
Security and Privacy in IoT
CSE 708 Fall 2021

Fundamental Security and Cryptography Concepts

Department of Computer Science and Engineering
University at Buffalo

1

IoT and SecurityIoT and Security

• Why do we talk about Internet of Things and security?

CSE 708 Fall 2021

2©Marina Blanton

IoT Security BreachesIoT Security Breaches

CSE 708 Fall 2021

3©Marina Blanton

IoT Security BreachesIoT Security Breaches

CSE 708 Fall 2021

4©Marina Blanton

IoT Security BreachesIoT Security Breaches

CSE 708 Fall 2021

5©Marina Blanton

IoT Security BreachesIoT Security Breaches

CSE 708 Fall 2021

6©Marina Blanton

Security ObjectivesSecurity Objectives

• Fundamental security objectives

– Confidentiality (C): confidential or private information is not disclosed
or made available to unauthorized parties

– Integrity (I) : unauthorized modification of data is not permitted

– Availability (A): resources are promptly available to authorized parties

• Confidentiality covers data confidentiality and privacy

• Integrity covers data integrity and system integrity

CSE 708 Fall 2021

7©Marina Blanton

More on Security ObjectivesMore on Security Objectives

• Other security concepts

– Authenticity: the property of being genuine and being able to be verified
and trusted

• entity authentication: the entity is who it claims it is

• data authentication: the data is coming from a trusted source

– Access control: only authorized parties can use specific resources in
compliance with their privileges

– Non-repudiability (repudiability): inability (ability) to deny
communication or actions

– Accountability: the requirement that all actions of an entity are traced
uniquely to that entity

• covers non-repudiability, intrusion detection, fault isolation, etc.

CSE 708 Fall 2021

8©Marina Blanton

Symmetric EncryptionSymmetric Encryption

• A computationally secure symmetric key encryption scheme is defined as:

– a private-key encryption scheme consists of polynomial-time algorithms
(Gen, Enc, Dec) such that

1. Gen: on input the security parameter 1n, outputs key k

2. Enc: on input a key k and a message m ∈ {0,1}∗, outputs ciphertext
c

3. Dec: on input a key k and ciphertext c, outputs plaintext m (or fails)

– we write k ← Gen(1n), c← Enck(m), and m := Deck(c)

• this notation means that Gen and Enc are probabilistic and Dec is
deterministic

CSE 708 Fall 2021

9©Marina Blanton

Symmetric EncryptionSymmetric Encryption

• Types of attacks

– ciphertext only attack: adversary knows a number of ciphertexts

– known plaintext attack: adversary knows some pairs of ciphertexts and
corresponding plaintexts

– chosen plaintext attack: adversary knows ciphertexts for messages of its
choice

– chosen ciphertext attack: adversary knows plaintexts for ciphertexts of
its choice

• A standard minimum expected security is indistinguishable encryption under
a chosen plaintext attack

CSE 708 Fall 2021

10©Marina Blanton

Symmetric EncryptionSymmetric Encryption

• Symmetric encryption today would be instantiated with AES (Advanced
Encryption Standard)

– must use one of the secure encryption modes

– a secure authenticated encryption mode can be used if confidentiality and
integrity are simultaneously desired

CSE 708 Fall 2021

11©Marina Blanton

Message Authentication CodesMessage Authentication Codes

• A MAC scheme is defined by three algorithms:

– key generation: a randomized algorithm, which on input a security
parameter 1n, produces key a k

– MAC generation: a possibly randomized algorithm, which on input a
message m and key k, produces a tag t

– MAC verification: a deterministic algorithm, which on input a message
m, tag t, and key k, outputs a bit b

CSE 708 Fall 2021

12©Marina Blanton

Message Authentication CodesMessage Authentication Codes

• We desire for a MAC to be existentially unforgeable under an adaptive
chosen-message attack

– an adversary is allowed to query tags on messages of its choice

– at some point it outputs a pair (m, t)

– the forgery is considered successful if m hasn’t been queried before and
t is a valid tag for it

– as with encryption, security guarantees depend on the security parameter

• The most popular MAC instantiation is HMAC

CSE 708 Fall 2021

13©Marina Blanton

Hash FunctionsHash Functions

• A hash function h is an efficiently-computable function that maps an input x
of an arbitrary length to a (short) fixed-length output h(x)

• h must satisfy the following security properties:

– Preimage resistance (one-way): given h(x), it is difficult to find x

– Second preimage resistance (weak collision resistance): given x, it is
difficult to find x′ such that x′ 6= x and h(x′) = h(x)

