Applied Cryptography and Computer Security CSE 664 Spring 2020

Lecture 21: Encryption with Special Properties

Department of Computer Science and Engineering University at Buffalo

Lecture Outline

- Homomorphic encryption
- ElGamal as homomorphic encryption
- Identity-based encryption as an alternative to PKI
- Boneh-Franklin IBE scheme
- Attribute-based encryption

• Homomorphic encryption is a special type of encryption that, given ciphertexts, permits computation on the underlying plaintexts

$$\operatorname{Enc}_k(m_1) \otimes \operatorname{Enc}_k(m_2) = \operatorname{Enc}_k(m_1 \oplus m_2)$$

- Different types of homomorphic encryption are known:
 - partially homomorphic encryption

CSE 664

- supports a single operation on ciphertexts
- additively homomorphic encryption $\operatorname{Enc}_k(m_1) \cdot \operatorname{Enc}_k(m_2) = \operatorname{Enc}_k(m_1 + m_2)$
- multiplicatively homomorphic encryption $Enc_k(m_1) \cdot Enc_k(m_2) = Enc_k(m_1 \cdot m_2)$

Spring 2020 ~

- Different types of homomorphic encryption
 - fully homomorphic encryption (FHE)
 - supports two operations on ciphertexts: addition and multiplication
 - allows for any functionality to be evaluated on encrypted data
- Homomorphic encryption enables computation on encrypted data and results in efficient protocols for certain problems

- Examples of partially homomorphic encryption
 - additively homomorphic encryption: Paillier, additively homomophic ElGamal
 - property $\operatorname{Enc}_k(m_1) \cdot \operatorname{Enc}_k(m_2) = \operatorname{Enc}_k(m_1 + m_2)$ also implies $\operatorname{Enc}(m)^c = \operatorname{Enc}(m \cdot c)$
 - multiplicatively homomorphic encryption: regular ElGamal
 - fully homomorphic encryption
 - the first working construction is due to Gentry (2009)
 - many others followed
 - speed is presently an issue

Multiplicatively Homomorphic Encryption

- Recall ElGamal encryption
 - key generation
 - given a cyclic group G of order q and a generator $g \in G$, choose a random x from \mathbb{Z}_q and compute $h = g^x$
 - public key pk = (G, q, g, h) and private key sk = x
 - encryption

CSE 664

- to encrypt a message $m \in G$, choose a random number $y \in \mathbb{Z}_q$
- compute the ciphertext as $c = \text{Enc}_{pk}(m) = (g^y, m \cdot h^y)$
- It enjoys the multiplicatively homomorphic property:

Spring 2020

Additively Homomorphic Encryption

- Additively homomorphic ElGamal
 - generate the key as before
 - encrypt as $\operatorname{Enc}_{pk}(m) = (g^y, g^m \cdot h^y)$ instead of $\operatorname{Enc}_{pk}(m) = (g^y, m \cdot h^y)$
 - homomorphic properties:

CSE 664

 decryption requires solving the discrete logarithm, so the scheme can be used only with messages from a small space

- The following scheme was introduced by Pascal Paillier in 1999
 - semantically secure public-key encryption scheme
 - enjoys the additively homomorphic property
 - its security is based on the composite residuosity problem
 - let n = pq, where p and q are large primes
 - a number y is said to be an n-th residue modulo n^2 if there exists a number x with $gcd(x, n^2) = 1$ such that $y = x^n \mod n^2$
 - it is believed that deciding n-th residuosity is computationally hard
 - in what follows, $\lambda(x)$ is Carmichael's function

• for
$$n = pq, \lambda(n) = lcm(p - 1, q - 1)$$

CSE 664

- Key generation
 - choose large prime p and q and set n = pq
 - select a random base $g < n^2$ such that $gcd(L(g^{\lambda}(n) \mod n^2), n) = 1$
 - the public key is (n, g)
 - the private key is (p, q)
- Encryption

CSE 664

- to encrypt a plaintext m < n, select a random r < n
- the ciphertext is $c = g^m \cdot r^n \mod n^2$
- notice that the ciphertext is twice as long as the plaintext

