Security and Privacy in IoT CSE 708 Fall 2021

Fundamental Security and Cryptography Concepts

Department of Computer Science and Engineering University at Buffalo

IoT and Security

• Why do we talk about Internet of Things and security?

IoT Security Breaches KIMKOMANDO[®] 400+ radio stations in the USA and on demand 🕅 WATCH NOW 🕕 LISTEN NOW 🗐 GET NEWSLETTERS 🖂 EMAIL KIM LOGIN/JOIN THE COMMUNITY Tech advice you can trust™ Q ном-тоз FIND A STATION PODCASTS Search ... NEWS VIDEOS SHOPPING REVIEWS KIM'S SHOW Piotr Adamowicz | Dreamsti **SECURITY & PRIVACY** Warning: Bug allows complete takeover of dozens of popular routers BY JAMES GELINAS, KOMANDO.COM 🔸 JUNE 20, 2020 SHARE: 💆 🚯 🖗 Your router plays multiple roles in keeping your home network together. Not only does it connect all of your Fall 2021 **CSE 708**

Security Objectives

- Fundamental security objectives
 - Confidentiality (C): confidential or private information is not disclosed or made available to unauthorized parties
 - Integrity (I) : unauthorized modification of data is not permitted
 - Availability (A): resources are promptly available to authorized parties
- Confidentiality covers data confidentiality and privacy
- Integrity covers data integrity and system integrity

More on Security Objectives

- Other security concepts
 - Authenticity: the property of being genuine and being able to be verified and trusted
 - entity authentication: the entity is who it claims it is
 - data authentication: the data is coming from a trusted source
 - Access control: only authorized parties can use specific resources in compliance with their privileges
 - Non-repudiability (repudiability): inability (ability) to deny communication or actions
 - Accountability: the requirement that all actions of an entity are traced uniquely to that entity
 - covers non-repudiability, intrusion detection, fault isolation, etc.

Symmetric Encryption

- A computationally secure symmetric key encryption scheme is defined as:
 - a private-key encryption scheme consists of polynomial-time algorithms (Gen, Enc, Dec) such that
 - 1. Gen: on input the security parameter 1^n , outputs key k
 - 2. Enc: on input a key k and a message $m \in \{0, 1\}^*$, outputs ciphertext c
 - 3. Dec: on input a key k and ciphertext c, outputs plaintext m (or fails)
 - we write $k \leftarrow \text{Gen}(1^n), c \leftarrow \text{Enc}_k(m)$, and $m := \text{Dec}_k(c)$
 - this notation means that Gen and Enc are probabilistic and Dec is deterministic

Symmetric Encryption

- Types of attacks
 - ciphertext only attack: adversary knows a number of ciphertexts
 - known plaintext attack: adversary knows some pairs of ciphertexts and corresponding plaintexts
 - chosen plaintext attack: adversary knows ciphertexts for messages of its choice
 - chosen ciphertext attack: adversary knows plaintexts for ciphertexts of its choice
- A standard minimum expected security is indistinguishable encryption under a chosen plaintext attack

Symmetric Encryption

- Symmetric encryption today would be instantiated with AES (Advanced Encryption Standard)
 - must use one of the secure encryption modes
 - a secure authenticated encryption mode can be used if confidentiality and integrity are simultaneously desired

Message Authentication Codes

- A MAC scheme is defined by three algorithms:
 - key generation: a randomized algorithm, which on input a security parameter 1^n , produces key a k
 - MAC generation: a possibly randomized algorithm, which on input a message m and key k, produces a tag t
 - MAC verification: a deterministic algorithm, which on input a message m, tag t, and key k, outputs a bit b

Message Authentication Codes

- We desire for a MAC to be existentially unforgeable under an adaptive chosen-message attack
 - an adversary is allowed to query tags on messages of its choice
 - at some point it outputs a pair (m, t)
 - the forgery is considered successful if m hasn't been queried before and t is a valid tag for it
 - as with encryption, security guarantees depend on the security parameter
- The most popular MAC instantiation is HMAC

