Applied Cryptography and Computer Security CSE 664 Spring 2020

Lecture 20: Anonymous Communication

Department of Computer Science and Engineering University at Buffalo

1

Lecture Outline

- Anonymous communication
 - mixes

CSE 664

- anonymizing proxies
- onion routing
- Other anonymity services
 - anonymous digital money
 - anonymous access control

Spring 2020

- Often if we don't specify the name or other personal information, our communication seems anonymous
- Normally, however, this is not the case:
 - if we read a web page, the web server knows from what address the request is coming
 - it we connect to a chat channel, the server knows from what address we are coming
 - if you send an encrypted email, the endpoints still can be recovered
- But does it really matter?

- Internet surveillance techniques are known as traffic analysis
 - it can be used to infer who is talking to whom over a public network
- Knowing the source and destination of our traffic allows others to track your behavior and interests
- This can lead to various consequences

CSE 664

- an e-commerce website can use price discrimination based on your country or institution of origin
- this can even threaten your job and physical safety by revealing who and where you are
 - e.g., you are traveling abroad and connect to your employer's computers to check mail

Spring 2020 ~

- Consequences of traffic analysis
 - when abroad, you can inadvertently reveal your national origin and professional affiliation to anyone observing the network
 - this holds even if the connection is encrypted
- How does traffic analysis work?
 - Internet data packets have two parts: data payload and header used for routing
 - the payload is whatever is being sent (email message, web page, an audio file)
 - even if the payload is encrypted, traffic analysis still reveals a lot about what you are going (and possibly what you are saying)

Spring 2020 -

- Traffic analysis focuses on the header that discloses source, destination, size, timing, etc.
- The basic problem is that the recipient of your communications can see that you sent it
 - so can authorized intermediaries (i.e., Internet service providers) and sometimes unauthorized intermediaries
- A very simple form of traffic analysis might involve someone sitting between the sender and recipient on the network looking at headers
- More powerful types include:
 - spying on multiple parts of the Internet and using sophisticated statistical techniques to track the communication patterns

Spring 2020 ~

Benefits of Anonymous Communication

- Say, we can build anonymous communication channels, what does it enable us to do?
 - the basic line is that it allows organizations and individuals to share information over public networks without compromising privacy
 - individuals can keep websites from tracking them
 - individuals can connect to news sites, instant messaging services, and the like when these are blocked by their local Internet providers
 - individuals can publish websites and other services without needing to reveal the location of the site
 - individuals can conduct socially sensitive communication

CSE 664

• e.g., chat rooms and web forums for rape and abuse survivors or people with illnesses

Spring 2020 -

Benefits of Anonymous Communication

- What else do anonymous channels enable us to do?
 - journalists can communicate more safely with whistleblowers and dissidents
 - organizations can enable their workers to connect to their home websites while in foreign countries without letting others know for whom they are working
 - activist groups recommend anonymous communication as a mechanism for maintaining civil liberties online
 - corporations can perform competitive analysis and protect sensitive procurement patterns from eavesdroppers
 - law enforcement can visit and surveil websites without leaving government IP addresses in their logs

- Anonymity likes company
 - you cannot be anonymous by yourself
 - but you can have confidentiality by yourself
 - a network that protects only Department of Defense (DoD) network users won't hide that connections from that network are from DoD
 - you can be anonymous by hiding in the crowd
- There are several technical approaches to achieve anonymity
- The most popular are mixes and proxies

Spring 2020 -

Mixes

- What does a mix do?
 - it receives encrypted messages
 - it then randomly permutes and decrypts inputs

Mixes • The key property is that an adversary cannot tell which ciphertext corresponds to a given message message 2 Spring 2020 CSE 664

Mixes

• The basic mix was introduced by Chaum in 1981

CSE 664

- there is a number of servers each with its own public key pk_i
- to send a message m through servers 1, 2, and 3, envelope it using all of the servers' keys

$$c = \mathsf{Enc}_{pk_1}(\mathsf{Enc}_{pk_2}(\mathsf{Enc}_{pk_3}(m)))$$

Mixes

- Each server on the way knows only which server gave it data and which server it is giving data to
- No individual server ever knows the complete path that a data packet has taken
- One honest server preserves privacy
- Mixnets were introduced for email and other high latency applications
 - each layer of message requires expensive public-key cryptography
- But what if you need quick interaction?
 - web browsing, remote login, chat, etc.

