non-interactive zero-knowledge arguments in the
random oracle model via the Fiat-Shamir heuristic [18].

When referring to the proofs above, we follow the notation
introduced by Camenisch and Stadler [7] for various proofs
of knowledge of discrete logarithms and proofs of the valid-
ity of statements about discrete logarithms. NIPK{(α, β, δ) :
y = g0

αg1
β ∧ ỹ = g̃0

αg̃1
δ ∧ A ≤ α ≤ B} denotes a “zero-

knowledge Proof of Knowledge of integers α, β, and δ such
that y = g0

αg1
β, ỹ = g̃0

αg̃1
δ and A ≤ α ≤ B holds”, where

y, g0, g1, ỹ, g̃0, g̃1 are elements of some groups G = 〈g0〉 =

〈g1〉 and G̃ = 〈g̃0〉 = 〈g̃1〉 that have the same order. The
convention is that letters in the parenthesis, in this exam-
ple α, β, and δ, denote quantities whose knowledge is be-
ing proven, while all other values are known to the verifier.
We denote a non-interactive proof of signature possession as
NIPK{(x, sx) : Verify(pk , x, sx) = accept}.

For the specific policies implemented, the basic building
blocks are a non-interactive zero-knowledge proof of posses-
sion of a Camenisch-Lysyanskaya signature, a proof that a
committed value is the product of two committed values and
a proof that a committed value lies in an interval. All the
proofs in our implementation are computed via the Fiat-
Shamir heuristic.

To prove possession of a Camenisch-Lysyanskaya signa-
ture, we employ the proof described in [15]. To prove that a
message m3 committed in cm3 = gm3

1 hopenm3 is the product
of two messages m1 and m2 committed in cm1 = gm1

1 hopenm1

and cm2 = gm2
1 hopenm2 respectively, the following proof can

be used:

52

NIPK{ (m1, openm1
,m2, openm2

,m3, openm3
,

m2 · openm1
) : cm1 = gm1

1 hopenm1 ∧
cm2 = gm2

1 hopenm2 ∧ cm3 = gm3
1 hopenm3 ∧

1 = cm2
m1

(1/g1)m3(1/h)m2·openm1 }.

To prove that a committed value x lies in an interval [a, b],
it is necessary to prove that x−a ≥ 0 and b−x ≥ 0. We em-
ploy the non-interactive zero-knowledge proof by Groth [21],
based on expressing integers as the sum of 3 squares, to prove
that an integer m ≥ 0.

4.2 Construction Sketch
We consider a meter M, a user U and a provider P. Every

entity computes a key pair of a signature scheme, stores the
secret key and reveals the public key to the other entities. P
also computes the parameters of an additively homomorphic
commitment scheme and reveals them to U and to M.

At the initialization phase, P chooses a pricing policy
Υ : (cons, other) → price that maps consumption values
to prices. The variable other denotes any other parameter
that influences the price to be paid, e.g. time of day. The
policy Υ is signed and sent to U, and can be updated at a
later time.

During a billing period, M obtains consumption values
cons and outputs tuples (bp, cons, other), where bp denotes
the billing period. These tuples are signed as follows. First,
M commits to cons and to other , and then computes sig-
natures sc on the commitments and on bp. U is given the
message-signature pairs and the openings of the commit-
ments, i.e. (bp, cons, other ,Commit(cons),Commit(other),
sc).

At the end of a billing period, U stores the signed policy
given by P and a set of tuples (bp, cons, other) signed by
M. Using these signatures, U is able to reveal the total fee
fee to P and prove that fee is correct without disclosing any
information about the tuples (cons, other). U only reveals
to P the signatures sc by M on the commitments to cons
and other . For each signature, U computes:

1. a commitment to the price price to be paid according
to Υ;

2. a non-interactive zero-knowledge proof π that she (a)
knows the openings of the signed commitments, (b)
knows the opening of the commitment to the price,
and (c) possesses a signature computed by P on (cons,
other , price) that states that price is the price to be
paid for (cons, other).

Additionally, U aggregates all the openings of the price com-
mitments to obtain an opening open fee to the total fee.
U creates and signs a payment message that contains fee,
open fee and, for each signature sc, the commitment to the
price and the corresponding proof π.

Upon receiving the payment message, P verifies the signa-
ture by U, and the signatures by M on the commitments to
(cons, other) and on bp. P also verifies the proofs π. P then
uses the homomorphic property of the commitment scheme
to aggregate all the commitments to the prices and get a
commitment to fee. Finally P checks whether (fee, open fee)
is a valid opening for it before accepting the reported bill.

P is only given the total fee, but he is assured that the fee
is correct in accordance with the pricing policy Υ and the

consumption values output by M. U’s privacy relies on the
hiding property of commitments and on the zero-knowledge
property of proofs [7]. P’s security rests on the binding prop-
erty of the commitment scheme and on the unforgeability of
the signature schemes employed by P and M. Additionally,
P cannot claim that U must pay a fee other than the one
reported, owing to the unforgeability property of U’s sig-
nature scheme. Finally, the binding property ensures that
U cannot reveal to P (cons, other) tuples different from the
ones committed to and signed by M.

4.3 Security Definition
Full definitions, constructions and proofs of security
are available in the extended technical report3.

We define security following the ideal-world/real-world
paradigm [8]. In the real world, a set of parties interact
according to the protocol description in the presence of a
real adversary A, while in the ideal world dummy parties
interact with an ideal functionality that carries out the de-
sired task in the presence of an ideal adversary E . A protocol
ψ is secure if there exists no environment Z that can distin-
guish whether it is interacting with adversary A and parties
running protocol ψ or with the ideal process for carrying
out the desired task, where ideal adversary E and dummy
parties interact with an ideal functionality Fψ.