Hash Functions

- A hash function h is an efficiently-computable function that maps an input x of an arbitrary length to a (short) fixed-length output h(x)
- *h* must satisfy the following security properties:
 - Preimage resistance (one-way): given h(x), it is difficult to find x
 - Second preimage resistance (weak collision resistance): given x, it is difficult to find x' such that $x' \neq x$ and h(x') = h(x)
 - Collision resistance (strong collision resistance): it is difficult to find any x, x' such that $x' \neq x$ and h(x') = h(x)

Hash Functions

- Generic brute force attacks on hash functions with *n*-bit output have the following complexity
 - difficulty of finding a preimage is 2^n
 - difficulty of finding a second preimage is 2^n
 - difficulty of finding a collision with at least 50% probability is about $2^{n/2}$
 - all properties are desired for a general-use hash function
- Today a hash function is instantiated with SHA-2 (SHA-256 or higher) or SHA-3

Other Uses of Hash Functions

• Hash Chains

- a method for authenticating multiple user logins or packet streams
- consists of successive application of a hash function to a string
- n applications of the hash function on x is denoted by $h^n(x)$
- this produces a hash chain of length n
- Example:

- $h^4(x) = h(h(h(h(x))))$ produces a hash chain of length 4

Hash Chains

- Authentication using hash chains
 - user generates a hash chain of length n
 - at time 1, the user sends $auth_1 = h^n(x)$ (and possibly authenticates it through other means)
 - the recipient stores $auth = auth_1$
 - at time 2, the user sends $auth_2 = h^{n-1}(x)$
 - the recipient checks whether $h(auth_2) = auth_1$ and, if so, accepts
 - the recipient updated $auth = auth_2$
 - **–** etc.

Merkle Hash Trees

- Merkle Hash Tree
 - integrity verification mechanism for hierarchically structured documents or databases
 - the technique works on trees only
 - the hash of the tree is computed in the bottom-up fashion
- Generation of a Merkle hash tree
 - for a leaf node v, simply compute its hash h(v)
 - for a non-leaf node u with children v_1, \ldots, v_t , compute its hash as $h(u||h(v_1)||\ldots||h(v_t))$

Merkle Hash Trees

• Merkle Hash Tree

- this computation continues until the hash of the root is computed
- the hash of the root corresponds to the hash of the entire tree
- Integrity verification
 - node integrity verification is much faster than hashing the entire tree
 - to check node v, obtain hashes of the nodes on the path from v to the root

Merkle Hash Trees

• Integrity verification in Merkle Hash Tree

- compute the hash of v and combine it with other hashes on the path to the root
- compare your hash of the root with what you are given
- the node you are authenticating doesn't have to be a leaf

Pseudorandom Generator

- Let G be a (deterministic) algorithm that on input n-bit string s outputs a string of length l(n)
- G is a pseudorandom generator if the following is true:
 - 1. (expansion) for any n, output is longer than input: $\ell(n) > n$
 - 2. (pseudorandomness) any PPT distinguisher *D* can't tell the difference with non-negligible probability:

 $|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| \le \operatorname{negl}(n)$

where r and s are random strings of size $\ell(n)$ and n

• The seed *s* must be treated similar to a key

Pseudorandom Function

An efficient function F: {0, 1}ⁿ × {0, 1}ⁿ → {0, 1}ⁿ is a pseudorandom function if any PPT distinguisher D cannot tell apart outputs of F_k and f, i.e.,

$$|\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]| \le \operatorname{negl}(n)$$

for a uniformly chosen function $f : \{0, 1\}^n \to \{0, 1\}^n$ and uniformly chosen key $k \leftarrow \{0, 1\}^n$

- A typical instantiation of a PRF is AES
- A PRF can also be used to build a PRG

- define $PRG(k) := PRF_k(0)||PRF_k(1)||...$

Public Key Encryption

- A public-key encryption scheme consists of three algorithms (Gen, Enc, Dec) such that:
 - 1. key generation Gen, on input security parameter 1^n , outputs a public-private key pair (pk, sk)
 - 2. encryption Enc, on input public key pk and messages m from the message space, outputs ciphertext $c \leftarrow \text{Enc}_{pk}(m)$
 - message space often depends on pk
 - 3. decryption Dec, on input private key sk and ciphertext c, outputs a message $m := \text{Dec}_{sk}(c)$ or a special failure symbol \perp .
- As before, the minimum security expectation is indistinguishability under a chosen-plaintext attack

