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Lecture OutlineLecture Outline

• Introduction to digital signatures

– definitions

– security goals

• Digital signature algorithms

– RSA signatures

– Digital Signature Algorithm (DSA)
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Digital SignaturesDigital Signatures

• A digital signature scheme is a method of signing messages stored in
electronic form

• Digital signatures can be used in very similar ways conventional signatures
are used

– paying by a credit card and signing the bill

– signing a contract

– signing a letter

• Unlike conventional signatures, we have that

– digital signatures are not physically attached to messages

– we cannot compare a digital signature to the original signature
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Digital SignaturesDigital Signatures

• A digital signature scheme consists of the following algorithms

– key generation

• produces a private signing key sk and a public verification key pk

– message signing

• given a message m and a private key sk, produces a signature σ(m)

on m

– signature verification

• given a message m, a public key pk, and a signature σ(m) on m
under the corresponding secret key sk

• the algorithm uses pk to verify whether σ(m) is a valid signature on
m
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Digital SignaturesDigital Signatures

• Digital signatures allows us to achieve the following security objectives:

– authentication

– integrity

– non-repudiation

• note that this is the main difference between signatures and MACs

• a MAC cannot be associated with a unique sender since a symmetric
shared key is used

• Are there other conceptual differences from MACs?

–

–

CSE 664 Spring 2020

5Marina Blanton



Digital SignaturesDigital Signatures

• Attack models:

– key-only attack: adversary knows only the verification key

– known message attack: adversary has a list of messages and
corresponding signatures

(m1, σ(m1)), (m2, σ(m2)), . . .

– chosen message attack: adversary can request signatures on messages of
its choice m1, m2, . . .

CSE 664 Spring 2020

6Marina Blanton



Digital SignaturesDigital Signatures

• Adversarial goals:

– total break: adversary is able to obtain the private key and can forge a
signature on any message

– selective forgery: adversary is able to create a valid signature on a
message chosen by someone else with a significant probability

– existential forgery: adversary is able to create a valid signature on at
least one message

• Signature schemes are only computationally secure

– this holds for all public-key cryptosystems

– remember why?
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Digital Signatures FormallyDigital Signatures Formally

• A signature scheme is defined by three PPT algorithms (Gen, Sign,Vrfy)

such that:

1. key generation algorithm Gen, on input a security parameter 1k, outputs
a key pair (pk, sk), where pk is the public key and sk is the private key.

2. signing algorithm Sign, on input a private key sk and message
m ∈ {0,1}∗, outputs a signature σ, i.e., σ ← Signsk(m)

3. verification algorithm Vrfy, on input a public key pk, a message m, and a
signature σ, outputs a bit b, where b = 1 means the signature is valid
and b = 0 means it is invalid, i.e., b := Vrfypk(m,σ)
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Security of Digital SignaturesSecurity of Digital Signatures

• We’ll want to achieve the same level of security as in case of MACs:
existential unforgeability under an adaptive chosen-message attack

• Let Π = (Gen, Sign,Vrfy) be a signature scheme

• The signature experiment Sig-forgeA,Π(k):

1. generate (pk, sk)← Gen(1k)

2. adversaryA is given pk and oracle access to Signsk(·); let Q denote the
set of queriesA makes to the oracle

3. A eventually outputs a pair (m,σ)

4. output 1 (A wins) iff (a) Vrfysk(m,σ) = 1 and (b) m 6∈ Q
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Security of Digital SignaturesSecurity of Digital Signatures

• Definition: A signature scheme Π = (Gen, Sign,Vrfy) is existentially
unforgeable under an adaptive chosen-message attack if any PPT adversary
A cannot win the experiment with more than negligible probability

Pr[Sig-forgeA,Π(k) = 1] ≤ negl(k)

• Another essential part of signature schemes is reliable key distribution

– what can happen?

– what are consequences?

– is this unique to signature schemes?
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Plain RSA Signature SchemePlain RSA Signature Scheme

• Key generation:

– choose large prime p and q, set n = pq

– compute ed ≡ 1 (mod φ(n))

– set the public key to (n, e) and the private key to d

• Signing:

– given message m and the key pair pk = (n, e) and sk = d, produce
the signature σ(m) as σ(m) = md mod n

• Signature verification:

– given message m, a signature on it σ(m) and the public key

pk = (n, e), verify the signature as m
?
= σ(m)e mod n
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RSA Signature SchemeRSA Signature Scheme

• Plain or “textbook” RSA signature scheme is easily insecure

– it is easy to forge a signature

• first choose σ(m)

