Lecture 16: Second Degree Congruences and Security Applications

Department of Computer Science and Engineering
University at Buffalo
• Our coverage of public-key encryption so far included RSA and ElGamal

• Today we look at second degree congruences
 – modulo a prime
 – modulo a composite

• The security implications are:
 – ElGamal encryption needs to be modified to eliminate information leakage about encrypted plaintexts
 – factoring of an RSA modulus is possible given knowledge of e and d
Second degree congruences

- we already learned about solving linear congruences
- now we’ll look into quadratic congruences
- in the most general form they are $ax^2 + bx + c \equiv 0 \pmod{n}$
- we need to learn how to take square root modulo n
- in most cases we’ll deal with congruences of the form $x^2 \equiv a \pmod{n}$

Let’s first look at the case when the modulus p is prime
Second Degree Congruences

- Solving $x^2 \equiv a \pmod{p}$ for a prime p
 - when $p = 2$, solving the congruence is easy
 - there is always one solution
 - if $a = 0$, $x \equiv 0 \pmod{2}$
 - if $a = 1$, $x \equiv 1 \pmod{2}$
 - when p is an odd prime, the congruence has solutions for some values of a and not for other values of a
 - example for $p = 11$
 - $x : 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$
 - $x^2 \pmod{11} : 0 \ 1 \ 4 \ 9 \ 5 \ 3 \ 3 \ 5 \ 9 \ 4 \ 1$
 - when $a = 2, 6, 7, 8, 10$, the congruence doesn’t have solutions
Second Degree Congruences

- **Quadratic residues**
 - let n be a positive integer and a be relatively prime to n
 - a is called a **quadratic residue (QR)** modulo n if the congruence $x^2 \equiv a \pmod{n}$ has a solution
 - a is called a **quadratic nonresidue (QNR)** modulo n if the congruence $x^2 \equiv a \pmod{n}$ has no solution
 - in the example above:
 - 1, 3, 4, 5, and 9 are QRs modulo 11
 - 2, 6, 7, 8, and 10 are QNRs modulo 11
 - the class 0 is excluded from this definition
• **Theorem: Square roots of 1 modulo p**
 - if p is prime, then $x^2 \equiv 1 \pmod{p}$ if and only if $x \equiv \pm 1 \pmod{p}$

• **Theorem: Number of solutions modulo p**
 - let p be an odd prime and a not be a multiple of p
 - then the congruence $x^2 \equiv a \pmod{p}$ has either no solution or two solutions modulo p

• **Theorem: Number of QRs and QNRs**
 - if p is an odd prime, there are exactly $(p - 1)/2$ QRs among $1, 2, \ldots, p - 1$ and the same number of QNRs
Second Degree Congruences

- **Legendre symbol**
 - let \(p \) be an odd prime and \(a \) be an integer
 - the Legendre symbol \((a/p)\) is defined to be \(+1\) if \(a \) is a QR modulo \(p \),
 \(-1\) if \(a \) is a QNR modulo \(p \), and \(0\) if \(p \) divides \(a \)

- **Euler’s test for \(a \) being a QR**
 - let \(p \) be an odd prime and \(a \) an integer not divisible by \(p \)
 - then \(a^{(p-1)/2} \mod p \) is \(1\) or \(p - 1\)
 - if it is \(1\), \(a \) is a QR modulo \(p \); if it is \(p - 1\), \(a \) is a QNR modulo \(p \)

\[
\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}
\]
Properties of the Legendre symbol

- the number of solutions to \(x^2 \equiv a \pmod{p} \) is \(1 + (a/p) \)
- \((a/p) \equiv a^{(p-1)/2} \pmod{p} \)
- \((ab/p) = (a/p)(b/p) \)
- if \(a \equiv b \pmod{p} \), then \((a/p) = (b/p) \)
- \((1/p) = +1 \) and \((-1/p) = (-1)^{(p-1)/2} \)
- if \(p \nmid a \), then \((a^2/p) = +1 \) and \((a^2b/p) = (b/p) \)

Example: is 5 a QR modulo 13? how about 5 \cdot 2?