Spring 2020 -

• Decryption

CSE 664

- given a ciphertext $c < n^2$
- compute the plaintext m as

$$m = \frac{L(c^{\lambda(n)} \mod n^2)}{L(g^{\lambda(n)} \mod n^2)} \mod n$$

- here
$$L(x) = \frac{x-1}{n}$$

- Homomorphic properties
 - $\operatorname{Enc}(m_1) \cdot \operatorname{Enc}(m_2) = \operatorname{Enc}(m_1 + m_2)$

-
$$\operatorname{Enc}(m)^c = \operatorname{Enc}(c \cdot m)$$

Spring 2020 -

- Homomorphic properties
 - first consider $Enc(m_1) \cdot Enc(m_2)$

 $Enc(m_1) = g^{m_1} \cdot r_1^n \mod n^2$ $Enc(m_2) = g^{m_2} \cdot r_2^n \mod n^2$

$$\operatorname{Enc}(m_1) \cdot \operatorname{Enc}(m_2) = g^{m_1} \cdot r_1^n \cdot g^{m_2} \cdot r_2^n \mod n^2$$
$$= g^{m_1 + m_2} (r_1 \cdot r_2)^n \mod n_2$$
$$= \operatorname{Enc}(m_1 + m_2)$$

- now let us compute $Enc(m)^c$

CSE 664

$$\operatorname{Enc}(m)^{c} = (g^{m} \cdot r^{n})^{c} \mod n^{2} = g^{mc} \cdot r^{nc} \mod n^{2}$$
$$= g^{(mc)}(r^{c})^{n} \mod n^{2} = g^{m_{1}} \cdot r_{1}^{n} \mod n^{2} = \operatorname{Enc}(m_{1})$$
where $m_{1} = cm$ and $r_{1} = r^{c} \mod n$

Spring 2020 -

Additively Homomorphic Encryption

- Equality testing using homomorphic encryption
 - Alice and Bob each know an important secret
 - they would like to determine whether Alice's secret s_A is the same as Bob's secret s_B without giving up any other information
 - i.e., they want to compute $s_A \stackrel{?}{=} s_B$ and obtain a true/false answer
 - this can be done using a public-key homomorphic encryption scheme
- The protocol's idea:

CSE 664

- they compute, over encrypted data, the difference between s_A and s_B and multiply it by a random value
- then after decryption, if the result is 0, the secrets are the same; and they are different otherwise

Spring 2020

Equality Testing Protocol

• Protocol steps:

CSE 664

- Alice chooses a public-private key pair (pk_A, sk_A) and gives the public key pk_A to Bob
- Alice encrypts her secret and sends $Enc_A(s_A)$ to Bob
- Bob computes $\operatorname{Enc}_A(-s_B)$ and then $X = \operatorname{Enc}_A(s_A) \cdot \operatorname{Enc}_A(-s_B) = \operatorname{Enc}_A(s_A - s_B)$
- Bob picks a large random r, computes $Y = X^r = \text{Enc}_A(r(s_A s_B))$, and sends Y to Alice
- Alice decrypts the value and announces the result
 - if she decrypted a 0, $s_A = s_B$
 - if she decrypted anything else (a random value), $s_A \neq s_B$

Spring 2020 ~

Equality Testing Protocol

- Is this protocol secure?
 - what does Bob see?
 - what does Alice see?
 - why do we need to randomize the difference?
 - the protocol works only when Alice and Bob follow the directions
 - they follow the protocol, but might try to store intermediate values and try to compute extra information using them
 - such players are called semi-honest or honest-but-curious
 - a stronger model that maintains security under arbitrary behavior is called malicious model

Spring 2020 ~

Secure Multi-Party Computation

- More generally, secure multi-party computation allows for any desired function *f* to be securely evaluated on private data without revealing it
 - a number of parties hold private inputs x_1, \ldots, x_n