In the extended version of this work we show that the Pro-
tocol PSM is indistinguishable from the following abstract
Functionality PSM:

Functionality FPSM

Running with a meter M, a service provider P, and a
user U, FPSM works as follows:

- On input (policy,Υ) from P, FPSM stores Υ and sends
(policy,Υ) to U.

- On input (consume, bp, cons, other) from M, FPSM ap-
pends (cons, other) to a table Tbp that stores the
consumptions of billing period bp. FPSM sends
(consume, bp, cons, other) to U.

- On input (payment, bp) from P, FPSM computes the
total fee fee as follows. For all rows i ∈ Tbp , FPSM

calculates pricei = Υ(consi, other i). The fee is
fee =

∑
i∈Tbp

pricei. FPSM sends (payment, fee,

bp) to U and, if U is corrupted, FPSM receives
(pay, fee ′, bp′). If fee 6= fee ′ or bp 6= bp′, FPSM

sets fee = fee ′, bp = bp′ and b = 0, and otherwise
it sets b = 1. FPSM sends (pay, bp, fee, b) to P.

Any construction that realizes FPSM ensures that U pays
the right fee for the consumption data output by M, i.e.,
that the fee is computed following Υ. It also ensures that,
if M and P do not collude, P only learns the fee paid, not
the consumption data cons nor the other information other
used to compute fee. Additionally, it ensures that a mali-
cious provider cannot claim that the fee that U must pay is
different from the one computed following Υ. Our construc-

3http://research.microsoft.com/apps/pubs/?id=
141726

53

tion operates in the FREG-hybrid model [8], where parties
register their public keys at a trusted registration entity.

4.4 Detailed Scheme
We denote the signature schemes used by M, U and P

as (Mkeygen,Msign,Mverify), (Ukeygen,Usign,Uverify) and
(Pkeygen,Psign,Pverify) respectively. H stands for a colli-
sion resistant hash function.

In the setup phase, M runs Mkeygen(1k) to obtain a key
pair (skM, pkM), U runs Ukeygen(1k) to get a key pair (skU,
pkU) and P runs Pkeygen(1k) to get a key pair (skP, pkP).
Each party registers its public key with FREG and retrieves
public keys from other parties by querying FREG.4 P runs
ComSetup(1k) to get parc and a trapdoor td , computes a
proof π = NIPK{(td) : (parc , td) ← ComSetup(1k)} and
sends (parc , π) to U and (parc) to M. U verifies π.

Figure 3 illustrates the key interactions among P, U and
M as well as the algorithms they execute. More formally, we
define Protocol PSM as follows:

Protocol PSM

• Initialization. When P is activated with (policy,
Υ), P runs SignPolicy(skP,Υ) to get a signed pol-
icy Υs. P sends Υs to U. U runs VerifyPolicy(pkP,
Υs) to get a bit b. If b = 0, U rejects the policy.
Otherwise U stores Υs.

• Consumption. When M is activated with
the message (consume, bp, cons, other), M runs
SignConsumption(skM, parc , bp, cons, other) to ob-
tain a signed consumption SC . M sends SC to
U. U runs VerifyConsumption(pkM, parc ,SC) to
obtain a bit b. If b = 0, U rejects SC and sends P
a message indicating malfunctioning meter. Oth-
erwise U appends SC to a table Tbp that stores
the consumptions of the billing period bp.

• Payment. When P is activated with (payment,
bp), P sends (bp) to U. U runs Pay(skU, parc ,Υs,
Tbp) to obtain a payment message Q and sends
(Q) to P. P runs VerifyPayment(pkM, pkU, pkP,
parc , bp,Q) to obtain a bit b. If b = 0, P rejects
the payment, and otherwise accepts it.

The specific cryptographic algorithms used by the Proto-
col PSM are defined as follows:

• SignPolicy(skP,Υ). For each tuple (cons, other , price)
∈ Υ, compute sp = Psign(skP, 〈cons, other , price〉).5
Let Υs = (consi, other i, pricei, spi)

n
i=1 be the set of

message-signature tuples. Output Υs.

• VerifyPolicy(pkP,Υs). For i = 1 to n, parse Υs as
(consi, other i, pricei, spi)

n
i=1, and, for i = 1 to n, run

4The key distribution authority is an abstraction: in prac-
tise all parties in the protocol, namely the Meter, User and
Provider have previous off-line relationships that allow them
to exchange signature keys securely. Our scheme does not
require a Public Key Infrastructure (PKI), as no parties ever
need to verify signatures of previously unknown entities.
5The way the tuples (cons, other , price) are signed depends
on the particular policy Υ to be signed. Examples are given
in Section 4.5.

Pverify(pkP, spi, 〈consi, other i, pricei〉). If any of the
outputs is reject, output b = 0, else output b = 1.

• SignConsumption(skM, parc , bp, cons, other). Execute
both (ccons , opencons) = Commit(parc , cons) and (cother ,
openother) = Commit(parc , other). Run sc = Msign
(skM, 〈bp, ccons , cother 〉) and output SC = (bp, cons,
opencons , ccons , other , openother , cother , sc).

• VerifyConsumption(pkM, parc ,SC). Parse message SC
as (bp, cons, opencons , ccons , other , openother , cother , sc).
Run Open(parc , ccons , cons, opencons) and Open(parc ,
cother , other , openother) and output b = 0 if any of them
outputs reject. Run Mverify(pkM, sc, 〈bp, ccons , cother 〉)
and output b = 0 if the output is reject. Otherwise
output b = 1.

