Applied Cryptography and Computer Security
CSE 664 Spring 2020

Lecture 14: Security of RSA

Department of Computer Science and Engineering
University at Buffalo
Summary of RSA

• **Key generation**

 – choose prime p, q, and e; set $n = pq$

 – public key is $pk = (e, n)$

 – private key is $sk = d$, where $d \equiv e^{-1} \pmod{\phi(n)}$

• **Encryption**

 – given a message $0 < m < n$

 – encrypt as $c = E_{pk}(m) = m^e \pmod{n}$

• **Decryption**

 – given ciphertext c

 – decrypt as $m = D_{sk}(c) = c^d \pmod{n}$
The security of the RSA encryption schemes depends on the hardness of the RSA problem. The RSA problem is widely believed to be computationally equivalent to factoring, but no proof is known. Knowledge of the following is equivalent with public key \((n, e)\), i.e., enables decryption:

- factors \(p\) and \(q\)
- \(\phi(n)\)
- private key \(d\)
• Knowledge of n and $\phi(n)$ implies knowledge of factors p and q

 – given n and $\phi(n)$, we can compute

 \[\phi(n) = (p - 1)(q - 1) = n - p - q + 1 = n - p - n/p + 1 \]
 \[p\phi(n) = np - p^2 - n + p \]

 then \[p^2 - np + \phi(n)p - p + n = 0 \]
 \[p^2 - (n - \phi(n) + 1)p + n = 0 \]

 – the above equation has two solutions: p and q
Factoring Large Numbers

- For factoring a product of two primes, **most effective algorithms** are
 - quadratic sieve
 - number field sieve
 - elliptic curve factoring algorithm

- The best factoring algorithms run in sub-exponential time

- **Hardness of factoring**
 - 512-bit modulus has been factored in 1999
 - 768-bit modulus has been factored in 2009
 - 829-bit modulus has been factored in 2020
 - 1024-bit modulus may be factored soon
Security of RSA

• Plain RSA is very weak

• Attacks on plain RSA
 – short messages
 – brute force search
 – common modulus
 – small exponents e and d
 – timing attacks

• Improving security of RSA
• Encrypting short messages with small e

 – often e can be very small such as 3

 – suppose that we encrypt a message $m < n^{1/3}$ and transmit ciphertext $c = m^e \mod n$

 • any m can be encoded as an element of \mathbb{Z}_n by treating it as integer and padding with 0s on the left

 – no modular reduction takes place and $m = c^{1/3}$ over integers can be easily computed

 – now how about encrypting 128-bit symmetric encryption key with a > 1024-bit modulus?
Attacks on RSA

- **Brute force key search**
 - try possible keys hoping to find the correct one
 - infeasible to succeed unlike in case of symmetric encryption

- **Brute force message search**
 - the message space can be bounded by some value L
 - simply encrypt all messages
 - the encryption algorithm is public
 - when we see ciphertext c, simply compare it to our ciphertexts
 - attack takes time/space linear in L
Attacks on RSA

- Brute force message search
 - unfortunately, a much faster attack is known that runs in about \sqrt{L} time
 - implications: decrypting a 128-bit key takes 2^{64} steps
 - algorithm:
 - we are given $c = \text{Enc}(m) = m^e \mod n$ for some $m < 2^\ell$
 - set $T = 2^{\alpha \ell}$ for $1/2 < \alpha < 1$
 - for $r = 1, \ldots, T$, set $x_r = c/r^e \mod n$
 - sort the pairs (r, x_r) by the second value
 - for $s = 1, \ldots, T$, if $s^e \mod n = x_r$ for some r, output $r \cdot s \mod n$
Attacks on RSA