CSE 664

- we evalute $f(x_1, \ldots, x_n)$ to obtain one or more outputs y_1, \ldots
- each output y_i is revealed to a party or parties entitled to learning it
- no other information about any x_i is available to any participant
 - more precisely, given your x_i and the output, you may deduce something about other x_i s
 - but no additional information is revealed during the computation
- this should hold even if a number of participants conspire against others and combine their information

Spring 2020

Secure Multi-Party Computation

- To model security, we compare a real protocol execution with an ideal execution
 - in the ideal setting, no interaction takes place
 - the computation is performed by trusted party that received all inputs and computes outputs
 - showing security consists of demonstrating that real protocol execution can be simulated by querynig the trusted party in the ideal setting
 - this implies that messages transmitted by the protocol reveal no information about inputs
 - i.e., a participant cannot tell whether an intermediate message was simulated or computed using actual data

Spring 2020 ~

Secure Multi-Party Computation

- To summarize, security is shown as follows
 - we define adversarial capabilities
 - we assume either semi-honest or malicious behavior
 - we define what fraction of participants the adversary can corrupt
 - we show that the view of the participants controlled by the adversary is indistinguishable from the view in the ideal model
 - in the ideal model, we have access only to the inputs of corrupt parties and their outputs
 - needs to ensure that this property holds regardless of who is corrupt
- Besides homomorphic encryption, other common techniques are garbled circuit evaluation and secret sharing

Spring 2020 ~

- Homomorphic encryption is a common tool used for secure computation and outsourcing
 - FHE allows for evaluation of any functionality, but is not performant
 - reduced versions that support any number of additions, but a limited number of sequential multiplications can be faster and suitable for some computations
 - this is called somewhat homomorphic encryption
 - partially HE can be used to evaluate any functionality by 2 or more parties
 - e.g., we can realize multiplication interactively

- The development of large-scale PKIs has proceeded slowly and, as of today, no global infrastructure is available
 - thus, it is logical to seek alternatives to a PKI

CSE 664

- Identity-based encryption was proposed in the 1980s as an alternative to PKIs
 - the goal is to eliminate the need for managing public keys and the requirement of verifying their authenticity
 - instead, a user identity (e.g., an email address) can be used as her public key
 - a message can be encrypted and sent to any user without having to maintain their public keys

Spring 2020

Development of Identity-Based Encryption

- The idea of using an arbitrary string as a public key was proposed in 1984 by Shamir
- Since then several constructions for identity-based encryption (IBE) have been proposed, but the first efficient working IBE scheme was published only in 2001
 - it is based on new cryptographic groups called bilinear maps or groups with pairings
- In an IBE scheme, a central trusted authority (TA) generates public parameters and a master key
- A user's identity is used as the public key, and the user obtains the corresponding private key from the TA

- An identity-based encryption scheme consists of the following algorithms
 - setup: the TA generates public parameters params and the master key mkey
 - user key generation: when a user with identity ID identifies himself to the TA, the TA computes the private decryption key of the user d_{ID}
 - often the public key of the user is computed as h(ID) and d_{ID} will correspond to h(ID) as well
 - encryption: given a message m, ID, and params, encryption of m for user ID can be computed $c = \text{Enc}_{ID}(m)$
 - decryption: given a ciphertext c encrypted for user ID, params, and d_{ID} , it can be decrypted to recover the message $m = \text{Dec}_{ID}(c)$

Spring 2020 -

Marina Blanton

CSE 664

• We'll study Boneh-Franklin IBE scheme (2001)

CSE 664

- It uses bilinear maps which are defined over elliptic curves
 - instead of using EC notation P, Q, aP, we'll use more familiar notation g, h, g^x
 - let G and G_T be two groups of order q for some large prime q
 - a bilinear map is a function $e : G \times G \to G_T$ with the following properties
 - bilinear: for any $g, h \in G$ and $a, b \in \mathbb{Z}_q^*$, $e(g^a, h^b) = e(g, h)^{ab}$
 - non-degenerate: if g is a generator of G, e(g,g) is a generator of G_T
 - computable: there is an efficient algorithm for computing e(g, h) for any g, h ∈ G