• Pay(skU, parc ,Υs, Tbp). For each table entry (bp, cons,
opencons , ccons , other , openother , cother , sc) ∈ T , calcu-
late price = Υ(cons, other), run (cprice , openprice) =

Commit(parc , price) and calculate a proof π:6

NIPK{ (price, openprice , cons, opencons , other ,

openother , sp) :

(ccons , opencons) = Commit(parc , cons) ∧
(cother , openother) = Commit(parc , other) ∧
(cprice , openprice) = Commit(parc , price) ∧
Pverify(pkP, sp, 〈cons, other , price〉) = accept}.

Compute the total fee fee =
∑
i∈Tbp

pricei and add

all the openings open fee =
∑
i∈Tbp

openpricei
to get an

opening to the commitment to the fee. Set a message
p = (fee, open fee , bp, {sci, cconsi , cotheri , cpricei

, πi}i∈Tbp).

Compute a signature7 sp = Usign(skU, p) and set a
payment message Q = (p, sp).

• VerifyPayment(pkM, pkU, pkP, parc , bp,Q). Parse Q as
(p, sp) and run Uverify(pkU, sp, p). Output b = 0 if
it rejects. Else parse p as (fee, open fee , bp, {sci, cconsi ,
cotheri , cpricei

, πi}i∈Tbp) and, for i ∈ Tbp run Mverify
(pkM, sci, 〈bp, cconsi , cotheri〉) and verify πi. Output
b = 0 if any of the signatures or the proofs is not
correct. Add the commitments to the prices c′fee =

⊗Ni=1cpricei
and execute Open(parc , c

′
fee , fee, open fee). If

the output is accept, set b = 1 and else b = 0. Output
b.

4.5 Policies
We detail here the computation of the signed policy Υs,

and how to prove that the price for a tuple (cons, other) is
computed in accordance with the right entry tuple (cons,
other , price) specified in the policy Υ. They differ depend-
ing on different types of policies Υ. We provide details of
two policies: a linear policy that can be used to apply a dif-
ferent rate to each measurement and a “cumulative” policy
that allows the application of a non-linear function to mea-
surements in order to calculate their contribution to the bill
(see Figure 2). The linear policy implements the tariff pol-
icy for smart-metering, where a different rate is applied per

6The proof π also depends on the policy Υ. See Section 4.5.
7If p does not belong to the message space of the signature
scheme, sign H(p), where H is a collision resistant hash
function whose range is the message space of the signature
scheme.

54

(Provider)
P

(User Device)
U

(Meter)
M

On
(policy, Y)

Ys = SignPolicy(skP,Y)
If VerifyPolicy(pkP, Ys) store Ys

On (consume, bp, cons, other)
SC = SignConsumption(skM,

parc, bp, cons, other)

(bp, SC)If VerifyConsumption(pkM,parc,SC)
Store SC in table Tbp

Initialization

Consumption

Payment

On (payment, bp)
bp

Q = Pay(skU, parc, Ys, Tbp)
Q

If VerifyPayment(pkM,
pkU, pkP parc, bp, Q) accept Q

Figure 3: Structure of protocols and use of cryptographic algorithms

half-hour according to the policy a customer has subscribed
to. The cumulative policy illustrates the generality of the
scheme.

Three other policies considered are the discrete policy,
which looks up a tariff in a table, and the interval policy
which charges a fixed premium per different ranges of con-
sumption. These are special cases of the cumulative policy
or linear policy, with some efficiency improvements, and are
not discussed in detail. A more generic construction for
building and proving the application of non-linear functions
using splines is also described. It is worth noting that all
pricing policies can be composed to express complex com-
posite policies, e.g. to apply a different non-linear policy to
the total consumption of each day, and subtracting from the
final bill a rebate of 10% if the total units of consumption
exceeds a threshold.

Linear Policy. A discrete policy is only suitable when the
set of possible consumption values is finite and small. Oth-
erwise, signing all possible tuples (cons, other) is inefficient.
A linear policy specifies the price per unit consumption for
different contexts. For instance, if the policy says that the
price per unit is 3 and your consumption is 6 units, the price
due is 18. Therefore, since a linear policy specifies the price
per unit of consumption, it is given by Υ : other → price.
The parameter other denotes any variable that influences
the price per unit, e.g., the time interval in which the con-
sumption takes place.

To sign this policy, for i = 1 to n, P runs spi = Psign
(skP, 〈other i, pricei〉), and sets Υs = (other i, pricei, spi)

n
i=1.

To compute a proof π, U uses the commitments to the con-
sumption ccons and to other parameters cother included in sc,
and commits to the total price pricet ((cpricet

, openpricet
) =

Commit(parc , pricet)). U then computes a proof of pos-
session of a signature sp ∈ Υs on (other , price), a proof
of equality between other and the values committed to in
cother , and a proof that pricet committed to in cpricet

equals
price · cons:

NIPK{ (pricet, openpricet
, price, cons, opencons , other ,

openother , sp) :

(ccons , opencons) = Commit(parc , cons) ∧
(cother , openother) = Commit(parc , other) ∧
(cpricet

, openpricet
) = Commit(parc , pricet) ∧

Pverify(pkP, sp, 〈other , price〉) = accept ∧
pricet = price · cons}.

Cumulative Policy. A cumulative policy allows the com-
putation and proof in zero-knowledge of non linear functions.
It can be used to apply different rates according to the hid-
den consumption, expressing rates getting cheaper or more
expensive as consumption rises.