• then compute m as σe mod n

• this is an existential forgery through a key-only attack

– producing a signature on a meaningful message using this attack is
difficult

– forgery of meaningful messages is still easy using adversary’s ability to
request signatures
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RSA Signature SchemeRSA Signature Scheme

• Insecurity of plain RSA signatures

– forging a signature on an arbitrary message

• say, adversary has (m1, σ(m1)) and (m2, σ(m2))

• it forges a signature on m3 = m1 ·m2 mod n as
σ(m3) = σ(m1) · σ(m2) mod n

• this is an existential forgery using a known message attack

• to obtain a signature on a message m of adversary’s choice:

– A requests a signature on some m1 and m2 = m/m1 mod n

– σ(m) = σ(m1) · σ(m2) mod n
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Hashing and SigningHashing and Signing

• Many modifications to plain RSA exist, but often without security proofs

• One general idea is to hash messages prior to signing

– signing a short digest is faster than long messages

– usage of proper cryptographic hash functions prevents forgeries

– now a signature on m is produced as σ(h(m))

– for RSA:

• let h : {0,1}∗ → Z∗n be a cryptographic hash function

• given message m ∈ {0,1}∗, sign as σ = (h(m))d mod n

• verification checks whether h(m) = σe mod n
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Hashing and SigningHashing and Signing

• It is crucial to use strong cryptographic hash functions

– all security properties of hash functions are required to hold to prevent
different types of attacks

• preimage resistance

• second preimage resistance

• collision resistance

• Let’s go back to public-key only attack

– choose arbitrary σ and compute m̂ = σe mod n

– then m̂ = h(m) and σ is a signature on m

– what property do we need to make this forgery hard?
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Hashing and SigningHashing and Signing

• Other attacks against hashed RSA

– the need for second preimage resistance

• assume an attacker has a valid signature σ(h(m)) on message m

• if the second preimage property of h doesn’t hold, the attacker can
find m′ 6= m with h(m) = h(m′)

• now σ(h(m)) is a valid signature on m′

– collision resistance property is similarly needed

• recall the contract signing example

• we construct many versions of a legitimate contract m and a bogus
contract m′ until a collision h(m) = h(m′) is found
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Security of RSA SignaturesSecurity of RSA Signatures

• Security of hashed RSA is proven in an idealized model where h is modeled
as a truly random function (random oracle)

If the RSA problem is hard relative to GenRSA and h is modeled as a
random oracle, then the above hashed RSA construction is secure

• Proof intuition

– as before, we need to connect a difficult problem (the RSA problem
here) to the security objective at hand

– we observe allA’s accesses to h and can set the output of h to the
desired values as needed

– our algorithm needs to guess which query to h will be used in the forgery
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Security of RSA SignaturesSecurity of RSA Signatures

• What happens in practice

– hashed RSA is popular, but what should a secure implementation use?

– a provably secure construction assumes h is a full domain function and
hash functions such as SHA-2 don’t satisfy this property

– standards such as PKCS #1 v2.2 introduce additional variations

• Both RSA encryption and signatures look similar, but a signature scheme
cannot be built from the “reverse” of an encryption scheme

– why?

– it is true that RSA is both?
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Signatures and EncryptionSignatures and Encryption

• How about combining encryption with signing?

• To encrypt a message m and produce a signature on it, we can:

1. sign and encrypt separately: send Enc(m), σ(m)

2. sign and then encrypt: transmit Enc(m||σ(m))

3. encrypt and then sign: transmit Enc(m), σ(Enc(m))

• Which one is the best?

– what do you think about the first type?
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Signatures and EncryptionSignatures and Encryption

• The third type is prone to tampering

– suppose Alice sends a message to Bob using the third type
EncB(m), σA(EncB(m)) is used

– Mallory can capture this transmission, substitute her own signature, and
resend EncB(m), σM(EncB(m))

– Bob will think that the message came from Mallory even though the
message might contain information Mallory did not possess

• Similar subtle attacks to mislead the receiver can be used with the second
type as well
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Signatures and EncryptionSignatures and Encryption

• The solution is to include identities of the sender and receiver

– compute σS(m||R)

– send EncR(S||m||σS(m||R))

– use CCA-secure encryption
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Signature AlgorithmsSignature Algorithms

• Other signature algorithms

– ElGamal signature scheme

• was published in 1985 and works in groups where the discrete
logarithm problem is hard

– Schnorr signature scheme

• modifies ElGamal signature scheme to sign a digest of a message in a
subgroup of Z∗p

– Digital Signature Algorithm (DSA)