Spring 2020 -

• More about bilinear maps

CSE 664

- bilinear maps can be asymmetric $e : G_1 \times G_2 \to G_T$, where G_1 and G_2 are two different groups
- for the purpose of this lecture, we'll use only symmetric groups
- complexity assumptions in groups with bilinear maps
 - these groups are different from other groups we studied
 - the Computational DH problem is hard in G, but the Decision DH problem is easy in this group
 - given g^a and g^b , it is still difficult to compute g^{ab}
 - given g^a , g^b , and g^c , it is easy to test whether $g^c = g^{ab}$
 - such testing is done as $e(g^a, g^b) \stackrel{?}{=} e(g^c, g)$

Spring 2020 -

- A simple version of the Boneh-Franklin IBE scheme
 - setup

CSE 664

- given a security parameter k, generate a prime q and two groups G and G_T of order q with a bilinear map e : G × G → G_T
- choose a generator $g \in G$ and a secret random $s \in \mathbb{Z}_q^*$, compute $h = g^s$
- choose cryptographic hash functions $H_1 : \{0, 1\}^* \to G$ and $H_2 : G_T \to \{0, 1\}^n$ for some n
- the public parameters are params = $\{q, G, G_T, e, n, g, h, H_1, H_2\}$
- the master key is mkey = s

Spring 2020 ~

- Simple Boneh-Franklin IBE scheme (cont.)
 - user key generation
 - for a given string $ID \in \{0, 1\}^*$, compute $g_{ID} = H_1(ID)$
 - compute the private key d_{ID} as $d_{ID} = (g_{ID})^s$
 - encryption

CSE 664

- to encrypt a message m ∈ {0, 1}ⁿ under the public key ID, first compute g_{ID} = H₁(ID)
- choose a random $r \in \mathbb{Z}_q$ and set the ciphertext to

$$c = (g^r, m \oplus H_2(y_{ID}^r)), \text{ where } y_{ID} = e(g_{ID}, h)$$

Spring 2020 -

- Simple Boneh-Franklin IBE scheme (cont.)
 - decryption
 - let $c = (c_1, c_2)$ be a ciphertext encrypted using the public key ID
 - to decrypt c using d_{ID} , compute $m = c_2 \oplus H_2(e(d_{ID}, c_1))$
- Correctness
 - let's see that decryption of an encryption of m indeed yields m

$$m = c_2 \oplus H_2(e(d_{ID}, c_1))$$

- $= m \oplus H_2(y_{ID}^r) \oplus H_2(e(g_{ID}^s, g^r))$
- $= m \oplus H_2(e(g_{ID},h)^r) \oplus H_2(e(g_{ID}^s,g^r))$
- $= m \oplus H_2(e(g_{ID}, g^s)^r) \oplus H_2(e(g_{ID}^s, g^r))$
- $= m \oplus H_2(e(g_{ID},g)^{rs}) \oplus H_2(e(g_{ID},g)^{rs}) = m$

CSE 664

Spring 2020 -

• Security

CSE 664

- this scheme is a semantically secure encryption scheme under the chosen plaintext attack
- its security relies on the bilinear version of the Computational DH problem called Bilinear Diffie-Hellman (BDH) problem
 - given G and G_T of order q with a bilinear map $e : G \times G \to G_T$ and a generator $g \in G$
 - given g^a , g^b , and g^c , compute $e(g,g)^{abc}$
- it is believed that the BDH problem is hard in these groups
- security of the scheme holds only in the random oracle model due to the use of hash functions H_1 and H_2
- this scheme can be modified to be chosen ciphertext secure

```
Spring 2020 -
```

Is the PKI Problem Solved?

- Identity-based encryption allows any string to be used as a public key
- But there are still problems

CSE 664

- since all private keys are known to the TA, a single global setup is not feasible
- an IBE solution can be setup at an organization level, but not across corporations
- thus, a user will need to reliably retrieve public parameters associated with another user's public key
- Thus, if IBE schemes are used across different domains, certification at the level of organizations is needed

Spring 2020

Is the PKI Problem Solved?