To apply the cumulative policy, the consumption values
domain is divided into intervals and each interval is mapped
to a rate per unit of consumption. The price due is the def-
inite integral of the policy Υ over the interval [0, cons]. For
instance, let Υ be a policy as follows8: [0, 3]→ 2, (3, 7]→ 5,
(7,∞) → 8, and let your consumption be 9. The price due
is 3× 2 + 4× 5 + 2× 8 = 42. Therefore, a cumulative policy
is given by Υ : (consmin, consmax, F, other) → price, where
it is required that intervals defined by [consmin, consmax]
be disjoint. F is the definite integral of Υ over the interval
[0, consmin].

To sign this policy, for i = 1 to n, P runs spi = Psign
(skP, 〈consmini , consmaxi , Fi, other i, pricei〉), and sets Υs =
(consmini , consmaxi , Fi, other i, pricei, spi)

n
i=1. In the pre-

vious example, the tuples to be signed are (0, 3, 0,⊥, 2),
(3, 7, 6,⊥, 5) and (7,max, 26,⊥, 8) (max represents the max-
imum consumption). To compute a proof π, U uses the
commitments to the consumption ccons and to other param-
eters cother included in sc, and commits to the price pricet
8The parameter other is left unused, in this example, but
can in general be used to select the rate.

55

((cpricet
, openpricet

) = Commit(parc , pricet)) to be paid, which

equals pricet = (cons − consmin) × price + F . Then U
computes a proof of possession of a signature sp ∈ Υs on
(consmin, consmax, F, other , price), a proof of equality be-
tween (other) and the value committed to in cother , a proof
that cons ∈ [consmin, consmax] and a proof that pricet =
(cons − consmin)× price + F :

NIPK{ (pricet, openpricet
, cons, opencons , other , openother ,

price, consmin, consmax, F, sp) :

(ccons , opencons) = Commit(parc , cons) ∧
(cother , openother) = Commit(parc , other) ∧
(cpricet

, openpricet
) = Commit(parc , pricet) ∧

Pverify(pkP, sp, 〈consmin, consmax, F, other ,
price〉) = accept ∧
cons ∈ [consmin, consmax] ∧
pricet = (cons − consmin)× price + F}.

Other Policies. It is possible to combine a linear policy
with an interval policy. Such a policy would describe a price
per unit that depends on the interval in which the consump-
tion value lies.

Another possible policy Υ is that defined by a polynomial
function

∑N
i=0 aix

i over a commutative ring R, which in our
implementation is given by the integers modulo a composite.
The price due is the evaluation of Υ for x = cons. The com-
bination of the polynomial policy and the cumulative policy
allows the evaluation and proof of arbitrary polynomial seg-
ments. Therefore complex policies expressed as polynomial
splines can be used for pricing or any other calculation in
zero-knowledge.

4.6 Security Evaluation

Theorem 1. Protocol PSM securely realizes FPSM.

The security of protocol PSM is analyzed by proving in-
distinguishability between the view of the environment Z in
the real world, where parties interact following the protocol
description in the presence of a real adversary A, and in
the ideal world, which is secure by definition since an ideal
functionality carries out the task. In order to prove indistin-
guishability, for all real world adversaries A, we construct
an ideal world adversary E such that no environment can
distinguish whether it is interacting with A or with E .

We divide our proof of Theorem 1 into several claims.9

We prove security under static corruptions, and each of the
claims proves indistinguishability when a different subset of
parties is corrupted. We do not consider the cases where all
the parties are honest, where all the parties are dishonest or
where the user U and the provider P are dishonest because
they do not have practical interest. The case in which both
U and M are dishonest is not possible because we assume
tamper-resistant meters. To prove security when P and M
are dishonest, we need to modify protocol PSM as described
in Section 4.8.

9The full security proof is available in the extended ver-
sion at http://research.microsoft.com/apps/pubs/?id=
141726

When P is dishonest, we claim and prove indistinguisha-
bility between real and ideal world under the unforgeability
property of the signature schemes (Mkeygen,Msign,Mverify)
and (Ukeygen,Usign,Uverify), under the hiding property of
the commitment scheme and the extractability and witness
indistinguishability of proofs of knowledge. The proof of
this claim ensures that P is not able to get any information
from U except the total fee and the number of consump-
tion readings, and that P is not able to claim that U must
pay a fee different from the one calculated on input of the
consumption readings and the pricing policy.

When U is dishonest, we prove indistinguishability un-
der the unforgeability property of the signature schemes
(Mkeygen,Msign,Mverify) and (Pkeygen,Psign,Pverify), un-
der the binding property of the commitment scheme and un-
der the extractability and zero-knowledge property of proofs
of knowledge. This proof ensures that the total fee calcu-
lated by U is correct.

4.7 Fast-PSM for public linear policies.
In the previous construction, the policy Υ consisted of

several formula that map consumption values to prices. The
formula that should be applied to a particular tuple (cons,
other) depends on the consumption cons, on the other pa-
rameters other , or on both. Therefore, the formula used to
compute the fee needs to be hidden from P, because other-
wise P can learn some information on (cons, other). (con-
sider the example policy “if consumption > 10 then fee =
consumption * 5”. The rate (5) has to be hidden to hide the
fact that the consumption exceed the threshold).

In case the policy is simple, and only depends on param-
eters known by the provider (e.g. the application of a dy-
namic rate to each consumption period) an optimization is
possible.

