Applied Cryptography and Computer Security
CSE 664 Spring 2020

Lecture 17: Digital Signatures

Department of Computer Science and Engineering
University at Buffalo
Lecture Outline

• Introduction to digital signatures
 – definitions
 – security goals

• Digital signature algorithms
 – RSA signatures
 – Digital Signature Algorithm (DSA)
A digital signature scheme is a method of signing messages stored in electronic form.

Digital signatures can be used in very similar ways conventional signatures are used:
- paying by a credit card and signing the bill
- signing a contract
- signing a letter

Unlike conventional signatures, we have that:
- digital signatures are not physically attached to messages
- we cannot compare a digital signature to the original signature
Digital Signatures

- A digital signature scheme consists of the following algorithms
 - key generation
 - produces a private signing key sk and a public verification key pk
 - message signing
 - given a message m and a private key sk, produces a signature $\sigma(m)$ on m
 - signature verification
 - given a message m, a public key pk, and a signature $\sigma(m)$ on m under the corresponding secret key sk
 - the algorithm uses pk to verify whether $\sigma(m)$ is a valid signature on m
Digital Signatures

- Digital signatures allows us to achieve the following security objectives:
 - authentication
 - integrity
 - non-repudiation
 - note that this is the main difference between signatures and MACs
 - a MAC cannot be associated with a unique sender since a symmetric shared key is used

- Are there other conceptual differences from MACs?
 -
 -

CSE 664

Marina Blanton

Spring 2020
• Attack models:
 – **key-only attack**: adversary knows only the verification key
 – **known message attack**: adversary has a list of messages and corresponding signatures
 \[(m_1, \sigma(m_1)), (m_2, \sigma(m_2)), \ldots\]
 – **chosen message attack**: adversary can request signatures on messages of its choice \(m_1, m_2, \ldots\)
• Adversarial goals:
 – total break: adversary is able to obtain the private key and can forge a signature on any message
 – selective forgery: adversary is able to create a valid signature on a message chosen by someone else with a significant probability
 – existential forgery: adversary is able to create a valid signature on at least one message

• Signature schemes are only computationally secure
 – this holds for all public-key cryptosystems
 – remember why?
A signature scheme is defined by three PPT algorithms (Gen, Sign, Vrfy) such that:

1. **key generation algorithm** Gen, on input a security parameter 1^k, outputs a key pair (pk, sk), where pk is the public key and sk is the private key.

2. **signing algorithm** Sign, on input a private key sk and message $m \in \{0, 1\}^*$, outputs a signature σ, i.e., $\sigma \leftarrow \text{Sign}_{sk}(m)$

3. **verification algorithm** Vrfy, on input a public key pk, a message m, and a signature σ, outputs a bit b, where $b = 1$ means the signature is valid and $b = 0$ means it is invalid, i.e., $b := \text{Vrfy}_{pk}(m, \sigma)$
Security of Digital Signatures

• We’ll want to achieve the same level of security as in case of MACs: existential unforgeability under an adaptive chosen-message attack

• Let $\Pi = (\text{Gen}, \text{Sign}, \text{Vrfy})$ be a signature scheme

• The signature experiment $\text{Sig-fge}_{\mathcal{A},\Pi}(k)$:
 1. generate $(pk, sk) \leftarrow \text{Gen}(1^k)$
 2. adversary \mathcal{A} is given pk and oracle access to $\text{Sign}_{sk}(\cdot)$; let Q denote the set of queries \mathcal{A} makes to the oracle
 3. \mathcal{A} eventually outputs a pair (m, σ)
 4. output 1 (\mathcal{A} wins) iff (a) $\text{Vrfy}_{sk}(m, \sigma) = 1$ and (b) $m \not\in Q$
Security of Digital Signatures

- **Definition:** A signature scheme \(\Pi = (\text{Gen}, \text{Sign}, \text{Vrfy}) \) is **existentially unforgeable under an adaptive chosen-message attack** if any PPT adversary \(\mathcal{A} \) cannot win the experiment with more than negligible probability

\[
\Pr[\text{Sig-forge}_\mathcal{A},\Pi(k) = 1] \leq \text{negl}(k)
\]

- Another essential part of signature schemes is **reliable key distribution**
 - what can happen?
 - what are consequences?
 - is this unique to signature schemes?
Plain RSA Signature Scheme

- **Key generation:**
 - choose large prime \(p \) and \(q \), set \(n = pq \)
 - compute \(ed \equiv 1 \pmod{\phi(n)} \)
 - set the public key to \((n, e) \) and the private key to \(d \)

- **Signing:**
 - given message \(m \) and the key pair \(pk = (n, e) \) and \(sk = d \), produce the signature \(\sigma(m) \) as \(\sigma(m) = m^d \mod n \)

- **Signature verification:**
 - given message \(m \), a signature on it \(\sigma(m) \) and the public key \(pk = (n, e) \), verify the signature as \(m \equiv \sigma(m)^e \mod n \)
Plain or “textbook” RSA signature scheme is easily insecure