– Collision resistance (strong collision resistance): it is difficult to find any
x, x′ such that x′ 6= x and h(x′) = h(x)

CSE 708 Fall 2021

14©Marina Blanton

Hash FunctionsHash Functions

• Generic brute force attacks on hash functions with n-bit output have the
following complexity

– difficulty of finding a preimage is 2n

– difficulty of finding a second preimage is 2n

– difficulty of finding a collision with at least 50% probability is about
2n/2

– all properties are desired for a general-use hash function

• Today a hash function is instantiated with SHA-2 (SHA-256 or higher) or
SHA-3

CSE 708 Fall 2021

15©Marina Blanton

Other Uses of Hash FunctionsOther Uses of Hash Functions

• Hash Chains

– a method for authenticating multiple user logins or packet streams

– consists of successive application of a hash function to a string

– n applications of the hash function on x is denoted by hn(x)

– this produces a hash chain of length n

• Example:

– h4(x) = h(h(h(h(x)))) produces a hash chain of length 4

CSE 708 Fall 2021

16©Marina Blanton

Hash ChainsHash Chains

• Authentication using hash chains

– user generates a hash chain of length n

– at time 1, the user sends auth1 = hn(x) (and possibly authenticates it
through other means)

– the recipient stores auth = auth1

– at time 2, the user sends auth2 = hn−1(x)

– the recipient checks whether h(auth2) = auth1 and, if so, accepts

– the recipient updated auth = auth2

– etc.

...

hn(x)x h h hh
h(x)

h
h2(x) hn−1(x)

CSE 708 Fall 2021

17©Marina Blanton

Merkle Hash TreesMerkle Hash Trees

• Merkle Hash Tree

– integrity verification mechanism for hierarchically structured documents
or databases

– the technique works on trees only

– the hash of the tree is computed in the bottom-up fashion

• Generation of a Merkle hash tree

– for a leaf node v, simply compute its hash h(v)

– for a non-leaf node u with children v1, . . ., vt, compute its hash as
h(u||h(v1)||. . .||h(vt))

CSE 708 Fall 2021

18©Marina Blanton

Merkle Hash TreesMerkle Hash Trees

• Merkle Hash Tree

h(u||h(v1)|| . . . ||h(vt))

v1 v2 vt

u

. . .
h(v1) h(v2) h(vt)

– this computation continues until the hash of the root is computed

– the hash of the root corresponds to the hash of the entire tree

• Integrity verification

– node integrity verification is much faster than hashing the entire tree

– to check node v, obtain hashes of the nodes on the path from v to the root

CSE 708 Fall 2021

19©Marina Blanton

Merkle Hash TreesMerkle Hash Trees

• Integrity verification in Merkle Hash Tree

your node

hash is given

compute the hash

v

h(root)

– compute the hash of v and combine it with other hashes on the path to
the root

– compare your hash of the root with what you are given

– the node you are authenticating doesn’t have to be a leaf

CSE 708 Fall 2021

20©Marina Blanton

Pseudorandom GeneratorPseudorandom Generator

• Let G be a (deterministic) algorithm that on input n-bit string s outputs a
string of length `(n)

• G is a pseudorandom generator if the following is true:

1. (expansion) for any n, output is longer than input: `(n) > n

2. (pseudorandomness) any PPT distinguisher D can’t tell the difference
with non-negligible probability:

|Pr[D(r) = 1]− Pr[D(G(s)) = 1]| ≤ negl(n)

where r and s are random strings of size `(n) and n

• The seed s must be treated similar to a key

CSE 708 Fall 2021

21©Marina Blanton

Pseudorandom FunctionPseudorandom Function

• An efficient function F : {0,1}n × {0,1}n → {0,1}n is a
pseudorandom function if any PPT distinguisher D cannot tell apart outputs
of Fk and f , i.e.,

|Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]| ≤ negl(n)

for a uniformly chosen function f : {0,1}n → {0,1}n and uniformly
chosen key k ← {0,1}n

• A typical instantiation of a PRF is AES

• A PRF can also be used to build a PRG

– define PRG(k) := PRFk(0)||PRFk(1)||. . .

CSE 708 Fall 2021

22©Marina Blanton

Public Key EncryptionPublic Key Encryption

• A public-key encryption scheme consists of three algorithms (Gen, Enc,
Dec) such that:

1. key generation Gen, on input security parameter 1n, outputs a
public-private key pair (pk, sk)

2. encryption Enc, on input public key pk and messages m from the
message space, outputs ciphertext c← Encpk(m)

– message space often depends on pk

3. decryption Dec, on input private key sk and ciphertext c, outputs a
message m := Decsk(c) or a special failure symbol ⊥.