- Small encryption exponent e
 - suppose that the same $e = 3$ is used with different moduli (i.e., with different public keys)
 - suppose Alice wants to send the same message m to three different people using their moduli n_1, n_2, and n_3
 - she sends $c_i = m^3 \pmod{n_i}$ for $i = 1, 2, 3$
 - an eavesdropper Eve observes c_1, c_2, and c_3
 - Eve can use the Chinese Remainder Theorem to find a solution x ($0 < x < n_1n_2n_3$) to the three congruences $x \equiv c_i \pmod{n_i}$
 - the solution is $x = m^3$ and m can be recovered by computing $\sqrt[3]{x}$ over integers (since $m < \min(n_1, n_2, n_3)$)
• Common modulus attack
 – this attack deals with a common misuse of RSA
 – suppose for efficiency reasons a trusted party generates one modulus n and several key pairs $(e_1, d_1), (e_2, d_2), \ldots$
 – then each user has $pk_i = (e_i, n)$ and $sk_i = d_i$
 – this setup is trivially insecure
 • why?
• **Common modulus attack**

 - now suppose that it is all right that all users know each others’ keys
 - suppose Eve sees two ciphertexts that encrypt the same message
 \[
 c_1 = m^{e_1} \mod n \quad \text{and} \quad c_2 = m^{e_2} \mod n
 \]
 - \(e_1 \neq e_2 \) and it is likely that \(\gcd(e_1, e_2) = 1 \)
 - then Eve can use Extended Euclidean algorithm to compute \(x \) and \(y \) such that \(e_1 x + e_2 y = 1 \)
 - Eve computes \(c_1^x \cdot c_2^y \mod n \) to recover \(m \)
Attacks on RSA

- Small decryption exponent d
 - the secret key d cannot be small
 - if $|d| \approx 1/4|n|$, there is an efficient algorithm for recovering d from public information (e, n)
 - thus, d should have roughly the same size as n

- Factors p and q close to each other
 - p and q cannot be chosen to be close to \sqrt{n}
 - if p and q are within a feasible computational effort from \sqrt{n}, a brute force search can find the factors
• **Timing attacks**

 – measure decryption time hoping to recover the decryption key

 – exponentiation algorithm and the ciphertext are known

 – what we can do to prevent such attacks

 • use constant exponentiation time

 • add random delays

 • modify the values used in calculations by blinding
• Are timing attacks practical?

 – the answer is yes

 – OpenSSL was discovered to be vulnerable in 2003

 • researchers discovered a remote timing attack on OpenSSL implementations that allowed to learn RSA keys

 • to secure it, turn RSA blinding on
Let’s get back to security of RSA

- RSA is not secure because it is deterministic
- RSA leaks information

To achieve security in the sense of indistinguishability, randomization and expansion are necessary

- now the ciphertext will be longer than the message
- suppose we want the computation effort of breaking the indistinguishability to be 2^k
- the ciphertext must be at least k bits longer than the message
Security of RSA

- Simple padding scheme
 - idea: pad message m with random r and encrypt their concatenation
 - let $(n, e, d) \leftarrow \text{GenRSA}(1^k)$ with $|n| = k$
 - let $|m| = \ell(k) \leq k - 1$
 - Gen: run $(n, e, d) \leftarrow \text{GenRSA}(1^k)$ and output $pk = (n, e)$ and $sk = (n, d)$
 - Enc: given $m \in \{0, 1\}^\ell(k)$, choose random $r \leftarrow \{0, 1\}^{k-\ell(k)-1}$ and output
 $c = \text{Enc}_{pk}(m) = (r||m)^e \mod n$
 - Dec: given $c \in \mathbb{Z}_n^*$, compute $m' = c^d \mod n$ and output $\ell(k)$ least significant bits of it
Security of this simple padding scheme

- if $|r|$ is not large enough, the scheme is not CPA-secure
 - e.g., $|r| = O(\log k)$
 - if $\ell(k) = c \cdot k$ for constant $c < 1$, the scheme can be conjectured secure
 - no proof based on the standard RSA assumption is known
 - if $\ell(k) = O(\log k)$, the scheme has been proven to be CPA-secure under the RSA assumption
 - is it satisfactory?
Security of RSA