Digital Signatures

- A signature scheme is defined by three algorithms (Gen, Sign, Vrfy) such that:
 - 1. key generation algorithm Gen, on input a security parameter 1^n , outputs a key pair (pk, sk), where pk is the public key and sk is the private key.
 - 2. signing algorithm Sign, on input a private key sk and message $m \in \{0, 1\}^*$, outputs a signature σ , i.e., $\sigma \leftarrow \text{Sign}_{sk}(m)$
 - 3. verification algorithm Vrfy, on input a public key pk, a message m, and a signature σ, outputs a bit b, where b = 1 means the signature is valid and b = 0 means it is invalid, i.e., b := Vrfy_{pk}(m, σ)
- We'll want to achieve the same level of security as for MACs: existential unforgeability under an adaptive chosen-message attack

Groups

- A group G is a set of elements together with a binary operation \circ such that
 - the set is closed under the operation \circ , i.e., for every $a, b \in G$, $a \circ b$ is a unique element of G
 - the associative law holds, i.e., for all $a, b, c \in G$, $a \circ (b \circ c) = (a \circ b) \circ c$
 - the set has a unique identity element e such that $a \circ e = e \circ a = a$ for every $a \in G$
 - every element has a unique inverse a^{-1} in G such that $a \circ a^{-1} = a^{-1} \circ a = e$

- Fall 2021

Groups

• Size of a group

- a group is finite if it has only a finite number of elements
- the number of elements of a finite group is called the order of the group
- The multiplicative group modulo m is denoted by \mathbb{Z}_m^*
- A cyclic group is one that contains an element *a* whose powers (using multiplicative notation of group operation) a^i and a^{-i} make up the entire group
- An element *a* with such property is called a generator of the group

Discrete Logarithm Problem

• Discrete logarithms

- we are given a cyclic group G of order q
- then there exists an element $g \in G$ such that $G = \langle g \rangle = \{g^i : 0 \le i \le q - 1\}$
- for each $h \in G$ there is a unique x such that $g^x = h$
- such x is called the discrete logarithm of h with respect to g and we use $x = \log_g h$
- The discrete logarithm problem
 - in a cyclic group G with given generator g, compute unique $\log_g h$ for a random element $h \in G$

©Marina Blanton

Discrete Logarithm Problem

- Groups in which the discrete logarithm problem is hard
 - multiplicative group over \mathbb{Z}_p^* with prime p with certain constraints on the order of the group
 - a subgroup of the above
 - this will allow us to produce a group of prime order q
 - an elliptic curve group modulo a prime p

- Diffie-Hellman key exchange protocol
 - Alice and Bob want to compute a shared key unknown to eavesdroppers
 - Alice and Bob share public parameters: a group G of order q and a generator g
 - Alice randomly chooses $x \in \mathbb{Z}_q$ and sends g^x to Bob: $A \xrightarrow{g^x} B$
 - Bob randomly chooses $y \in \mathbb{Z}_q$ and sends g^y to Alice: $A \xleftarrow{g^y} B$
 - the shared secret is set to g^{xy}
 - Alice computes it as $(g^y)^x = g^{xy}$
 - Bob computes it as $(g^x)^y = g^{xy}$
 - it is believed to be infeasible for an eavesdropper to compute g^{xy} given g^x and g^y

- Diffie-Hellman key exchange protocol
 - Alice and Bob are able to establish a shared secret with no prior relationship
 - it is believed to be infeasible for an eavesdropper to compute g^{xy} given g^x and g^y
- Diffie-Hellman problem
 - Computational Diffie-Hellman (CDH) problem
 - given g, g^x and g^y , compute g^{xy}
 - Decision Diffie-Hellman (DDH) problem
 - given g, g^x, g^y , and g^z , determine whether $xy = z \pmod{q}$

• Man-in-the-middle attack on Diffie-Hellman key exchange

- Alice shares the key $g^{ab'}$ with Mallory
- Bob shares the key $g^{a'b}$ with Mallory
- Alice and Bob do not share any key
- A solution is to build an authenticated Diffie-Hellman key exchange