As the choice of formula depends on parameters already
known by P, then the formula used does not need to be hid-
den. When Υ consists of linear formula of the form price =
r · cons, we provide an efficient construction that avoids the
use of non-interactive zero-knowledge proofs. This construc-
tion is based on the use of a commitment scheme with an
additive homomorphism that allows the computation of a
commitment to the price, given a commitment to the con-
sumption value. We note that U only needs to open the
commitment to Commit(fee) = Commit(

∑n
i=0 ri · consi) to

P. This commitment can be independently computed and
verified by P as Commit(fee) = ⊗ni=0Commit(consi)� ri. In
this case the computations for the prover and verifier are
very efficient. We define Protocol Fast-PSM as follows:

Protocol Fast-PSM

• Initialization. When P is activated with (policy,
Υ), where Υ is a linear policy, P publishes a unique
policy identifier idΥ and sends (idΥ ,Υ) to U.

• Consumption. Works as in the Protocol PSM.

• Payment. When P is activated with (payment,
bp), P sends (bp) to U. U runs EffPay(skU, parc ,
idΥ ,Υ, Tbp) to obtain a payment message Q and
sends (Q) to P. P runs EffVerifyPayment(pkM,
pkU, parc , idΥ , bp,Q) to obtain b. If b = 0, P re-
jects the payment, and otherwise accepts it.

56

• EffPay(skU, parc , idΥ ,Υ, Tbp). For each table entry (bp,
cons, opencons , ccons , other , openother , cother , sc) ∈ Tbp ,
calculate price = a1·cons+a0 and openprice = opencons ·
a1. Calculate the total fee fee =

∑
i∈Tbp

pricei and

add the openings open fee =
∑
i∈Tbp

openpricei
to get

an opening to the commitment to the fee fee. Set a
payment message p = (idΥ , fee, open fee , bp, {sci, cconsi ,
cotheri}i∈Tbp). Compute a signature sp = Usign(skU,
p) and set a payment message Q = (p, sp).

• EffVerifyPayment(pkM, pkU, parc , idΥ , bp,Q). Parse Q
as (p, sp) and run Uverify(pkU, sp, p). Output b = 0 if
it rejects. Otherwise parse p as (idΥ

′, fee, open fee , bp,

{sci, cconsi , cotheri}i∈Tbp), check that idΥ = idΥ
′ and

for all i run Mverify(pkM, sci, 〈bp, cconsi , cotheri〉). Out-
put b = 0 if any of the signatures is not correct. Com-
pute commitments to the prices cpricei

= (cconsi�a1)⊗
Commit(parc , a0, 0), add them by computing cfee =
⊗i∈Tbp cpricei

and execute Open(parc , cfee , fee, open fee).
If the output is accept, set b = 1 else b = 0. Output b.

The security of this scheme relies on the unforgeability of
the signature schemes and on the binding and hiding prop-
erties of the commitment schemes. The policy identifier idΥ

is introduced to ensure that U and P employ the policy pub-
lished previously by P to compute and verify the payment
message.

4.8 Discussion
We discuss here possible optimizations of the scheme, as

well as modifications needed when it is applied to certain
settings or if an adversary corrupts more than one party.

Fewer commitments. In the construction depicted above,
M commits separately to cons and to other . However, in
applications where both parameters are always disclosed to-
gether M can commit to both values in a single commitment
in order to improve efficiency.

Batch signatures & proofs. In applications in which the
computation of the payment message can be delayed until
all the tuples (cons, other) are known by U, it is possible
to avoid the computation of the commitments to prices and
of one proof of knowledge per tuple. Instead, it suffices to
compute only one zero-knowledge proof of knowledge per
payment message. This proof should prove that the sum of
the prices to be paid for each (cons, other) tuple equals the
total fee.

Explicit meta-data. We note that the scheme described
above only works when P knows the amount of tuples that
M outputs at each billing period, as it is the case for elec-
tricity metering. However, this may not be the case in other
applications and U may report fewer tuples in order to pay
less. To solve this problem, we can require M to output, at
the end of the billing period, a signature on the number of
tuples that were output at that period. This signature must
be reported by U to P. Alternatively, a counter or the real
time of readings can be encoded in other , and used in the
proof to ensure no reading is omitted.

Corrupt Meter. A collusion between M and P against
U is possible, in which the meter attempts to leak infor-
mation through the commitments. Such collusion makes
sense in practical applications, in which P is likely to pro-

Fast PSM 1024 bits 2048 bits
(per reading) ticks sec−1 ticks sec−1

Prove bill 48 (298295) 59 (242681)
Verify bill 158 (90621.4) 504 (28409.1)

Table 1: Fast protocol timings. Proof and verifica-
tion per reading (amortised and averaged over 1000
readings). Policy packaging requires no cryptogra-
phy.

vide the meters and thus can manipulate them. For ex-
ample, P can choose the seed of the pseudorandom num-
ber generator of M in order to know later the openings of
the commitments computed by M. Nevertheless, the con-
struction can be modified in order to protect U against
such a collusion, at the cost of proving possession of more
signatures. In the modified construction, M outputs sig-
natures on the tuples (bp, cons, other) and does not com-
pute any commitment. Then, instead of revealing the sig-
nature to P, U commits to (cons, other) and computes a
non-interactive zero-knowledge proof of possession of a sig-
nature by M on messages (bp, cons, other) (bp is disclosed
to P). This proof is combined with the proof of possession
of a signature on (cons, other , price) given in the signed pol-
icy Υs. In this modified construction, the zero-knowledge
property of proofs and the hiding property of commitments
(computed with randomness chosen by U), ensure no infor-
mation is revealed to P.

5. PERFORMANCE EVALUATION
We implemented all the functionality required to generate

keys, policies, prove bills and verify bills in 8200 lines of
C++. The libraries provide generic support for expressing,
generating and verifying computations on certified inputs.
The smart-metering specific code spans about 250 lines of
code – including measurement code.

