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Lecture OutlineLecture Outline

• Homomorphic encryption

• ElGamal as homomorphic encryption

• Identity-based encryption as an alternative to PKI

• Boneh-Franklin IBE scheme

• Attribute-based encryption
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Homomorphic EncryptionHomomorphic Encryption

• Homomorphic encryption is a special type of encryption that, given

ciphertexts, permits computation on the underlying plaintexts

Enck(m1)⊗ Enck(m2) = Enck(m1 ⊕m2)

• Different types of homomorphic encryption are known:

– partially homomorphic encryption

• supports a single operation on ciphertexts

• additively homomorphic encryption

Enck(m1) · Enck(m2) = Enck(m1 +m2)

• multiplicatively homomorphic encryption

Enck(m1) · Enck(m2) = Enck(m1 ·m2)
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Homomorphic EncryptionHomomorphic Encryption

• Different types of homomorphic encryption

– fully homomorphic encryption (FHE)

• supports two operations on ciphertexts: addition and multiplication

• allows for any functionality to be evaluated on encrypted data

• Homomorphic encryption enables computation on encrypted data and results

in efficient protocols for certain problems
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Homomorphic EncryptionHomomorphic Encryption

• Examples of partially homomorphic encryption

– additively homomorphic encryption: Paillier, additively homomophic

ElGamal

• property Enck(m1) · Enck(m2) = Enck(m1 +m2) also implies

Enc(m)c = Enc(m · c)

– multiplicatively homomorphic encryption: regular ElGamal

– fully homomorphic encryption

• the first working construction is due to Gentry (2009)

• many others followed

• speed is presently an issue
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Multiplicatively Homomorphic EncryptionMultiplicatively Homomorphic Encryption

• Recall ElGamal encryption

– key generation

• given a cyclic group G of order q and a generator g ∈ G, choose a

random x from Zq and compute h = gx

• public key pk = (G, q, g, h) and private key sk = x

– encryption

• to encrypt a message m ∈ G, choose a random number y ∈ Zq

• compute the ciphertext as c = Encpk(m) = (gy,m · hy)

• It enjoys the multiplicatively homomorphic property:
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Additively Homomorphic EncryptionAdditively Homomorphic Encryption

• Additively homomorphic ElGamal

– generate the key as before

– encrypt as Encpk(m) = (gy, gm · hy) instead of

Encpk(m) = (gy,m · hy)

– homomorphic properties:

– decryption requires solving the discrete logarithm, so the scheme can be

used only with messages from a small space
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Paillier Encryption SchemePaillier Encryption Scheme

• The following scheme was introduced by Pascal Paillier in 1999

– semantically secure public-key encryption scheme

– enjoys the additively homomorphic property

– its security is based on the composite residuosity problem

• let n = pq, where p and q are large primes

• a number y is said to be an n-th residue modulo n2 if there exists a

number x with gcd(x, n2) = 1 such that y = xn mod n2

• it is believed that deciding n-th residuosity is computationally hard

– in what follows, λ(x) is Carmichael’s function

• for n = pq, λ(n) = lcm(p− 1, q − 1)
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Paillier Encryption SchemePaillier Encryption Scheme

• Key generation

– choose large prime p and q and set n = pq

– select a random base g < n2 such that

gcd(L(gλ(n) mod n2), n) = 1

– the public key is (n, g)

– the private key is (p, q)

• Encryption

– to encrypt a plaintext m < n, select a random r < n

– the ciphertext is c = gm · rn mod n2

– notice that the ciphertext is twice as long as the plaintext

CSE 664 Spring 2020

9Marina Blanton



Paillier Encryption SchemePaillier Encryption Scheme

• Decryption

– given a ciphertext c < n2

– compute the plaintext m as

m =
L(cλ(n) mod n2)

L(gλ(n) mod n2)
mod n

– here L(x) = x−1
n

• Homomorphic properties

– Enc(m1) · Enc(m2) = Enc(m1 +m2)

– Enc(m)c = Enc(c ·m)
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Paillier Encryption SchemePaillier Encryption Scheme

• Homomorphic properties

– first consider Enc(m1) · Enc(m2)

Enc(m1) = gm1 · rn1 mod n2 Enc(m2) = gm2 · rn2 mod n2

Enc(m1) · Enc(m2) = gm1 · rn1 · gm2 · rn2 mod n2

= gm1+m2(r1 · r2)
n mod n2

= Enc(m1 +m2)