- To limit the power of the TA, Goyal proposed the following solution (2007)
 - for a single public key ID, there are exponentially many corresponding decryption keys d_{ID}
 - when a user obtains her decryption key d_{ID} , the TA doesn't know what key the user obtained
 - this still allows the TA to read messages encrypted for different users
 - but if a corrupt TA issues decryption keys to two different users for the same *ID*, it is caught with high probability
- This solution still requires the TA to be trusted, but somewhat reduces the trust requirements

Spring 2020

Marina Blanton

CSE 664

Capabilities of IBE Schemes

- Since any string can be used as a public key, it can include more information than a user's ID
 - for example, a key can have a limited validity period if a date is a part of the key
 - suppose that an ID is now "email_address||year"
 - then each year the user with the corresponding email address will request a decryption key that corresponds to that string
 - in general, the sender can compose the public key by including different conditions in it
 - the recipient asks the TA to issue the corresponding decryption key (if the conditions are met)
- Composing public keys in this way has limitations, is there a more flexible way of expressing policies?

```
CSE 664
```

Spring 2020 -

- In IBE, decryption keys can be issued on a number of user attributes instead of a single identity
 - such encryption schemes are called attribute-based encryption (ABE) schemes
 - now each user has n descriptive attributes
 - the user obtains a decryption key corresponding to these attributes
 - how the decryption key is formed depends on the type of policies the scheme can support
- In the simplest case, the user is able to decrypt messages encrypted under *n* attributes if her attributes match the attributes used during encryption
 - this is equivalent to IBE schemes

Spring 2020 -

- ABE schemes exist that support the following policies
 - fuzzy or approximate matching

CSE 664

- a message is encrypted using n attributes $X = \{x_1, ..., x_n\}$
- a user has a decryption key corresponding to n attributes $Y = \{y_1, \dots, y_n\}$
- a user is able to decrypt only if $|X \cap Y| \ge d$, where $1 \ge d \ge n$ is a fixed threshold
 - in other words, X and Y must have at least d elements in common
- this type of matching is useful, e.g., for biometrics

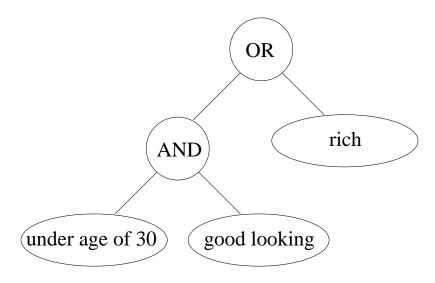
Spring 2020

- Policies that ABE schemes can support (cont.)
 - attributes issued by different authorities
 - often, we can have different attributes certified by different authorities
 - e.g., UB certifies that you are a student, DMV certifies that you have a valid driver's license, etc.
 - then it makes sense for parts of your key to be issued by different TAs
 - it turns out that it is possible to do so, but the last TA to issue the key must enforce consistency of the overall key

- Policies that ABE schemes can support (cont.)
 - ciphertext-policy ABE
 - a user still has a decryption key corresponding to her n attributes
 - but now the policies are formulas consisting of attributes, conjunctions (AND), and disjunctions (OR)
 - the ciphertext of a message encodes the sender's policy
 - if the user's attribute satisfy the formula, decryption will be successful
 - example: Alice encrypts her phone number under the following policy and places it on a matching site http://singlebobs.com

Spring 2020 -

- Policies that ABE schemes can support (cont.)
 - example policy that can be encoded in a ciphertext



- key-policy ABE

CSE 664

- a ciphertext contains n attributes
- the policy is encoded in the decryption key

Summary

- Homomorphic encryption allows for computing on encrypted data
 - FHE can be used for securely outsourcing any function
 - other types of HE are often require interactive computation
- Identity-based encryption was proposed as an alternative solution to the PKI problem
 - IBE products are commercially available, but no global infrastructure exists
 - Voltage Security Inc. was founded by the designers of the first practical IBE scheme
 - the expressive power of IBE can be significantly improved through the use of attributes

Spring 2020 -