Two reference billing problems on 1000 readings were con-
sidered, one very complex and one simple:

• Generic Protocol. A user needs to certify a bill using
a complex pricing policy. This illustrates a non-linear
policy composed of 100 linear segments applied at the
finest granularity of readings. For each reading the
user needs to compute a zero-knowledge proof of sev-
eral statements: possession of a CL signature, range
proof including proving twice the decomposition of in-
tegers into 3 sums of squares, proof that a value is the
result of multiplying two committed values and proofs
of linear operations.

• Fast Protocol. A user needs to certify a bill using
a linear public policy. This maps to the smart-grid
billing problem, and we apply our fast protocol for the
proof and verification. In this case the user only uses
the homomorphisms of commitments to calculate the
final bill.

Two reference security parameters are evaluated, namely a
1024 bit and 2048 bit RSA modulus.

Table 2 illustrates the time required to create policies,
prove and verify bills for the generic protocol setting, while
Table 1 illustrates the fast protocol setting10. Table 3 de-
scribes the sizes of the bill and its proof for different settings.

10The reference platform for our measurements is a sin-

57

Generic PSM 1024 bits 2048 bits
(per reading) ticks sec−1 ticks sec−1

Gen. policy 147522 (97.0) 489754 (29.2)
Prove bill 162816 (87.9) 586586 (24.4)
Verify bill 344703 (41.5) 1270456 (11.2)

Table 2: Generic protocol timings. Policy genera-
tion per line of policy (amortised over 100 lines).
Proof and verification per reading (amortised and
averaged over 1000 readings).

Proof size 1024 bits 2048 bits
(for 1000 readings) KBytes KBytes
Generic Protocol ∼ 6586 Kb ∼ 10586 Kb
Fast Protocol ∼ 125 Kb ∼ 250 Kb
Fast ECC Protocol
(Estimate) ∼ 20 Kb

Table 3: Size in kilobytes required to transmit the
proof associated with 1000 meter readings in (a) the
generic protocol (b) the fast protocol and (c) an el-
liptic curve implementation of the fast protocol (es-
timate for 160 bit curve).

Verifying bills is about twice as slow as generating bills
in the generic protocol, due to aggressive pre-computations
that are not available to the verifier (the cost of pre-com-
putations is folded into the timing measurements). In real
terms it takes from a few seconds to a few minutes to cal-
culate and verify 3 weeks of billing data depending on the
security parameter.

The fast protocol is extremely efficient: generating bill
proofs requires a few tens of ticks since it does not involve
any exponentiation. Verifying bills is also extremely fast as
the computations only involve very small exponents. In real
terms, a single core could verify 3 weeks of readings from
every household equipped with a smart meter in the UK (27
million) in about 12 days, even using the slowest, highest
security 2048 bit parameter.

If proof size was a crucial factor, an elliptic curve could
be used to implement the fast protocol to reduce bill sizes
to about 20 KBytes, which might be unecessary if U and P
communicate over commodity broadband networks.

Minimal meter communication overhead & real me-
ter implementation. We optimized our protocols to im-
pose a minimal communication, storage and computation
overhead on meters. A non privacy preserving meter that
outputs signed batches of readings can be augmented to be
privacy preserving with no communication overhead.

As readings are recorded, the meter computes commit-
ments to the readings, using opening values derived from a
pseudo-random stream keyed with a symmetric key shared
with the user. The commitments are incrementally hashed
and finally signed with DSA, but never transmitted. The
meter transmits only (possibly encrypted) 4-byte readings
and the single, batch, signature on the commitments, lead-
ing to no overhead (assuming the 4-byte readings and sig-
nature were transmitted even without our protocol). The
user reconstructs the commitments using the readings, the

gle core of an Intel Xeon E5440 running at 2.83GHz (8
cores split over 2 processors) with 32GB Ram running a 64
Bit Windows Server Enterprise operating system executing
14318180 ticks/s. The reference platform is typical of the
systems we expect providers and other verifiers to use.

shared key and the derived opening values, for use in further
computations and proofs.

The only additional storage required in the meter is a
symmetric key shared with the user (i.e. 16 bytes). Compu-
tations of the commitments and signature are done on the
fly, requiring very short buffers.

The computation at the meter consists of one commitment
per reading per 15 or 30 minutes, and one signature on a
set of commitments per billing period. We prototyped our
protocol on current smart meters with the help of a team
from the Elster Group SE, on their current generation of
meters. The computation of each commitment took signifi-
cantly less than 10 seconds using the naive OpenSSL expone-
tiation functions, demonstrating the approach is practical on
current hardware11. We expect an optimized implementa-
tion of the cryptographic libraries to reduce this to less than
1 second per commitment. The protocol was fully integrated
into their data collection platform, and confirmed to require
no communication overhead.

Web-deployment evaluation. The design rational for
privacy preserving metering includes deployment of the sche-
mes using web technologies, as illustrated in Figure 1. We
implemented a billing back-end using off-the-shelf web tech-
nologies: the meter registers encrypted readings with a ser-
ver in the cloud. Users can then access a billing portal, run-
ning on an ASP.NET server, that delivers an HTML page
with an embedded Silverlight 4 control to perform the pri-
vacy preserving computations for billing. The control runs
on the web-client: it downloads and decrypts the readings
and the tariff policy, computes and proves the bill, and up-
loads it for verification back to the server. The decrypted
readings never leave the client side Silverlight 4 control.

The performance of computing, proving and verifying bills
within the browser and on the server side is entirely consis-
tent with responsiveness requirements of web applications.
Proving a bill for 7 days (336 readings) using the fast pro-
tocol in the Silverlight 4 control took 190ms, while verifying
the bill took on the server side 107ms12. This demonstrates
our scheme is practical, and can be deployed within current
client side web-applications.