– now let us compute Enc(m)c

Enc(m)c = (gm · rn)c mod n2 = gmc · rnc mod n2

= g(mc)(rc)n mod n2 = gm1 · rn1 mod n2 = Enc(m1)

where m1 = cm and r1 = rc mod n
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Additively Homomorphic EncryptionAdditively Homomorphic Encryption

• Equality testing using homomorphic encryption

– Alice and Bob each know an important secret

– they would like to determine whether Alice’s secret sA is the same as

Bob’s secret sB without giving up any other information

• i.e., they want to compute sA
?
= sB and obtain a true/false answer

– this can be done using a public-key homomorphic encryption scheme

• The protocol’s idea:

– they compute, over encrypted data, the difference between sA and sB

and multiply it by a random value

– then after decryption, if the result is 0, the secrets are the same; and they

are different otherwise
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Equality Testing ProtocolEquality Testing Protocol

• Protocol steps:

– Alice chooses a public-private key pair (pkA, skA) and gives the public

key pkA to Bob

– Alice encrypts her secret and sends EncA(sA) to Bob

– Bob computes EncA(−sB) and then

X = EncA(sA) · EncA(−sB) = EncA(sA − sB)

– Bob picks a large random r, computes Y = Xr = EncA(r(sA − sB)),

and sends Y to Alice

– Alice decrypts the value and announces the result

• if she decrypted a 0, sA = sB

• if she decrypted anything else (a random value), sA 6= sB
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Equality Testing ProtocolEquality Testing Protocol

• Is this protocol secure?

– what does Bob see?

– what does Alice see?

– why do we need to randomize the difference?

– the protocol works only when Alice and Bob follow the directions

• they follow the protocol, but might try to store intermediate values and

try to compute extra information using them

• such players are called semi-honest or honest-but-curious

• a stronger model that maintains security under arbitrary behavior is

called malicious model
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Secure Multi-Party ComputationSecure Multi-Party Computation

• More generally, secure multi-party computation allows for any desired

function f to be securely evaluated on private data without revealing it

– a number of parties hold private inputs x1, . . ., xn

– we evalute f(x1, . . ., xn) to obtain one or more outputs y1, . . .

– each output yi is revealed to a party or parties entitled to learning it

– no other information about any xi is available to any participant

• more precisely, given your xi and the output, you may deduce

something about other xis

• but no additional information is revealed during the computation

– this should hold even if a number of participants conspire against others

and combine their information
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Secure Multi-Party ComputationSecure Multi-Party Computation

• To model security, we compare a real protocol execution with an ideal

execution

– in the ideal setting, no interaction takes place

• the computation is performed by trusted party that received all inputs

and computes outputs

– showing security consists of demonstrating that real protocol execution

can be simulated by querynig the trusted party in the ideal setting

– this implies that messages transmitted by the protocol reveal no

information about inputs

• i.e., a participant cannot tell whether an intermediate message was

simulated or computed using actual data
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Secure Multi-Party ComputationSecure Multi-Party Computation

• To summarize, security is shown as follows

– we define adversarial capabilities

• we assume either semi-honest or malicious behavior

– we define what fraction of participants the adversary can corrupt

– we show that the view of the participants controlled by the adversary is

indistinguishable from the view in the ideal model

• in the ideal model, we have access only to the inputs of corrupt parties

and their outputs

• needs to ensure that this property holds regardless of who is corrupt

• Besides homomorphic encryption, other common techniques are garbled

circuit evaluation and secret sharing
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Homomorphic EncryptionHomomorphic Encryption

• Homomorphic encryption is a common tool used for secure computation and

outsourcing

– FHE allows for evaluation of any functionality, but is not performant

– reduced versions that support any number of additions, but a limited

number of sequential multiplications can be faster and suitable for some

computations

• this is called somewhat homomorphic encryption

– partially HE can be used to evaluate any functionality by 2 or more

parties

• e.g., we can realize multiplication interactively
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Identity-Based EncryptionIdentity-Based Encryption

• The development of large-scale PKIs has proceeded slowly and, as of today,

no global infrastructure is available

– thus, it is logical to seek alternatives to a PKI

• Identity-based encryption was proposed in the 1980s as an alternative to

PKIs

– the goal is to eliminate the need for managing public keys and the

requirement of verifying their authenticity

– instead, a user identity (e.g., an email address) can be used as her public

key

– a message can be encrypted and sent to any user without having to

maintain their public keys
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Development of Identity-Based EncryptionDevelopment of Identity-Based Encryption