• As before, the minimum security expectation is indistinguishability under a
chosen-plaintext attack

CSE 708 Fall 2021

23©Marina Blanton

Digital SignaturesDigital Signatures

• A signature scheme is defined by three algorithms (Gen, Sign,Vrfy) such
that:

1. key generation algorithm Gen, on input a security parameter 1n, outputs
a key pair (pk, sk), where pk is the public key and sk is the private key.

2. signing algorithm Sign, on input a private key sk and message
m ∈ {0,1}∗, outputs a signature σ, i.e., σ ← Signsk(m)

3. verification algorithm Vrfy, on input a public key pk, a message m, and a
signature σ, outputs a bit b, where b = 1 means the signature is valid
and b = 0 means it is invalid, i.e., b := Vrfypk(m,σ)

• We’ll want to achieve the same level of security as for MACs: existential
unforgeability under an adaptive chosen-message attack

CSE 708 Fall 2021

24©Marina Blanton

GroupsGroups

• A group G is a set of elements together with a binary operation ◦ such that

– the set is closed under the operation ◦, i.e., for every a, b ∈ G, a ◦ b is a
unique element of G

– the associative law holds, i.e., for all a, b, c ∈ G,
a ◦ (b ◦ c) = (a ◦ b) ◦ c

– the set has a unique identity element e such that a ◦ e = e ◦ a = a for
every a ∈ G

– every element has a unique inverse a−1 in G such that
a ◦ a−1 = a−1 ◦ a = e

CSE 708 Fall 2021

25©Marina Blanton

GroupsGroups

• Size of a group

– a group is finite if it has only a finite number of elements

– the number of elements of a finite group is called the order of the group

• The multiplicative group modulo m is denoted by Z∗m

• A cyclic group is one that contains an element a whose powers (using
multiplicative notation of group operation) ai and a−i make up the entire
group

• An element a with such property is called a generator of the group

CSE 708 Fall 2021

26©Marina Blanton

Discrete Logarithm ProblemDiscrete Logarithm Problem

• Discrete logarithms

– we are given a cyclic group G of order q

– then there exists an element g ∈ G such that
G = 〈g〉 = {gi : 0 ≤ i ≤ q − 1}

– for each h ∈ G there is a unique x such that gx = h

– such x is called the discrete logarithm of h with respect to g and we use
x = logg h

• The discrete logarithm problem

– in a cyclic group G with given generator g, compute unique logg h for a
random element h ∈ G

CSE 708 Fall 2021

27©Marina Blanton

Discrete Logarithm ProblemDiscrete Logarithm Problem

• Groups in which the discrete logarithm problem is hard

– multiplicative group over Z∗p with prime p with certain constraints on the
order of the group

– a subgroup of the above

• this will allow us to produce a group of prime order q

– an elliptic curve group modulo a prime p

CSE 708 Fall 2021

28©Marina Blanton

Diffie-Hellman Key ExchangeDiffie-Hellman Key Exchange

• Diffie-Hellman key exchange protocol

– Alice and Bob want to compute a shared key unknown to eavesdroppers

– Alice and Bob share public parameters: a group G of order q and a
generator g

– Alice randomly chooses x ∈ Zq and sends gx to Bob: A
gx−→ B

– Bob randomly chooses y ∈ Zq and sends gy to Alice: A
gy←− B

– the shared secret is set to gxy

• Alice computes it as (gy)x = gxy

• Bob computes it as (gx)y = gxy

– it is believed to be infeasible for an eavesdropper to compute gxy given
gx and gy

CSE 708 Fall 2021

29©Marina Blanton

Diffie-Hellman Key ExchangeDiffie-Hellman Key Exchange

• Diffie-Hellman key exchange protocol

– Alice and Bob are able to establish a shared secret with no prior
relationship

– it is believed to be infeasible for an eavesdropper to compute gxy given
gx and gy

• Diffie-Hellman problem

– Computational Diffie-Hellman (CDH) problem

• given g, gx and gy, compute gxy

– Decision Diffie-Hellman (DDH) problem

• given g, gx, gy, and gz, determine whether xy = z (modulo q)