Spring 2020 ~

Proxies

• Anonymizing proxy

CSE 664

- advantages: simple, focuses a lot of traffic for more anonymity
- disadvantages: a single point of failure, compromise, attack
- example: the Anonymizer and others
- risks of using anonymizing HTTP proxies
 - all data you send to the service must first go through the proxy
 - a malicious proxy server can record everything you send to it, including unencrypted logins and passwords
 - thus, don't use proxy servers of unknown integrity
 - if there is no choice, do not pass any sensitive information through the proxy unencrypted

Spring 2020 -

Onion Routing

- Onion Routing can be used to build traffic analysis resistant infrastructure
- The main idea is to combine advantages of mixes and proxies
 - use (expensive) public-key crypto to establish circuits
 - use (cheaper) symmetric-key crypto to move data
- Trust is distributed like in mixes
- Onion routers form an overlay network
- There are proxy interfaces between client machines and onion routing network

Spring 2020 ~

TOR

- Tor establishes routing connections called circuits
 - during circuit setup session keys are negotiated using servers' public keys
 - after some time session keys used in a circuit are refreshed to limit the impact of key compromise
- Tor circuit setup
 - the client chooses a set of onion routers to tunnel packets through
 - the client's proxy establishes a session key and circuit with the first onion router on the list
 - proxy tunnels through that circuit to extend to the second router on the list, etc.

CSE 664

Spring 2020 -

TOR

- Client applications connect and communicate over the Tor circuit
 - many applications can share it to communicate with various destinations
- Directory servers maintain a list of onion routers, their status, location, current keys, etc.
 - they also control which nodes can join the networks (helps prevent certain attacks and abuse)
- Tor underwent a lot of research and implementation efforts and is currently being offered as a Tor browser
 - see http://www.torproject.org for more detail

TOR Details

• Tor setup in more detail

CSE 664

- each user runs local software called an onion proxy to fetch directories, establish circuits, and handle connections from user applications
- each onion router maintains a long-term identity key and a short-term onion key
 - the identity key is used to sign TLS certificates, router descriptor information (address, bandwidth, etc.), and directories
 - the onion key is used to decrypt requests from users to setup a circuit and negotiate session keys
- the TLS protocol establishes a short-term link key when communicating between onion routers
 - these keys are rotated periodically and independently

• Tor circuit setup

CSE 664

- the client's onion proxy (OP) chooses routers OR_1, OR_2, \ldots
- OP engages in a Diffie-Hellman key establishment with OR₁:
 - OP sends g^{a_1} encrypted under OR₁'s key
 - OR₁ responds with g^{b_1} and a hash of $k_1 = g^{a_1 b_1}$

OP
$$\frac{\operatorname{Enc}_{pk_1}(g^{a_1})}{g^{b_1}, h(k_1||\text{``handshake'''})} \quad \operatorname{OR}_1$$

• the hash tells OP that OR_1 indeed computed $g^{a_1b_1}$

Spring 2020 ~

• Tor circuit setup

CSE 664

- OP then uses OR_1 to extend the circuit to OR_2 :
 - OP tunnels through OR_1 key exchange negotiation for OR_2
 - OR_1 relays the request to OR_2 and forwards OR_2 's reply to OP

OP
$$\frac{\operatorname{Enc}_{pk_2}(g^{a_2})}{g^{b_2}, h(k_2||\text{``handshake''})} \xrightarrow{\operatorname{Cnc}_{pk_2}(g^{a_2})} \operatorname{OR}_1 g^{b_2}, h(k_2||\text{``handshake''}) \xrightarrow{\operatorname{OR}_2}$$

- here $k_2 = g^{a_2 b_2}$ is a session key shared between OP and OR₂
- the process continues until session keys with all of the routers on the path are established

Spring 2020 -

- Established circuits use layered encryption as in mixes, but now decryption is fast
- As before, each router randomly permutes the packets
- Session keys are re-negotiated after a short period of time (e.g., one minute)

Spring 2020 -

- Tor properties
 - replay attacks are not effective
 - replayed circuit setup will result in a new session key at an honest onion router
 - perfect forward secrecy is achieved
 - recording all traffic sent to a node and later breaking its public key will not reveal encrypted content
 - it can adapt to network dynamics
 - if one router becomes unusable, building a whole new circuit is not required

Spring 2020 ~

Tor Hidden Services

- Tor makes it possible for users to hide their locations while offering services
 - such services include web publishing, instant messaging servers, etc.
 - for example, a Tor user can setup a website where people publish material without worrying about censorship
 - nobody is able to determine who is offering the site and nobody knows who is posting to it
- These services are called hidden services, and setting up a hidden service includes
 - selecting a few onion routers as introduction points
 - advertising these points on the lookup service

CSE 664

- building a circuit from each introduction point to the service

Spring 2020 -

Summary

- Anonymous communication has many motivations for use by individuals, organizations, and the government
- Early proposals include mixes and proxies
- The onion routing (Tor) project provides a real-life system for achieving anonymous communications
 - http://www.torproject.org