• The idea of using an arbitrary string as a public key was proposed in 1984 by

Shamir

• Since then several constructions for identity-based encryption (IBE) have

been proposed, but the first efficient working IBE scheme was published

only in 2001

– it is based on new cryptographic groups called bilinear maps or groups

with pairings

• In an IBE scheme, a central trusted authority (TA) generates public

parameters and a master key

• A user’s identity is used as the public key, and the user obtains the

corresponding private key from the TA

CSE 664 Spring 2020

20Marina Blanton



Identity-Based EncryptionIdentity-Based Encryption

• An identity-based encryption scheme consists of the following algorithms

– setup: the TA generates public parameters params and the master key

mkey

– user key generation: when a user with identity ID identifies himself to

the TA, the TA computes the private decryption key of the user dID

• often the public key of the user is computed as h(ID) and dID will

correspond to h(ID) as well

– encryption: given a message m, ID, and params, encryption of m for

user ID can be computed c = EncID(m)

– decryption: given a ciphertext c encrypted for user ID , params, and dID ,

it can be decrypted to recover the message m = DecID(c)
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Identity-Based EncryptionIdentity-Based Encryption

• We’ll study Boneh-Franklin IBE scheme (2001)

• It uses bilinear maps which are defined over elliptic curves

– instead of using EC notation P , Q, aP , we’ll use more familiar notation

g, h, gx

– let G and GT be two groups of order q for some large prime q

– a bilinear map is a function e : G×G → GT with the following

properties

• bilinear: for any g, h ∈ G and a, b ∈ Z
∗
q, e(ga, hb) = e(g, h)ab

• non-degenerate: if g is a generator of G, e(g, g) is a generator of GT

• computable: there is an efficient algorithm for computing e(g, h) for

any g, h ∈ G
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Identity-Based EncryptionIdentity-Based Encryption

• More about bilinear maps

– bilinear maps can be asymmetric e : G1 ×G2 → GT , where G1 and

G2 are two different groups

– for the purpose of this lecture, we’ll use only symmetric groups

– complexity assumptions in groups with bilinear maps

• these groups are different from other groups we studied

• the Computational DH problem is hard in G, but the Decision DH

problem is easy in this group

• given ga and gb, it is still difficult to compute gab

• given ga, gb, and gc, it is easy to test whether gc = gab

• such testing is done as e(ga, gb)
?
= e(gc, g)
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Boneh-Franklin IBE SchemeBoneh-Franklin IBE Scheme

• A simple version of the Boneh-Franklin IBE scheme

– setup

• given a security parameter k, generate a prime q and two groups G

and GT of order q with a bilinear map e : G×G → GT

• choose a generator g ∈ G and a secret random s ∈ Z
∗
q, compute

h = gs

• choose cryptographic hash functions H1 : {0,1}∗ → G and

H2 : GT → {0,1}n for some n

• the public parameters are params = {q,G,GT , e, n, g, h,H1, H2}

• the master key is mkey = s
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Boneh-Franklin IBE SchemeBoneh-Franklin IBE Scheme

• Simple Boneh-Franklin IBE scheme (cont.)

– user key generation

• for a given string ID ∈ {0,1}∗, compute gID = H1(ID)

• compute the private key dID as dID = (gID)s

– encryption

• to encrypt a message m ∈ {0,1}n under the public key ID , first

compute gID = H1(ID)

• choose a random r ∈ Zq and set the ciphertext to

c = (gr,m⊕H2(y
r
ID

)), where yID = e(gID , h)
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Boneh-Franklin IBE SchemeBoneh-Franklin IBE Scheme

• Simple Boneh-Franklin IBE scheme (cont.)

– decryption

• let c = (c1, c2) be a ciphertext encrypted using the public key ID

• to decrypt c using dID , compute m = c2 ⊕H2(e(dID , c1))

• Correctness

– let’s see that decryption of an encryption of m indeed yields m

m = c2 ⊕H2(e(dID , c1))

= m⊕H2(y
r
ID

)⊕H2(e(g
s
ID

, gr))

= m⊕H2(e(gID , h)r)⊕H2(e(g
s
ID

, gr))

= m⊕H2(e(gID , gs)r)⊕H2(e(g
s
ID

, gr))

= m⊕H2(e(gID , g)rs)⊕H2(e(gID , g)rs) = m
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Boneh-Franklin IBE SchemeBoneh-Franklin IBE Scheme

• Security

– this scheme is a semantically secure encryption scheme under the chosen

plaintext attack

– its security relies on the bilinear version of the Computational DH

problem called Bilinear Diffie-Hellman (BDH) problem

• given G and GT of order q with a bilinear map e : G×G → GT and

a generator g ∈ G

• given ga, gb, and gc, compute e(g, g)abc

– it is believed that the BDH problem is hard in these groups

– security of the scheme holds only in the random oracle model due to the

use of hash functions H1 and H2

– this scheme can be modified to be chosen ciphertext secure
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Is the PKI Problem Solved?Is the PKI Problem Solved?