CSE 708 Fall 2021

30©Marina Blanton

Diffie-Hellman Key ExchangeDiffie-Hellman Key Exchange

• Man-in-the-middle attack on Diffie-Hellman key exchange

Alice Mallory Bob
ga

-

ga
′

-
gb

�

gb
′

�

– Alice shares the key gab
′

with Mallory

– Bob shares the key ga
′b with Mallory

– Alice and Bob do not share any key

• A solution is to build an authenticated Diffie-Hellman key exchange

CSE 708 Fall 2021

31©Marina Blanton

Diffie-Hellman Key ExchangeDiffie-Hellman Key Exchange

• Certificates can be used to aid authentication

– each user U has a private signing key skU and the corresponding public
verification key pkU

– there is a trusted authority TA that signs keys

– user U holds a certificate cert(U) issued by the TA

cert(U) = (U, pkU , σTA(U, pkU))

• Signatures and certificates can be used to strengthen Diffie-Hellman key
exchange

– different versions of authenticated Diffie-Hellman key exchange are used
including in TLS

CSE 708 Fall 2021

32©Marina Blanton

Bilinear MapsBilinear Maps

• A one-way function e : G1 × G2 → GT is a bilinear map if the following
conditions hold:

– (Efficient) G1, G2, and GT are groups of the same prime order p, and
there exists an efficient algorithm for computing e.

– (Bilinear) For all g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp,
e(ga, g̃b) = e(g, g̃)ab.

– (Non-degenerate) If g generates G1 and g̃ generates G2, then e(g, g̃)
generates GT .

• Bilinear maps are also called groups with pairings

CSE 708 Fall 2021

33©Marina Blanton

CommitmentsCommitments

• Commitment schemes

– a commitment scheme allows one to “commit” to a message m by
computing a committed value com

– it can later be opened to reveal m

– the following properties are required to hold:

• hiding property: commitment com reveals nothing about message m

• binding property: it is infeasible to find another message m′ 6= m

such that com can be opened to m′

CSE 708 Fall 2021

34©Marina Blanton

CommitmentsCommitments

• A commitment scheme is defined by three algorithms

– Gen: randomized algorithm that takes a security parameter 1n and
outputs public parameters params

– Com: randomized algorithm that takes params and a message
m ∈ {0,1}n and outputs commitment com

• we make the randomness that Com uses explicit, denote it by r, and
use com = Com(param,m, r)

– Open: a deterministic algorithm that decommits to m by typically
disclosing m and r

• the verifier that check whether com is in fact equal to
Com(params,m, r)

CSE 708 Fall 2021

35©Marina Blanton

CommitmentsCommitments

• We can use hash functions to create a commitment scheme (in the random
oracle model):

– Gen takes a security prameter 1n and chooses an appropriate hash
funcion h

– to commit to m, choose uniform r ∈ {0,1}n and output
Com(m, r) := h(m||r)

– hiding follows because adversary can query h(∗||r) with only a
negligible probability

– binding follows from the collision resistance property of h

• A popular number-theoretic commitment is Pedersen commitment of the
form Com(m, r) = gmhr in a DDH group

CSE 708 Fall 2021

36©Marina Blanton

Homomorphic EncryptionHomomorphic Encryption

• Homomorphic encryption allows for computing on encrypted data without
access to the underlying plaintexts

– it is a special type of encryption that, given ciphertexts, permits
computation on the underlying plaintexts

Enck(m1)⊗ Enck(m2) = Enck(m1 ⊕m2)

– homomorphic encryption enables computation on encrypted data and
results in efficient protocols for certain problems

– besides Gen, Enc, and Dec, additional algorithm(s) specify how to use
homomorphic properties

CSE 708 Fall 2021

37©Marina Blanton

Homomorphic EncryptionHomomorphic Encryption

• We’ll look at two types of public-key homomorphic encryption

• The first type is called partially homomorphic encryption (or just HE for
short) and comes with one homomorphic operation

– of most significant importance to us is the ability to add (integer) values
inside ciphertexts

– we have Encpk(m1) · Encpk(m2) = Encpk(m1 +m2)

– which in turn implies Encpk(m)c = Encpk(m · c)

– Paillier encryption scheme (1999) is a popular cryptosystem of this type

CSE 708 Fall 2021

38©Marina Blanton

Homomorphic EncryptionHomomorphic Encryption

• The second type is called fully homomorphic encryption (FHE)

– it supports two types of operations on ciphertexts: addition and
multiplication

– this type enables any function to be evaluated on encrypted data

– this is suitable for secure computation outsourcing to a single server

• The drawback of FHE is its speed

– it is not always suitable for moderate or large functions or amounts of
data

CSE 708 Fall 2021

39©Marina Blanton

SummarySummary

• There are many different types of tools which can be used to build secure
solutions

• We’ll explore them as part of this course

CSE 708 Fall 2021

40©Marina Blanton