Let’s see what implications this has on ElGamal encryption
Care must be taken when mapping messages to group elements

- one (least significant) bit of discrete logarithm is easy to compute for elements of \mathbb{Z}_p^*
- given a ciphertext, an adversary can tell whether the underlying plaintext was a QR modulo p or not
- this gives the adversary an easy way to win the indistinguishability game
- to ensure indistinguishability, we need to make sure that all values we use will have the same value for that bit
- thus, we encode messages as $x^2 \mod p$ only
ElGamal Encryption

- Encryption with ElGamal becomes
 - given a message m, interpret it as an integer between 1 and q, where $q = (p - 1)/2$
 - compute $\hat{m} = m^2 \mod p$ and encrypt \hat{m}
 - upon decryption:
 - obtain \hat{m}
 - compute square roots m_1, m_2 of \hat{m} modulo p
 - set m to the unique $1 \leq m_i \leq q$

- There are alternative ways of achieving the same goal
 - e.g., setup encryption over a subgroup of \mathbb{Z}_p^* of prime order q, where $p = 2q + 1$
• **The Jacobi symbol** (for composite moduli)

 – let \(n \) be an integer with prime factorization \(n = \prod_{i=1}^{k} p_i^{e_i} \)

 – the Jacobi symbol \((a/n)\) is defined as

\[
(a/n) = \prod_{i=1}^{k} (a/p_i)^{e_i}
\]

where \((a/p_i)\) are Legendre symbols

• If \(\gcd(a, n) > 1 \), then some prime factor \(p \) of \(n \) divides \(a \) \(\Rightarrow \) \((a/p) = 0 \) \(\Rightarrow \) \((a/n) = 0 \)

• **Example**: compute the Jacobi symbol of 3 modulo 70

\[
\left(\frac{3}{70}\right) = \left(\frac{3}{2}\right) \left(\frac{3}{5}\right) \left(\frac{3}{7}\right)
\]
The Jacobi symbol shares many properties with the Legendre symbol

Properties of the Jacobi symbol

- if \(a \equiv b \pmod{n} \), then \((a/n) = (b/n)\)
- \((ab/n) = (a/n)(b/n)\)
- \((a/nn') = (a/n)(a/n')\)
- if \(\gcd(a, n) = 1\), then \((a^2/n) = (a/n^2) = +1\),
 \((a^2b/n) = (b/n)\) and \((a/(n^2n')) = (a/n')\)

There are also properties with respect to \((-1/n), (2/n)\) and other values
Solving Second Degree Congruences

• We know how to decide whether $x^2 \equiv a \pmod{n}$ has solutions, but how about finding them?

• Theorem

 – if $p \equiv 3 \pmod{4}$ is prime and a is a QR modulo p, then the solutions to $x^2 \equiv a \pmod{p}$ are $x \equiv \pm(a^{(p+1)/4}) \pmod{p}$

 – primes $p \equiv 3 \pmod{4}$ are called Blum primes

• Theorem

 – if $p \equiv 5 \pmod{8}$ is prime and a is a QR modulo p, then the solutions to $x^2 \equiv a \pmod{p}$ are $\pm x$, where x is computed as:

 \[
x \equiv a^{(p+3)/8} \pmod{p}
 \]

 if $(x^2 \not\equiv a \pmod{p})\ x = x \cdot 2^{(p-1)/4} \pmod{p}$

CSE 664 — Spring 2020

Marina Blanton
Solving Second Degree Congruences

• **Example:** solve $x^2 \equiv 6 \pmod{47}$
 - first compute $(6/47) = +1$, so 6 is a QR modulo 47
 - because $47 \equiv 3 \pmod{4}$,
 $x \equiv \pm 6^{(47+1)/4} \equiv \pm 6^{12} \equiv \pm 37 \pmod{47}$