- **PKCS #1 v1.5**
 - it is a widely used and standardized version of RSA from RSA Laboratories
 - it uses the above idea and requires $|r|$ to be at least 8 bytes
 - $\ell(n)$ is at most $k/8 - 11$ bytes
 - $|r|$ is $k/8 - \ell - 3$ bytes
 - encryption is formed as

 $c = (00000000||00000010||r||00000000||m)^e \mod n$
 - no byte of r is allowed to be 0
 - the construction is believed to be CPA-secure, but no formal proof under the RSA assumption is known
• An example padding for achieving CPA-security

 – we are given an encryption scheme $E = (Gen, Enc, Dec)$ and a cryptographic hash function h

 – to encrypt message m, generate a random number r

 – compute the ciphertext (c_1, c_2) as

 $c_1 = Enc_k(r)$ and $c_2 = h(r) \oplus m$

 – to decrypt a message given (c_1, c_2), compute $h(Dec_k(c_1)) \oplus c_2$
Semantic Security of RSA

• This padding scheme with RSA:
 – public key is \((e, n)\) with 1536-bit modulus
 – encryption of \(m\) is \((r^e \bmod n, h(r) \oplus m)\) for a random \(r \in \mathbb{Z}_n^*\)
 – to decrypt a ciphertext \((c_1, c_2)\), compute \(m = h(c_1^d \bmod n) \oplus c_2\)
 – for 256-bit messages, the size of ciphertexts is 1536 + 256

• Why is this solution secure?
 – it relies on randomness of \(h\) and one-way nature of \(\text{Enc}_k\)
 – to learn something about \(m\) from \(h(r) \oplus m\), one has to know \(h(r)\)
 – but since \(h(r)\) is random, you cannot recover \(r\)
 – recovering \(r\) from \(\text{Enc}_k(r)\) is also infeasible
In 1994 Bellare and Rogaway proposed an optimal asymmetric encryption padding (OAEP) method for encoding messages:

- it is the basis of PKCS #1 v2.0 and later
- it uses encryption $\mathcal{E} = (\text{Gen}, \text{Enc}, \text{Dec})$ (formally modeled as one-way trapdoor permutation)
- it also uses two hash functions $h : \{0, 1\}^\ell \rightarrow \{0, 1\}^t$ and $g : \{0, 1\}^t \rightarrow \{0, 1\}^\ell$
• **OAEP algorithms**

 – to **encrypt** an \(\ell \)-bit message \(m \):

 • choose an \(t \)-bit random \(r \)

 • compute the ciphertext as

 \[
 \text{Enc}_k(m \oplus g(r) || r \oplus h(m \oplus g(r)))
 \]

 – to **decrypt** ciphertext \(c \):

 • after applying \(\text{Dec}_k \) to \(c \), parse the content in two parts

 \(c_1 || c_2 \leftarrow \text{Dec}_k(c) \)

 • to recover \(m \) from \(m \oplus g(r) \), we need to find \(r \) as \(c_2 \oplus h(c_1) \)

 • finally, set \(m = c_1 \oplus g(r) \)
• Security of OAEP

 – if h and g are modeled as random oracles and the RSA problem is hard

 – RSA-OAEP is proven to be CCA-secure for certain types of public
 exponents e (including common $e = 3$)

 – OAEP is designed in such a way that the only way to find m is to
 explicitly choose m and r and try them
• Size of parameters in OAEP
 – ciphertext has size k (e.g., 1536 for RSA)
 – t should be such that 2^t work is infeasible and success is negligible
 • e.g., $t = O(k)$
 – the plaintext size ℓ can be up to $k - t$
 – e.g., with $k = 1536$ and $t = 128$, message size is up to 1408 bits
 – expansion is optimal
Summary

- **Security of RSA**
 - many attacks have been discovered over the year
 - attacks on plain RSA can be very damaging
 - countermeasures for implementation-based attacks exist

- **CPA-security of RSA**
 - can be added by using padding
 - OAEP achieves an optimal expansion and is provably secure