6. OTHER METERING AND BILLING AP-
PLICATIONS

The privacy-preserving metering and billing protocols are
quite generic. They accommodate any situation in which
certified readings are billed according to a policy, without
revealing other information. Many other applications re-
quire similar functionality.

In particular, a number of automotive applications can be
satisfied:

• Pay-as-you-drive (PAYD) insurance: A meter is
fixed to a car that records its GPS coordinates, speed,

11Due to commercial restrictions we cannot report extact
timings, or the exact specifications of the metering platform.

12Our evaluation platform was an Intel Core 2 Duo P9600
CPU, running at 2.66GHz, with 4GB RAM, running the
32 bit Windows 7 OS. The machine was running both the
client (Internet Explorer 8 Browser with Silverlight 4) and
the server software (bundled with Visual Studio 2010). The
.NET 4 and Silverlight 4 big number library was used to
implement both the proofs and verification of the Fast-PSM
scheme in 641 lines of C# code.

58

distance travelled, time and date, and provides these
as certified readings. A policy maps regions of GPS co-
ordinates to a charging regime per distance travelled to
calculate an insurance premium. This provides a full
cryptographic solution to the PAYD problem, with a
smaller trusted computing base than the one consid-
ered in PriPAYD [38].

• Road charging and tolling: As for the PAYD ap-
plication, a black box in the car records its position
and distance travelled. The car position can be used
as key to look-up a table mapping rectangles to the
tax premium or toll charge to be paid. Tariffs can
change according to the time of day or predicted road
congestion, incentivising drivers to avoid certain times
or roads respectively. Our scheme avoids the need for
the spot-checks necessary in [3], relying instead on the
tamper-resistance of the meter for integrity.

As for utility metering, a number of tweaks can benefit au-
tomotive applications: certified readings from an integrated
3D-accelerometer can be used to determine whether the GPS
might be jammed or working improperly in order to pre-
vent or quickly detect abuse or compromised meters; a more
complex metrology core, mapping GPS coordinates traces
to certified road segments, would allow a greater flexibility
of efficient charging policies in both cases.

7. CONCLUSION
Smart-meter privacy is a serious concern and failure to

protect it has jeopardised the smart-meter deployments. Na-
ively, it appears that a balance must be struck between the
intrusion necessary for time-of-use billing and the claimed
social benefits of smart-grids. We show this to be false and
present a practical privacy-friendly metering system that
does not leak any information while providing unforgeable
bills based on complex dynamic tariff policies.

Our schemes use simple cryptography on the meters to
certify readings and then off-load high-integrity calculations
to any user device. The integrity of the bill is software in-
dependent and correctness is ensured through cryptographic
verification. Our evaluation demonstrates the scheme’s prac-
ticality: it is striking that the Fast-PSM algorithm could
verify 3 weeks of bills from 27 million UK homes in a few
days on a single core of a modern PC.

An advantage of the proposed schemes is their flexibil-
ity: since we allow bill calculations to be performed on any
device, the schemes proposed can keep up with changes of
tariff structure or policy, as well as changes in technologies
for processing or transmitting of the readings and bills.

Acknowledgment. We would like to thank Carmela Tron-
coso, Cedric Fournet, Markulf Kohlweiss, Mira Belenkiy,
Dan Shumow, Tolga Acar, Brian LaMacchia, Miguel Castro,
Eno Thereska, Manuel Costa, Thomas Simpson, Richard
Harper, Rebecca Murphy, Michael John, Gergely Budai,
Ross Anderson and Fabian Uhse for discussions and com-
ments that were most helpful in the preparation and pre-
sentation of this work.

This work was supported in part by the Research Council
K.U.Leuven: GOA TENSE (GOA/11/007), and by the IAP
Programme P6/26 BCRYPT of the Belgian State (Belgian
Science Policy). Alfredo Rial is a Research Foundation -
Flanders (FWO) doctoral researcher.

8. REFERENCES

[1] Mihhail Aizatulin, Andrew D. Gordon, and Jan
Jürjens. Extracting and verifying cryptographic
models from c protocol code by symbolic execution.
2011.

[2] Ross Anderson and Shailendra Fuloria. On the
security economics of electricity metering. In The
Ninth Workshop on the Economics of Information
Security, 2010.

[3] Josep Balasch, Alfredo Rial, Carmela Troncoso, Bart
Preneel, Ingrid Verbauwhede, and Christophe Geuens.
Pretp: Privacy-preserving electronic toll pricing. In
19th Usenix Security Symposium, August 2010.

[4] Mihir Bellare and Oded Goldreich. On defining proofs
of knowledge. In Ernest F. Brickell, editor, CRYPTO
’92, volume 740, pages 390–420. Springer-Verlag, 1992.

[5] Fabrice Boudot. Efficient proofs that a committed
number lies in an interval. In Bart Preneel, editor,
EUROCRYPT, volume 1807 of LNCS, pages 431–444.
Springer, 2000.

[6] J. Camenisch and A. Lysyanskaya. A signature scheme
with efficient protocols. In SCN 2002, volume 2576 of
LNCS, pages 268–289. Springer, 2002.

[7] J. Camenisch and M. Stadler. Proof systems for
general statements about discrete logarithms.
Technical Report TR 260, Institute for Theoretical
Computer Science, ETH Zürich, March 1997.

[8] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS, pages
136–145, 2001.