- it is easy to forge a signature
 - first choose $\sigma(m)$
 - then compute m as $\sigma^e \mod n$
 - this is an existential forgery through a key-only attack
- producing a signature on a meaningful message using this attack is difficult
- forgery of meaningful messages is still easy using adversary’s ability to request signatures
• Insecurity of plain RSA signatures

 – forging a signature on an arbitrary message
 • say, adversary has \((m_1, \sigma(m_1))\) and \((m_2, \sigma(m_2))\)
 • it forges a signature on \(m_3 = m_1 \cdot m_2 \mod n\) as
 \[\sigma(m_3) = \sigma(m_1) \cdot \sigma(m_2) \mod n\]
 • this is an existential forgery using a known message attack
 • to obtain a signature on a message \(m\) of adversary’s choice:
 – \(A\) requests a signature on some \(m_1\) and \(m_2 = m/m_1 \mod n\)
 – \(\sigma(m) = \sigma(m_1) \cdot \sigma(m_2) \mod n\)
Many modifications to plain RSA exist, but often without security proofs

One general idea is to hash messages prior to signing

- signing a short digest is faster than long messages
- usage of proper cryptographic hash functions prevents forgeries
- now a signature on m is produced as $\sigma(h(m))$
- for RSA:
 - let $h : \{0, 1\}^* \rightarrow \mathbb{Z}_n^*$ be a cryptographic hash function
 - given message $m \in \{0, 1\}^*$, sign as $\sigma = (h(m))^d \mod n$
 - verification checks whether $h(m) = \sigma^e \mod n$
• It is crucial to use strong cryptographic hash functions
 – all security properties of hash functions are required to hold to prevent different types of attacks
 • preimage resistance
 • second preimage resistance
 • collision resistance

• Let’s go back to public-key only attack
 – choose arbitrary σ and compute $\tilde{m} = \sigma^e \mod n$
 – then $\tilde{m} = h(m)$ and σ is a signature on m
 – what property do we need to make this forgery hard?
• Other attacks against hashed RSA

 – the need for second preimage resistance

 • assume an attacker has a valid signature $\sigma(h(m))$ on message m

 • if the second preimage property of h doesn’t hold, the attacker can find $m' \neq m$ with $h(m) = h(m')$

 • now $\sigma(h(m))$ is a valid signature on m'

 – collision resistance property is similarly needed

 • recall the contract signing example

 • we construct many versions of a legitimate contract m and a bogus contract m' until a collision $h(m) = h(m')$ is found
Security of hashed RSA is proven in an idealized model where h is modeled as a truly random function (random oracle)

If the RSA problem is hard relative to GenRSA and h is modeled as a random oracle, then the above hashed RSA construction is secure

Proof intuition

- as before, we need to connect a difficult problem (the RSA problem here) to the security objective at hand
- we observe all \mathcal{A}’s accesses to h and can set the output of h to the desired values as needed
- our algorithm needs to guess which query to h will be used in the forgery
Security of RSA Signatures

- What happens in practice
 - hashed RSA is popular, but what should a secure implementation use?
 - a provably secure construction assumes \(h \) is a full domain function and hash functions such as SHA-2 don’t satisfy this property
 - standards such as PKCS #1 v2.2 introduce additional variations

- Both RSA encryption and signatures look similar, but a signature scheme cannot be built from the “reverse” of an encryption scheme
 - why?
 - it is true that RSA is both?
• How about combining encryption with signing?

• To encrypt a message m and produce a signature on it, we can:
 1. sign and encrypt separately: send $\text{Enc}(m), \sigma(m)$
 2. sign and then encrypt: transmit $\text{Enc}(m || \sigma(m))$
 3. encrypt and then sign: transmit $\text{Enc}(m), \sigma(\text{Enc}(m))$

• Which one is the best?
 – what do you think about the first type?
• The third type is prone to tampering
 – suppose Alice sends a message to Bob using the third type
 $\text{Enc}_B(m), \sigma_A(\text{Enc}_B(m))$ is used
 – Mallory can capture this transmission, substitute her own signature, and
 resend $\text{Enc}_B(m), \sigma_M(\text{Enc}_B(m))$
 – Bob will think that the message came from Mallory even though the
 message might contain information Mallory did not possess

• Similar subtle attacks to mislead the receiver can be used with the second
 type as well
The solution is to include identities of the sender and receiver

- compute $\sigma_S(m||R)$
- send $\text{Enc}_R(S||m||\sigma_S(m||R))$
- use CCA-secure encryption
• Other signature algorithms

 – **ElGamal signature scheme**
 • was published in 1985 and works in groups where the discrete logarithm problem is hard

 – **Schnorr signature scheme**
 • modifies ElGamal signature scheme to sign a digest of a message in a subgroup of \mathbb{Z}_p^*

 – **Digital Signature Algorithm (DSA)**
 • a signature standard adopted by NIST
 • incorporates ideas from ElGamal and Schnorr signature schemes

• All of the above schemes are probabilistic
Design of Digital Signatures

- Long-term security for an encryption key might not be required.