• **Theorem:** square roots modulo pq
 - let p and q be distinct odd primes and a be a QR modulo pq
 - then there are exactly 4 solutions to $x^2 \equiv a \pmod{pq}$
 - there are 2 solutions to $x^2 \equiv a \pmod{p}$ and $x^2 \equiv a \pmod{q}$ each
 - when we combine them using the CRT, we obtain 4 solutions
Attacks on RSA

• We can also factor n if e and d are known

• We first look at the fact that if $n = pq$ then $x^2 \equiv 1 \pmod{n}$ has 4 solutions $< n$

 – $x^2 \equiv 1 \pmod{n}$ iff both $x^2 \equiv 1 \pmod{p}$ and $x^2 \equiv 1 \pmod{q}$

 – two trivial solutions 1 and $n - 1$
 • 1 is the solution when $x \equiv 1 \pmod{p}$ and $x \equiv 1 \pmod{q}$
 • $n - 1$ is the solution when $x \equiv -1 \pmod{p}$ and $x \equiv -1 \pmod{q}$

 – two other solutions
 • a solution when $x \equiv 1 \pmod{p}$ and $x \equiv -1 \pmod{q}$
 • a solution when $x \equiv -1 \pmod{p}$ and $x \equiv 1 \pmod{q}$
Attacks on RSA

• Fact: if $n = pq$ then $x^2 \equiv 1 \pmod{n}$ has 4 solutions

 – example: $n = 3 \cdot 5 = 15$

 • $x^2 \equiv 1 \pmod{15}$ has solutions 1, 4, 11, 14

 – knowing a non-trivial solution to $x^2 \equiv 1 \pmod{n}$, compute $gcd(x + 1, n)$ and $gcd(x - 1, n)$

 • they will give factors p and q

 – example: 4 and 11 are solutions to $x^2 \equiv 1 \pmod{15}$

 • $gcd(4 + 1, 15) = 5; gcd(4 - 1, 15) = 3$

 • $gcd(11 + 1, 15) = 3; gcd(11 - 1, 15) = 5$
Attacks on RSA

• Now assume that we know e and d such that $ed \equiv 1 \pmod{\phi(n)}$

• To factor n using this knowledge:

 – write $ed - 1 = 2^s r$ where r is odd

 – choose w at random such that $1 < w < n - 1$

 – if w is not relatively prime to n, return $gcd(w, n)$

 – otherwise notice that $w^{2^s r} \equiv w^{1-1} \equiv 1 \pmod{n}$

 – compute $w^r, w^{2r}, w^{2^2 r}, \ldots$ until we find $w^{2^t r} \equiv 1 \pmod{n}$

 – $w^{2^{t-1} r}$ is then a non-trivial solution to the equation which gives factorization of n

 – if $w^r \equiv 1 \pmod{n}$ or $w^{2^t r} \equiv -1 \pmod{n}$, try a different w
Attacks on RSA

- Example of factoring n when e and d are known
 - we are given $n = 2773$, $e = 17$, and $d = 157$
 - compute $ed - 1 = 2668 = 2^2 \cdot 667 \Rightarrow r = 667$
 - pick a random w and compute $w^r \mod n$
 - $w = 7$, $7^{667} \mod 2773 = 1$, discard
 - $w = 8$, $8^{667} \mod 2773 = 471$,
 $w^{2r} \mod n = 471^2 \mod 2773 = 1 \Rightarrow 471$ is a non-trivial square root of $1 \mod 2773$
 - now compute $gcd(471 + 1, 2773) = 59$ and $gcd(471 - 1, 2773) = 47$
 - thus $p = 59$ and $q = 47$
Summary

- Second degree congruences are among many number theoretic results discovered over time

- Their knowledge leads to attacks on public-key encryption and other schemes

- Awareness of such attacks is needed for secure implementation of respective algorithms