[9] Ann Cavoukian, Jules Polonetsky, and Christopher
Wolf. Smartprivacy for the smart grid: embedding
privacy into the design of electricity conservation. In
Identity in the Information Society, 2009.

[10] D. Chaum and T. Pedersen. Wallet databases with
observers. In CRYPTO ’92, volume 740 of LNCS,
pages 89–105, 1993.

[11] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs
of partial knowledge and simplified design of witness
hiding protocols. In CRYPTO, pages 174–187, 1994.

[12] Colette Cuijpers. No to mandatory smart metering
does not equal privacy!

[13] G. Danezis, M. Kohlweiss, and A. Rial. Differentially
private billing with rebates. Information Hiding, 2011.

[14] W. de Jonge and B. Jacobs. Privacy-friendly electronic
traffic pricing via commits. In P. Degano, J. Guttman,
and F. Martinelli, editors, Formal Aspects in Security
and Trust, volume 5491 of LNCS, pages 143–161.
Springer, 2008.

[15] Morris Dwork. Cryptographic protocols of the identity
mixer library, v. 2.3.0. IBM research report RZ3730.

[16] Costas Efthymiou and Georgios Kalogridis. Smart grid
privacy via anonymization of smart metering data. In
First IEEE International Conference on Smart Grid
Communications. IEEE, October, 4-6 2010.

[17] Omid Fatemieh, Ranveer Chandra, and Carl A.
Gunter. Low cost and secure smart meter
communications using the tv white spaces. ISRCS ’10:
IEEE International Symposium on Resilient Control
Systems, August. 2010.

[18] A. Fiat and A. Shamir. How to prove yourself:

59

Practical solutions to identification and signature
problems. In CRYPTO, pages 186–194, 1986.

[19] Flavio D. Garcia and Bart Jacobs. Privacy-friendly
energy-metering via homomorphic encryption.
Technical report, Radboud Universiteit Nijmegen,
February 2010.

[20] S. Goldwasser, S. Micali, and R. Rivest. A digital
signature scheme secure against adaptive
chosen-message attacks. SIAM J. Comput.,
17(2):281–308, 1988.

[21] J. Groth. Non-interactive zero-knowledge arguments
for voting. In ACNS, pages 467–482, 2005.

[22] Amir hamed Mohsenian-rad, Vincent W. S. Wong,
Juri Jatskevich, and Robert Schober. 1 optimal and
autonomous incentive-based energy consumption
scheduling algorithm for smart grid.

[23] George W. Hart. Nonintrusive appliance load
monitoring. In Proceedings of the IEEE, pages
1870–1891, December 1992.

[24] Marek Jawurek, Martin Johns, and Florian
Kerschbaum. Plug-in privacy for smart metering
billing. CoRR, abs/1012.2248, 2010.

[25] Prachi Kumari, Florian Kelbert, and Alexander
Pretschner. Data protection in heterogeneous
distributed systems: A smart meter example. In
Dependable Software for Critical Infrastructures,
October 2011.

[26] K. Kursawe, M. Kohlweiss, and G. Danezis.
Privacy-friendly aggregation for the smart-grid.
Privacy Enhancing Technologies, 2011.

[27] C. Laughman, Kwangduk Lee, R. Cox, S. Shaw,
S. Leeb, L. Norford, and P. Armstrong. Power
signature analysis. Power and Energy Magazine,
IEEE, (2):56–63.

[28] Michael LeMay, George Gross, Carl A. Gunter, and
Sanjam Garg. Unified architecture for large-scale
attested metering. In Hawaii International Conference
on System Sciences, Big Island, Hawaii, January 2007.
ACM.

[29] Mikhail Lisovich and Stephen Wicker. Privacy
concerns in upcoming residential and commercial
demand-response systems. In 2008 Clemson University
Power Systems Conference. Clemson University,
March 2008.

[30] Patrick McDaniel and Stephen McLaughlin. Security
and privacy challenges in the smart grid. IEEE
Security and Privacy, 7:75–77, 2009.

[31] Stephen McLaughlin, Patrick McDaniel, and Dmitry
Podkuiko. Energy theft in the advanced metering
infrastructure. In 4th International Workshop on
Critical Information Infraestructures Security, 2009.

[32] Andrés Molina-Markham, Prashant Shenoy, Kevin Fu,
Emmanuel Cecchet, and David Irwin. Private memoirs
of a smart meter. In BuildSys ’10. ACM, 2010.

[33] T. Okamoto. An efficient divisible electronic cash
scheme. In CRYPTO, pages 438–451, 1995.

[34] Elias L. Quinn. Privacy and the new energy
infrastructure. SSRN eLibrary, 2009.

[35] C. Schnorr. Efficient signature generation for smart
cards. Journal of Cryptology, 4(3):239–252, 1991.

[36] N. Swamy, J. Chen, C. Fournet, P.Y. Strub, and
K.B.J. Yang. Secure distributed programming with

value-dependent types. Technical Report
MSR-TR-2010-149, Microsoft Research Cambridge,
November 2010.

[37] The Smart Grid Interoperability Panel. Smart Grid
Cyber Security Strategy and Requirements. Technical
Report 7628, National Institute of Standards and
Technology.

[38] Carmela Troncoso, George Danezis, Eleni Kosta, and
Bart Preneel. Pripayd: privacy friendly
pay-as-you-drive insurance. In Peng Ning and Ting
Yu, editors, WPES, pages 99–107. ACM, 2007.

[39] Andreas Wagner, Sebastian Speiser, Oliver Raabe,
and Andreas Harth. Linked data for a privacy-aware
smart grid. In INFORMATIK 2010 Workshop -
Informatik für die Energiesysteme der Zukunft, 2010.

60