- Certificates can be used to aid authentication
 - each user U has a private signing key sk_U and the corresponding public verification key pk_U
 - there is a trusted authority TA that signs keys
 - user U holds a certificate cert(U) issued by the TA

 $cert(U) = (U, pk_U, \sigma_{TA}(U, pk_U))$

- Signatures and certificates can be used to strengthen Diffie-Hellman key exchange
 - different versions of authenticated Diffie-Hellman key exchange are used including in TLS

Bilinear Maps

- A one-way function $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map if the following conditions hold:
 - (Efficient) \mathbb{G}_1 , \mathbb{G}_2 , and \mathbb{G}_T are groups of the same prime order p, and there exists an efficient algorithm for computing e.
 - (Bilinear) For all $g \in \mathbb{G}_1$, $\tilde{g} \in \mathbb{G}_2$, and $a, b \in \mathbb{Z}_p$, $e(g^a, \tilde{g}^b) = e(g, \tilde{g})^{ab}$.
 - (Non-degenerate) If g generates \mathbb{G}_1 and \tilde{g} generates \mathbb{G}_2 , then $e(g, \tilde{g})$ generates \mathbb{G}_T .
- Bilinear maps are also called groups with pairings

Commitments

- Commitment schemes
 - a commitment scheme allows one to "commit" to a message m by computing a committed value com
 - it can later be opened to reveal m
 - the following properties are required to hold:
 - hiding property: commitment com reveals nothing about message m
 - binding property: it is infeasible to find another message $m' \neq m$ such that com can be opened to m'

Commitments

- A commitment scheme is defined by three algorithms
 - Gen: randomized algorithm that takes a security parameter 1^n and outputs public parameters params
 - Com: randomized algorithm that takes params and a message $m \in \{0, 1\}^n$ and outputs commitment com
 - we make the randomness that Com uses explicit, denote it by r, and use com = Com(param, m, r)
 - Open: a deterministic algorithm that decommits to m by typically disclosing m and r
 - the verifier that check whether com is in fact equal to Com(params, m, r)

Commitments

- We can use hash functions to create a commitment scheme (in the random oracle model):
 - Gen takes a security prameter 1^n and chooses an appropriate hash function h
 - to commit to m, choose uniform $r \in \{0, 1\}^n$ and output Com(m, r) := h(m||r)
 - hiding follows because adversary can query h(*||r) with only a negligible probability
 - binding follows from the collision resistance property of h
- A popular number-theoretic commitment is Pedersen commitment of the form $Com(m, r) = g^m h^r$ in a DDH group

Homomorphic Encryption

- Homomorphic encryption allows for computing on encrypted data without access to the underlying plaintexts
 - it is a special type of encryption that, given ciphertexts, permits computation on the underlying plaintexts

$$\operatorname{Enc}_k(m_1) \otimes \operatorname{Enc}_k(m_2) = \operatorname{Enc}_k(m_1 \oplus m_2)$$

- homomorphic encryption enables computation on encrypted data and results in efficient protocols for certain problems
- besides Gen, Enc, and Dec, additional algorithm(s) specify how to use homomorphic properties

Homomorphic Encryption

- We'll look at two types of public-key homomorphic encryption
- The first type is called partially homomorphic encryption (or just HE for short) and comes with one homomorphic operation
 - of most significant importance to us is the ability to add (integer) values inside ciphertexts
 - we have $\operatorname{Enc}_{pk}(m_1) \cdot \operatorname{Enc}_{pk}(m_2) = \operatorname{Enc}_{pk}(m_1 + m_2)$
 - which in turn implies $\operatorname{Enc}_{pk}(m)^c = \operatorname{Enc}_{pk}(m \cdot c)$

CSE 708

- Paillier encryption scheme (1999) is a popular cryptosystem of this type

Fall 2021

©Marina Blanton

Homomorphic Encryption

- The second type is called fully homomorphic encryption (FHE)
 - it supports two types of operations on ciphertexts: addition and multiplication
 - this type enables any function to be evaluated on encrypted data
 - this is suitable for secure computation outsourcing to a single server
- The drawback of FHE is its speed
 - it is not always suitable for moderate or large functions or amounts of data

Summary

- There are many different types of tools which can be used to build secure solutions
- We'll explore them as part of this course