• a signature standard adopted by NIST

• incorporates ideas from ElGamal and Schnorr signature schemes

• All of the above schemes are probabilistic

CSE 664 Spring 2020

22Marina Blanton



Design of Digital SignaturesDesign of Digital Signatures

• Long-term security for an encryption key might not be required

• Signatures, however, can be used to sign legal documents and may need to
be verified many years later after signing

– security of a signature scheme must be evaluated more carefully

• For adequate security ElGamal and RSA signature schemes leads to
signatures of a thousand or more bits

– it is possible to construct a scheme that produces shorter signatures

– Schnorr signature scheme has significantly shorter signatures

– this influenced development of the signature standard
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Digital Signature Algorithm (DSA)Digital Signature Algorithm (DSA)

• ElGamal and Schnorr signature schemes then led to another scheme called
Digital Signature Algorithm (DSA)

– the DSA was adopted as a standard in 1994

– published as FIPS PUB 186

– current revision is FIPS PUB 186-4 (released July 2013)

• Both Schnorr signature scheme and DSA

– use a subgroup of Z∗p of prime order q

– have a key of the same form

• The DSA is specified to hash the message before signing
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Digital Signature AlgorithmDigital Signature Algorithm

• The original DSA

– the modulus p is required to have length 512 ≤ |p| ≤ 1024 such that
|p| is a multiple of 64

– the size of q is 160 bits

– SHA-1 is used as the hash function

– signature on a 160-bit message digest is 320 bits (2 elements in Zq)

• DSA today

– modulus p is 1024, 2048, or 3072 bits long

– q is 160, 224, or 256 bits long

– any hash function from FIPS 180 can be used
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Digital Signature AlgorithmDigital Signature Algorithm

• Recall a common setup for groups where discrete logarithm problem is hard

– choose prime p, such that |p| ≥ 1024

– there is a sufficiently large prime q such that q|(p− 1)

– g is a generator of subgroup of Z∗p having order q

– we obtain setup for the group (p, q, g)
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Digital Signature AlgorithmDigital Signature Algorithm

• Key generation

– let (p, q, g) be a group setup for the discrete log problem to be hard

• we also want |p| and |q| from one of the predefined size pairs

– let H : {0,1}∗ → Zq be a hash function

– choose secret x ∈ Zq

– compute h ≡ gx (mod p)

– the public key is pk = (H, p, q, g, h)

– the private key is sk = x

CSE 664 Spring 2020

27Marina Blanton



Digital Signature AlgorithmDigital Signature Algorithm

• Signing

– given a message m ∈ {0,1}∗, public key pk = (H, p, q, g), and secret
key sk = x

– choose y ∈ Z∗q uniformly at random

– compute the signature σ(m) = (σ1, σ2), where

σ1 = (gy mod p) mod q and

σ2 = (H(m) + xσ1)y−1 mod q

– if σ1 = 0 or σ2 = 0, a new value of y should be chosen
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Digital Signature AlgorithmDigital Signature Algorithm

• Signature verification

– given a message m ∈ {0,1}∗, signature σ(m) = (σ1, σ2) and
pk = (H, p, q, g, h)

– verification involves computing

• e1 = H(m)σ−1
2 mod q

• e2 = σ1σ
−1
2 mod q

– then test (ge1he2 mod p) mod q
?
= σ1

– output 1 (valid) iff verification succeeds
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Digital Signature AlgorithmDigital Signature Algorithm

• Correctness property

– the signature σ(m) = (σ1, σ2) is

σ1 = (gy mod p) mod q and σ2 = (H(m) + xσ1)y−1 mod q

– verification involves

e1 = H(m)σ−1
2 mod q and e2 = σ1σ

−1
2 mod q

– the test computes

(ge1he2 mod p) mod q =
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Digital Signature AlgorithmDigital Signature Algorithm

• Security of DSA

– no proof of security under the discrete logarithm problem exists

– no proof of security even in the idealized model when H is completely
random

• No serious attacks have been found

– the use of a good hash function is important

• DSS is rather popular in practice

• The standard also specifies elliptic curve version ECDSA
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Beyond the Traditional SignaturesBeyond the Traditional Signatures

• Besides the traditional signature schemes, many other types of signature
schemes with special properties exist

• Based on their goals, we divide them into the following categories:

– stronger security properties

• fail-stop signatures

• undeniable signatures

• forward secure signatures

• key-insulated signatures
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Beyond the Traditional SignaturesBeyond the Traditional Signatures

• Signature types (cont.)

– achieving anonymity or repudiation

• blind signatures

• ring signatures

• group signatures

• designated verifier signatures

– constrained environments

• aggregate signatures

– delegation of signing rights

• proxy signatures
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