- Signatures, however, can be used to sign legal documents and may need to be verified many years later after signing:
 - Security of a signature scheme must be evaluated more carefully.

- For adequate security ElGamal and RSA signature schemes leads to signatures of a thousand or more bits:
 - It is possible to construct a scheme that produces shorter signatures.
 - Schnorr signature scheme has significantly shorter signatures.
 - This influenced development of the signature standard.
Digital Signature Algorithm (DSA)

- ElGamal and Schnorr signature schemes then led to another scheme called Digital Signature Algorithm (DSA)
 - the DSA was adopted as a standard in 1994
 - published as FIPS PUB 186
 - current revision is FIPS PUB 186-4 (released July 2013)

- Both Schnorr signature scheme and DSA
 - use a subgroup of \mathbb{Z}_p^* of prime order q
 - have a key of the same form

- The DSA is specified to hash the message before signing
Digital Signature Algorithm

- The original DSA
 - the modulus p is required to have length $512 \leq |p| \leq 1024$ such that $|p|$ is a multiple of 64
 - the size of q is 160 bits
 - SHA-1 is used as the hash function
 - signature on a 160-bit message digest is 320 bits (2 elements in \mathbb{Z}_q)

- DSA today
 - modulus p is 1024, 2048, or 3072 bits long
 - q is 160, 224, or 256 bits long
 - any hash function from FIPS 180 can be used
Recall a common setup for groups where discrete logarithm problem is hard:

- Choose prime p, such that $|p| \geq 1024$
- There is a sufficiently large prime q such that $q|(p - 1)$
- g is a generator of subgroup of \mathbb{Z}_p^* having order q
- We obtain setup for the group (p, q, g)
Key generation

- let \((p, q, g)\) be a group setup for the discrete log problem to be hard
 - we also want \(|p|\) and \(|q|\) from one of the predefined size pairs
- let \(H : \{0, 1\}^* \rightarrow \mathbb{Z}_q\) be a hash function
- choose secret \(x \in \mathbb{Z}_q\)
- compute \(h \equiv g^x \pmod{p}\)
- the public key is \(pk \equiv (H, p, q, g, h)\)
- the private key is \(sk \equiv x\)
• Signing

- given a message $m \in \{0, 1\}^*$, public key $pk = (H, p, q, g)$, and secret key $sk = x$
- choose $y \in \mathbb{Z}_q^*$ uniformly at random
- compute the signature $\sigma(m) = (\sigma_1, \sigma_2)$, where

$$\sigma_1 = (g^y \mod p) \mod q \text{ and } \sigma_2 = (H(m) + x\sigma_1)y^{-1} \mod q$$

- if $\sigma_1 = 0$ or $\sigma_2 = 0$, a new value of y should be chosen
Digital Signature Algorithm

- Signature verification
 - given a message \(m \in \{0, 1\}^* \), signature \(\sigma(m) = (\sigma_1, \sigma_2) \) and \(pk = (H, p, q, g, h) \)
 - verification involves computing
 - \(e_1 = H(m)\sigma_2^{-1} \mod q \)
 - \(e_2 = \sigma_1\sigma_2^{-1} \mod q \)
 - then test \((g^{e_1}h^{e_2} \mod p) \mod q \overset{?}{=} \sigma_1 \)
 - output 1 (valid) iff verification succeeds
• Correctness property

 – the signature $\sigma(m) = (\sigma_1, \sigma_2)$ is

 $\sigma_1 = (g^y \mod p) \mod q$ and $\sigma_2 = (H(m) + x\sigma_1)y^{-1} \mod q$

 – verification involves

 $e_1 = H(m)\sigma_2^{-1} \mod q$ and $e_2 = \sigma_1\sigma_2^{-1} \mod q$

 – the test computes

 $(g^{e_1}h^{e_2} \mod p) \mod q =$
Digital Signature Algorithm

• Security of DSA
 – no proof of security under the discrete logarithm problem exists
 – no proof of security even in the idealized model when H is completely random

• No serious attacks have been found
 – the use of a good hash function is important

• DSS is rather popular in practice

• The standard also specifies elliptic curve version ECDSA
• Besides the traditional signature schemes, many other types of signature schemes with special properties exist.

• Based on their goals, we divide them into the following categories:
 - stronger security properties
 • fail-stop signatures
 • undeniable signatures
 • forward secure signatures
 • key-insulated signatures
Beyond the Traditional Signatures

- Signature types (cont.)
 - achieving anonymity or repudiation
 - blind signatures
 - ring signatures
 - group signatures
 - designated verifier signatures
 - constrained environments
 - aggregate signatures
 - delegation of signing rights
 - proxy signatures