• Identity-based encryption allows any string to be used as a public key

• But there are still problems

– since all private keys are known to the TA, a single global setup is not

feasible

– an IBE solution can be setup at an organization level, but not across

corporations

– thus, a user will need to reliably retrieve public parameters associated

with another user’s public key

• Thus, if IBE schemes are used across different domains, certification at the

level of organizations is needed
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Is the PKI Problem Solved?Is the PKI Problem Solved?

• To limit the power of the TA, Goyal proposed the following solution (2007)

– for a single public key ID , there are exponentially many corresponding

decryption keys dID

– when a user obtains her decryption key dID , the TA doesn’t know what

key the user obtained

– this still allows the TA to read messages encrypted for different users

– but if a corrupt TA issues decryption keys to two different users for the

same ID , it is caught with high probability

• This solution still requires the TA to be trusted, but somewhat reduces the

trust requirements
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Capabilities of IBE SchemesCapabilities of IBE Schemes

• Since any string can be used as a public key, it can include more information

than a user’s ID

– for example, a key can have a limited validity period if a date is a part of

the key

– suppose that an ID is now “email address||year”

– then each year the user with the corresponding email address will request

a decryption key that corresponds to that string

– in general, the sender can compose the public key by including different

conditions in it

– the recipient asks the TA to issue the corresponding decryption key (if

the conditions are met)

• Composing public keys in this way has limitations, is there a more flexible

way of expressing policies?
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Attribute-Based EncryptionAttribute-Based Encryption

• In IBE, decryption keys can be issued on a number of user attributes instead

of a single identity

– such encryption schemes are called attribute-based encryption (ABE)

schemes

– now each user has n descriptive attributes

– the user obtains a decryption key corresponding to these attributes

– how the decryption key is formed depends on the type of policies the

scheme can support

• In the simplest case, the user is able to decrypt messages encrypted under n

attributes if her attributes match the attributes used during encryption

– this is equivalent to IBE schemes
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Attribute-Based EncryptionAttribute-Based Encryption

• ABE schemes exist that support the following policies

– fuzzy or approximate matching

• a message is encrypted using n attributes X = {x1, . . ., xn}

• a user has a decryption key corresponding to n attributes

Y = {y1, . . ., yn}

• a user is able to decrypt only if |X ∩ Y | ≥ d, where 1 ≥ d ≥ n is a

fixed threshold

– in other words, X and Y must have at least d elements in common

• this type of matching is useful, e.g., for biometrics
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Attribute-Based EncryptionAttribute-Based Encryption

• Policies that ABE schemes can support (cont.)

– attributes issued by different authorities

• often, we can have different attributes certified by different authorities

– e.g., UB certifies that you are a student, DMV certifies that you have

a valid driver’s license, etc.

• then it makes sense for parts of your key to be issued by different TAs

• it turns out that it is possible to do so, but the last TA to issue the key

must enforce consistency of the overall key
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Attribute-Based EncryptionAttribute-Based Encryption

• Policies that ABE schemes can support (cont.)

– ciphertext-policy ABE

• a user still has a decryption key corresponding to her n attributes

• but now the policies are formulas consisting of attributes, conjunctions

(AND), and disjunctions (OR)

• the ciphertext of a message encodes the sender’s policy

• if the user’s attribute satisfy the formula, decryption will be successful

• example: Alice encrypts her phone number under the following policy

and places it on a matching site http://singlebobs.com
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Attribute-Based EncryptionAttribute-Based Encryption

• Policies that ABE schemes can support (cont.)

– example policy that can be encoded in a ciphertext

good looking

AND rich

OR

under age of 30

– key-policy ABE

• a ciphertext contains n attributes

• the policy is encoded in the decryption key
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SummarySummary

• Homomorphic encryption allows for computing on encrypted data

– FHE can be used for securely outsourcing any function

– other types of HE are often require interactive computation

• Identity-based encryption was proposed as an alternative solution to the PKI

problem

– IBE products are commercially available, but no global infrastructure

exists

• Voltage Security Inc. was founded by the designers of the first

practical IBE scheme

– the expressive power of IBE can be significantly improved through the

use of attributes
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